1
|
Li J, Wang A, Guo H, Zheng W, Chen R, Miao C, Zheng D, Peng J, Wang J, Chen Z. Exosomes: innovative biomarkers leading the charge in non-invasive cancer diagnostics. Theranostics 2025; 15:5277-5311. [PMID: 40303340 PMCID: PMC12036879 DOI: 10.7150/thno.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/06/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes, nanoscale extracellular vesicles secreted by diverse cell types, have emerged as promising biomarkers for non-invasive tumor diagnostics, offering significant advantages over traditional methods. These vesicles, typically ranging from 30 to 150 nanometers in size, carry a diverse cargo of proteins, lipids, RNA, and microRNAs, which reflect the molecular alterations occurring within their parent cells. Notably, exosomes can be isolated from easily accessible biofluids such as blood, urine, and saliva, making them ideal candidates for liquid biopsy applications. This review explores the transformative potential of exosome-based biomarkers in the early detection and monitoring of cancers across diverse organ systems, including respiratory, digestive, hematological, neurological, endocrine malignancies and so on. Special emphasis is placed on their application in clinical trials, where exosome-based diagnostics have demonstrated promising results in detecting tumors at early stages and monitoring treatment responses, offering a less invasive and more accessible alternative to traditional biopsies. While recent advancements in exosome isolation and characterization technologies have significantly improved the sensitivity and specificity of these diagnostics, challenges such as biological heterogeneity, lack of standardization, and regulatory hurdles remain. Nevertheless, exosome-based diagnostics hold the promise of providing real-time, dynamic insights into tumor progression, enhancing personalized medicine. The integration of exosomes into clinical practice could revolutionize cancer diagnostics and therapy, improving patient outcomes. Further research and large-scale clinical validation are essential to fully realize the clinical potential of exosome-based biomarker applications in routine clinical settings.
Collapse
Affiliation(s)
- Jiale Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China, 570208
| | - Ailin Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China, 211198
| | - Haijun Guo
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China, 412000
| | - Wei Zheng
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China, 412000
| | - Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China, 533000
| | - Changfeng Miao
- Department of Neurosurgery Second Branche, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China, 410005
| | - Dandan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital Zhejiang University, Hangzhou, China, 310009
| | - Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China, 570208
| | - Jiachong Wang
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China, 570208
| | - Zigui Chen
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China, 570208
| |
Collapse
|
2
|
Aydın Ş, Özdemir S, Adıgüzel A. The Potential of cfDNA as Biomarker: Opportunities and Challenges for Neurodegenerative Diseases. J Mol Neurosci 2025; 75:34. [PMID: 40080233 PMCID: PMC11906534 DOI: 10.1007/s12031-025-02317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive and gradual degeneration of neurons. The prevalence and rates of these disorders rise significantly with age. As life spans continue to increase in many countries, the number of cases is expected to grow in the foreseeable future. Early and precise diagnosis, along with appropriate surveillance, continues to pose a challenge. The high heterogeneity of neurodegenerative diseases calls for more accurate and definitive biomarkers to improve clinical therapy. Cell-free DNA (cfDNA), including fragmented DNA released into bodily fluids via apoptosis, necrosis, or active secretion, has emerged as a promising non-invasive diagnostic tool for various disorders including neurodegenerative diseases. cfDNA can serve as an indicator of ongoing cellular damage and mortality, including neuronal loss, and may provide valuable insights into disease processes, progression, and therapeutic responses. This review will first cover the key aspects of cfDNA and then examine recent advances in its potential use as a biomarker for neurodegenerative disorders.
Collapse
Affiliation(s)
- Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Ahmet Adıgüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
3
|
Rajavel A, Essakipillai N, Anbazhagan R, Ramakrishnan J, Venkataraman V, Natesan Sella R. Molecular profiling of blood plasma-derived extracellular vesicles derived from Duchenne muscular dystrophy patients through integration of FTIR spectroscopy and machine learning reveals disease signatures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125236. [PMID: 39368178 DOI: 10.1016/j.saa.2024.125236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE To identify and monitor the FTIR spectral signatures of plasma extracellular vesicles (EVs) from Duchenne Muscular Dystrophy (DMD) patients at different stages with Healthy controls using machine learning models. MATERIALS AND METHODS Whole blood samples were collected from the DMD (n = 30) and Healthy controls (n = 12). EVs were extracted by the Total Exosome Isolation (TEI) Method and resuspended in 1XPBS. We characterize the morphology, size, particle count, and surface markers (CD9, Alix, and Flotillin) by HR-TEM, NTA, and Western Blot analysis. The mid-IR spectra were recorded from (4000-400 cm-1) by Bruker ALPHA II FTIR spectrometer model, which was equipped with an attenuated total reflection (ATR) module. Machine learning algorithms like Principal Component Analysis (PCA) and Random Forest (RF) for dimensionality reduction and classifying the two study groups based on the FTIR spectra. The model performance was evaluated by a confusion matrix and the sensitivity, specificity, and Receiver Operating Characteristic Curve (ROC) was calculated respectively. RESULTS Alterations in Amide I & II (1700-1470 cm-1) and lipid (3000-2800 cm-1) regions in FTIR spectra of DMD compared with healthy controls. The PCA-RF model classified correctly the two study groups in the range of 4000-400 cm-1 with a sensitivity of 20 %, specificity of 87.50 %, accuracy of 71.43 %, precision of 33.33 %, and 5-fold cross-validation accuracy of 82 %. We analyzed the ten different spectral regions which showed statistically significant at P < 0.01 except the Ester Acyl Chain region. CONCLUSION Our proof-of-concept study demonstrated distinct infrared (IR) spectral signatures in plasma EVs derived from DMD. Consistent alterations in protein and lipid configurations were identified using a PCA-RF model, even with a small clinical dataset. This minimally invasive liquid biopsy method, combined with automated analysis, warrants further investigation for its potential in early diagnosis and monitoring of disease progression in DMD patients within clinical settings.
Collapse
Affiliation(s)
- Archana Rajavel
- Membrane Protein Interaction Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Narayanan Essakipillai
- Department of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Ramajayam Anbazhagan
- Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Jayashree Ramakrishnan
- Department of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Viswanathan Venkataraman
- Department of Paediatrics Neurology, Apollo Children's Hospital, Thousands Lights, Chennai 600 006, Tamil Nadu, India
| | - Raja Natesan Sella
- Membrane Protein Interaction Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India.
| |
Collapse
|
4
|
Tan SK, Bettegowda C, Yip S, Sahgal A, Rhines L, Reynolds J, Lazary A, Laufer I, Gasbarrini A, Dea N, Verlaan JJ, Gokaslan ZL, Fisher CG, Boriani S, Cecchinato R, Goodwin ML, Goodwin CR, Charest-Morin R. Liquid Biopsy for Spinal Tumors: On the Frontiers of Clinical Application. Global Spine J 2025; 15:16S-28S. [PMID: 39801114 PMCID: PMC11726521 DOI: 10.1177/21925682231222012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVES This article aims to provide a narrative review of the current state of research for liquid biopsy in spinal tumors and to discuss the potential application of liquid biopsy in the clinical management of patients with spinal tumors. METHODS A comprehensive review of the literature was performed using PubMed, Google Scholar, Medline, Embase and Cochrane databases, and the review was limited to articles of English language. All the relevant articles which were identified to be related to liquid biomarker study in spinal tumors, were studied in full text. RESULTS Liquid biopsy has revolutionized the field of precision medicine by guiding personalized clinical management of cancer patients based on the liquid biomarker status. In recent years, more research has been done to investigate its potential utilization in patients with tumors from the spine. Herein, we review the liquid biomarkers that have been proposed in different spine malignancies including chordoma, chondrosarcoma, Ewing sarcoma, osteosarcoma, astrocytoma and ependymoma. We also discuss the wide window of opportunity to utilize these liquid biomarkers in diagnosis, treatment response, monitoring, and detection of minimal residual disease in patients with spinal tumors. CONCLUSIONS Liquid biomarkers, especially blood-derived circulating tumor DNA, has a promising clinical utility as they are disease-specific, minimally invasive, and the procedure is repeatable. Prospective studies with larger populations are needed to fully establish its use in the setting of spinal tumors.
Collapse
Affiliation(s)
- Sze Kiat Tan
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Laurence Rhines
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | | | - Aron Lazary
- Department of Spine Surgery, Semmelweis University, Budapest, Hungary
- Department of Orthopaedic Surgery, Semmelweis University, Budapest, Hungary
| | - Ilya Laufer
- Department of Neurosurgery at NYU Grossman School of Medicine, New York, NY, USA
| | - Alessandro Gasbarrini
- Department of Orthopedic Surgery, Rizzoli Institute, University of Bologna, Bologna, Italy
| | - Nicolas Dea
- Combined Neurosurgical and Orthopedic Spine Program, Department of Orthopedics Surgery, University of British Columbia, Vancouver, BC, Canada
| | - J J Verlaan
- Department of Orthopedic Surgery, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Ziya L Gokaslan
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Charles G Fisher
- Combined Neurosurgical and Orthopedic Spine Program, Department of Orthopedics Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Stefano Boriani
- GSpine4, IRCCS Galeazzi-Sant'Ambrogio Hospital, Milan, Italy
| | | | - Matthew L Goodwin
- Department of Orthopedic Surgery, Washington University in St Louis, St Louis, MO, USA
| | - C Rory Goodwin
- Department of Neurosurgery, Spine Division, Duke University Medical Center, Durham, NC, USA
| | - Raphaële Charest-Morin
- Combined Neurosurgical and Orthopedic Spine Program, Department of Orthopedics Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Zhang T, Li G, Ren H, Yang L, Yang X, Tan R, Tang Y, Guo D, Zhao H, Shang W, Shen Y. Sub-millimeter fiberscopic robot with integrated maneuvering, imaging, and biomedical operation abilities. Nat Commun 2024; 15:10874. [PMID: 39738028 PMCID: PMC11685957 DOI: 10.1038/s41467-024-55199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.95 mm achieved by microscale 3D printing and magnetic spray, this continuum robot delivers competitive imaging performance and extends obstacle detection distance up to ~9.4 mm, a tenfold improvement from the theoretical limits. Besides, the robot showcases remarkable motion precision (less than 30 μm) and substantially widens the imaging region by ~25 times the inherent view. Through ex vivo trials, we validate the robot's practicality in navigating constrained channels, such as the lung end bronchus, and executing multifunctional operations including sampling, drug delivery, and laser ablation. The proposed submillimeter continuum robot marks a significant advancement in developing biomedical robots, unlocking numerous potential applications in biomedical engineering.
