1
|
Sun D, Duan X, Li N, Qiao O, Hou Y, Ma Z, Liu S, Gong Y, Liu Z. Construction of ubiquitination-related risk model for predicting prognosis in lung adenocarcinoma. Sci Rep 2025; 15:11787. [PMID: 40189665 PMCID: PMC11973225 DOI: 10.1038/s41598-025-92177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
Lung adenocarcinoma is the most prevalent lung cancer type. Ubiquitination, a critical post-translational modification process that regulates protein degradation and signaling pathways, has been implicated in various cancers, including LUAD. We aimed to explore the associations between ubiquitination and lung adenocarcinoma. TCGA-LUAD cohort served as the training set. Unsupervised clustering, univariate Cox regression, Random Survival Forests, and least absolute shrinkage and selection operator (LASSO) Cox regression were applied to identify ubiquitination-related genes (URGs), then ubiquitination-related risk scores (URRS) were calculated using gene expression and the univariate Cox's coefficient. Comparisons between the high and the low URRS group regarding chemotherapy drug response, immune infiltration level, tumor mutation burden (TMB), tumor neoantigen load (TNB), PD1/L1 expression, and enriched pathways were performed. URRS was calculated based on the expression of DTL, UBE2S, CISH, and STC1. Patients with higher URRS had a worse prognosis (Hazard Ratio [HR] = 0.54, 95% Confidence Interval [CI]: 0.39-0.73, p < 0.001), and the prognosis of the URRS was further confirmed in 6 external validation cohorts (Hazard Ratio [HR] = 0.58, 95% Confidence Interval [CI]: 0.36-0.93, pmax = 0.023). The high URRS group had higher PD1/L1 expression level (p < 0.05), TMB (p < 0.001), TNB (p < 0.001), and TME scores (p < 0.001). The IC50 values of various chemotherapy drugs were lower in the high URRS group. In addition, we found that upregulation of STC1, UBE2S, and DTL was associated with worse, while upregulation of CISH was associated with better prognosis. We also performed a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for validation. In conclusion, the ubiquitination-based signature might serve as a biomarker to help evaluate the prognosis, biological features, and appropriate treatment for patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Dawei Sun
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
- Beijing ChosenMed Clinical Laboratory Co. Ltd, Beijing, 100176, China
| | - Xiaohong Duan
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Ning Li
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Ou Qiao
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yingjie Hou
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zihuan Ma
- Beijing ChosenMed Clinical Laboratory Co. Ltd, Beijing, 100176, China
| | - Siyao Liu
- Beijing ChosenMed Clinical Laboratory Co. Ltd, Beijing, 100176, China
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China.
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China.
| | - Zichuan Liu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China.
| |
Collapse
|
2
|
Jin X, Zhao W, Li G, Jiang J. Immunotherapy for Limited-Stage Small Cell Lung Cancer: Innovative Treatments and Future Perspectives. Cancer Control 2025; 32:10732748251334434. [PMID: 40228829 PMCID: PMC12033400 DOI: 10.1177/10732748251334434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/05/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
BackgroundLimited-stage small cell lung cancer (LS-SCLC) is a highly aggressive tumor characterized by a poor prognosis. While concurrent chemoradiotherapy (CCRT) remains the standard treatment, the high rates of recurrence and poor long-term survival highlight the pressing need for novel therapeutic approaches.PurposeIn recent years, the introduction of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has opened new avenues for the treatment of LS-SCLC. This review highlights the clinical advancements of ICIs in CCRT, consolidation therapy, and neoadjuvant therapy, emphasizing their potential to improve progression-free survival (PFS) and overall survival (OS). This review also discusses management of immunotherapy-related side effects.Research DesignThis is a review article that synthesizes recent research findings on immunotherapy for LS-SCLC.Study SampleNot applicable (review of existing literature).Data Collection and/or AnalysisThis review summarizes key studies exploring the application of immunotherapy in limited-stage small cell lung cancer.Additionally, it examines the role of the tumor microenvironment, tumor mutation burden (TMB), and Programmed cell death 1 ligand 1(PD-L1) as biomarkers for predicting the efficacy of immunotherapy.ResultsThis review emphasizes their potential to improve PFS and OS.ConclusionsDespite the significant advancements in research, the use of ICIs in LS-SCLC continues to face challenges, including the identification of optimal treatment regimens, validation of long-term efficacy, and development of personalized predictive biomarkers. Future research should prioritize large-scale, multicenter clinical trials to refine combination therapy strategies, establish customized treatment approaches, and enhance patient outcomes.
Collapse
Affiliation(s)
- Xiaoni Jin
- Department of Oncology, Graduate School of Qinghai University, Xining, China
| | - Weixing Zhao
- Department of Oncology, Graduate School of Qinghai University, Xining, China
| | - Guoyuan Li
- Division Ⅱ, Department of Medical Oncology, Affiliated Hospital of Qinghai University, Xining, China
| | - Jun Jiang
- Division III, Department of Medical Oncology, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
3
|
Moyana TN. Small cell lung carcinoma metastatic to the stomach: Commonly overlooked, limited treatment options. World J Gastroenterol 2024; 30:5198-5204. [PMID: 39735276 PMCID: PMC11612703 DOI: 10.3748/wjg.v30.i48.5198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Small cell lung carcinoma metastatic to the stomach, whether synchronous or metachronous, is a rare phenomenon accounting for < 0.5% of lung cancers. Hence it can be overlooked by clinicians resulting in delayed diagnosis. This manuscript comments on Yang et al's article which reported 3 such cases. The main diagnostic features are based on routine morphology comprised of small cells with hyperchromatic nuclei, scant cytoplasm, brisk mitoses and necrosis. This can be supplemented by immunohistochemistry demonstrating positivity for cytokeratin, thyroid transcription factor-1 and neuroendocrine markers as well as a high Ki-67 labelling index. Imaging modalities such as positron emission tomography/contrast computed tomography help to confirm lung origin and rule out the possibility of extra-pulmonary small cell carcinoma. The predominant mechanism of spread is most likely hematogeneous. Prognosis is generally poor since this represents stage 4 disease but survival can be improved by chemo/radiotherapy and palliative surgery in select cases. Though outcomes have not changed much in the last several decades, the recent Food and Drug Administration approval of immune checkpoint inhibitors was a significant milestone as was the delineation of small cell lung carcinoma molecular subtypes. Liquid biopsies are increasingly being used for biomarker studies in clinical trials to assess treatment response and prognosis.
Collapse
Affiliation(s)
- Terence N Moyana
- Diagnostic and Molecular Pathology, The Ottawa Hospital and University of Ottawa, Ottawa K1H 8L6, Ontario, Canada
| |
Collapse
|
4
|
Shrestha P, Kao S, Cheung VK, Cooper WA, van Zandwijk N, Rasko JEJ, Yeo D. Circulating tumor cells: advancing personalized therapy in small cell lung cancer patients. Mol Oncol 2024. [PMID: 38956984 DOI: 10.1002/1878-0261.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive cancer with a dismal 5-year survival of < 7%, despite the addition of immunotherapy to first-line chemotherapy. Specific tumor biomarkers, such as delta-like ligand 3 (DLL3) and schlafen11 (SLFN11), may enable the selection of more efficacious, novel immunomodulating targeted treatments like bispecific T-cell engaging monoclonal antibodies (tarlatamab) and chemotherapy with PARP inhibitors. However, obtaining a tissue biopsy sample can be challenging in SCLC. Circulating tumor cells (CTCs) have the potential to provide molecular insights into a patient's cancer through a "simple" blood test. CTCs have been studied for their prognostic ability in SCLC; however, their value in guiding treatment decisions is yet to be elucidated. This review explores novel and promising targeted therapies in SCLC, summarizes current knowledge of CTCs in SCLC, and discusses how CTCs can be utilized for precision medicine.
Collapse
Affiliation(s)
- Prajwol Shrestha
- Li Ka Shing Cell and Gene Therapy Program, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
- Precision Oncology Program, Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, Australia
- Medical Oncology, Calvary Mater Newcastle, Waratah, Australia
| | - Steven Kao
- Faculty of Medicine and Health, University of Sydney, Australia
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, Australia
| | - Veronica K Cheung
- Faculty of Medicine and Health, University of Sydney, Australia
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Wendy A Cooper
- Faculty of Medicine and Health, University of Sydney, Australia
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, Australia
- School of Medicine, University of Western Sydney, Australia
| | - Nico van Zandwijk
- Faculty of Medicine and Health, University of Sydney, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, Australia
- Concord Repatriation General Hospital, Sydney Local Health District, Concord, Australia
| | - John E J Rasko
- Li Ka Shing Cell and Gene Therapy Program, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
- Precision Oncology Program, Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, Australia
| | - Dannel Yeo
- Li Ka Shing Cell and Gene Therapy Program, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
- Precision Oncology Program, Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, Australia
| |
Collapse
|
5
|
Luo J, Luo F, Li Q, Liu Q, Wang J. An immunogenic cell death-related lncRNA signature correlates with prognosis and tumor immune microenvironment in bladder cancer. Sci Rep 2024; 14:13106. [PMID: 38849410 PMCID: PMC11161581 DOI: 10.1038/s41598-024-63852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Immunogenic cell death (ICD) is a newly discovered form of cellular demise that triggers adaptive immune responses mediated by T cells. However, the immunogenic cell death-related lncRNAs (ICDRLs) involved in bladder cancer (BC) development and progression remain to be further elucidated. Molecular profiling data and clinicopathological information for BC patients were obtained from TCGA, and the ICDRGs list was obtained from published literature. For the identification of ICDRLs, Pearson co-expression analysis was performed, and a prognostic signature based on 13 ICDRLs was constructed by univariate assays and LASSO assays. Herein, an ICDRLSig consisting of 13 ICDRLs was constructed. KM curves and ROC curves demonstrated that the constructed signature in the TCGA training, testing, entire and external sets have good predictive performance. Multivariate assays illuminated that the signature is an independent predictor for BC patients' OS, exhibiting greater predictive power for the survival than traditional clinicopathological features. Additionally, patients in the high-ICDRLSig risk subgroup had more abundant immune infiltration, higher immune checkpoint gene expression, lower TMB and poorer response to immunotherapy. We have developed a novel ICDRLSig that can be exploited for survival prediction and provide a reference for further individualized treatment.
Collapse
Affiliation(s)
- Jinhong Luo
- Department of Oncology, East Hospital, Tongji University School of Medicine, No. 1800 Yuntai Road, Shanghai, 200123, China
- Department of Oncology, East Hospital, Ji'an Hospital, Ji'an, 343000, Jiangxi, China
| | - Feiye Luo
- Department of Urology, Dongfang People's Hospital, Dongfang, 572699, Hainan Province, China
| | - Qin Li
- Department of Oncology, East Hospital, Ji'an Hospital, Ji'an, 343000, Jiangxi, China
| | - Qinghong Liu
- Department of Oncology, East Hospital, Tongji University School of Medicine, No. 1800 Yuntai Road, Shanghai, 200123, China
| | - Jinshan Wang
- Department of Oncology, East Hospital, Tongji University School of Medicine, No. 1800 Yuntai Road, Shanghai, 200123, China.
- Department of Urology, Dongfang People's Hospital, Dongfang, 572699, Hainan Province, China.
| |
Collapse
|
6
|
Yang C, Xuan T, Gong Q, Dai X, Wang C, Zhang R, Zhao W, Wang J, Yue W, Li J. Efficacy and safety of novel immune checkpoint inhibitor-based combinations versus chemotherapy as first-line treatment for patients with extensive-stage small cell lung cancer: A network meta-analysis. Thorac Cancer 2024; 15:1246-1262. [PMID: 38623838 PMCID: PMC11128374 DOI: 10.1111/1759-7714.15310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Patients with extensive-stage small cell lung cancer (ES-SCLC) have an exceptionally poor prognosis and immune checkpoint inhibitors (ICIs) combined with etoposide-platinum is recommended as standard first-line therapy. However, which combination pattern is the best still remains unknown. This network meta-analysis was performed to compare the efficacy and safety of currently available patterns including an antiangiogenic agent containing regimen and probed into the most appropriate therapy for patients. METHODS Hazard ratios (HRs) and odds ratios (ORs) were generated using R software. The outcomes of overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and adverse events of grade 3 or higher (grade ≥ 3 adverse events [AEs]) were analyzed. RESULTS A total of 10 randomized controlled trials (RCTs) involving 5544 patients were included for analysis. Drug combination patterns included adebrelimab, atezolizumab, durvalumab, durvalumab plus tremelimumab, ipilimumab, pembrolizumab, serplulimab, benmelstobart plus anlotinib, tislelizumab, tiragolumab plus atezolizumab and toripalimab in combination with chemotherapy. The novel antiangiogenic agent containing regimen benmelstobart + anlotinib + chemotherapy showed the highest possibility to present the best PFS and OS versus chemotherapy. Compared with ICI plus chemotherapy, it also achieved significantly better PFS and presented a tendency of OS benefit. As for safety and toxicity, patients treated with benmelstobart + anlotinib + chemotherapy and durvalumab + tremelimumab + chemotherapy suffered a higher likelihood of more grade ≥ 3 AEs without unexpected AEs. CONCLUSION PD-1/PD-L1 inhibitors-based combinations are associated with significant improvement in both PFS and OS for treatment-naïve ES-SCLC patients. Benmelstobart plus anlotinib with chemotherapy (CT) yielded better survival benefit versus CT alone or other ICIs + CT with caution for more adverse effects along with the addition of an antiangiogenic agent.