Collapse
Affiliation(s)
- Tieshan Zhang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Gen Li
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Ren
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Liu Yang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiong Yang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Rong Tan
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yifeng Tang
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Dong Guo
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Haoxiang Zhao
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wanfeng Shang
- National Engineering Laboratory of Big Data System Computing Technology, Shenzhen University, Shenzhen, China
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
| | - Yajing Shen
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
6
|
Selvam M, Sadanandan A, Chandrasekharan A, Ramesh S, Murali A, Krishnamurthi G. Radiomics for differentiating adenocarcinoma and squamous cell carcinoma in non-small cell lung cancer beyond nodule morphology in chest CT. Sci Rep 2024; 14:32088. [PMID: 39738517 PMCID: PMC11686386 DOI: 10.1038/s41598-024-83786-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Distinguishing between primary adenocarcinoma (AC) and squamous cell carcinoma (SCC) within non-small cell lung cancer (NSCLC) tumours holds significant management implications. We assessed the performance of radiomics-based models in distinguishing primary there is from SCC presenting as lung nodules on Computed Tomography (CT) scans. We studied individuals with histopathologically proven adenocarcinoma or SCC type NSCLC tumours, detected as lung nodules on Chest CT. The workflow comprised manual nodule segmentation, regions of interest creation, preprocessing data, feature extraction, and nodule classification using machine learning algorithms. The dataset comprised 46 adenocarcinoma and 28 SCC cases. For feature extraction, 101 radiomic features were extracted from the tumour regions using the 'pyradiomics' module in Python. After extensive experimentation with various feature importance techniques, the top 10 most significant radiomic features for differentiating between adenocarcinoma and squamous cell carcinoma (SCC) were identified. The Synthetic Minority Over-Sampling Technique was used to achieve a balanced distribution. Lung nodules were classified using 13 machine-learning algorithms, including Linear Discriminant Analysis, Random Forest, AdaBoost, and eXtreme Gradient Boosting. The Multilayer Perceptron (MLP) Classifier with Rectified Linear Unit (ReLu) activation was the most accurate (83% accuracy) with 83% precision and 86% sensitivity in distinguishing SCC from adenocarcinoma. It achieved a balanced F1 score of 83%, indicating well-rounded performance in both precision and sensitivity. The average Area Under the Curve score was 88%, representing good discrimination between the two classes of lung nodules. Radiomics is a powerful non-invasive tool that could potentially add to visual information obtained on CT. The MLP Classifier with ReLu activation showed good accuracy in distinguishing primary lung adenocarcinoma from SCC nodules. However, widespread multicentre trials are required to realize the full potential of radiomics in lung nodules.
Collapse
Affiliation(s)
- Minmini Selvam
- Department of Radiology and Imaging Sciences, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600 116, India.
| | - Abjasree Sadanandan
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Anupama Chandrasekharan
- Department of Radiology and Imaging Sciences, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600 116, India
| | - Sidharth Ramesh
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Arunan Murali
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Ganapathy Krishnamurthi
- Department of Radiology and Imaging Sciences, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600 116, India
| |
Collapse
|
7
|
Kumar NM, Navaneeth N, Shettar A, Chelimeswamy A. Elements of liquid biopsies: isolation, analysis, and clinical application in cancer diagnosis to prognosis. Expert Rev Mol Diagn 2024:1-12. [PMID: 39695357 DOI: 10.1080/14737159.2024.2445111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION The liquid biopsy is a breakthrough in the field of medical diagnostics. It serves as a sentinel that can quietly detect even the subtlest aberrations that indicate the presence of disease. They make it possible to uncover relevant genetic factors of tumors with minimal to no risk to cancer patients. Liquid biopsies allow detailed diagnosis, dynamic treatment monitoring, and accurate prognosis. They are also invaluable in diagnosing other diseases such as infectious diseases and aberrant gene mutations. AREAS COVERED The present review undertakes an in-depth analysis of the existing status of liquid biopsy diagnostic tools, focusing on their principal components. Furthermore, the review highlights pertinent and recent research in this field to provide a comprehensive understanding of the current state of this technology and its prospects. EXPERT OPINION Despite new and upcoming research in liquid biopsies, multiple areas need to be further explored before the viable transition into the clinical arena. With the advancements in tools such as artificial intelligence and machine learning and the integration of these technologies with liquid biopsies, these challenges are being addressed and will eventually lead to the development of a highly evolved liquid biopsy diagnostic tools.
Collapse
Affiliation(s)
| | - Niyati Navaneeth
- Department of Biotechnology, M.S Ramaiah Institute of Technology, Bengaluru, India
| | - Abhijith Shettar
- Department of Biotechnology, M.S Ramaiah Institute of Technology, Bengaluru, India
| | - Anupama Chelimeswamy
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| |
Collapse
|
8
|
Shah A, Apple J, Burgos G, Lankin J, Cohn J, Mulvihill E, Cambron-Mellott MJ. Physician preferences of biomarker testing strategies in newly diagnosed stage IV non-small cell lung cancer patients. Future Oncol 2024; 20:3229-3243. [PMID: 39552591 DOI: 10.1080/14796694.2024.2419351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Aim: To understand physicians' attitudes and behaviors regarding EGFR testing and retesting strategies in newly diagnosed metastatic non-small cell lung cancer patients.Materials & methods: Oncologists and pathologists completed an online, cross-sectional survey.Results: Most oncologists (73.3%) and pathologists (53.4%) agreed that concurrent testing increases sensitivity for detecting EGFR mutations. Upon tissue insufficiency, oncologists and pathologists reported using liquid biopsy 77.0% and 39.0% of the time, respectively. Tumor accessibility, smoking status, patient willingness and age were key drivers of tissue re-biopsy. Most oncologists reported high confidence in proceeding to first-line therapy based solely on liquid biopsy (60.7-80.0%); fewer pathologists (37.9%) were comfortable with this decision.Conclusion: Variation in physicians' perceptions of testing and retesting highlights the need for greater stakeholder consensus.
Collapse
Affiliation(s)
- Anne Shah
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Jon Apple
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Gabriela Burgos
- Oracle Life Sciences, Oracle Corporation, World Headquarters, 2300 Oracle Way, Austin, TX 78741, USA
| | - Josh Lankin
- Oracle Life Sciences, Oracle Corporation, World Headquarters, 2300 Oracle Way, Austin, TX 78741, USA
| | - Jesse Cohn
- Oracle Life Sciences, Oracle Corporation, World Headquarters, 2300 Oracle Way, Austin, TX 78741, USA
| | - Emily Mulvihill
- Oracle Life Sciences, Oracle Corporation, World Headquarters, 2300 Oracle Way, Austin, TX 78741, USA
| | - M Janelle Cambron-Mellott
- Oracle Life Sciences, Oracle Corporation, World Headquarters, 2300 Oracle Way, Austin, TX 78741, USA
| |
Collapse
|
9
|
Li W, Wang Z, Chen S, Zuo M, Xiang Y, Yuan Y, He Y, Zhang S, Liu Y. Metabolic checkpoints in glioblastomas: targets for new therapies and non-invasive detection. Front Oncol 2024; 14:1462424. [PMID: 39678512 PMCID: PMC11638224 DOI: 10.3389/fonc.2024.1462424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Glioblastoma (GBM) is a highly malignant tumor of the central nervous system that remains intractable despite advancements in current tumor treatment modalities, including immunotherapy. In recent years, metabolic checkpoints (aberrant metabolic pathways underlying the immunosuppressive tumor microenvironment) have gained attention as promising therapeutic targets and sensitive biomarkers across various cancers. Here, we briefly review the existing understanding of tumor metabolic checkpoints and their implications in the biology and management of GBM. Additionally, we discuss techniques that could evaluate metabolic checkpoints of GBM non-invasively, thereby potentially facilitating neo-adjuvant treatment and dynamic surveillance.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingrong Zuo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Neurosurgery, West China Second University Hospital, Chengdu, China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yunbo Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuze He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuxin Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Machado EDA, Land MGP, Schanaider A. PROGNOSTIC MARKERS FOR THROMBOTIC EVENTS IN PATIENTS WITH GASTRIC OR COLORECTAL ADENOCARCINOMAS. ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2024; 37:e1833. [PMID: 39699378 DOI: 10.1590/0102-6720202400039e1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/17/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The relationship between thrombosis and cancer is based on evidence that cancer promotes prothrombotic changes in the host hemostatic system. The activation of blood coagulation is closely linked to tumor growth and dissemination. AIMS To evaluate whether quantifications of plasma circulation tumor deoxyribonucleic acid (DNA) and thrombin-antithrombin complex could act as predictors for thrombotic events and death in patients with gastric or colorectal adenocarcinomas, while also evaluating the Karnofsky Performance Status. METHODS Eighty-two patients were included in the study and divided into three groups: controls (n=20), gastric adenocarcinomas (n=21), and colorectal adenocarcinomas (n=41). In order to calculate the Karnofsky index, information was collected to measure the patient's ability to perform common daily tasks. The following serum measurements were conducted: complete blood count, platelet count, extracellular deoxyribonucleic acid, and thrombin-antithrombin complex. RESULTS Ten patients (16%) experienced thrombosis during treatment. Patients with thrombin-antithrombin complex levels greater than 0.53 had a five-times higher risk of thrombosis. Lower Karnofsky Performance Status was also a risk factor for the event in this population. Neither thrombin-antithrombin complex nor plasma circulation tumor DNA were predictors of death after multivariate adjustment. Thus, Karnofsky index signaled a better overall survival prognosis for colorectal and gastric adenocarcinoma patients. CONCLUSIONS Thrombin-antithrombin complex acts as a marker for thrombosis in patients with colorectal and gastric adenocarcinomas. We recommend prophylactic anticoagulation when the Karnofsky value is low and/or the thrombin-antithrombin complex concentration is greater than 0.53 ng/ml.
Collapse
Affiliation(s)
| | | | - Alberto Schanaider
- Universidade Federal do Rio de Janeiro, Department of Surgery - Rio de Janeiro (RJ), Brazil
| |
Collapse
|
11
|
Gabrielli E, Bocchi MB, Giuli C, Farine F, Costa DD, Maccauro G, Vitiello R. Roles and Applications of Circulating Tumor-Derived RNAs in Sarcoma Patients: A Systematic Review. Int J Mol Sci 2024; 25:11715. [PMID: 39519267 PMCID: PMC11546317 DOI: 10.3390/ijms252111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Sarcomas are a heterogeneous group of malignancies with a high mortality rate. Detection of circulating tumor-derived material, such as circulating RNA in the peripheral blood of patients, has shown to be useful in diagnosis, prediction of prognosis and disease monitoring in several malignancies. This systematic review aims to probe the existing methods for detecting circulating tumor-derived RNAs from patients affected by sarcoma and their possible clinical application. A systematic review of the literature indexed in PubMed was performed. Each article had to analyze circulating RNA in human specimens obtained from liquid biopsies of patients affected by sarcoma. A total of 26 articles were included. We evaluated 1381 patients; 72% were affected by bone sarcoma and 28% by soft tissue sarcoma. By PCR-based methods, all the studies investigated circulating tumor RNA, mostly in the peripheral blood. Nearly half of the authors investigated the tumor expression and/or release of miRNA (42%). Several authors pointed out that circulating tumor-derived RNA has proven to have potential application in a clinical setting for sarcomas. To the best of our knowledge, this is the first review in the literature to attempt to put together data specifically on ctRNA in patients affected by sarcoma.
Collapse
Affiliation(s)
- Elena Gabrielli
- Orthopaedics and Traumatology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Orthopaedics and Traumatology Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Maria Beatrice Bocchi
- Orthopaedics and Traumatology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Orthopaedics and Traumatology Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Cristina Giuli
- Orthopaedics and Traumatology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Orthopaedics and Traumatology Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Francesco Farine
- Orthopaedics and Traumatology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Orthopaedics and Traumatology Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Doriana Di Costa
- Orthopaedics and Traumatology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Orthopaedics and Traumatology Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Giulio Maccauro
- Orthopaedics and Traumatology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Orthopaedics and Traumatology Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Raffaele Vitiello
- Orthopaedics and Traumatology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Orthopaedics and Traumatology Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Villa Stuart Casa di Cura, 00135 Roma, Italy
| |
Collapse
|
12
|
Khan A, Raza F, He N. Nanoscale Extracellular Vesicle-Enabled Liquid Biopsy: Advances and Challenges for Lung Cancer Detection. MICROMACHINES 2024; 15:1181. [PMID: 39459055 PMCID: PMC11509190 DOI: 10.3390/mi15101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Lung cancer is responsible for the death of over a million people worldwide every year. With its high mortality rate and exponentially growing number of new cases, lung cancer is a major threat to public health. The high mortality and poor survival rates of lung cancer patients can be attributed to its stealth progression and late diagnosis. For a long time, intrusive tissue biopsy has been considered the gold standard for lung cancer diagnosis and subtyping; however, the intrinsic limitations of tissue biopsy cannot be overlooked. In addition to being invasive and costly, it also suffers from limitations in sensitivity and specificity, is not suitable for repeated sampling, provides restricted information about the tumor and its molecular landscape, and is inaccessible in several cases. To cope with this, advancements in diagnostic technologies, such as liquid biopsy, have shown great prospects. Liquid biopsy is an innovative non-invasive approach in which cancer-related components called biomarkers are detected in body fluids, such as blood, urine, saliva and others. It offers a less invasive alternative with the potential for applications such as routine screening, predicting treatment outcomes, evaluating treatment effectiveness, detecting residual disease, or disease recurrence. A large number of research articles have indicated extracellular vesicles (EVs) as ideal biomarkers for liquid biopsy. EVs are a heterogeneous collection of membranous nanoparticles with diverse sizes, contents, and surface markers. EVs play a critical role in pathophysiological states and have gained prominence as diagnostic and prognostic biomarkers for multiple diseases, including lung cancer. In this review, we provide a detailed overview of the potential of EV-based liquid biopsy for lung cancer. Moreover, it highlights the strengths and weaknesses of various contemporary techniques for EV isolation and analysis in addition to the challenges that need to be addressed to ensure the widespread clinical application of EV-based liquid biopsies for lung cancer. In summary, EV-based liquid biopsies present interesting opportunities for the development of novel diagnostic and prognostic platforms for lung cancer, one of the most abundant cancers responsible for millions of cancer-related deaths worldwide.
Collapse
Affiliation(s)
- Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
13
|
Lawrence SR, Shah KM. Prospects and Current Challenges of Extracellular Vesicle-Based Biomarkers in Cancer. BIOLOGY 2024; 13:694. [PMID: 39336121 PMCID: PMC11428408 DOI: 10.3390/biology13090694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Cancer continues to impose a substantial global health burden, particularly among the elderly, where the ongoing global demographic shift towards an ageing population underscores the growing need for early cancer detection. This is essential for enabling personalised cancer care and optimised treatment throughout the disease course to effectively mitigate the increasing societal impact of cancer. Liquid biopsy has emerged as a promising strategy for cancer diagnosis and treatment monitoring, offering a minimally invasive method for the isolation and molecular profiling of circulating tumour-derived components. The expansion of the liquid biopsy approach to include the detection of tumour-derived extracellular vesicles (tdEVs) holds significant therapeutic opportunity. Evidence suggests that tdEVs carry cargo reflecting the contents of their cell-of-origin and are abundant within the blood, exhibiting superior stability compared to non-encapsulated tumour-derived material, such as circulating tumour nucleic acids and proteins. However, despite theoretical promise, several obstacles hinder the translation of extracellular vesicle-based cancer biomarkers into clinical practice. This critical review assesses the current prospects and challenges facing the adoption of tdEV biomarkers in clinical practice, offering insights into future directions and proposing strategies to overcome translational barriers. By addressing these issues, EV-based liquid biopsy approaches could revolutionise cancer diagnostics and management.
Collapse
Affiliation(s)
- Samuel R Lawrence
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Karan M Shah
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
14
|
Maruzani R, Brierley L, Jorgensen A, Fowler A. Benchmarking UMI-aware and standard variant callers for low frequency ctDNA variant detection. BMC Genomics 2024; 25:827. [PMID: 39227777 PMCID: PMC11370058 DOI: 10.1186/s12864-024-10737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Circulating tumour DNA (ctDNA) is a subset of cell free DNA (cfDNA) released by tumour cells into the bloodstream. Circulating tumour DNA has shown great potential as a biomarker to inform treatment in cancer patients. Collecting ctDNA is minimally invasive and reflects the entire genetic makeup of a patient's cancer. ctDNA variants in NGS data can be difficult to distinguish from sequencing and PCR artefacts due to low abundance, particularly in the early stages of cancer. Unique Molecular Identifiers (UMIs) are short sequences ligated to the sequencing library before amplification. These sequences are useful for filtering out low frequency artefacts. The utility of ctDNA as a cancer biomarker depends on accurate detection of cancer variants. RESULTS In this study, we benchmarked six variant calling tools, including two UMI-aware callers for their ability to call ctDNA variants. The standard variant callers tested included Mutect2, bcftools, LoFreq and FreeBayes. The UMI-aware variant callers benchmarked were UMI-VarCal and UMIErrorCorrect. We used both datasets with known variants spiked in at low frequencies, and datasets containing ctDNA, and generated synthetic UMI sequences for these datasets. Variant callers displayed different preferences for sensitivity and specificity. Mutect2 showed high sensitivity, while returning more privately called variants than any other caller in data without synthetic UMIs - an indicator of false positive variant discovery. In data encoded with synthetic UMIs, UMI-VarCal detected fewer putative false positive variants than all other callers in synthetic datasets. Mutect2 showed a balance between high sensitivity and specificity in data encoded with synthetic UMIs. CONCLUSIONS Our results indicate UMI-aware variant callers have potential to improve sensitivity and specificity in calling low frequency ctDNA variants over standard variant calling tools. There is a growing need for further development of UMI-aware variant calling tools if effective early detection methods for cancer using ctDNA samples are to be realised.
Collapse
Affiliation(s)
- Rugare Maruzani
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Waterhouse Building, Block F, Brownlow Street, Liverpool, L69 3GF, UK.
| | - Liam Brierley
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Waterhouse Building, Block F, Brownlow Street, Liverpool, L69 3GF, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Andrea Jorgensen
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Waterhouse Building, Block F, Brownlow Street, Liverpool, L69 3GF, UK
| | - Anna Fowler
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Waterhouse Building, Block F, Brownlow Street, Liverpool, L69 3GF, UK
| |
Collapse
|
15
|
Baruah S, Rajak J, Mitra AK, Dhara B. Advancements in precision oncology: Investigating the function of circulating DNA in the advancement of liquid biopsy technologies. THE JOURNAL OF LIQUID BIOPSY 2024; 5:100157. [PMID: 40027946 PMCID: PMC11863923 DOI: 10.1016/j.jlb.2024.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 03/05/2025]
Abstract
While the traditional method is a biopsy of the potential tumor tissue, more non-invasive methods have been developed such as the liquid biopsy. It is an emerging, powerful cancer detection method that is used for molecular profiling of tumours apart from tissue-specific biopsy. It involves the analysis of free, circulating tumor genetic material and circulating tumor cells (CTCs) that are found in the fluids of the patient. This analysis helps to detect the abnormal genetic anomalies associated with the various forms of cancer as well as identify mutations corresponding to specific tumours. It is an upcoming method of diagnostics applied in the field of precision oncology that helps overcome the limitations of the traditional biopsy. It can interrogate and look through difficult-to-biopsy tumours and also aid in early cancer detection. Sequencing techniques help in building databases with different information on mutations in the genetic as well as epigenetic levels. In this review, we understand the role of liquid biopsy as not only a diagnostic tool but its role in therapeutics and its potential in the future.
Collapse
Affiliation(s)
- Stootee Baruah
- Department of Microbiology, St. Xavier's College (Autonomous), Kolkata, 700016, India
| | - Jenifer Rajak
- Department of Microbiology, St. Xavier's College (Autonomous), Kolkata, 700016, India
| | - Arup Kumar Mitra
- Department of Microbiology, St. Xavier's College (Autonomous), Kolkata, 700016, India
| | - Bikram Dhara
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Health Sciences, Novel Global Community and Educational Foundation, Hebersham, NSW, Australia
| |
Collapse
|
16
|
Sulistyo H, Nusa AP, Poernomo MAPD, Rahman FML, Rahmatullah R, Pangestu TA, Afifah AN, Amania RR, Huda MM, Dharmawan AB, Sutono Islamanto SJ, Mubarika S, Wardana T. Circulating mRNA Expression of VEGF, PTEN, and SOCS1 as Potential Prognostic Predictor for Nasopharyngeal Carcinoma Progression. Asian Pac J Cancer Prev 2024; 25:2999-3006. [PMID: 39342576 DOI: 10.31557/apjcp.2024.25.9.2999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The molecular mechanisms underlying nasopharyngeal carcinoma (NPC) progression remain poorly understood. In particular, the roles of circulating mRNAs encoding key regulatory proteins have yet to be explored. This study aimed to identify NPC-associated expression signatures of circulating VEGF, PTEN, and SOCS1 mRNAs and their potential as biomarkers. METHODS A case-control study was conducted comprising 160 nasopharyngeal carcinoma (NPC) patients and 80 controls, from whom peripheral blood samples. Total RNA was extracted and the levels of VEGF, PTEN, and SOCS1 mRNAs were quantified using reverse transcription quantitative PCR (RT-qPCR). Relative expression was calculated using the 2-ΔΔCt method. Bioinformatic analyses, including GeneMANIA, Gene Ontology (GO), and KEGG pathway analysis, were performed to predict the functional roles and interactions of these mRNAs. RESULTS We identified significantly increased circulating VEGF mRNA in lymph node metastases (1.66-fold, p<0.05) and elevated SOCS1 mRNA in late-stage NPC (20-fold, p<0.05). PTEN mRNA was reduced 4.26-fold in NPC patients. These data suggest that circulating VEGF, PTEN, and SOCS1 mRNAs represent signatures of NPC progression and can potentially be biomarkers. Network analyses implicate these mRNAs in mechanisms enabling NPC pathogenesis. CONCLUSIONS Our study reveals NPC-associated expression changes of circulating VEGF, PTEN, and SOCS1 mRNAs. These molecular signatures may serve as biomarkers during NPC progression and provide insights into underlying mechanisms. Further validation of their utility as prognostic indicators of NPC is warranted.