Collapse
Affiliation(s)
- Chuang Yang
- Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Tiantian Xuan
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of MedicineShandong UniversityQingdaoChina
| | - Qing Gong
- Department of Respiratory Oncology, Wendeng District People's HospitalWeihaiChina
| | - Xin Dai
- Department of Medical Oncology, Shandong Provincial Hospital of Traditional Chinese MedicineJinanChina
| | - Chengjun Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Rongyu Zhang
- Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wen Zhao
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jian Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Weiming Yue
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
7
|
Domvri K, Yaremenko AV, Apostolopoulos A, Petanidis S, Karachrysafi S, Pastelli N, Papamitsou T, Papaemmanouil S, Lampaki S, Porpodis K. Expression patterns and clinical implications of PDL1 and DLL3 biomarkers in small cell lung cancer retrospectively studied: Insights for therapeutic strategies and survival prediction. Heliyon 2024; 10:e27208. [PMID: 38468968 PMCID: PMC10926129 DOI: 10.1016/j.heliyon.2024.e27208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths globally, includes small cell lung cancer (SCLC), characterized by its aggressive nature and advanced disease at diagnosis. However, the identification of reliable biomarkers for SCLC has proven challenging, as no consistent predictive biomarker has been established. Nonetheless, certain tumor-associated antigens, including programmed death-ligand 1 (PDL1) and Delta-Like Ligand 3 (DLL3), show promise for targeted antibody-based immunotherapy. To ensure optimal patient selection, it remains crucial to comprehend the relationship between PDL1 and DLL3 expression and clinicopathological characteristics in SCLC. In this study, we investigated the expression patterns of PDL1 and DLL3 biomarkers in endobronchial samples from 44 SCLC patients, examining their association with clinical characteristics and survival. High PDL1 expression (>1%) was observed in 14% of patients, while the majority the SCLC patients (73%) exhibited high DLL3 expression (>75%). Notably, we found a positive correlation between high PDL1 expression (>1%) and overall survival. However, we did not observe any significant differences in the biomarkers expression concerning age, sex, disease status, smoking status, or distant metastases. Further subgroup analysis revealed that a high co-expression of both PDL1 (>1%) and DLL3 (100%) antigens was associated with improved overall survival. This suggests that SCLC expressing PDL1 and DLL3 antigens may exhibit increased sensitivity to therapy, indicating their potential as therapeutic targets. Thus, our findings provide novel insights into the simultaneous evaluation of PDL1 and DLL3 biomarkers in SCLC patients. These insights have significant clinical implications for therapeutic strategies, survival prediction, and development of combination immunotherapies.
Collapse
Affiliation(s)
- Kalliopi Domvri
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexey V. Yaremenko
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Pulmonary Department, Oncology Unit, George Papanikolaou Hospital, School of MedicineAristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Apostolopoulos
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Petanidis
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Karachrysafi
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikoleta Pastelli
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Styliani Papaemmanouil
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Lampaki
- Pulmonary Department, Oncology Unit, George Papanikolaou Hospital, School of MedicineAristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Porpodis
- Pulmonary Department, Oncology Unit, George Papanikolaou Hospital, School of MedicineAristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Solta A, Ernhofer B, Boettiger K, Megyesfalvi Z, Heeke S, Hoda MA, Lang C, Aigner C, Hirsch FR, Schelch K, Döme B. Small cells - big issues: biological implications and preclinical advancements in small cell lung cancer. Mol Cancer 2024; 23:41. [PMID: 38395864 PMCID: PMC10893629 DOI: 10.1186/s12943-024-01953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Current treatment guidelines refer to small cell lung cancer (SCLC), one of the deadliest human malignancies, as a homogeneous disease. Accordingly, SCLC therapy comprises chemoradiation with or without immunotherapy. Meanwhile, recent studies have made significant advances in subclassifying SCLC based on the elevated expression of the transcription factors ASCL1, NEUROD1, and POU2F3, as well as on certain inflammatory characteristics. The role of the transcription regulator YAP1 in defining a unique SCLC subset remains to be established. Although preclinical analyses have described numerous subtype-specific characteristics and vulnerabilities, the so far non-existing clinical subtype distinction may be a contributor to negative clinical trial outcomes. This comprehensive review aims to provide a framework for the development of novel personalized therapeutic approaches by compiling the most recent discoveries achieved by preclinical SCLC research. We highlight the challenges faced due to limited access to patient material as well as the advances accomplished by implementing state-of-the-art models and methodologies.
Collapse
Affiliation(s)
- Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Büsra Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Thoracic Oncology, Mount Sinai Health System, Tisch Cancer Institute, New York, NY, USA.
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
9
|
Liu Y, Li X, Chen S, Zhu C, Shi Y, Dang S, Zhang W, Li W. Pan-cancer analysis of SERPINE family genes as biomarkers of cancer prognosis and response to therapy. Front Mol Biosci 2024; 10:1277508. [PMID: 38274096 PMCID: PMC10808646 DOI: 10.3389/fmolb.2023.1277508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Serine protease inhibitor E (SERPINE) family genes participate in the tumor growth, cancer cell survival and metastasis. However, the SERPINE family members role in the prognosis and their clinical therapeutic potentials in various human cancer types have not been elaborately explored. Methods: We preliminarily analyzed expression levels and prognostic values of SERPINE family genes, and investigated the correlation between SERPINEs expression and tumor microenvironment (TME), Stemness score, clinical characteristic, immune infiltration, tumor mutational burden (TMB), immune subtype, and drug sensitivity in pan-cancer, which based on updated public databases and integrated some bioinformatics analysis methods. In addition, we conducted the enrichment analysis of SERPINEs from DAVID and KOBAS databases. Results: SERPINE1, SERPINE2, and SERPINE3 expression were upregulated in nine cancers, twelve cancers, and six cancers, respectively. The expression of SERPINE family genes was associated with the prognosis in several cancers from The Cancer Genome Atlas (TCGA). Furthermore, SERPINE family genes expression also had a significant relation to stromal and immune scores, and RNA stemness score and DNA stemness score in pan-cancer. SERPINE1 and SERPINE2 expression significantly increased in tumor advanced stage in colon adenocarcinoma (COAD). Results showed that SERPINE1 and SERPINE2 expression were negatively related with B cells and Monocytes, respectively. SERPINE2 expression had a significantly positive relation with B cells and Macrophages. In terms of TMB, SERPINE1, SERPINE2, and SERPINE3 were found to associated with TMB in seven cancers, fourteen cancers, and four cancers, respectively. Moreover, all SERPINE gene family members were significantly correlated with immune subtypes. SERPINE1 expression had a significantly positive or negative correlation with drug sensitivity. Conclusion: The study indicated the great potential of SERPINE family genes as biomarkers for prognosis and provided valuable strategies for further investigation of SERPINE family genes as potential targets in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Li
- Department of Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Lee JH, Saxena A, Giaccone G. Advancements in small cell lung cancer. Semin Cancer Biol 2023; 93:123-128. [PMID: 37236329 DOI: 10.1016/j.semcancer.2023.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/02/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer with an urgent need for novel therapeutics, preclinical models, and elucidation of the molecular pathways responsible for its rapid resistance. Recently, there have been many significant advancements in our knowledge of SCLC that led to the development of novel treatments. This review will go over the recent attempts to provide new molecular subcategorization of SCLC, recent breakthroughs in various systemic treatments including immunotherapy, targeted therapy, cellular therapy, as well as advancements in radiation therapy.
Collapse
Affiliation(s)
- Jung-Hoon Lee
- Department of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, United States.
| | - Ashish Saxena
- Department of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Giuseppe Giaccone
- Department of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
11
|
Zhang T, Li W, Diwu D, Chen L, Chen X, Wang H. Efficacy and safety of first-line immunotherapy plus chemotherapy in treating patients with extensive-stage small cell lung cancer: a Bayesian network meta-analysis. Front Immunol 2023; 14:1197044. [PMID: 37435087 PMCID: PMC10331819 DOI: 10.3389/fimmu.2023.1197044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 07/13/2023] Open
Abstract
Background Despite numerous immunotherapy and chemotherapy regimens available for patients with extensive-stage small cell lung cancer (ES-SCLC), it remains unclear which regimen is the most effective and safest; relative studies comparing such regimens are scarce. Objective The aim of this study was to investigate the efficacy and safety of first-line immunotherapy combinations with chemotherapy for patients with extensive-stage small cell lung cancer. In addition, for the first time, comparisons among the first-line systemic regimens on OS and PFS in ES-SCLC by each time node were made. Methods Databases including PubMed, Embase, Cochrane Library, Scopus, Google Scholars, and ClinicalTrials.gov, and major international conferences were searched for randomized controlled trials (RCTs) regarding comparing immunotherapy combinations with chemotherapy as first-line treatments for patients with advanced ES-SCLC from inception to 1 November. Hazard ratios (HRs) and odds ratios (ORs) were generated for dichotomous variants by RStudio 4.2.1. The outcomes comprised overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and adverse events of grade 3 or higher (Grade ≥ 3 AEs). Results Eventually, a total of nine RCTs reporting 4,352 individuals with nine regimens were enrolled. The regimens were ipilimumabnu (Ipi), atezolizumab (Atez), durvalumab plus tremelimumab (Durv-Trem), durvalumab (Durv), pembrolizumab (Pemb), adebrelimab (Adeb), serplulimab (Serp), atezolizumab plus tiragolumab (Atez-Tira), and nivolumab (Nivo). With regard to OS, serplulimab (HR = 0.63, 95% CI: 0.49 to 0.81) was found to yield the best OS benefit when compared with chemotherapy. Meanwhile, serplulimab had the highest probability (46.11%) for better OS. Furthermore, compared with chemotherapy, serplulimab significantly increased the OS rate from the 6th to the 21st month. With regard to PFS, serplulimab (HR = 0.47, 95% CI: 0.38 to 0.59) was found to yield the best PFS benefit when compared with chemotherapy. Simultaneously, serplulimab had the highest probability (94.48%) for better PFS. Serplulimab was also a long-lasting first-line regimen in both OS and PFS from a longitudinal perspective. In addition, there was no significant difference among the various treatment options for ORR and grade ≥3 AEs. Conclusion Considering OS, PFS, ORR, and safety profiles, serplulimab with chemotherapy should be recommended as the best therapy for patients with ES-SCLC. Certainly, more head-to-head studies are needed to confirm these findings. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022373291.
Collapse
Affiliation(s)
- Tianming Zhang
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wenjun Li
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Danbei Diwu
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lijun Chen
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xi Chen
- School of Health, Brooks College (Sunnyvale), Sunnyvale, CA, United States
- Department of Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Wang
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Liu H, Xin T, Duan H, Wang Y, Shao C, Zhu Y, Wang J, He J. Development and validation of a MUC16 mutation-associated immune prognostic model for lung adenocarcinoma. Aging (Albany NY) 2023; 15:5650-5661. [PMID: 37341998 PMCID: PMC10333060 DOI: 10.18632/aging.204814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Mucin 16 (MUC16) mutation ranks third among all common mutations in lung adenocarcinoma (LUAD), and it has a certain effect on LUAD development and prognostic outcome. This research aimed to analyze the effects of MUC16 mutation on LUAD immunophenotype regulation and determine the prognostic outcome using an immune prognostic model (IPM) built with immune-related genes. The MUC16 mutation status and mRNA expression profiles were analyzed using diverse platforms and among several LUAD patients (n = 691). An IPM was then constructed using differentially expressed immune-related genes (DEIRGs) in MUC16MUT LUAD cases, and the data were compared with those of MUC16WT LUAD cases. The IPM's performance in distinguishing high-risk cases from low-risk ones among 691 LUAD cases was verified. Additionally, a nomogram was built and applied in the clinical setting. Furthermore, a comprehensive IPM-based analysis of how MUC16 mutation affected the tumor immune microenvironment (TIME) of LUAD was performed. MUC16 mutation decreased the immune response in LUAD. As revealed by functional annotation, the DEIRGs in the IPM were most significantly enriched in the humoral immune response function and the immune system disease pathway. Moreover, high-risk cases were associated with increased proportions of immature dendritic cells, neutrophils, and B-cells; enhanced type I interferon T-cell response; and increased expression of PD-1, CTLA-4, TIM-3, and LAG3 when compared with low-risk cases. MUC16 mutation shows potent association with TIME of LUAD. The as-constructed IPM displays high sensitivity to MUC16 mutation status and can be applied to discriminate high-risk LUAD cases from low-risk ones.