Collapse
Affiliation(s)
- Hidayat Sulistyo
- Department of Pathology Anatomy, Faculty of Medicine, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Arifah Pelangi Nusa
- Undergraduate Student, Faculty of Medicine, Jenderal Soedirman University, Purwokerto, Indonesia
| | | | | | - Rafif Rahmatullah
- Undergraduate Student, Faculty of Medicine, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Thomas Adi Pangestu
- Undergraduate Student, Faculty of Medicine, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Azizah Nur Afifah
- Undergraduate Student, Faculty of Medicine, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Rhyceeva Ridzky Amania
- Undergraduate Student, Faculty of Medicine, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Muhammad Miftahul Huda
- Undergraduate Student, Faculty of Medicine, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Anton Budhi Dharmawan
- Department of Ear, Nose, and Throat [ENT], Faculty of Medicine, Jenderal Soedirman University, Purwokerto, Indonesia
- Department of Ear, Nose, and Throat [ENT], Margono Hospital, Purwokerto, Indonesia
| | | | - Sofia Mubarika
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Indonesia
| | - Tirta Wardana
- Department of Pathology Anatomy, Faculty of Medicine, Jenderal Soedirman University, Purwokerto, Indonesia
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Jenderal Soedirman University, Purwokerto, Indonesia
| |
Collapse
|
17
|
Ho HY, Chung KS(K, Kan CM, Wong SC(C. Liquid Biopsy in the Clinical Management of Cancers. Int J Mol Sci 2024; 25:8594. [PMID: 39201281 PMCID: PMC11354853 DOI: 10.3390/ijms25168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy, a noninvasive diagnosis that examines circulating tumor components in body fluids, is increasingly used in cancer management. An overview of relevant literature emphasizes the current state of liquid biopsy applications in cancer care. Biomarkers in liquid biopsy, particularly circulating tumor DNA (ctDNA), circulating tumor RNAs (ctRNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and other components, offer promising opportunities for early cancer diagnosis, treatment selection, monitoring, and disease assessment. The implementation of liquid biopsy in precision medicine has shown significant potential in various cancer types, including lung cancer, colorectal cancer, breast cancer, and prostate cancer. Advances in genomic and molecular technologies such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR) have expanded the utility of liquid biopsy, enabling the detection of somatic variants and actionable genomic alterations in tumors. Liquid biopsy has also demonstrated utility in predicting treatment responses, monitoring minimal residual disease (MRD), and assessing tumor heterogeneity. Nevertheless, standardizing liquid biopsy techniques, interpreting results, and integrating them into the clinical routine remain as challenges. Despite these challenges, liquid biopsy has significant clinical implications in cancer management, offering a dynamic and noninvasive approach to understanding tumor biology and guiding personalized treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Sze-Chuen (Cesar) Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (H.-Y.H.); (K.-S.C.); (C.-M.K.)
| |
Collapse
|
18
|
Zhai C, Xu J, Yang Y, Xie F, Cao L, Wang K, Zhou Y, Ding X, Yin J, Ding X, Hu H, Yu H. Heterogeneous Analysis of Extracellular Vesicles for Osteosarcoma Diagnosis. Anal Chem 2024; 96:9486-9492. [PMID: 38814722 DOI: 10.1021/acs.analchem.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Osteosarcoma (OS) is the most prevalent primary tumor of bones, often diagnosed late with a poor prognosis. Currently, few effective biomarkers or diagnostic methods have been developed for early OS detection with high confidence, especially for metastatic OS. Tumor-derived extracellular vesicles (EVs) are emerging as promising biomarkers for early cancer diagnosis through liquid biopsy. Here, we report a plasmonic imaging-based biosensing technique, termed subpopulation protein analysis by single EV counting (SPASEC), for size-dependent EV subpopulation analysis. In our SPASEC platform, EVs are accurately sized and counted on plasmonic sensor chips coated with OS-specific antibodies. Subsequently, EVs are categorized into distinct subpopulations based on their sizes, and the membrane proteins of each size-dependent subpopulation are profiled. We measured the heterogeneous expression levels of the EV markers (CD63, BMP2, GD2, and N-cadherin) in each of the EV subsets from both OS cell lines and clinical plasma samples. Using the linear discriminant analysis (LDA) model, the combination of four markers is applied to classify the healthy donors (n = 37), nonmetastatic OS patients (n = 13), and metastatic patients (n = 12) with an area under the curve of 0.95, 0.92, and 0.99, respectively. SPASEC provides accurate EV sensing technology for early OS diagnosis.
Collapse
Affiliation(s)
- Chunhui Zhai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiaying Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuting Yang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feng Xie
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Li Cao
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kai Wang
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Zhou
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaomin Ding
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junyi Yin
- Oncology Department of Tongji Hospital of Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Xianting Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Haiyan Hu
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hui Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
19
|
Mishra A, Zehra S, Bharti PK, Mathur SR, Ranjan P, Batra A, Inampudi KK, Modi GP, Nikolajeff F, Kumar S. Spectroscopic insight into breast cancer: profiling small extracellular vesicles lipids via infrared spectroscopy for diagnostic precision. Sci Rep 2024; 14:9347. [PMID: 38654096 DOI: 10.1038/s41598-024-59863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Breast cancer, a leading cause of female mortality due to delayed detection owing to asymptomatic nature and limited early diagnostic tools, was investigated using a multi-modal approach. Plasma-derived small EVs from breast cancer patients (BrCa, n = 74) and healthy controls (HC, n = 30) were analyzed. Small EVs (n = 104), isolated through chemical precipitation, underwent characterization via transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Validation involved antibody-based tests (TSG101, CD9, CD81, CD63). Infrared spectra of small EVs were obtained, revealing significant differences in lipid acyl chains, particularly in the C-H stretching of CH3. The study focused on the lipid region (3050-2900 cm-1), identifying peaks (3015 cm-1, 2960 cm-1, 2929 cm-1) as distinctive lipid characteristics. Spectroscopic lipid-to-lipid ratios [(I3015/I2929), (I2960/I2929)] emerged as prominent breast cancer markers. Exploration of protein, nucleic acid, and carbohydrate ratios indicated variations in alpha helices, asymmetric C-H stretching vibrations, and C-O stretching at 1033 cm-1. Principal component analysis (PCA) successfully differentiated BrCa and HC small EVs, and heatmap analysis and receiver operating characteristic (ROC) curve evaluations underscored the discriminatory power of lipid ratios. Notably, (I2960/I2929) exhibited 100% sensitivity and specificity, highlighting its potential as a robust BrCa sEV marker for breast cancer detection.
Collapse
Affiliation(s)
- Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sadaqa Zehra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prahalad Kumar Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Piyush Ranjan
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Atul Batra
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Krishna K Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, 97187, Luleå, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Health, Education, and Technology, Lulea University of Technology, 97187, Luleå, Sweden.
| |
Collapse
|
20
|
Abusamra SM, Barber R, Sharafeldin M, Edwards CM, Davis JJ. The integrated on-chip isolation and detection of circulating tumour cells. SENSORS & DIAGNOSTICS 2024; 3:562-584. [PMID: 38646187 PMCID: PMC11025039 DOI: 10.1039/d3sd00302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024]
Abstract
Circulating tumour cells (CTCs) are cancer cells shed from a primary tumour which intravasate into the blood stream and have the potential to extravasate into distant tissues, seeding metastatic lesions. As such, they can offer important insight into cancer progression with their presence generally associated with a poor prognosis. The detection and enumeration of CTCs is, therefore, critical to guiding clinical decisions during treatment and providing information on disease state. CTC isolation has been investigated using a plethora of methodologies, of which immunomagnetic capture and microfluidic size-based filtration are the most impactful to date. However, the isolation and detection of CTCs from whole blood comes with many technical barriers, such as those presented by the phenotypic heterogeneity of cell surface markers, with morphological similarity to healthy blood cells, and their low relative abundance (∼1 CTC/1 billion blood cells). At present, the majority of reported methods dissociate CTC isolation from detection, a workflow which undoubtedly contributes to loss from an already sparse population. This review focuses on developments wherein isolation and detection have been integrated into a single-step, microfluidic configuration, reducing CTC loss, increasing throughput, and enabling an on-chip CTC analysis with minimal operator intervention. Particular attention is given to immune-affinity, microfluidic CTC isolation, coupled to optical, physical, and electrochemical CTC detection (quantitative or otherwise).
Collapse
Affiliation(s)
- Sophia M Abusamra
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
| | - Robert Barber
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | | | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Systems, University of Oxford Oxford UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| |
Collapse
|
21
|
Taghizadeh M, Jafari-Koshki T, Jafarlou V, Raeisi M, Alizadeh L, Roosta Y, Matin S, Jabari R, Sur D, Karimi A. The role of piRNAs in predicting and prognosing in cancer: a focus on piRNA-823 (a systematic review and meta-analysis). BMC Cancer 2024; 24:484. [PMID: 38627675 PMCID: PMC11022431 DOI: 10.1186/s12885-024-12180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION This article examines the potential of using liquid biopsy with piRNAs to study cancer survival outcomes. While previous studies have explored the relationship between piRNA expression and cancer patient outcomes, a comprehensive investigation is still lacking. To address this gap, we conducted a systematic review and meta-analysis of existing literature. METHODS We searched major online databases up to February 2024 to identify articles reporting on the role of piRNA in cancer patient survival outcomes. Our meta-analysis used a random-effects model to pool hazard ratios with 95% confidence intervals (CI) and assess the prognostic value of deregulated piRNA-823. For survival analysis, the Kaplan-Meier method and COX analysis were used. RESULTS Out of 6104 articles screened, 20 met our inclusion criteria. Our analysis revealed that dysregulated piRNA expression is associated with cancer patient survival outcomes. Specifically, our meta-analysis found that overexpression of piR-823 is significantly linked with poorer overall survival in patients with colorectal cancer and renal cell cancer (HR: 3.82, 95% CI = [1.81, 8.04], I2 = 70%). CONCLUSION Our findings suggest that various piRNAs may play a role in cancer survival outcomes and that piRNA-823 in particular holds promise as a prognostic biomarker for multiple human cancers. IMPLICATIONS FOR CANCER SURVIVORS Our systematic review and meta-analysis of piRNA-823 has important implications for cancer survivors. Our findings suggest that piRNA-823 can be used as a prognostic biomarker for predicting cancer recurrence and survival rates. This information can help clinicians develop personalized treatment plans for cancer survivors, which can improve their quality of life and reduce the risk of recurrence.
Collapse
Affiliation(s)
- Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical School, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Tohid Jafari-Koshki
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Vahid Jafarlou
- Cancer Institute of Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, 1419733141, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Leila Alizadeh
- Gastroenterology and Liver Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Yousef Roosta
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, 5714783734, Iran
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 5714783734, Iran
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, 5714783734, Iran
| | - Somaieh Matin
- Department of Internal Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 8599156189, Iran
| | - Rahele Jabari
- Department of Nutrition Science, Faculty of Medical Science, Urmia University of Medical Science, Urmia, 5714783734, Iran
| | - Daniel Sur
- Department of Oncology, The Oncology Institute "Prof. Dr. Ion Chiricu¸tă", Cluj-Napoca, 400015, Romania.
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricu ̧t ̆a", 400015 Str. Republicii 34-36, Cluj-Napoca, 400006, Romania.
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical School, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran.
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht St., Tabriz, East Azerbaijan, 5166614756, Iran.
| |
Collapse
|
22
|
Genet SAAM, Visser E, Youssef-El Soud M, Belderbos HNA, Stege G, de Saegher MEA, Westeinde SCV', Brunsveld L, Broeren MAC, van de Kerkhof D, Eduati F, van den Borne BEEM, Scharnhorst V. Strengths and challenges in current lung cancer care: Timeliness and diagnostic procedures in six Dutch hospitals. Lung Cancer 2024; 189:107477. [PMID: 38271919 DOI: 10.1016/j.lungcan.2024.107477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVES Timely diagnosis of lung cancer (LC) is crucial to achieve optimal patient care and outcome. Moreover, the number of procedures required to obtain a definitive diagnosis can have a large influence on the life expectancy of a patient. Here, adherence with existing Dutch guidelines for timeliness and type and number of invasive and imaging procedures was assessed. MATERIALS AND METHODS 1096 patients with suspected LC were enrolled in this multicenter prospective study (NL9146). The overall survival, time from referral to the first appointment with the pulmonologist, time to diagnosis and treatment, and the number of imaging and invasive procedures were evaluated. Patients were divided into different diagnostic groupsearly- and advanced stage non-small-cell lung cancer (NSCLC), small-cell lung cancer (SCLC), large cell neuroendocrine carcinoma of the lung (LCNEC), patients without LC and patients without a definitive diagnosis. RESULTS The majority of patients (66 %) received a definitive diagnosis within 5 weeks, although the time to diagnosis of early-stage LC patients and patients without LC was significantly longer comparted to advanced stage LC. An increase in invasive procedures was seen for early-stage LC compared to advanced stage LC and for 13 % of the advanced stage non-squamous NSCLC patients up to three additional invasive procedures were performed solely to obtain sufficient material for NGS. For patients without a definitive diagnosis, 50 % did undergo at least one invasive procedure, while 11 % did not wish to undergo any invasive procedures. CONCLUSION These insights could aid in improved LC diagnostics and efficient implementation of new techniques like liquid biopsy and artificial intelligence. This may lead to more timely LC care, a decreased number of invasive procedures, less variability between the diagnostic trajectory of different patients and aid in obtaining a definitive diagnosis for all patients.
Collapse
Affiliation(s)
- Sylvia A A M Genet
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Catharina Hospital Eindhoven, Eindhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Esther Visser
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Catharina Hospital Eindhoven, Eindhoven, The Netherlands; Máxima Medical Center, Eindhoven/Veldhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands
| | | | | | | | | | | | - Luc Brunsveld
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maarten A C Broeren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Máxima Medical Center, Eindhoven/Veldhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands
| | - Daan van de Kerkhof
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Catharina Hospital Eindhoven, Eindhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Volkher Scharnhorst
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Catharina Hospital Eindhoven, Eindhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
23
|
Anitha K, Posinasetty B, Naveen Kumari K, Chenchula S, Padmavathi R, Prakash S, Radhika C. Liquid biopsy for precision diagnostics and therapeutics. Clin Chim Acta 2024; 554:117746. [PMID: 38151071 DOI: 10.1016/j.cca.2023.117746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Liquid biopsy (LB) has emerged as a highly promising and non-invasive diagnostic approach, particularly in the field of oncology, and has garnered interest in various medical disciplines. This technique involves the examination of biomolecules released into physiological fluids, such as urine samples, blood, and cerebrospinal fluid (CSF). The analysed biomolecules included circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free DNA (cfDNA), exosomes, and other cell-free components. In contrast to conventional tissue biopsies, LB provides minimally invasive diagnostics, offering invaluable insights into tumor characteristics, treatment response, and early disease detection. This Review explores the contemporary landscape of technologies and clinical applications in the realm of LB, with a particular emphasis on the isolation and analysis of ctDNA and/or cfDNA. Various methodologies have been employed, including droplet digital polymerase chain reaction (DDP), BEAMing (beads, emulsion, amplification, and magnetics), TAm-Seq (tagged-amplicon deep sequencing), CAPP-Seq (cancer personalized profiling by deep sequencing), WGBS-Seq (whole genome bisulfite sequencing), WES (whole exome sequencing), and WGS (whole-genome sequencing). Additionally, CTCs have been successfully isolated through biomarker-based cell capture, employing both positive and negative enrichment strategies based on diverse biophysical and other inherent properties. This approach also addresses challenges and limitations associated with liquid biopsy techniques, such as sensitivity, specificity, standardization and interpretability of findings. This review seeks to identify the current technologies used in liquid biopsy samples, emphasizing their significance in identifying tumor markers for cancer detection, prognosis, and treatment outcome monitoring.
Collapse
Affiliation(s)
- Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur 425405, India
| | | | - K Naveen Kumari
- Sri Krishna Teja Pharmacy College, Tirupati, Andhra Pradesh 517502, India
| | | | - R Padmavathi
- SVS Medical College, Hyderabad, Telangana, India
| | - Satya Prakash
- All India Institute of Medical Sciences, Bhopal 462020, India
| | | |
Collapse
|
24
|
Hatami A, Saadatmand M, Garshasbi M. Cell-free fetal DNA (cffDNA) extraction from whole blood by using a fully automatic centrifugal microfluidic device based on displacement of magnetic silica beads. Talanta 2024; 267:125245. [PMID: 37776803 DOI: 10.1016/j.talanta.2023.125245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
The purpose of this research was to design a fully automated centrifugal microfluidic system (Lab-on-a-Disk) for isolating cell free fetal DNAs (cffDNAs) from whole blood. To achieve this goal, magnetic silica beads were used, such that after attaching cffDNA to them, they were transferred between chambers by using external fixed magnets. All the standards and required steps for cffDNA extraction including plasma separation, adding proteinase K, lysis buffer, binding buffer, washing buffer, and elution buffer were considered in this designed disk. To evaluate the function of the disk, the collected samples were tested from several aspects. First, the purity of extracted plasma from whole blood was investigated which included hemoglobin test, hemocytometer, etc. This disk could extract 1.3 mL pure plasma from 3 mL blood with 45% hematocrit. The results of the extracted plasma showed 99% purity. Finally, the cffDNAs were examined by using a male fetal gender identification kit and real-time PCR machine. The results indicated the correct function of the disk in extracting cffDNAs in samples of 10 Landa from cycle 34 onwards. Compared to the clinical method, the disk not only was able to extract cffDNA in 20 min but also it led to less buffer consumption since the disk only required 1 mL plasma for extraction of cffDNAs.
Collapse
Affiliation(s)
- Ali Hatami
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Premachandran S, Dhinakaran AK, Das S, Venkatakrishnan K, Tan B, Sharma M. Detection of lung cancer metastasis from blood using L-MISC nanosensor: Targeting circulating metastatic cues for improved diagnosis. Biosens Bioelectron 2024; 243:115782. [PMID: 37890388 DOI: 10.1016/j.bios.2023.115782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Metastatic lung cancers are considered one of the most clinically significant malignancies, comprising about 40% of deaths caused by cancers. Detection of lung cancer metastasis prior to symptomatic relapse is critical for timely diagnosis and clinical management. The onset of cancer metastasis is indicated by the manifestation of tumor-shed signatures from the primary tumor in peripheral circulation. A subset of this population, characterized as the metastasis-initiating stem cells, are capable of invasion, tumor initiation, and propagation of metastasis at distant sites. In this study, we have developed a SERS-functionalised L-MISC (Lung-Metastasis Initiating Stem Cells) nanosensor to accurately capture the trace levels of metastatic signatures directly from patient blood. We investigated the signatures of cancer stem cell enriched heterogenous population of primary and metastatic lung cancer cells to establish a metastatic profile unique to lung cancer. Multivariate statistical analyses revealed statistically significant differences in the molecular profiles of healthy, primary, and metastatic cell populations. The single-cell sensitivity of L-MISC nanosensor enabled a label-free detection of MISCs with high sensitivity and specificity. By employing a robust machine learning model, our diagnostic methodology can accurately detect metastatic lung cancer from not more than 5 μl of blood. A pilot validation of our study was carried out using clinical samples for the prediction of metastatic lung cancers resulting in 100% diagnostic sensitivity. The L-MISC nanosensor is a potential tool for highly rapid, non-invasive, and accurate diagnosis of lung cancer metastasis.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Ashok Kumar Dhinakaran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Sunit Das
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Nano Characterization Laboratory, Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Mansi Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
26
|
Haigh T, Beattie H, Wade MA, England J, Kuvshinov D, Karsai L, Greenman J, Green V. The Use of Tissue-on-Chip Technology to Focus the Search for Extracellular Vesicle miRNA Biomarkers in Thyroid Disease. Int J Mol Sci 2023; 25:71. [PMID: 38203243 PMCID: PMC10778868 DOI: 10.3390/ijms25010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Small extracellular vesicles (sEVs) contain microRNAs (miRNAs) which have potential to act as disease-specific biomarkers. The current study uses an established method to maintain human thyroid tissue ex vivo on a tissue-on-chip device, allowing the collection, isolation and interrogation of the sEVs released directly from thyroid tissue. sEVs were analysed for differences in miRNA levels released from benign thyroid tissue, Graves' disease tissue and papillary thyroid cancer (PTC), using miRNA sequencing and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to identify potential biomarkers of disease. Thyroid biopsies from patients with benign tissue (n = 5), Graves' disease (n = 5) and PTC (n = 5) were perfused with medium containing sEV-depleted serum for 6 days on the tissue-on-chip device. During incubation, the effluents were collected and ultracentrifuged to isolate sEVs; miRNA was extracted and sequenced (miRNASeq). Out of the 15 samples, 14 passed the quality control and miRNASeq analysis detected significantly higher expression of miR-375-3p, miR-7-5p, miR-382-5p and miR-127-3p in the sEVs isolated from Graves' tissue compared to those from benign tissue (false discovery rate; FDR p < 0.05). Similarly, miR-375-3p and miR-7-5p were also detected at a higher level in the Graves' tissue sEVs compared to the PTC tissue sEVs (FDR p < 0.05). No significant differences were observed between miRNA in sEVs from PTC vs. those from benign tissue. These results were supported by Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR). The novel findings demonstrate that the tissue-on-chip technology is a robust method for isolating sEVs directly from the tissue of interest, which has permitted the identification of four miRNAs, with which further investigation could be used as biomarkers or therapeutic targets within thyroid disease.