Collapse
Affiliation(s)
- Honggang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Xin
- Department of Respiratory Medicine, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Yifang Zhu
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Jiansheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Zou R, Zhong X, Liang K, Zhi C, Chen D, Xu Z, Zhang J, Liao D, Lai M, Weng Y, Peng H, Pang X, Ji Y, Ke Y, Zhang H, Wang Z, Wang Y. Elevated LILRB1 expression predicts poor prognosis and is associated with tumor immune infiltration in patients with glioma. BMC Cancer 2023; 23:403. [PMID: 37142967 PMCID: PMC10161664 DOI: 10.1186/s12885-023-10906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor subfamily B1 (LILRB1) is regarded as an inhibitory molecule. However, the importance of LILRB1 expression in glioma has not yet been determined. This investigation examined the immunological signature, clinicopathological importance and prognostic value of LILRB1 expression in glioma. METHODS We used data from the UCSC XENA database, the Cancer Genome Atlas (TCGA) database, the Chinese Glioma Genome Atlas (CGGA) database, the STRING database, the MEXPRESS database and our clinical glioma samples to perform bioinformatic analysis and used vitro experiments to examine the predictive value and potential biological roles of LILRB1 in glioma. RESULTS Higher LILRB1 expression was considerably present in the higher WHO grade glioma group and was linked to a poorer prognosis in patients with glioma. Gene set enrichment analysis (GSEA) revealed that LILRB1 was positively correlated with the JAK/STAT signaling pathway. LILRB1 combined with tumor mutational burden (TMB) and microsatellite instability (MSI) may be a promising indicator for the effectiveness of immunotherapy in patients with glioma. Increased LILRB1 expression was positively linked with the hypomethylation, M2 macrophage infiltration, immune checkpoints (ICPs) and M2 macrophage makers. Univariate and multivariate Cox regression analyses determined that increased LILRB1 expression was a standalone causal factor for glioma. Vitro experiments determined that LILRB1 positively enhanced the proliferation, migration and invasion in glioma cells. MRI images demonstrated that higher LILRB1 expression was related with larger tumor volume in patients with glioma. CONCLUSION Dysregulation of LILRB1 in glioma is correlated with immune infiltration and is a standalone causal factor for glioma.
Collapse
Affiliation(s)
- Renheng Zou
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xunlong Zhong
- Science and Technology Innovation Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Kairong Liang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Cheng Zhi
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Danmin Chen
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhichao Xu
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jingbai Zhang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Degui Liao
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Miaoling Lai
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuhao Weng
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Huaidong Peng
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao Pang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yunxiang Ji
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yanbin Ke
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongri Zhang
- Department of Neurosurgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.
| | - Zhaotao Wang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Yezhong Wang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
14
|
Zhu Y, Liu K, Yang Q, Zeng M, Peng L. First-line Immuno-chemotherapy for extensive-stage small-cell lung cancer: A network meta-analysis and cost-effectiveness analysis. Front Public Health 2023; 11:1028202. [PMID: 37006537 PMCID: PMC10061061 DOI: 10.3389/fpubh.2023.1028202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionMany randomized controlled trials have indicated that immuno-chemotherapy could generate clinical benefits, though the cost of immuno-chemotherapy was so prohibitive and the options were varied. This investigation aimed at evaluating effectiveness, safety, and cost-effectiveness for immuno-chemotherapy as a first-line therapeutic option for ES-SCLC patients.MethodsMultiple scientific literature repositories were searched for clinical studies where immuno-chemotherapy was regarded as the first-line treatment for ES-SCLC, which were published in English between Jan 1, 2000, and Nov 30, 2021. This study conducted a network meta-analysis (NMA) and cost-effectiveness analysis (CEA) based upon US-resident payer perspectives. Overall survival (OS), progression-free survival (PFS), and adverse events (AEs) were evaluated through NMA. In addition, costings, life-years (LYs), quality-adjusted life-years (QALYs), and incremental cost–benefit ratio (ICER) were estimated by CEA.ResultsWe identified 200 relevant search records, of which four randomized controlled trials (RCTs) (2,793 patients) were included. NMA demonstrated that the effect of atezolizumab plus chemotherapy was ranked at a more elevated position in comparison to other immuno-chemotherapy options and chemotherapy alone, within the general population. The influence of atezolizumab plus chemotherapy and durvalumab plus chemotherapy was ranked higher within populations experiencing non-brain metastases (NBMs) andbrain metastases (BMs), respectively. The CEA revealed that the ICERs of immuno-chemotherapy over chemotherapyalone were higher than the willingness-to-pay (WTP) threshold of $150,000/QALY in any population. However, treatment with atezolizumab plus chemotherapy and durvalumab plus chemotherapy were more favorable health advantages than other immuno-chemotherapy regimens and chemotherapy alone, and the results were 1.02 QALYs and 0.89 QALYs within overall populations and populations with BMs, respectively.ConclusionThe NMA and cost-effectiveness investigation demonstrated that atezolizumab plus chemotherapy could be an optimal first-line therapeutic option for ES-SCLC when compared with other immuno-chemotherapy regimens. Durvalumab plus chemotherapy is likely to be the most favorable first-line therapeutic option for ES-SCLC with BMs.
Collapse
Affiliation(s)
- Youwen Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuping Yang
- Department of Pathology, Tangshan Cancer Hospital, Tangshan, Hebei, China
| | - Manting Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Manting Zeng,
| | - Libo Peng
- Department of Oncology, Loudi Central Hospital, Loudi, Hunan, China
- Libo Peng,
| |
Collapse
|
15
|
Wu Y, Yang J, Qiao X, Li Y, Zhao R, Lin T, Li X, Wang M. Use of the prognostic nutrition index as a predictive biomarker in small-cell lung cancer patients undergoing immune checkpoint inhibitor treatment in the Chinese alpine region. Front Oncol 2023; 13:1041140. [PMID: 37007079 PMCID: PMC10050450 DOI: 10.3389/fonc.2023.1041140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundWhether the prognostic nutritional index (PNI), which is suggested to reflect systemic inflammation and nutritional status of patients, could be used as an effective prognostic factor for small-cell lung cancer (SCLC) has not yet been clarified. The purpose of this study was to verify the prognostic value of the PNI in SCLC patients treated with programmed cell death ligand-1/programmed cell death 1 (PD-L1/PD-1) inhibitors in the alpine region of China.MethodsSCLC patients treated with PD-L1/PD-1 inhibitors monotherapy or combined with chemotherapy between March 2017 and May 2020 were included. Based on the values of serum albumin and total lymphocyte count, the study population was divided into two groups: high and low PNI. The Kaplan-Meier method was used to compute the median survival time and the log-rank test was used to compare the two groups. To evaluate the prognostic value of the PNI, univariable and multivariable analyses of progression-free survival (PFS) and overall survival (OS) were performed. The correlations between PNI and DCR or ORR were calculated by Point biserial correlation analysis.ResultsOne hundred and forty patients were included in this study, of which, 60.0% were high PNI (PNI > 49.43) and 40.0% were low PNI (PNI ≤ 49.43). Results indicated that the high PNI group had better PFS and OS than the low PNI group in the patients who received PD-L1/PD-1 inhibitors monotherapy (median PFS: 11.0 vs. 4.8 months, p < 0.001 and median OS: 18.5 vs. 11.0 months, p = 0.004). Similarly, better PFS and OS were associated with an increase in PNI level in the patients who accepted PD-L1/PD-1 inhibitors combined with chemotherapy (median PFS: 11.0 vs. 5.3 months, p < 0.001 and median OS: 17.9 vs. 12.6 months, p = 0.005). Multivariate Cox-regression model showed that high PNI was significantly related to better PFS and OS in patients who accepted PD-L1/PD-1 inhibitors monotherapy or combined with chemotherapy (PD-L1/PD-1 inhibitors monotherapy: PFS: HR = 0.23, 95% CI: 0.10–0.52, p < 0.001 and OS: HR = 0.13, 95% CI: 0.03–0.55, p = 0.006; PD-L1/PD-1 inhibitors combined with chemotherapy: PFS: HR = 0.34, 95% CI: 0.19–0.61, p < 0.001 and OS: HR = 0.53, 95% CI: 0.29–0.97, p = 0.040, respectively). Additionally, Point biserial correlation analysis between PNI and disease control rate (DCR) showed that PNI status was positively correlated with DCR in SCLC patients receiving PD-L1/PD-1 inhibitors or combined with chemotherapy (r = 0.351, p < 0.001; r = 0.285, p < 0.001, respectively).ConcussionsPNI may be a promising biomarker of treatment efficacy and prognosis in SCLC patients treated with PD-L1/PD-1 inhibitors in the alpine region of China.
Collapse
Affiliation(s)
- Yunjiao Wu
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing and Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Xinyi Qiao
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Yingjie Li
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Rui Zhao
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Tie Lin
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin, China
| | - Xiaoli Li
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
- *Correspondence: Meng Wang,
| |
Collapse
|
16
|
Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Cell Mol Immunol 2023; 20:318-340. [PMID: 36823234 PMCID: PMC10066239 DOI: 10.1038/s41423-023-00980-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy is a powerful option for cancer treatment. Despite demonstrable progress, most patients fail to respond or achieve durable responses due to primary or acquired ICB resistance. Recently, tumor epithelial-to-mesenchymal plasticity (EMP) was identified as a critical determinant in regulating immune escape and immunotherapy resistance in cancer. In this review, we summarize the emerging role of tumor EMP in ICB resistance and the tumor-intrinsic or extrinsic mechanisms by which tumors exploit EMP to achieve immunosuppression and immune escape. We discuss strategies to modulate tumor EMP to alleviate immune resistance and to enhance the efficiency of ICB therapy. Our discussion provides new prospects to enhance the ICB response for therapeutic gain in cancer patients.
Collapse
|
17
|
Skopelidou V, Strakoš J, Škarda J, Raška M, Kafková-Rašková L. Potential predictors of immunotherapy in small cell lung cancer. Pathol Oncol Res 2023; 29:1611086. [PMID: 37206058 PMCID: PMC10191143 DOI: 10.3389/pore.2023.1611086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide, with small cell lung cancer (SCLC) having the worst prognosis. SCLC is diagnosed late in the disease's progression, limiting treatment options. The most common treatment for SCLC is chemotherapy. As the disease progresses, immunotherapy, most commonly checkpoint inhibitor medication, becomes more important. Efforts should be made in the development of immunotherapy to map specific biomarkers, which play a role in properly assigning a type of immunotherapy to the right cohort of patients, where the benefits outweigh any risks or adverse effects. The objective of this review was to provide a thorough assessment of current knowledge about the nature of the tumor process and treatment options for small cell lung cancer, with a focus on predictive biomarkers. According to the information obtained, the greatest potential, which has already been directly demonstrated in some studies, has characteristics such as tumor microenvironment composition, tumor mutation burden, and molecular subtyping of SCLC. Several other aspects appear to be promising, but more research, particularly prospective studies on a larger number of probands, is required. However, it is clear that this field of study will continue to expand, as developing a reliable method to predict immunotherapy response is a very appealing goal of current medicine and research in the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Valeria Skopelidou
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- *Correspondence: Valeria Skopelidou,
| | - Jan Strakoš
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jozef Škarda
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| | - Leona Kafková-Rašková
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
18
|
Ghazi B, El Ghanmi A, Kandoussi S, Ghouzlani A, Badou A. CAR T-cells for colorectal cancer immunotherapy: Ready to go? Front Immunol 2022; 13:978195. [PMID: 36458008 PMCID: PMC9705989 DOI: 10.3389/fimmu.2022.978195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/14/2022] [Indexed: 08/12/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cells represent a new genetically engineered cell-based immunotherapy tool against cancer. The use of CAR T-cells has revolutionized the therapeutic approach for hematological malignancies. Unfortunately, there is a long way to go before this treatment can be developed for solid tumors, including colorectal cancer. CAR T-cell therapy for colorectal cancer is still in its early stages, and clinical data are scarce. Major limitations of this therapy include high toxicity, relapses, and an impermeable tumor microenvironment for CAR T-cell therapy in colorectal cancer. In this review, we summarize current knowledge, highlight challenges, and discuss perspectives regarding CAR T-cell therapy in colorectal cancer.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Adil El Ghanmi
- Mohammed VI International University Hospital, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
19
|
Barrows ED, Blackburn MJ, Liu SV. Evolving role of immunotherapy in small cell lung cancer. Semin Cancer Biol 2022; 86:868-874. [PMID: 35192928 DOI: 10.1016/j.semcancer.2022.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a highly lethal subtype of lung cancer with a particularly poor prognosis. For decades, the best available systemic therapy was platinum plus etoposide chemotherapy, which offered frequent but transient responses. Survival gains were finally realized with the addition of immune checkpoint inhibitors to first-line chemotherapy. The phase III IMpower 133 trial showed that the addition of atezolizumab to chemotherapy improved survival. The subsequent CASPIAN trial demonstrated a similar benefit with durvalumab. These results quickly established chemo-immunotherapy as the preferred initial treatment for advanced SCLC, but outcomes remain poor for most patients. Here, we review the current and evolving role of immunotherapy in SCLC and outline emerging strategies poised to further elevate the standard of care.