Collapse
Affiliation(s)
- Thomas Haigh
- Centre for Biomedicine, Faculty of Health Sciences, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (T.H.); (H.B.); (M.A.W.); (J.G.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Hull University Teaching Hospitals NHS Trust Hull, Hull HU16 5JQ, UK;
| | - Hannah Beattie
- Centre for Biomedicine, Faculty of Health Sciences, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (T.H.); (H.B.); (M.A.W.); (J.G.)
| | - Mark A. Wade
- Centre for Biomedicine, Faculty of Health Sciences, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (T.H.); (H.B.); (M.A.W.); (J.G.)
| | - James England
- Department of Otorhinolaryngology, Head and Neck Surgery, Hull University Teaching Hospitals NHS Trust Hull, Hull HU16 5JQ, UK;
| | - Dmitriy Kuvshinov
- School of Engineering, University of Hull, Cottingham Rd., Hull HU6 7RX, UK;
| | - Laszlo Karsai
- Department of Pathology, Hull University Teaching Hospitals NHS Trust Hull, Hull HU3 2JZ, UK;
| | - John Greenman
- Centre for Biomedicine, Faculty of Health Sciences, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (T.H.); (H.B.); (M.A.W.); (J.G.)
| | - Victoria Green
- Centre for Biomedicine, Faculty of Health Sciences, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (T.H.); (H.B.); (M.A.W.); (J.G.)
| |
Collapse
|
27
|
Safhi FA, Al-Hazani TMI, Jalal AS, Alduwish MA, Alshaya DS, Almufareh NA, Domiaty DM, Alshehri E, Al-Shamrani SM, Abboosh TS, Alotaibi MA, Alwaili MA, Al-Qahtani WS. FGFR3 and FGFR4 overexpression in juvenile nasopharyngeal angiofibroma: impact of smoking history and implications for personalized management. J Appl Genet 2023; 64:749-758. [PMID: 37656292 DOI: 10.1007/s13353-023-00780-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Lifestyle factors, including smoking, have been linked to neoplastic diseases, and reports suggest an association between smoking and overexpression of FGFR (fibroblast growth factor receptor) in certain neoplasms. This study aims to assess the expression of FGFR3 and FGFR4 genes in patients with and without a history of smoking.A total of 118 participants were recruited, including 83 Juvenile Nasopharyngeal Angiofibroma (JNA) patients and 35 healthy participants, the JNA patients were further stratified as smokers and nonsmokers. Total RNA was extracted from the blood & saliva sample by using TRIzol reagent, and quantified using a Nanodrop, and then subjected to gene expression analysis of FGFR3/4 using RT-PCR. Immunohistochemistry analysis was employed using fresh biopsies of JNA to validate the findings. All experiments were performed in triplicates and analysed using the Chi-Square test (P < 0.05). Smokers exhibited significantly lower total RNA concentrations across all sample types (P < 0.001). The study revealed significant upregulation of both FGFR3/4 genes in JNA patients (P < 0.05). Moreover, FGFR3 expression was significantly higher among smokers 66% (95% CI: 53-79%) compared to non-smokers 22% (95% CI: 18-26%). Immunohistochemistry analysis demonstrated moderate to strong staining intensity for FGFR3 among smokers. The study highlights the overexpression of FGFR3/4 genes in JNA patients, with a stronger association observed among smokers. Furthermore, medical reports indicated higher rates of recurrence and bleeding intensity among smokers. These findings emphasize the potential role of FGFR3 as a key molecular factor in JNA, particularly in the context of smoking.
Collapse
Affiliation(s)
- Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Tahani Mohamed Ibrahim Al-Hazani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, 11940, Al-Kharj, Saudi Arabia
| | - Areej Saud Jalal
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Manal Abdullah Alduwish
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, 11940, Al-Kharj, Saudi Arabia
| | - Dalal S Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Nawaf Abdulrahman Almufareh
- Department of Pediatric Dentistry and Preventive Dental Sciences, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Dalia Mostafa Domiaty
- College of Science, Department of Biology, University of Jeddah, P.O. Box 13151, 21493, Jeddah, Saudi Arabia
| | - Eman Alshehri
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salha M Al-Shamrani
- College of Science, Department of Biology, University of Jeddah, P.O. Box 13151, 21493, Jeddah, Saudi Arabia
| | - Tahani Saeed Abboosh
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Public Security, Forensic Evidence Laboratories, Criminal Examinations, Ministry of Interior, Riyadh, Saudi Arabia
| | | | - Maha Abdulla Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Wedad Saeed Al-Qahtani
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, P.O. Box 6830, 11452, Riyadh, Saudi Arabia.
| |
Collapse
|
28
|
Fagery M, Khorshidi HA, Wong SQ, Vu M, IJzerman M. Health Economic Evidence and Modeling Challenges for Liquid Biopsy Assays in Cancer Management: A Systematic Literature Review. PHARMACOECONOMICS 2023; 41:1229-1248. [PMID: 37351802 PMCID: PMC10492680 DOI: 10.1007/s40273-023-01292-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Cancer-derived material circulating in the bloodstream and other bodily fluids, referred to as liquid biopsies (LBs), has become an appealing adjunct or alternative to tissue biopsies, showing vital promise in several clinical applications. PURPOSE A systematic literature review was conducted to (1) summarize the current health economic evidence for LB assays and (2) identify and analyze the studies addressed or reported on the challenges of health economic modeling in precision medicine. METHODS Relevant studies were identified in the EMBASE, MEDLINE, Cochrane Library, EconLit, and the University of Melbourne Full Text Journal databases from 1 January 2013 to 16 September 2022. Included papers were selected if they were economic evaluations and/or budget impact analyses. RESULTS A total of 24 studies were included and analyzed, with the majority being full economic evaluations (n = 19, 79.2%). Four studies (16.7%) were health and budget impact analyses, and one study (4.1%) incorporated both an economic evaluation and a budget impact analysis. Cohort-level modeling techniques were the most common approach (n = 16; 80%). LB technologies were cost-effective in 15 studies (75%) considering different biomarkers, cancer types and stages, and economic analyses. These studies evaluated LBs for screening and early detection (66.7%), treatment selection (26.7%), and monitoring treatment response (6.6%). Budget impact analysis results were varied among included studies, with the majority of studies (n = 4; 80%) reporting either cost savings, minimal, or modest budget impact, while one study (20%) reported LBs as an efficient strategy. The reviewed studies often inadequately reported or addressed modeling challenges, such as patient-level processes, the combination of tests and treatments, preferences, and uncertainty. CONCLUSION LBs could provide a cost-effective approach for treatment selection in lung cancer and aid in the screening and early detection of other cancers, including colorectal, gastric, breast, and brain cancers. This is in comparison with various alternatives, such as the standard of care (SOC) and no screening scenario. However, it is important to mention that in some comparisons, LBs were used in combination with SOC instead of replacing it. Importantly, few studies have pointed toward LBs' cost-effectiveness for monitoring treatment response. Most health and budget impact analyses, especially those focused on lung cancer, suggest potential cost savings or a minimal-to-moderate budget impact. Nevertheless, additional research is needed to ascertain their effectiveness across various stages of lung and colorectal cancer, as well as to address potential modeling challenges. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42022307939.
Collapse
Affiliation(s)
- Mussab Fagery
- Cancer Health Services Research, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.
| | - Hadi A Khorshidi
- Cancer Health Services Research, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Stephen Q Wong
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Martin Vu
- Cancer Health Services Research, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Maarten IJzerman
- Cancer Health Services Research, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Soni N, Nandi G, Chaudhary M, Bissa B. The role of ncRNA in the co-regulation of autophagy and exosome pathways during cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119523. [PMID: 37348764 DOI: 10.1016/j.bbamcr.2023.119523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Since its discovery a few decades ago, autophagy has been recognized as a crucial signaling pathway, linked to the recycling of cellular components in nutrient stress. Autophagy is a two-way sword, playing a dual role in tumorigenesis. In this catabolic process, dysfunctional organelles, biomolecules, and misfolded proteins are sequestered in the autophagosome and sent to the lysosome for degradation. Alongside, there are cellular messengers called exosomes, which are released from cells and are known to communicate and regulate metabolism in recipient cells. Multivesicular bodies (MVB) act as the intricate link between autophagy and exosome pathways. The continuous crosstalk between the two pathways is coordinated and regulated by multiple players among which ncRNA is the emerging candidates. The exosomes carry varied cargo of which non-coding RNA exerts an immediate regulatory effect on recipient cells. ncRNA is known to exhibit dual behavior in both promoting and inhibiting tumor growth. There is increasing evidence for the involvement of ncRNAs' in the regulation of different hallmarks of cancer. Different ncRNAs are involved in the co-regulation of autophagy and exosome pathways and therefore represent a superior therapeutic approach to target cancer chemoresistance. Here, we will discuss the ncRNA involved in regulating autophagy, and exosomes pathways and its relevance in cancer therapeutics.
Collapse
Affiliation(s)
- Naveen Soni
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Gargi Nandi
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Megha Chaudhary
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Bhawana Bissa
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
30
|
Pancrazzi A, Bloise F, Moncada A, Perticucci R, Vecchietti S, Pompili F, Ricciarini F, Lenzi S, Gatteschi C, Giusti S, Rosito MP, Del Buono S, Belardi P, Bruni A, Borri F, Campione A, Laurini L, Occhini R, Presenti L, Viticchi V, Rossi M, Bardi S, D'Urso A, Dei S, Venezia D, Scala R, Bengala C, Decarli NL, Carnevali A, Milandri C, Ognibene A. BL-MOL-AR Project, Preliminary Results about Liquid Biopsy: Molecular Approach Experience and Research Activity in Oncological Settings. Glob Med Genet 2023; 10:172-187. [PMID: 37457625 PMCID: PMC10348843 DOI: 10.1055/s-0043-1771193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Background Liquid biopsy is mainly used to identify tumor cells in pulmonary neoplasms. It is more often used in research than in clinical practice. The BL-MOL-AR study aims to investigate the efficacy of next-generation sequencing (NGS) and clinical interpretation of the circulating free DNA (cfDNA) levels. This study reports the preliminary results from the first samples analyzed from patients affected by various neoplasms: lung, intestinal, mammary, gastric, biliary, and cutaneous. Methods The Biopsia Liquida-Molecolare-Arezzo study aims to enroll cancer patients affected by various malignancies, including pulmonary, intestinal, advanced urothelial, biliary, breast, cutaneous, and gastric malignancies. Thirty-nine patients were included in this preliminary report. At time zero, a liquid biopsy is executed, and two types of NGS panels are performed, comprising 17 genes in panel 1, which is already used in the routine tissue setting, and 52 genes in panel 2. From the 7th month after enrollment, 10 sequential liquid biopsies are performed up to the 17th month. The variant allele frequency (%) and cfDNA levels (ng/mL) are measured in every plasmatic sample. Results The NGS results obtained by different panels are similar even though the number of mutations is more concordant for lung pathologies. There are no significant differences in the actionability levels of the identified variants. Most of the molecular profiles of liquid biopsies reflect tissue data. Conclusions Preliminary data from this study confirm the need to clarify the limitations and potential of liquid biopsy beyond the lung setting. Overall, parameters related to cfDNA levels and variant allele frequency could provide important indications for prognosis and disease monitoring.
Collapse
Affiliation(s)
- Alessandro Pancrazzi
- Laboratory Medicine Department, Clinical and Molecular Pathology Sector, San Donato Hospital, Arezzo, Italy
| | - Francesco Bloise
- Oncology Department, Unit of Medical Oncology, San Donato Hospital, Arezzo, Italy
| | - Alice Moncada
- Laboratory Medicine Department, Clinical and Molecular Pathology Sector, San Donato Hospital, Arezzo, Italy
| | - Roberta Perticucci
- Laboratory Medicine Department, Clinical and Molecular Pathology Sector, San Donato Hospital, Arezzo, Italy
| | - Stefania Vecchietti
- Laboratory Medicine Department, Clinical and Molecular Pathology Sector, San Donato Hospital, Arezzo, Italy
| | - Francesca Pompili
- Laboratory Medicine Department, Clinical and Molecular Pathology Sector, San Donato Hospital, Arezzo, Italy
| | - Francesca Ricciarini
- Laboratory Medicine Department, Clinical and Molecular Pathology Sector, San Donato Hospital, Arezzo, Italy
| | - Silvia Lenzi
- Laboratory Medicine Department, Clinical and Molecular Pathology Sector, San Donato Hospital, Arezzo, Italy
| | - Cristina Gatteschi
- Laboratory Medicine Department, Clinical and Molecular Pathology Sector, San Donato Hospital, Arezzo, Italy
| | - Sabrina Giusti
- Oncology Department, Unit of Medical Oncology, San Donato Hospital, Arezzo, Italy
| | - Maria Pia Rosito
- Oncology Department, Unit of Medical Oncology, San Donato Hospital, Arezzo, Italy
| | - Sabrina Del Buono
- Oncology Department, Unit of Medical Oncology, San Donato Hospital, Arezzo, Italy
| | - Paola Belardi
- Oncology Department, Unit of Medical Oncology, San Donato Hospital, Arezzo, Italy
| | - Alessandra Bruni
- Oncology Department, Pathological Anatomy Laboratory, San Donato Hospital, Italy
| | - Filippo Borri
- Oncology Department, Pathological Anatomy Laboratory, San Donato Hospital, Italy
| | - Andrea Campione
- Oncology Department, Pathological Anatomy Laboratory, San Donato Hospital, Italy
| | - Lorella Laurini
- Oncology Department, Pathological Anatomy Laboratory, San Donato Hospital, Italy
| | - Rossella Occhini
- Oncology Department, Pathological Anatomy Laboratory, San Donato Hospital, Italy
| | - Loretta Presenti
- Oncology Department, Pathological Anatomy Laboratory, San Donato Hospital, Italy
| | - Viviana Viticchi
- Oncology Department, Pathological Anatomy Laboratory, San Donato Hospital, Italy
| | - Maja Rossi
- Laboratory Medicine Department, Clinical and Molecular Pathology Sector, Misericordia Hospital, Grosseto, Italy
| | - Sara Bardi
- Laboratory Medicine Department, Clinical and Molecular Pathology Sector, Misericordia Hospital, Grosseto, Italy
| | - Antonio D'Urso
- General Management, Local Health Unit South-East Tuscany, Tuscany, Italy
| | - Simona Dei
- General Management, Local Health Unit South-East Tuscany, Tuscany, Italy
| | - Duccio Venezia
- Diagnostic Imaging Department, Radiology Unit, San Donato Hospital, Arezzo, Italy
| | - Raffaele Scala
- Cardio Thoracic Neuro Vascular Department, Pneumology Unit, San Donato Hospital, Arezzo, Italy
| | - Carmelo Bengala
- Oncology Department, Unit of Medical Oncology, Misericordia Hospital, Grosseto, Italy
| | - Nicola Libertà Decarli
- Oncology Department, Pathological Anatomy Laboratory, Misericordia Hospital, Grosseto, Italy
| | - Andrea Carnevali
- Oncology Department, Pathological Anatomy Laboratory, San Donato Hospital, Italy
| | - Carlo Milandri
- Oncology Department, Unit of Medical Oncology, San Donato Hospital, Arezzo, Italy
| | - Agostino Ognibene
- Laboratory Medicine Department, Clinical and Molecular Pathology Sector, San Donato Hospital, Arezzo, Italy
| |
Collapse
|
31
|
Hofman P. Implementation of the clinical practice of liquid biopsies for thoracic oncology the experience of the RespirERA university hospital institute (Nice, France). THE JOURNAL OF LIQUID BIOPSY 2023; 1:100004. [PMID: 40027288 PMCID: PMC11863941 DOI: 10.1016/j.jlb.2023.100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 03/05/2025]
Abstract
According to international guidelines, it is mandatory to evaluate predictive biomarkers of targeted therapies and the response to immune check point inhibitors for patients with non-squamous non-small cell lung cancer (NS-NSCLC). For this purpose, a tissue sample is nowadays the gold standard, but biofluids, particularly peripheral blood, can be a complementary and sometimes an alternative approach to assess the status of different druggable genomic alterations of advanced NS-NSCLC. A liquid biopsy (LB) is an attractive approah for better treatment decision-making by thoracic oncologists for NSCLC patients in daily practice at both initial diagnosis and tumor progression. We describe the experience of a clinical and molecular pathology laboratory (LPCE, Nice, France) developing the use of in-house LB in thoracic oncology. Moreover, we report the changes in clinical care, the advantages, but also the possible constraints associated with implantation of LB in routine clinical practice.
Collapse
Affiliation(s)
- Paul Hofman
- Côte d’Azur University, IHU RespirERA, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, Nice, France
- Côte d’Azur University, IRCAN, Inserm U1081, CNRS 7284, France
| |
Collapse
|
32
|
Mullins KE, Seneviratne C, Shetty AC, Jiang F, Christenson R, Stass S. Proof of concept: Detection of cell free RNA from EDTA plasma in patients with lung cancer and non-cancer patients. Clin Biochem 2023; 118:110583. [PMID: 37182637 DOI: 10.1016/j.clinbiochem.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Nucleic acid sequencing technologies have advanced significantly in recent years, thereby allowing for the development of liquid biopsies as new means to detect cancer biomarkers and cancer heterogenicity. Most of the assays available, clinically, focus on cell free DNA (cfDNA), however, cell free RNA (cfRNA) is also present. cfRNA has the potential to complement and improve cancer detection especially in cancers like lung cancer, which are usually only diagnosed at late stages and therefore have poor long-term survival outcomes. METHODS Remnant EDTA plasma was collected from lung cancer patients and non-cancer individuals at the University of Maryland Medical Center. RNA was extracted and processed for next generation sequencing with a tagmentation-based library preparation approach. RESULTS cfRNA was successfully extracted and sequenced from 52 EDTA-treated plasma samples with volumes as low as 1.5 mL. This quantity was sufficient to prepare libraries with the length of libraries averaging from 264 bp to 381 bp and resulted in over 2.2 to 3.6 million total sequence reads respectively. Sequential dilution of cfRNA samples from healthy individuals indicated that the starting cfRNA concentration influenced the detection of differentially expressed genes. CONCLUSIONS This proof-of-concept study provides a framework for screening cfRNA for identifying biomarkers for early detection of lung cancer (and other cancers), using minimal amounts of samples (1.5 mL) from standard EDTA 3-mL collection tubes routinely used for patient care. Further studies in large populations are required to establish limit of detection and other parameters including precision, accuracy, sensitivity, and specificity, to standardize this method.
Collapse
Affiliation(s)
- Kristin E Mullins
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA; Laboratories of Pathology, University of Maryland Medical Center, Baltimore, MD, USA.
| | - Chamindi Seneviratne
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amol C Shetty
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Jiang
- Laboratories of Pathology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Robert Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA; Laboratories of Pathology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Sanford Stass
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA; Laboratories of Pathology, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|
33
|
García-Ortiz MV, Cano-Ramírez P, Toledano-Fonseca M, Cano MT, Inga-Saavedra E, Rodríguez-Alonso RM, Guil-Luna S, Gómez-España MA, Rodríguez-Ariza A, Aranda E. Circulating NPTX2 methylation as a non-invasive biomarker for prognosis and monitoring of metastatic pancreatic cancer. Clin Epigenetics 2023; 15:118. [PMID: 37481552 PMCID: PMC10362605 DOI: 10.1186/s13148-023-01535-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Pancreatic cancer is the most lethal cancer with a dismal prognosis mainly due to diagnosis at advanced stage and ineffective treatments. CA19-9 levels and computed tomography (CT) imaging are the main standard criteria for evaluating disease progression and treatment response. In this study we explored liquid biopsy-based epigenetic biomarkers for prognosis and monitoring disease in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). METHODS Plasma samples were collected from 44 mPDAC patients at the time of diagnosis, and in 15 of them, additional samples were obtained during follow-up of the disease. After cell-free DNA (cfDNA), isolation circulating levels of methylated NPTX2, SPARC, BMP3, SFRP1 and TFPI2 genes were measured using digital droplet PCR (ddPCR). BEAMing technique was performed for quantitation of RAS mutations in cfDNA, and CA19-9 was measured using standard techniques. RESULTS NPTX2 was the most highly and frequently methylated gene in cfDNA samples from mPDAC patients. Higher circulating NPTX2 methylation levels at diagnosis were associated with poor prognosis and efficiently stratified patients for prediction of overall survival (6.06% cut-off, p = 0.0067). Dynamics of circulating NPTX2 methylation levels correlated with disease progression and response to therapy and predicted better than CA19-9 the evolution of disease in mPDAC patients. Remarkably, in many cases the disease progression detected by CT scan was anticipated by an increase in circulating NPTX2 methylation levels. CONCLUSIONS Our study supports circulating NPTX2 methylation levels as a promising liquid biopsy-based clinical tool for non-invasive prognosis, monitoring disease evolution and response to treatment in mPDAC patients.
Collapse
Affiliation(s)
- María Victoria García-Ortiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
| | - Pablo Cano-Ramírez
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
| | - Marta Toledano-Fonseca
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
| | - María Teresa Cano
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
| | - Elizabeth Inga-Saavedra
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
| | | | - Silvia Guil-Luna
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Department of Anatomy and Comparative Pathology, University of Córdoba, Córdoba, Spain
| | - María Auxiliadora Gómez-España
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
| | - Enrique Aranda
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
34
|
Dabbagh Ohadi MA, Aleyasin MS, Samiee R, Bordbar S, Maroufi SF, Bayan N, Hanaei S, Smith TR. Micro RNAs as a Diagnostic Marker between Glioma and Primary CNS Lymphoma: A Systematic Review. Cancers (Basel) 2023; 15:3628. [PMID: 37509289 PMCID: PMC10377645 DOI: 10.3390/cancers15143628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Differentiating glioma from primary central nervous system lymphoma (PCNSL) can be challenging, and current diagnostic measures such as MRI and biopsy are of limited efficacy. Liquid biopsies, which detect circulating biomarkers such as microRNAs (miRs), may provide valuable insights into diagnostic biomarkers for improved discrimination. This review aimed to investigate the role of specific miRs in diagnosing and differentiating glioma from PCNSL. A systematic search was conducted of PubMed, Scopus, Web of Science, and Embase for articles on liquid biopsies as a diagnostic method for glioma and PCNSL. Sixteen dysregulated miRs were identified with significantly different levels in glioma and PCNSL, including miR-21, which was the most prominent miR with higher levels in PCNSL, followed by glioma, including glioblastoma (GBM), and control groups. The lowest levels of miR-16 and miR-205 were observed in glioma, followed by PCNSL and control groups, whereas miR-15b and miR-301 were higher in both tumor groups, with the highest levels observed in glioma patients. The levels of miR-711 were higher in glioma (including GBM) and downregulated in PCNSL compared to the control group. This review suggests that using these six circulating microRNAs as liquid biomarkers with unique changing patterns could aid in better discrimination between glioma, especially GBM, and PCNSL.