Collapse
Affiliation(s)
- Elizabeth D Barrows
- Division of Hematology-Oncology, MedStar Georgetown University Hospital, Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - Matthew J Blackburn
- Division of Hematology-Oncology, MedStar Georgetown University Hospital, Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - Stephen V Liu
- Division of Hematology-Oncology, MedStar Georgetown University Hospital, Lombardi Comprehensive Cancer Center, Washington, DC, United States.
| |
Collapse
|
20
|
Zhou B, Ying X, Chen Y, Cai X. A Comprehensive Pan-Cancer Analysis of the Tumorigenic Effect of Leucine-Zipper-Like Transcription Regulator (LZTR1) in Human Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2663748. [PMID: 36304963 PMCID: PMC9593223 DOI: 10.1155/2022/2663748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
The elucidation of the action site, mechanism of Leucine-Zipper-like Transcription Regulator-1 (LZTR1) and its relationship with RAS-MAPK signaling pathway attracts more and more scholars to focus on the researches of LZTR1 and its role in tumorigenesis. However, there was no pan-cancer analysis between LZTR1 and human tumors reported before. Therefore, we are the first to investigate the potential oncogenic roles of LZTR1 across all tumor types based on the datasets of TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus). LZTR1 plays a double-edged role in tumor development and prognosis. We found that the high expression of LZTR1 brings better outcomes in esophageal carcinoma (ESCA) and head and neck squamous cell carcinoma (HNSC) but brings worth outcomes in uveal melanoma (UVM), adrenocortical carcinoma (ACC), liver hepatocellular carcinoma (LIHC), and prostate adenocarcinoma (PRAD). Moreover, the expression of LZTR1 also strongly associated with pathological in ACC and bladder urothelial carcinoma (BLCA). We also found that the LZTR1 expression was associated with some immune cell infiltration including endothelial cells, regulatory T cells (Tregs), T cell CD8+, natural killer cells (NK cell), macrophages, neutrophil granulocyte, and cancer-associated fibroblasts in different cancers. Missense mutation in LZTR1 was detected in most cancers from TCGA datasets. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Body (GO) method was used to explain the pathogenesis of LZTR1. Our pan-cancer study provides a relatively comprehensive understanding of the carcinogenic role of LZTR1 in human tumors.
Collapse
Affiliation(s)
- Bo Zhou
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Xinyu Ying
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Yingcong Chen
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Xingchen Cai
- Medical School, Ningbo University, Ningbo 315211, China
| |
Collapse
|
21
|
Yigit A, Kuscu B, Kirik A, Ozcaglayan R, Afsar CU. New Biomarkers and Immunotherapy Decision. Biomark Med 2022. [DOI: 10.2174/9789815040463122010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As immune checkpoint blockade and other immune-based therapy
approaches lead to broad treatment advances among patients with advanced cancer, an
important consideration is how to best select patients whose tumors will respond to
these therapies. As a consequence predictive and prognostic markers are needed. There
are genomic features, such as tumour mutation burden (TMB), microsatellite instability
(MSI), and immune phenotype features, such as programmed death-ligand 1 (PD-L1),
CTLA-4 and tumour infiltrating lymphocytes (TILs), to predict response to
immunotherapies (ITs). Several studies show the correlation between TMB and
predicted neoantigen load across multiple cancer types. Response to immune
checkpoint inhibitors is higher in tumours with high TMB. The candidate biomarker
that has been studied mostly other than TMB is PD-L1 expression in trials utilizing
programmed cell death-1 (PD-1) blockade. PD-L1 and PD-1 expression are dynamic
markers that change in relation to local cytokines and other factors, and the thresholds
that separate “positive” and “negative” PD-L1 expressions remain under debate. PD-L1
expression is now a routine diagnostic marker for patients with newly diagnosed
NSCLC. The potential applicability of PD-L1 in other disease settings is still uncertain.
Microsatellite instability is characterised by high rates of alterations to repetitive DNA
sequences caused by impaired mismatch repair (MMR); MSI was the biomarker was
approved according to tumor's initial location. Combining TMB with specific genomic
alterations is crucial. Moreover, new biomarkers are being investigated.
Collapse
Affiliation(s)
- Abdurrahman Yigit
- Department of Internal Medicine and Medical Oncology, Canakkale 18 Mart University Medical Faculty, Canakkale, Turkey
| | - Berkay Kuscu
- Department of Internal Medicine, Balikesir University Medical Faculty, Balıkesir,Turkey
| | - Ali Kirik
- Department of Internal Medicine, Balikesir University Medical Faculty, Balıkesir,Turkey
| | - Ruhsen Ozcaglayan
- Department of Internal Medicine, Balikesir University Medical Faculty, Balıkesir,Turkey
| | - Cigdem Usul Afsar
- Department of Internal Medicine and Medical Oncology, Istinye University Medical Faculty, İstinye Üniversitesi Topkapı Kampüsü, Istanbul 34010,Turkey
| |
Collapse
|
22
|
Li C, Wang M, Wei J, Zhang W, Liu H, Zhao D. Construction of a Pyroptosis-Related Genes Signature to Improve the Prognostic Prediction and Therapeutic Drugs Selection in Patients with Pancreatic Cancer. Int J Gen Med 2022; 15:6387-6403. [PMID: 35942290 PMCID: PMC9356741 DOI: 10.2147/ijgm.s369209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Effective prognostic assessment and appropriate drug selection are important for the clinical management of pancreatic cancer (PaC). Here, we aimed to establish a pyroptosis-associated genes (PRGs) signature to predict the prognostic outcomes of PaC and guide clinical drug therapy. Methods We identified the differentially expressed PRGs between pancreatic adenocarcinoma (n = 178) and control pancreas samples (n = 171) obtained from different databases, and performed Lasso and Cox regression analysis to create a prognosis signature. Kaplan–Meier (K-M) survival curves and time-dependent receiver operating characteristics were further constructed to assess the utility of the risk model. The International Cancer Genome Consortium (ICGC) PACA-AU cohort (n = 95) was used as a validation dataset to examine the validity of this prognostic model. The correlations of risk score (RS) with clinical features, immune cell infiltration, tumor mutation burden and half-maximal inhibitory concentrations (IC50) of chemotherapeutic drugs were analyzed, and the expression levels of PRGs in cell lines were detected. Results A prognostic signature was constructed, which consisted of 4 PRGs (AIM2, IL18, GSMDC and PLCG1). K-M analysis demonstrated a remarkable difference in overall survival (OS) time between low-risk (LR) and high-risk (HR) groups (P < 0.001). The RS contributed to the progression of PaC, and could be a significant independent factor for prognostic prediction. The validation of the ICGC cohort confirmed the effectiveness of the proposed signature. The patients with a HR score in the TCGA cohort had higher tumor mutation burden and more sensitivity to paclitaxel, gemcitabine, 5-fluorouracil and cisplatin than those with a LR score. The differential expression levels of signature genes were verified in vitro. Conclusion The PRGs signature can be applied for predicting the prognosis of PaC, and may provide useful information for selection of therapeutic drugs.
Collapse
Affiliation(s)
- Changjuan Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Gastroenterology, The First Hospital of Handan City, Handan, Hebei Province, People's Republic of China
| | - Min Wang
- Department of Anorectal Surgery, The First Hospital of Handan City, Handan, Hebei Province, People's Republic of China
| | - Junwei Wei
- Department of Gastroenterology, The First Hospital of Handan City, Handan, Hebei Province, People's Republic of China
| | - Wenjuan Zhang
- Department of Gastroenterology, The First Hospital of Handan City, Handan, Hebei Province, People's Republic of China
| | - Haitao Liu
- Department of Gastroenterology, The First Hospital of Handan City, Handan, Hebei Province, People's Republic of China
| | - Dongqiang Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| |
Collapse
|
23
|
Lei Y, Wang K, Liu Y, Wang X, Xiang X, Ning X, Ding W, Duan J, Li D, Zhao W, Li Y, Zhang F, Luo X, Shi Y, Wang Y, Huang D, Bai Y, Zhang H. Various Subtypes of EGFR Mutations in Patients With NSCLC Define Genetic, Immunologic Diversity and Possess Different Prognostic Biomarkers. Front Immunol 2022; 13:811601. [PMID: 35265073 PMCID: PMC8899028 DOI: 10.3389/fimmu.2022.811601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Based on data analysis of 9649 Chinese primary NSCLC patients, we calculated the exact proportion of EGFR subtypes in NSCLC and evaluated the TMB level, PD-L1 expression level and tumor immune microenvironment among different EGFR mutation subtypes. Postoperative follow-up data for 98 patients were collected and analyzed. The results showed that several uncommon EGFR mutation subtypes have a higher proportion of TMB-high or strong positive PD-L1 expression than the total EGFR mutation group. In addition, different subtypes have different characteristics related to the immune microenvironment, such as G719 mutations being associated with more CD8+ T cell infiltration into tumors; except for EGFR 19del, CD8+ T cell infiltration into tumors of other EGFR mutation subtypes were similar to that of wildtype EGFR. Moreover, follow-up results revealed that components of the immune microenvironment have prognostic value for NSCLC patients, with different prognostic biomarkers for NSCLC patients with and without EGFR mutations. These results suggest that patients with different EGFR mutations need to be treated differently. The prognosis of NSCLC patients may be assessed through components of tumor immune microenvironment, and ICIs treatment may be considered for those with some uncommon EGFR mutation subtypes.
Collapse
Affiliation(s)
- Youming Lei
- Department of Geriatric Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Wang
- Department of Thoracic Surgery, Anning First Peoples Hospital affiliate to Kunming University of Science and Technology (Kunming Forth People's Hospital), Kunming, China
| | - Yinqiang Liu
- Department of Geriatric Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuming Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xudong Xiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiangu Ning
- Department of Thoracic Surgery, The First Peoples Hospital of Yunnan Province, Kunming, China
| | - Wanbao Ding
- Department of Oncology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Jin Duan
- Department of Geriatric Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dingbiao Li
- Department of Thoracic Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Wei Zhao
- Department of Geriatric Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi Li
- Department of Oncology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Fujun Zhang
- Department of Geriatric Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoyu Luo
- Department of Geriatric Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunfei Shi
- Department of Geriatric Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Wang
- Department of Thoracic Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yuezong Bai
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Hushan Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| |
Collapse
|
24
|
Farswan A, Gupta A, Jena L, Ruhela V, Kaur G, Gupta R. Characterizing the mutational landscape of MM and its precursor MGUS. Am J Cancer Res 2022; 12:1919-1933. [PMID: 35530275 PMCID: PMC9077084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023] Open
Abstract
Mutational Signatures and Tumor mutational burden (TMB) have emerged as prognostic biomarkers in cancer genomics. However, the association of TMB with overall survival (OS) is still unknown in newly diagnosed multiple myeloma (NDMM) patients. Further, the change in the mutational spectrum involving both synonymous and non-synonymous mutations as MGUS progresses to MM is unexplored. This study addresses both these aspects via extensive evaluation of the mutations in MGUS and NDMM. WES data of 1018 NDMM patients and 61 MGUS patients collected from three different global regions were analyzed in this study. Single base substitutions, mutational signatures and TMB were inferred from the variants identified in MGUS and MM patients. The cutoff value for TMB was estimated to divide patients into low TMB and high TMB (hypermutators) groups. This study finds a change in the mutational spectrum with a statistically significant increase from MGUS to MM. There was a statistically significant increase in the frequency of all the three categories of variants, non-synonymous (NS), synonymous (SYN), and others (OTH), from MGUS to MM (P<0.05). However, there was a statistically significant rise in the TMB values for TMB_NS and TMB_SYN only. We also observed that 3' and 5'UTR mutations were more frequent in MM and might be responsible for driving MGUS to MM via regulatory binding sites. NDMM patients were also examined separately along with their survival outcomes. The frequency of hypermutators was low in MM with poor OS and PFS outcome. We observed a statistically significant rise in the frequency of C>A and C>T substitutions and a statistically significant decline in T>G substitutions in the MM patients with poor outcomes. Additionally, there was a statistically significant increase in the TMB of the patients with poor outcome compared to patients with a superior outcome. A statistically significant association between the APOBEC activity and poor overall survival in MM was discovered. These findings have potential clinical relevance and can assist in designing risk-adapted therapies to inhibit the progression of MGUS to MM and prolong the overall survival in high-risk MM patients.
Collapse
Affiliation(s)
- Akanksha Farswan
- SBILab, Department of ECE, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi)New Delhi 110020, India
| | - Anubha Gupta
- SBILab, Department of ECE, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi)New Delhi 110020, India
| | - Lingaraja Jena
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, AIIMSNew Delhi 110029, India
| | - Vivek Ruhela
- Department of Computational Biology, IIIT-DelhiNew Delhi 110020, India
| | - Gurvinder Kaur
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, AIIMSNew Delhi 110029, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, AIIMSNew Delhi 110029, India
| |
Collapse
|
25
|
Zou B, Guo D, Kong P, Wang Y, Cheng X, Cui Y. Integrative Genomic Analyses of 1,145 Patient Samples Reveal New Biomarkers in Esophageal Squamous Cell Carcinoma. Front Mol Biosci 2022; 8:792779. [PMID: 35127817 PMCID: PMC8814608 DOI: 10.3389/fmolb.2021.792779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Due to the lack of effective diagnostic markers and therapeutic targets, esophageal squamous cell carcinoma (ESCC) shows a poor 5 years survival rate of less than 30%. To explore the potential therapeutic targets of ESCC, we integrated and reanalyzed the mutation data of WGS (whole genome sequencing) or WES (whole exome sequencing) from a total of 1,145 samples in 7 large ESCC cohorts, including 270 ESCC gene expression data. Two new mutation signatures and 20 driver genes were identified in our study. Among them, AP3S1, MUC16, and RPS15 were reported for the first time. We also discovered that the KMT2D was associated with the multiple clinical characteristics of ESCC, and KMT2D knockdown cells showed enhanced cell migration and cell invasion. Furthermore, a few neoantigens were shared between ESCC patients. For ESCC, compared to TMB, neoantigen might be treated as a better immunotherapy biomarker. Our research expands the understanding of ESCC mutations and helps the identification of ESCC biomarkers, especially for immunotherapy biomarkers.
Collapse
Affiliation(s)
- Binbin Zou
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Dinghe Guo
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Pengzhou Kong
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Yanqiang Wang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaolong Cheng, ; Yongping Cui,
| | - Yongping Cui
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
- Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Xiaolong Cheng, ; Yongping Cui,
| |
Collapse
|
26
|
BOP1 Used as a Novel Prognostic Marker and Correlated with Tumor Microenvironment in Pan-Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3603030. [PMID: 34603446 PMCID: PMC8481050 DOI: 10.1155/2021/3603030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 01/18/2023]
Abstract
Previous studies have indicated the important role of block of proliferation 1 (BOP1) in the progression of several malignant tumors; no comprehensive pan-cancer analysis of BOP1 has been performed. Here, we aim to systematically identify the expression, prognostic value, and potential immunological functions of BOP1 in 33 malignancies. We obtained the gene expression data and clinical information from multiple public databases to assess the expression level and prognostic value of BOP1 in 33 cancers. We also analyzed the relationship between BOP1 expression and DNA methylation, tumor microenvironment (TME), microsatellite instability (MSI), tumor mutational burden (TMB), and immune checkpoints. Moreover, we conducted gene set enrichment analysis (GSEA) to investigate the biological function and signal transduction pathways of BOP1 in different types of tumors. Finally, we validated the expression of BOP1 in lung cancer cell line and detected the influence of BOP1 on lung cancer cell migration and the expression of epithelial-mesenchymal transition- (EMT-) related genes. Collectively, our findings elucidated that BOP1 has the potential to be a promising molecular prognostic biomarker for predicting poor survival in various malignant tumors, as well as a cancer-promoting gene involved in tumorigenesis and tumor immunity.
Collapse
|
27
|
Xue W, Wang Y, Xie Y, Yang C, Gong Z, Guan C, Wei C, Zhu C, Niu Z. miRNA-Based Signature Associated With Tumor Mutational Burden in Colon Adenocarcinoma. Front Oncol 2021; 11:634841. [PMID: 34262855 PMCID: PMC8274454 DOI: 10.3389/fonc.2021.634841] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 01/05/2023] Open
Abstract
Colon adenocarcinoma (COAD) is one of the most common malignant tumors. Tumor mutation burden (TMB) has become an independent biomarker for predicting the response to immune checkpoint inhibitors (ICIs). miRNAs play an important role in cancer-related immune regulation. However, the relationship between miRNA expression and TMB in COAD remains unclear. Therefore, the transcriptome profiling data, clinical data, mutation annotation data, and miRNA expression profiles for cases of COAD were downloaded from the TCGA database. Subsequently, 323 COAD cases were randomly divided into training and test sets. The differential expression of miRNAs in the high and low TMB groups in the training set was obtained as a signature using the least absolute shrinkage and selection operator (LASSO) logistic regression and verified in the test set. Based on the LASSO method, principal component analysis (PCA), and ROC, we found that the signature was credible because it can discriminate between high and low TMB levels. In addition, the correlation between the 18-miRNA-based signature and immune checkpoints was performed, followed by qRT-PCR, to measure the relative expression of 18 miRNAs in COAD patients. The miRNA-based model had a strong positive correlation with TMB and a weak positive correlation with CTLA4 and CD274 (PD-L1). However, no correlation was observed between the model and SNCA (PD-1). Finally, enrichment analysis of the 18 miRNAs was performed to explore their biological functions. The results demonstrated that 18 miRNAs were involved in the process of immunity and cancer pathways. In conclusion, the 18-miRNA-based signature can effectively predict and discriminate between the different TMB levels of COAD and provide a guide for its treatment with ICIs.
Collapse
Affiliation(s)
- Weijie Xue
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yixiu Wang
- Department of Hepatic Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenyu Yang
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiqi Gong
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunyang Guan
- Interventional Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuqing Wei
- Shandong University Affiliated Shandong Tumor Hospital and Institute, Jinan, China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhaojian Niu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Liu X, Xing H, Zhang H, Liu H, Chen J. Immunotherapy versus standard chemotherapy for treatment of extensive-stage small-cell lung cancer: a systematic review. Immunotherapy 2021; 13:989-1000. [PMID: 34114477 DOI: 10.2217/imt-2020-0284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: We conducted a systematic review and network meta-analysis to evaluate the efficacy of immunotherapy versus chemotherapy to treat extensive-stage small-cell lung cancer. Methods: We analyzed several eligible clinical trials using fixed or random-effects models to evaluate relative treatment effects depending on heterogeneity. Results: In the experimental group, immunotherapy showed significant improvement in overall survival (hazard ratio [HR]: 0.82; 95% CI: 0.74-0.89; I2 = 31.4%; p < 0.001) and progression-free survival (HR: 0.77; 95% CI: 0.80-0.83; I2 = 22.7%; p < 0.001). Conclusion: Immunotherapy is likely to significantly improve extensive-stage small-cell lung cancer patients' overall survival and progression-free survival compared with standard chemotherapy. Anti-PD L1 exhibited superior overall survival compared with anti-PD 1 and anti-CTLA4.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Huifang Xing
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis & Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Lung Cancer Metastasis & Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| |
Collapse
|
29
|
Yuan T, Wang X, Sun S, Cao Z, Feng X, Gao Y. Profiling of 520 Candidate Genes in 50 Surgically Treated Chinese Small Cell Lung Cancer Patients. Front Oncol 2021; 11:644434. [PMID: 34168983 PMCID: PMC8217828 DOI: 10.3389/fonc.2021.644434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Small cell lung cancer (SCLC) is one of the severe malignancies with high mortality. Surgically resected tumor tissues from 50 Chinese SCLC patients were collected for next-generation sequencing to detect 520 cancer-related genes. The most frequently altered genes were TP53 (94.0%), RB1 (86.0%), LRP1B (44.0%), SPTA1 (26.0%) and KMT2D (24.0%). We detected that NOTCH2, JAK2 and CDK12 (P<0.05) had a significantly higher mutation frequency in Chinese SCLC compared to the Cologne and MSKCC. The single nucleotide variation (SNV) is dominated by C>A (34.1%). We found a significant association between TMB-H (≥10.3muts/Mb) and ATM (P=0.023), CREBBP (P=0.010), KMT2D(P=0.050) and LRP1B (P=0.005) gene mutations in Chinese SCLC patients. Immunostaining was performed using the following antibodies: TTF-1, CgA, CD56, Syn, and Ki-67. Correlation analysis between the expression of 6 markers and mutations in signaling pathways showed that Syn and CgA expression were associated with 4 (cGMP-PKG, Chemokine, TGF-β and Phospholipase D) and 2 (cGMP-PKG and Phosphatidylinositol) signaling pathway mutations. Kaplan-Meier curve showed that age<55 years, mutant ARID2 and high TMB (≥7muts/Mb) were associated with a better prognosis, while the prognosis of patients with mutations in the Ras pathway was significantly improved. High TMB is an important prognostic factor for SCLC patients showed by multivariate analysis. In the combined cohort composed of current and two previous studies, survival analysis showed that SCLC patients with mutant LRP1B demonstrated better OS (P=0.0017). Patients with a high TMB (≥7muts/Mb) have a better prognosis (P=0.0053), consistent with our results in the Chinese cohort. We characterized the genomic alterations profile of Chinese SCLC patients and analyzed the correlation between genomic changes and immunohistochemical phenotypes at the signaling pathway level. Our data might provide useful information in the diagnosis and treatment for Chinese SCLC patients.
Collapse
Affiliation(s)
- Ting Yuan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sijin Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Lim JU, Kang HS. A narrative review of current and potential prognostic biomarkers for immunotherapy in small-cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:809. [PMID: 34268422 PMCID: PMC8246157 DOI: 10.21037/atm-21-68] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
Small-cell lung cancer (SCLC) is a highly invasive and rapidly proliferating pathologic subtype that accounts for 13-15% of all lung cancer cases. Recently in extensive-stage SCLC, treatments that combine immunotherapy and chemotherapy showed increased efficacy compared to chemotherapy alone in several trials. However, the combination of immunotherapy and conventional chemotherapy regimens was introduced only recently for extensive-stage SCLC, with relatively little real-world data. The demand for reliable biomarkers that can predict the efficacy of immunotherapy in SCLC is high. Several studies evaluated various parameters including programmed cell death ligand-1 (PD-L1) expression, tumor mutation burden (TMB), gene expression profiling, autoantibody, and blood cytokines for predictive value for response to immunotherapy in SCLC. Despite some observed correlations, there is a lack of concrete support for the use of PD-L1 expression levels for readily available biomarker. High TMB in combination with smoking history is predictive of a better response to immunotherapy, but validation of cutoffs and testing methods is necessary before it can be widely applied in clinical settings. Other candidate biomarkers such as immune cell distribution among tumor microenvironment, and systemic inflammatory markers can also be evaluated, after an accumulation of real-life data from SCLC patients under immunotherapy.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Seon Kang
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
31
|
Koulouris A, Mountzios G. Immunotherapy for the treatment of metastatic small cell lung cancer: Focus on pembrolizumab. Expert Rev Clin Pharmacol 2021; 14:651-659. [PMID: 33902379 DOI: 10.1080/17512433.2021.1911640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AREAS COVERED The current evidence on the role of pembrolizumab for patients with extensive SCLC is reviewed in this article. Particularly, preclinical and clinical data from phase I/II and III clinical trials, which evaluate the efficacy and toxicity of pembrolizumab for these patients, are summarized based on PubMed/MEDLINE search and relevant articles. In addition, future perspectives on the emerging role of immunotherapy for SCLC are highlighted in light of potentially useful biomarkers. EXPERT COMMENTARY Pembrolizumab shows an excellent toxicity profile in recent studies, and significantly prolonged progression-free survival (PFS) but not overall survival (OS) in the phase III clinical trial KN604, in contrast to atezolizumab and durvalumab. The latter two agents have already been approved and incorporated in the daily clinical practice. Further research should be conducted so that phase III clinical trials can validate the potential clinical benefit of this checkpoint inhibitor in combination with other active agents and establish its role in the metastatic setting of SCLC.
Collapse
Affiliation(s)
- Andreas Koulouris
- Department of Medical Oncology, University Hospital of Herakleion, Herakleion, Crete, Greece
| | - Giannis Mountzios
- Fourth Department of Oncology and Clinical Trials Unit, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
32
|
Schwendenwein A, Megyesfalvi Z, Barany N, Valko Z, Bugyik E, Lang C, Ferencz B, Paku S, Lantos A, Fillinger J, Rezeli M, Marko-Varga G, Bogos K, Galffy G, Renyi-Vamos F, Hoda MA, Klepetko W, Hoetzenecker K, Laszlo V, Dome B. Molecular profiles of small cell lung cancer subtypes: therapeutic implications. Mol Ther Oncolytics 2021; 20:470-483. [PMID: 33718595 PMCID: PMC7917449 DOI: 10.1016/j.omto.2021.02.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Small cell lung cancer (SCLC; accounting for approximately 13%-15% of all lung cancers) is an exceptionally lethal malignancy characterized by rapid doubling time and high propensity to metastasize. In contrast to the increasingly personalized therapies in other types of lung cancer, SCLC is still regarded as a homogeneous disease and the prognosis of SCLC patients remains poor. Recently, however, substantial progress has been made in our understanding of SCLC biology. Advances in genomics and development of new preclinical models have facilitated insights into the intratumoral heterogeneity and specific genetic alterations of this disease. This worldwide resurgence of studies on SCLC has ultimately led to the development of novel subtype-specific classifications primarily based on the neuroendocrine features and distinct molecular profiles of SCLC. Importantly, these biologically distinct subtypes might define unique therapeutic vulnerabilities. Herein, we summarize the current knowledge on the molecular profiles of SCLC subtypes with a focus on their potential clinical implications.
Collapse
Affiliation(s)
- Anna Schwendenwein
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Nandor Barany
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Zsuzsanna Valko
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Edina Bugyik
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Bence Ferencz
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Andras Lantos
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Janos Fillinger
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Gyorgy Marko-Varga
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Krisztina Bogos
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Gabriella Galffy
- Torokbalint County Institute of Pulmonology, 2045 Torokbalint, Hungary
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Viktoria Laszlo
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| |
Collapse
|
33
|
Failmezger H, Zwing N, Tresch A, Korski K, Schmich F. Computational Tumor Infiltration Phenotypes Enable the Spatial and Genomic Analysis of Immune Infiltration in Colorectal Cancer. Front Oncol 2021; 11:552331. [PMID: 33791196 PMCID: PMC8006941 DOI: 10.3389/fonc.2021.552331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer immunotherapy has led to significant therapeutic progress in the treatment of metastatic and formerly untreatable tumors. However, drug response rates are variable and often only a subgroup of patients will show durable response to a treatment. Biomarkers that help to select those patients that will benefit the most from immunotherapy are thus of crucial importance. Here, we aim to identify such biomarkers by investigating the tumor microenvironment, i.e., the interplay between different cell types like immune cells, stromal cells and malignant cells within the tumor and developed a computational method that determines spatial tumor infiltration phenotypes. Our method is based on spatial point pattern analysis of immunohistochemically stained colorectal cancer tumor tissue and accounts for the intra-tumor heterogeneity of immune infiltration. We show that, compared to base-line models, tumor infiltration phenotypes provide significant additional support for the prediction of established biomarkers in a colorectal cancer patient cohort (n = 80). Integration of tumor infiltration phenotypes with genetic and genomic data from the same patients furthermore revealed significant associations between spatial infiltration patterns and common mutations in colorectal cancer and gene expression signatures. Based on these associations, we computed novel gene signatures that allow one to predict spatial tumor infiltration patterns from gene expression data only and validated this approach in a separate dataset from the Cancer Genome Atlas.
Collapse
Affiliation(s)
- Henrik Failmezger
- Data Science, Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Natalie Zwing
- Early Biomarker Development Oncology, Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Achim Tresch
- Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Data and Simulation Science, University of Cologne, Cologne, Germany
| | - Konstanty Korski
- Early Biomarker Development Oncology, Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Schmich
- Data Science, Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
34
|
Morales L, Simpson D, Ferguson R, Cadley J, Esteva E, Monson K, Chat V, Martinez C, Weber J, Osman I, Kirchhoff T. Tumor immunogenomic signatures improve a prognostic model of melanoma survival. J Transl Med 2021; 19:78. [PMID: 33596955 PMCID: PMC7888085 DOI: 10.1186/s12967-021-02738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Tumor mutation burden (TMB) has been associated with melanoma immunotherapy (IT) outcomes, including survival. We explored whether combining TMB with immunogenomic signatures recently identified by The Cancer Genome Atlas (TCGA) can refine melanoma prognostic models of overall survival (OS) in patients not treated by IT. Methods Cox proportional-hazards (Cox PH) analysis was performed on 278 metastatic melanomas from TCGA not treated by IT. In a discovery and two validation cohorts Cox PH models assessed the interaction between TMB and 53 melanoma immunogenomic features to refine prediction of melanoma OS. Results Interferon-γ response (IFNγRes) and macrophage regulation gene signatures (MacReg) combined with TMB significantly associated with OS (p = 8.80E−14). We observed that patients with high TMB, high IFNγRes and high MacReg had significantly better OS compared to high TMB, low IFNγRes and low MacReg (HR = 2.8, p = 3.55E−08). This association was not observed in low TMB patients. Conclusions We report a model combining TMB and tumor immune features that significantly improves prediction of melanoma OS, independent of IT. Our analysis revealed that patients with high TMB, high levels of IFNγRes and MacReg had significantly more favorable OS compared to high TMB patients with low IFNγRes and low MacReg. These findings may substantially improve current melanoma prognostic models.
Collapse
Affiliation(s)
- Leah Morales
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, New York City, NY, 10016, USA.,Departments of Population Health and Environmental Medicine, NYU Langone Health, New York, USA.,The Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, New York, USA
| | - Danny Simpson
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, New York City, NY, 10016, USA.,Departments of Population Health and Environmental Medicine, NYU Langone Health, New York, USA.,The Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, New York, USA
| | - Robert Ferguson
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, New York City, NY, 10016, USA.,Departments of Population Health and Environmental Medicine, NYU Langone Health, New York, USA.,The Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, New York, USA
| | - John Cadley
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, New York City, NY, 10016, USA.,Departments of Population Health and Environmental Medicine, NYU Langone Health, New York, USA.,The Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, New York, USA
| | - Eduardo Esteva
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, New York City, NY, 10016, USA.,Departments of Population Health and Environmental Medicine, NYU Langone Health, New York, USA.,The Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, New York, USA
| | - Kelsey Monson
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, New York City, NY, 10016, USA.,Departments of Population Health and Environmental Medicine, NYU Langone Health, New York, USA.,The Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, New York, USA
| | - Vylyny Chat
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, New York City, NY, 10016, USA.,Departments of Population Health and Environmental Medicine, NYU Langone Health, New York, USA.,The Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, New York, USA
| | - Carlos Martinez
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, New York City, NY, 10016, USA.,Departments of Population Health and Environmental Medicine, NYU Langone Health, New York, USA.,The Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, New York, USA
| | - Jeffrey Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, New York City, NY, 10016, USA.,The Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, New York, USA.,Department of Medicine, NYU Langone Health, New York, USA
| | - Iman Osman
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, New York City, NY, 10016, USA.,The Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, New York, USA.,Department of Medicine, NYU Langone Health, New York, USA.,Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, USA
| | - Tomas Kirchhoff
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, New York City, NY, 10016, USA. .,Departments of Population Health and Environmental Medicine, NYU Langone Health, New York, USA. .,The Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, New York, USA.
| |
Collapse
|
35
|
Akolkar D, Patil D, Srivastava N, Patil R, Datta V, Apurwa S, Yashwante N, Dhasarathan R, Gosavi R, John J, Khan S, Jadhav N, Mene P, Ahire D, Pawar S, Bodke H, Sahoo S, Nile A, Saindane D, Darokar H, Devhare P, Srinivasan A, Datar R. Development and validation of a multigene variant profiling assay to guide targeted and immuno therapy selection in solid tumors. PLoS One 2021; 16:e0246048. [PMID: 33556149 PMCID: PMC7870065 DOI: 10.1371/journal.pone.0246048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
We present data on analytical validation of the multigene variant profiling assay (CellDx) to provide actionable indications for selection of targeted and immune checkpoint inhibitor (ICI) therapy in solid tumors. CellDx includes Next Generation Sequencing (NGS) profiling of gene variants in a targeted 452-gene panel as well as status of total Tumor Mutation Burden (TMB), Microsatellite instability (MSI), Mismatch Repair (MMR) and Programmed Cell Death-Ligand 1 (PD-L1) respectively. Validation parameters included accuracy, sensitivity, specificity and reproducibility for detection of Single Nucleotide Alterations (SNAs), Copy Number Alterations (CNAs), Insertions and Deletions (Indels), Gene fusions, MSI and PDL1. Cumulative analytical sensitivity and specificity of the assay were 99.03 (95% CI: 96.54-99.88) and 99.23% (95% CI: 98.54% - 99.65%) respectively with 99.20% overall Accuracy (95% CI: 98.57% - 99.60%) and 99.7% Precision based on evaluation of 116 reference samples. The clinical performance of CellDx was evaluated in a subsequent analysis of 299 clinical samples where 861 unique mutations were detected of which 791 were oncogenic and 47 were actionable. Indications in MMR, MSI and TMB for selection of ICI therapies were also detected in the clinical samples. The high specificity, sensitivity, accuracy and reproducibility of the CellDx assay is suitable for clinical application for guiding selection of targeted and immunotherapy agents in patients with solid organ tumors.
Collapse
Affiliation(s)
| | | | | | - Revati Patil
- Datar Cancer Genetics, Nashik, Maharashtra, India
| | - Vineet Datta
- Datar Cancer Genetics, Nashik, Maharashtra, India
| | | | | | | | - Rahul Gosavi
- Datar Cancer Genetics, Nashik, Maharashtra, India
| | | | | | - Ninad Jadhav
- Datar Cancer Genetics, Nashik, Maharashtra, India
| | - Priti Mene
- Datar Cancer Genetics, Nashik, Maharashtra, India
| | | | | | | | | | - Arun Nile
- Datar Cancer Genetics, Nashik, Maharashtra, India
| | | | | | | | | | - Rajan Datar
- Datar Cancer Genetics, Nashik, Maharashtra, India
| |
Collapse
|
36
|
Chen Z, Liu G, Liu G, Bolkov MA, Shinwari K, Tuzankina IA, Chereshnev VA, Wang Z. Defining muscle-invasive bladder cancer immunotypes by introducing tumor mutation burden, CD8+ T cells, and molecular subtypes. Hereditas 2021; 158:1. [PMID: 33388091 PMCID: PMC7778803 DOI: 10.1186/s41065-020-00165-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy, especially anti-PD-1, is becoming a pillar of modern muscle-invasive bladder cancer (MIBC) treatment. However, the objective response rates (ORR) are relatively low due to the lack of precise biomarkers to select patients. Herein, the molecular subtype, tumor mutation burden (TMB), and CD8+ T cells were calculated by the gene expression and mutation profiles of MIBC patients. MIBC immunotypes were constructed using clustering analysis based on tumor mutation burden, CD8+ T cells, and molecular subtypes. Mutated genes, enriched functional KEGG pathways and GO terms, and co-expressed network-specific hub genes have been identified. We demonstrated that ORR of immunotype A patients identified by molecular subtype, CD8+ T cells, and TMB is about 36% predictable. PIK3CA, RB1, FGFR3, KMT2C, MACF1, RYR2, and EP300 are differentially mutated among three immunotypes. Pathways such as ECM-receptor interaction, PI3K-Akt signaling pathway, and TGF-beta signaling pathway are top-ranked in enrichment analysis. Low expression of ACTA2 was associated with the MIBC survival benefit. The current study constructs a model that could identify suitable MIBC patients for immunotherapy, and it is an important step forward to the personalized treatment of bladder cancers.
Collapse
Affiliation(s)
- Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Guojun Liu
- Department of Medical Biochemistry and Biophysics, Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia.
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| | - Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Mikhail A Bolkov
- Department of immunochemistry, Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, 620000, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620000, Russia
| | - Khyber Shinwari
- Department of immunochemistry, Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, 620000, Russia
| | - Irina A Tuzankina
- Department of immunochemistry, Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, 620000, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620000, Russia
| | - Valery A Chereshnev
- Department of immunochemistry, Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, 620000, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620000, Russia
| | - Zhifeng Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|
37
|
Farid S, Liu SV. Chemo-immunotherapy as first-line treatment for small-cell lung cancer. Ther Adv Med Oncol 2020; 12:1758835920980365. [PMID: 33414848 PMCID: PMC7750570 DOI: 10.1177/1758835920980365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a highly lethal subtype of lung cancer. Despite concerted efforts over the past several decades, there have been limited therapeutic advances. Traditional chemotherapy offers a high response rate and rapid symptomatic improvement, but its benefit is fleeting, and relapse is quick and unforgiving. Immunotherapy has delivered improved outcomes for patients with many cancers and there was compelling rationale for development in SCLC. While initial efforts with cytotoxic T-lymphocyte protein-4 inhibitors failed to improve upon chemotherapy alone, the addition of programmed death ligand-1 (PD-L1) inhibitors to first-line chemotherapy finally provided long-awaited gains in survival. Atezolizumab, when added to carboplatin and etoposide, improved both progression-free survival and overall survival. Durvalumab, when added to platinum plus etoposide, similarly improved OS. Biomarker development has stalled as PD-L1 expression and tumor mutational burden have not been useful predictive biomarkers. However, based on the significant survival improvements, both atezolizumab and durvalumab were approved by the US Food and Drug Administration to be given with first-line chemotherapy, and these regimens represent the new standards of care for SCLC.
Collapse
Affiliation(s)
- Saira Farid
- Department of Internal Medicine, MedStar Washington Hospital Center, Washington, DC, USA
| | - Stephen V Liu
- Lombardi Comprehensive Cancer Center, Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC 20007, USA
| |
Collapse
|
38
|
Harnessing the Immune System to Tackle Small Cell Lung Cancer. ACTA ACUST UNITED AC 2020; 26:502-506. [PMID: 33298721 DOI: 10.1097/ppo.0000000000000490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Immunotherapy has improved first-line therapy for small cell lung cancer and has activity in the relapsed setting as well. The immunobiology of small cell lung cancer poses challenges for immunotherapy, and efforts are underway to unlock to the potential of immunotherapy through the identification of meaningful disease subsets and the development of novel combination therapies.
Collapse
|
39
|
Kachroo S, Shao C, Desai K, He J, Jin F, Sen S. Association of clinico-genomic characteristics with tumor mutational burden in small cell lung cancer patients. Future Oncol 2020; 17:423-433. [PMID: 33198513 DOI: 10.2217/fon-2020-0728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We evaluated the relationship between clinical and genomic characteristics and tumor mutational burden (TMB) in small cell lung cancer. Materials & methods: In a retrospective analysis of small cell lung cancer patients aged ≥18, we assessed treatment patterns and survival in relation to TMB; the association of clinical and genomic characteristics with TMB was determined by multivariate regression. High TMB (TMB-H) was defined as ≥10 mutations/megabase. Results: Among 186 patients, treatment patterns and overall survival were similar for TMB-H and non-TMB-H patients. TMB was determined for 179 patients, 41.9% of whom were TMB-H. Short variants of LRP1B, FAT3, MLL3, MED12 and NOTCH3 were significantly associated with TMB-H (p ≤ 0.01). Conclusion: Neither treatment patterns nor survival differed by TMB status.
Collapse
Affiliation(s)
| | | | | | - Jinghua He
- Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Fan Jin
- Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | |
Collapse
|
40
|
Cortellini A. The Promising Link Among Tumor Mutational Burden, Immune-Related Adverse Events, and Immune Checkpoint Inhibitors Efficacy in SCLC. JTO Clin Res Rep 2020; 1:100080. [PMID: 34589959 PMCID: PMC8474225 DOI: 10.1016/j.jtocrr.2020.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Alessio Cortellini
- Address for correspondence: Alessio Cortellini, MD, Medical Oncology Unit, San Salvatore Hospital, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy.
| |
Collapse
|
41
|
Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G, Hajjar J. T-cell agonists in cancer immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-000966. [PMID: 33020242 PMCID: PMC7537335 DOI: 10.1136/jitc-2020-000966] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 01/05/2023] Open
Abstract
Cancer cells can evade immune surveillance in the body. However, immune checkpoint inhibitors can interrupt this evasion and enhance the antitumor activity of T cells. Other mechanisms for promoting antitumor T-cell function are the targeting of costimulatory molecules expressed on the surface of T cells, such as 4-1BB, OX40, inducible T-cell costimulator and glucocorticoid-induced tumor necrosis factor receptor. In addition, CD40 targets the modulation of the activation of antigen-presenting cells, which ultimately leads to T-cell activation. Agonists of these costimulatory molecules have demonstrated promising results in preclinical and early-phase trials and are now being tested in ongoing clinical trials. In addition, researchers are conducting trials of combinations of such immune modulators with checkpoint blockade, radiotherapy and cytotoxic chemotherapeutic drugs in patients with advanced tumors. This review gives a comprehensive picture of the current knowledge of T-cell agonists based on their use in recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Yeonjoo Choi
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yaoyao Shi
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cara L Haymaker
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Joud Hajjar
- Section of Immunology, Department of Allergy & Rheumatology, Baylor College of Medicine, Texas and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
42
|
Wildes TJ, Dyson KA, Francis C, Wummer B, Yang C, Yegorov O, Shin D, Grippin A, Dean BD, Abraham R, Pham C, Moore G, Kuizon C, Mitchell DA, Flores CT. Immune Escape After Adoptive T-cell Therapy for Malignant Gliomas. Clin Cancer Res 2020; 26:5689-5700. [PMID: 32788225 DOI: 10.1158/1078-0432.ccr-20-1065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy has been demonstrably effective against multiple cancers, yet tumor escape is common. It remains unclear how brain tumors escape immunotherapy and how to overcome this immune escape. EXPERIMENTAL DESIGN We studied KR158B-luc glioma-bearing mice during treatment with adoptive cellular therapy (ACT) with polyclonal tumor-specific T cells. We tested the immunogenicity of primary and escaped tumors using T-cell restimulation assays. We used flow cytometry and RNA profiling of whole tumors to further define escape mechanisms. To treat immune-escaped tumors, we generated escape variant-specific T cells through the use of escape variant total tumor RNA and administered these cells as ACT. In addition, programmed cell death protein-1 (PD-1) checkpoint blockade was studied in combination with ACT. RESULTS Escape mechanisms included a shift in immunogenic tumor antigens, downregulation of MHC class I, and upregulation of checkpoint molecules. Polyclonal T cells specific for escape variants displayed greater recognition of escaped tumors than primary tumors. When administered as ACT, these T cells prolonged median survival of escape variant-bearing mice by 60%. The rational combination of ACT with PD-1 blockade prolonged median survival of escape variant glioma-bearing mice by 110% and was dependent upon natural killer cells and T cells. CONCLUSIONS These findings suggest that the immune landscape of brain tumors are markedly different postimmunotherapy yet can still be targeted with immunotherapy.
Collapse
Affiliation(s)
- Tyler J Wildes
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Kyle A Dyson
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Connor Francis
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Brandon Wummer
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Changlin Yang
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Oleg Yegorov
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - David Shin
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Adam Grippin
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Bayli DiVita Dean
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Rebecca Abraham
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Christina Pham
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Ginger Moore
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Carmelle Kuizon
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Duane A Mitchell
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Catherine T Flores
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida.
| |
Collapse
|
43
|
Li L, Chen X, Hao L, Chen Q, Liu H, Zhou Q. Exploration of immune-related genes in high and low tumor mutation burden groups of chromophobe renal cell carcinoma. Biosci Rep 2020; 40:BSR20201491. [PMID: 32662515 PMCID: PMC7378265 DOI: 10.1042/bsr20201491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of most common cancers with gradually increasing incidence and high mortality. Chromogenic RCC (chRCC) is the third most common histological subtype of RCC, accounting for approximately 5-7% of RCC. In our study, the transcriptome expression profile data (n=89) of chRCC, corresponding clinical data (n=113) and the somatic mutation data (n=66) were obtained from the TCGA database. We first analyzed the mutation data of chRCC patients and divided chRCC patients into high and low tumor mutation burden (TMB) groups based on the median TMB. We found that high TMB was significantly associated with worse prognosis and could promote tumor metastasis and development. Moreover, four different immune-related genes (BIRC5, PDGFRL, INHBE, IL20RB) were also identified. We found that BIRC5 was significantly overexpressed in the high TMB group and correlated with worse prognosis. The results of univariate and multivariate COX analyses demonstrated that BIRC5 (hazard ratio (HR) = 2.094) may serve as a prognostic indicator for patients with chRCC with high TMB. In addition, we identified the possible functional pathways of BIRC5 through gene set enrichment analysis (GSEA) enrichment. A positive correlation was obtained between BIRC5 and the abundance of CD4+ T cells. The results of our study revealed their correlation between the immune-related genes and clinicopathologic features as well as potential functional pathways as well as immune infiltrating cells, which may provide more data about the development of chRCC immunotherapy.
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- CD4-Positive T-Lymphocytes/immunology
- Carcinogenesis/genetics
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/mortality
- Datasets as Topic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Proteins/genetics
- Kaplan-Meier Estimate
- Kidney/immunology
- Kidney/pathology
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/mortality
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Mutation
- Prognosis
- Survivin/genetics
Collapse
Affiliation(s)
- Lei Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xi Chen
- Central Laboratory, People’s Hospital of Baoan District, Shenzhen, China
| | - Lu Hao
- Science and Education Department, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, China
| | - Qiuyan Chen
- Science and Education Department, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, China
| | - Haosheng Liu
- Central Laboratory, People’s Hospital of Baoan District, Shenzhen, China
| | - Qing Zhou
- Central Laboratory, People’s Hospital of Baoan District, Shenzhen, China
| |
Collapse
|
44
|
Ragavan M, Das M. Systemic Therapy of Extensive Stage Small Cell Lung Cancer in the Era of Immunotherapy. Curr Treat Options Oncol 2020; 21:64. [PMID: 32601742 DOI: 10.1007/s11864-020-00762-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT In March 2019, the FDA approved the use of the anti-programmed death ligand 1 (PD-L1) antibody atezolizumab, as a first-line treatment option in combination with platinum-etoposide (PE) for patients with extensive stage small cell lung cancer (ED SCLC) based upon the results of the IMpower133 trial. More recently, the FDA approved the anti-PD-L1 antibody durvalumab in March 2020 , also in the frontline setting for SCLC based upon the results of the CASPIAN trial. Both these trials demonstrated a small, but significant overall survival (OS) benefit with the addition of a PD-L1 antibody to standard chemotherapy in the treatment of ED SCLC, thereby altering the treatment paradigm for this aggressive disease. Previously, the FDA had approved the anti-PD1 antibodies nivolumab and pembrolizumab as single-agent third-line treatment options based upon encouraging phase 1/2 data in patients with relapsed SCLC who had not received prior immunotherapy (IO). Despite these recent advances, the overall benefit of IO in SCLC remains somewhat disappointing in comparison with the results seen in non-small cell lung cancer (NSCLC). To date, no reliable biomarkers exist to predict responsiveness to IO in SCLC, and the utility of second- or third-line immunotherapy is questionable in patients who have received IO as part of first-line treatment. There has also been minimal success in identifying targetable mutations in SCLC. Novel approaches include combination approaches with IO, including PARP inhibitors and CDK inhibitors. Few ongoing trials, however, have enrolled patients who have received frontline immunotherapy given the only recent change in standard of care. Consequently, the results of current trials evaluating second- and third-line therapies need to be interpreted and translated into clinical practice with caution. The most significant challenge in SCLC remains the identification of molecular targets for which drugs can be developed that can improve survival over the current standard of care.
Collapse
Affiliation(s)
- Meera Ragavan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Millie Das
- Department of Medicine, VA Palo Alto Health Care System, 111-ONC 3801 Miranda Avenue, Palo Alto, CA, 94304, USA. .,Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
45
|
Schatz S, Falk M, Jóri B, Ramdani HO, Schmidt S, Willing EM, Menon R, Groen HJM, Diehl L, Kröger M, Wesseler C, Griesinger F, Hoffknecht P, Tiemann M, Heukamp LC. Integration of Tumor Mutation Burden and PD-L1 Testing in Routine Laboratory Diagnostics in Non-Small Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12061685. [PMID: 32599951 PMCID: PMC7353063 DOI: 10.3390/cancers12061685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, Non-small cell lung cancer (NSCLC) has evolved into a prime example for precision oncology with multiple FDA-approved “precision” drugs. For the majority of NSCLC lacking targetable genetic alterations, immune checkpoint inhibition (ICI) has become standard of care in first-line treatment or beyond. PD-L1 tumor expression represents the only approved predictive biomarker for PD-L1/PD-1 checkpoint inhibition by therapeutic antibodies. Since PD-L1-negative or low-expressing tumors may also respond to ICI, additional factors are likely to contribute in addition to PD-L1 expression. Tumor mutation burden (TMB) has emerged as a potential candidate; however, it is the most complex biomarker so far and might represent a challenge for routine diagnostics. We therefore established a hybrid capture (HC) next-generation sequencing (NGS) assay that covers all oncogenic driver alterations as well as TMB and validated TMB values by correlation with the assay (F1CDx) used for the CheckMate 227 study. Results of the first consecutive 417 patients analyzed in a routine clinical setting are presented. Data show that fast reliable comprehensive diagnostics including TMB and targetable alterations are obtained with a short turn-around time. Thus, even complex biomarkers can easily be implemented in routine practice to optimize treatment decisions for advanced NSCLC.
Collapse
Affiliation(s)
- Stefanie Schatz
- Institut für Hämatopathologie Hamburg, Fangdieckstraße 75A, 22547 Hamburg, Germany; (S.S.); (M.F.); (S.S.); (M.T.)
- Lung Cancer Network NOWEL, 26129 Oldenburg, Germany; (H.O.R.); (C.W.); (F.G.); (P.H.)
| | - Markus Falk
- Institut für Hämatopathologie Hamburg, Fangdieckstraße 75A, 22547 Hamburg, Germany; (S.S.); (M.F.); (S.S.); (M.T.)
- Lung Cancer Network NOWEL, 26129 Oldenburg, Germany; (H.O.R.); (C.W.); (F.G.); (P.H.)
| | - Balázs Jóri
- NEO New Oncology GmbH, Gottfried-Hagen-Straße 20, 51105 Cologne, Germany; (B.J.); (E.-M.W.); (R.M.)
| | - Hayat O. Ramdani
- Lung Cancer Network NOWEL, 26129 Oldenburg, Germany; (H.O.R.); (C.W.); (F.G.); (P.H.)
- Department of Hematology and Oncology, Pius-Hospital Oldenburg, Georgstraße 12, 26121 Oldenburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Stefanie Schmidt
- Institut für Hämatopathologie Hamburg, Fangdieckstraße 75A, 22547 Hamburg, Germany; (S.S.); (M.F.); (S.S.); (M.T.)
- Lung Cancer Network NOWEL, 26129 Oldenburg, Germany; (H.O.R.); (C.W.); (F.G.); (P.H.)
| | - Eva-Maria Willing
- NEO New Oncology GmbH, Gottfried-Hagen-Straße 20, 51105 Cologne, Germany; (B.J.); (E.-M.W.); (R.M.)
| | - Roopika Menon
- NEO New Oncology GmbH, Gottfried-Hagen-Straße 20, 51105 Cologne, Germany; (B.J.); (E.-M.W.); (R.M.)
| | - Harry J. M. Groen
- Department of Pulmonary Diseases, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Linda Diehl
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Matthias Kröger
- Onkologische Schwerpunktpraxis, Kröger Ambulante Onkologie, Wiener Straße 1, 27568 Bremerhaven, Germany;
| | - Claas Wesseler
- Lung Cancer Network NOWEL, 26129 Oldenburg, Germany; (H.O.R.); (C.W.); (F.G.); (P.H.)
- Department of Internal Medicine and Pulmonology, Asklepios Klinikum Harburg, Eißendorfer Pferdeweg 52, 21075 Hamburg, Germany
| | - Frank Griesinger
- Lung Cancer Network NOWEL, 26129 Oldenburg, Germany; (H.O.R.); (C.W.); (F.G.); (P.H.)
- Department of Hematology and Oncology, Pius-Hospital Oldenburg, Georgstraße 12, 26121 Oldenburg, Germany
- Department of Internal Medicine-Oncology, University of Oldenburg, Georgstraße 12, 26121 Oldenburg, Germany
| | - Petra Hoffknecht
- Lung Cancer Network NOWEL, 26129 Oldenburg, Germany; (H.O.R.); (C.W.); (F.G.); (P.H.)
- Germany Department of Thorax Oncology, Niels-Stensen-Kliniken, Franziskus-Hospital Harderberg Alte Rothenfelder Straße 23, 49124 Georgsmarienhütte, Germany
| | - Markus Tiemann
- Institut für Hämatopathologie Hamburg, Fangdieckstraße 75A, 22547 Hamburg, Germany; (S.S.); (M.F.); (S.S.); (M.T.)
- Lung Cancer Network NOWEL, 26129 Oldenburg, Germany; (H.O.R.); (C.W.); (F.G.); (P.H.)
| | - Lukas C. Heukamp
- Institut für Hämatopathologie Hamburg, Fangdieckstraße 75A, 22547 Hamburg, Germany; (S.S.); (M.F.); (S.S.); (M.T.)
- Lung Cancer Network NOWEL, 26129 Oldenburg, Germany; (H.O.R.); (C.W.); (F.G.); (P.H.)
- Correspondence: or ; Tel.: +49-176-200-56495
| |
Collapse
|
46
|
Iams WT, Porter J, Horn L. Immunotherapeutic approaches for small-cell lung cancer. Nat Rev Clin Oncol 2020; 17:300-312. [PMID: 32055013 PMCID: PMC7212527 DOI: 10.1038/s41571-019-0316-z] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Immune-checkpoint inhibitors (ICIs) are approved in the first-line and third-line settings for patients with extensive-stage or relapsed small-cell lung cancer (SCLC), respectively. In the first-line setting, the addition of the anti-programmed cell death 1 ligand 1 (PD-L1) antibody atezolizumab to chemotherapy improves overall survival (OS). In patients with relapsed disease, data from nonrandomized trials have revealed promising responses, although a significant improvement in OS over that obtained with conventional chemotherapy was not achieved in a randomized trial in this setting. Substantial research interest exists in identifying predictive biomarkers that could guide the use of ICIs in patients with SCLC. PD-L1 expression is typically low or absent in SCLC, which has precluded its use as a predictive biomarker. Tumour mutational burden might have some predictive value, although blood-based measures of tumour mutational burden did not have predictive value in patients receiving atezolizumab plus chemotherapy in the first-line setting. After three decades, ICIs have finally enabled an improvement in OS for patients with SCLC; however, a substantial amount of research remains to be done, including identifying the optimal therapeutic strategy and predictive biomarkers. In this Review, we describe the available data on clinical efficacy, the emerging evidence regarding biomarkers and ongoing clinical trials using ICIs and other immunotherapies in patients with SCLC.
Collapse
Affiliation(s)
- Wade T Iams
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Leora Horn
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
47
|
Cai H, Zhang Y, Zhang H, Cui C, Li C, Lu S. Prognostic role of tumor mutation burden in hepatocellular carcinoma after radical hepatectomy. J Surg Oncol 2020; 121:1007-1014. [PMID: 31995247 DOI: 10.1002/jso.25859] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIM This study aimed to assess the potential relationship between tumor mutation burden (TMB) and the recurrence risk of hepatocellular cancer (HCC) after curative resection and tried to develop a reliable TMB based nomogram. METHODS This retrospective study was conducted in 128 patients (40 patients suffered from a recurrence of HCC) who had received radical hepatectomy by the same surgical team. A nomogram model was constructed using the R and EmpowerStats software. RESULTS TMB was not associated with maximum tumor size and the presence of microvascular invasion (MVI). In the whole population or subgroups, the recurrence-free survival (RFS) rate was significantly lower in the TMB high group. In multivariate analysis, TMB (hazard ratio [HR], 10.12; 95% confidence interval [CI], 5.03-20.31; P < .001), large tumor diameter (HR, 2.91; 95% CI, 1.51-5.63; P = .001), presence of MVI (HR, 1.93; 95% CI, 1.03-3.65; P = .042) were independent predictors of RFS. The predictive power of the nomogram integrating TMB, tumor size and MVI was higher than model only incorporating tumor size and MVI. CONCLUSION This study demonstrated for the first time that higher TMB was associated with poor prognosis in patients with HCC who had received curative resection, and a TMB based nomogram model had a well predictive performance for RFS in this population.
Collapse
Affiliation(s)
- Huayong Cai
- Nankai University School of Medicine, Tianjin, China
| | - Yu Zhang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Haoyun Zhang
- Department of Hepatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Cui
- Department of Hepatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chonghui Li
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shichun Lu
- Nankai University School of Medicine, Tianjin, China.,Department of Hepatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
48
|
Lum C, Alamgeer M. Technological and Therapeutic Advances in Advanced Small Cell Lung Cancer. Cancers (Basel) 2019; 11:E1570. [PMID: 31619019 PMCID: PMC6826371 DOI: 10.3390/cancers11101570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Small cell lung cancer (SCLC) accounts for approximately 10-15% of all lung cancers. The prognosis is poor with median survival in the advanced stage remaining at around 12 months. Despite applying every known therapeutic approach, no major breakthrough has improved the overall survival in the last 30 years. Historically, experiments performed on conventional cell lines may have limitations of not accurately reflecting the complex biological and genomic heterogeneity of this disease. However, additional knowledge gained from recently developed genetically engineered mouse models (GEMMs) and patient derived xenografts (PDXs) have made encouraging inroads. Whole genome sequencing (WGS) data reveals a high mutational burden and a number of genetic alterations but low frequency of targetable mutations. Despite several failures, considerable therapeutic opportunities have recently emerged. Potentially promising therapies include those targeting DNA damage repair, stem cell/renewal and drug resistant mechanisms. Modest success has also been achieved with immune checkpoint inhibitors while therapeutic exploration of various other components of the immune system is underway. However, the complex heterogeneities reflect the need for accurate bio-markers to translate novel discoveries into clinical benefit. Additionally, the molecular mechanisms that differentiate chemo-sensitive from chemo-refractory disease remain unknown. Obtaining reliable tumour samples by utilising novel techniques such as endobronchial ultrasound guided needle aspiration or adopting to liquid biopsies are becoming popular. This review will focus on recent technological and therapeutic advancements to surmount this recalcitrant disease.
Collapse
Affiliation(s)
- Caroline Lum
- Department of Medical Oncology, Monash Health and Monash University, Clayton, VIC 3168, Australia.
| | - Muhammad Alamgeer
- Department of Medical Oncology, Monash Health and Monash University, Clayton, VIC 3168, Australia.
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
49
|
Zhang C, Shen L, Qi F, Wang J, Luo J. Multi-omics analysis of tumor mutation burden combined with immune infiltrates in bladder urothelial carcinoma. J Cell Physiol 2019; 235:3849-3863. [PMID: 31596511 DOI: 10.1002/jcp.29279] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022]
Abstract
To explore the prognosis of tumor mutation burden (TMB) and underlying relationships with tumor-infiltrating immune cells in bladder cancer (BLCA). Transcriptome profiles and somatic mutation data from The Cancer Genome Atlas database by the GDC tool. A total of 437 samples were included, consisted of 412 BLCA patients and matched 25 normal samples. Specific mutation information was summarized and illustrated in waterfall plot. Higher TMB levels revealed improved overall survival (OS) and lower tumor recurrence. We found 68 differentially expressed genes in two TMB groups and identified eight independent hub TMB-related signature. Pathway analysis suggested that differential TMB-related signature correlated with multiple cancer-related crosstalk, including cell cycle, DNA replication, cellular senescence, and p53 signaling pathway. Besides, the tumor mutation burden related signature (TMBRS) model based on eight signature possessed well predictive value with area under curve (AUC) = 0.753, and patients with higher TMBRS scores showed worse OS outcomes (p < .001). Moreover, we exhibited the inferred immune cell fractions in box plot and differential abundance of immune cells were shown in the heatmap. The Wilcoxon rank-sum test suggested that CD8+ T cell (p = .001) and memory activated CD4+ T cell (p = .004) showed higher infiltrating levels in high-TMB group, while the density of resting mast cells showed lower infiltrating level in high-TMB group (p = .016). Finally, it is significant to note that CD8+ T cell and memory activated CD4+ T cell subsets not only revealed higher infiltrating abundance in high-TMB group but correlated with prolonged OS and lower risk of tumor recurrence, respectively.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Luping Shen
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - JinCheng Wang
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Galuppini F, Dal Pozzo CA, Deckert J, Loupakis F, Fassan M, Baffa R. Tumor mutation burden: from comprehensive mutational screening to the clinic. Cancer Cell Int 2019; 19:209. [PMID: 31406485 PMCID: PMC6686509 DOI: 10.1186/s12935-019-0929-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/04/2019] [Indexed: 12/27/2022] Open
Abstract
The recent advent of immunomodulatory therapies into the clinic has demanded the identification of innovative predictive biomarkers to identify patients most likely to respond to immunotherapy and support the design of tailored clinical trials. Current molecular testing for selection of patients with gastrointestinal or pulmonary carcinomas relies on the prevalence of PD-L1 expression in tumor as well as immune cells by immunohistochemistry and/or on the evaluation of the microsatellite status. Tumor Mutational Burden (TMB) has emerged as a promising novel biomarker in this setting to further aid in patient selection. This has been facilitated by the increasing implementation of molecular pathology laboratories with comprehensive next generation sequencing (NGS) technologies. However, the significant overall costs and expertise required for the interpretation of NGS data has limited TMB evaluation in routine diagnostics, so far. This review focuses on the current use of TMB analysis in the clinical setting in the context of immune checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Francesca Galuppini
- Department of Medicine, Surgical Pathology Unit, University of Padua, Via Aristide Gabelli, 61, 35121 Padua, Italy
| | - Carlo Alberto Dal Pozzo
- Department of Medicine, Surgical Pathology Unit, University of Padua, Via Aristide Gabelli, 61, 35121 Padua, Italy
| | | | - Fotios Loupakis
- Veneto Institute of Oncology, IOV-IRCCS, Oncology Unit 1, Padua, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padua, Via Aristide Gabelli, 61, 35121 Padua, Italy
| | | |
Collapse
|