Collapse
Affiliation(s)
- Mohammad Amin Dabbagh Ohadi
- Department of Pediatric Neurological Surgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Mir Sajjad Aleyasin
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Reza Samiee
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Sanaz Bordbar
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Seyed Farzad Maroufi
- Department of Pediatric Neurological Surgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran
| | - Nikoo Bayan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Sara Hanaei
- Neurosurgery Department, Imam Khomeini Hospital Complex (IKHC), Tehran University of Medical Sciences, Tehran 1419733151, Iran
| | - Timothy R Smith
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
35
|
Hofman P. Matched tissue and liquid biopsies for advanced non-small cell lung cancer patients A potentially indispensable complementary approach. Transl Oncol 2023; 35:101735. [PMID: 37413719 PMCID: PMC10366644 DOI: 10.1016/j.tranon.2023.101735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
The introduction of liquid biopsies (LB) has brought forth a number of therapeutic opportunities into the domain of thoracic oncology. Many of which have been adopted for care of patients presenting with advanced non-squamous non-small cell lung cancer (aNS-NSCLC). For example, one of the most frequent indications to perform a LB in these patients, at least in Europe, is for patients treated with tyrosine kinase inhibitors (TKIs) targeting EGFR and ALK genomic alterations when the tumor progresses. A tissue biopsy (TB) must then be taken, ideally from a site of a tumor that progresses, in particular if the LB does not permit detection of a mechanism of resistance to TKI. A LB from a patient with aNS-NSCLC is recommended before first-line therapy if no tissue and/or cytological material is accessible or if the extracted nucleic acid is insufficient in amount and/or of poor quality. At present a LB and a TB are rarely performed simultaneously before treatment and/or on tumor progression. This complementary/matched testing approach is still controversial but needs to be better evaluated to determine the true benefit to care of patients. This review provides an update on the complementarity of the LB and TB method for care of patients presenting with aNS-NSCLC.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology de Pathologie, University Côte d'Azur, FHU OncoAge, Biobank BB-0033-00025, IHU RespireRA, 30 Avenue de la Voie Romaine, 01, Nice 06002 CEDEX, France.
| |
Collapse
|
36
|
Duan S, Cao G, Hua Y, Hu J, Zheng Y, Wu F, Xu S, Rong T, Liu B. Identification of Origin for Spinal Metastases from MR Images: Comparison Between Radiomics and Deep Learning Methods. World Neurosurg 2023; 175:e823-e831. [PMID: 37059360 DOI: 10.1016/j.wneu.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To determine whether spinal metastatic lesions originated from lung cancer or from other cancers based on spinal contrast-enhanced T1 (CET1) magnetic resonance (MR) images analyzed using radiomics (RAD) and deep learning (DL) methods. METHODS We recruited and retrospectively reviewed 173 patients diagnosed with spinal metastases at two different centers between July 2018 and June 2021. Of these, 68 involved lung cancer and 105 were other types of cancer. They were assigned to an internal cohort of 149 patients, randomly divided into a training set and a validation set, and to an external cohort of 24 patients. All patients underwent CET1-MR imaging before surgery or biopsy. We developed two predictive algorithms: a DL model and a RAD model. We compared performance between models, and against human radiological assessment, via accuracy (ACC) and receiver operating characteristic (ROC) analyses. Furthermore, we analyzed the correlation between RAD and DL features. RESULTS The DL model outperformed RAD model across the board, with ACC/ area under the receiver operating characteristic curve (AUC) values of 0.93/0.94 (DL) versus 0.84/0.93 (RAD) when applied to the training set from the internal cohort, 0.74/0.76 versus 0.72/0.75 when applied to the validation set, and 0.72/0.76 versus 0.69/0.72 when applied to the external test cohort. For the validation set, it also outperformed expert radiological assessment (ACC: 0.65, AUC: 0.68). We only found weak correlations between DL and RAD features. CONCLUSION The DL algorithm successfully identified the origin of spinal metastases from pre-operative CET1-MR images, outperforming both RAD models and expert assessment by trained radiologists.
Collapse
Affiliation(s)
- Shuo Duan
- Department of Orthopaedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanmei Cao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichun Hua
- Department of Medical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junnan Hu
- Department of Orthopaedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yali Zheng
- Department of Respiratory, Critical Care, and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fangfang Wu
- Department of Respiratory, Critical Care, and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuai Xu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Tianhua Rong
- Department of Orthopaedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baoge Liu
- Department of Orthopaedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
37
|
Tamrazi A, Sundaresan S, Gulati A, Tan FJ, Wadhwa V, Bartlett BR, Diaz LAJ. Endovascular image-guided sampling of tumor-draining veins provides an enriched source of oncological biomarkers. Front Oncol 2023; 13:916196. [PMID: 37007151 PMCID: PMC10064007 DOI: 10.3389/fonc.2023.916196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionCirculating tumor-derived biomarkers can potentially impact cancer management throughout the continuum of care. This small exploratory study aimed to assess the relative levels of such biomarkers in the tumor-draining vascular beds in patients with solid tumors compared to levels in their peripheral veins.MethodsUsing an endovascular image-guided approach, we obtained blood samples from peripheral veins and other vascular compartments–including the most proximal venous drainage from solid tumors–from a set of nine oncology patients with various primary and metastatic malignancies. We then interrogated these samples for a panel of oncological biomarkers, including circulating tumor cells (CTCs), exosome-derived microRNAs (miRNAs), circulating tumor DNA (ctDNA) mutations, and certain cancer-related proteins/biochemical markers.ResultsWe found substantially higher levels of CTCs, certain miRNAs, and specific ctDNA mutations in samples from vascular beds closer to the tumor compared with those from peripheral veins and also noted that some of these signals were altered by treatment procedures.DiscussionOur results indicate that tumor-proximal venous samples are highly enriched for some oncological biomarkers and may allow for more robust molecular analysis than peripheral vein samples.
Collapse
Affiliation(s)
- Anobel Tamrazi
- Division of Vascular and Interventional Radiology, Palo Alto Medical Foundation, Redwood City, CA, United States
- *Correspondence: Anobel Tamrazi,
| | - Srividya Sundaresan
- Department of Clinical Research, Dignity Health, Sequoia Hospital, Redwood City, CA, United States
| | - Aishwarya Gulati
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Frederick J. Tan
- Department of Embryology, Carnegie Institution, Baltimore, MD, United States
| | - Vibhor Wadhwa
- Division of Interventional Radiology, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY, United States
| | - Bjarne R. Bartlett
- Department of Molecular Biosciences and Bioengineering, University of Hawaíi at Mānoa, Honolulu, HI, United States
| | - Luis A. Jr. Diaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
38
|
Einoch Amor R, Levy J, Broza YY, Vangravs R, Rapoport S, Zhang M, Wu W, Leja M, Behar JA, Haick H. Liquid Biopsy-Based Volatile Organic Compounds from Blood and Urine and Their Combined Data Sets for Highly Accurate Detection of Cancer. ACS Sens 2023; 8:1450-1461. [PMID: 36926819 DOI: 10.1021/acssensors.2c02422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Liquid biopsy is seen as a prospective tool for cancer screening and tracking. However, the difficulty lies in effectively sieving, isolating, and overseeing cancer biomarkers from the backdrop of multiple disrupting cells and substances. The current study reports on the ability to perform liquid biopsy without the need to physically filter and/or isolate the cancer cells per se. This has been achieved through the detection and classification of volatile organic compounds (VOCs) emitted from the cancer cells found in the headspace of blood or urine samples or a combined data set of both. Spectrometric analysis shows that blood and urine contain complementary or overlapping VOC information on kidney cancer, gastric cancer, lung cancer, and fibrogastroscopy subjects. Based on this information, a nanomaterial-based chemical sensor array in conjugation with machine learning as well as data fusion of the signals achieved was carried out on various body fluids to assess the VOC profiles of cancer. The detection of VOC patterns by either Gas Chromatography-Mass Spectrometry (GC-MS) analysis or our sensor array achieved >90% accuracy, >80% sensitivity, and >80% specificity in different binary classification tasks. The hybrid approach, namely, analyzing the VOC datasets of blood and urine together, contributes an additional discrimination ability to the improvement (>3%) of the model's accuracy. The contribution of the hybrid approach for an additional discrimination ability to the improvement of the model's accuracy is examined and reported.
Collapse
Affiliation(s)
- Reef Einoch Amor
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Jeremy Levy
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering and Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga LV-1004, Latvia.,Department of Research, Riga East University Hospital, Digestive Diseases Centre GASTRO, Riga 1586, Latvia
| | - Shelley Rapoport
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga LV-1004, Latvia.,Department of Research, Riga East University Hospital, Digestive Diseases Centre GASTRO, Riga 1586, Latvia
| | - Joachim A Behar
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering and Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
39
|
Rapid metabolomic screening of cancer cells via high-throughput static droplet microfluidics. Biosens Bioelectron 2023; 223:114966. [PMID: 36580816 DOI: 10.1016/j.bios.2022.114966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
Effective isolation and in-depth analysis of Circulating Tumour Cells (CTCs) are greatly needed in diagnosis, prognosis and monitoring of the therapeutic response of cancer patients but have not been completely fulfilled by conventional approaches. The rarity of CTCs and the lack of reliable biomarkers to distinguish them from peripheral blood cells have remained outstanding challenges for their clinical implementation. Herein, we developed a high throughput Static Droplet Microfluidic (SDM) device with 38,400 chambers, capable of isolating and classifying the number of metabolically active CTCs in peripheral blood at single-cell resolution. Owing to the miniaturisation and compartmentalisation capability of our device, we first demonstrated the ability to precisely measure the lactate production of different types of cancer cells inside 125 pL droplets at single-cell resolution. Furthermore, we compared the metabolomic activity of leukocytes from healthy donors to cancer cells and showed the ability to differentiate them. To further prove the clinical relevance, we spiked cancer cell lines in human healthy blood and showed the possibility to detect the cancer cells from leukocytes. Lastly, we tested the workflow on 8 preclinical mammary mouse models including syngeneic 67NR (non-metastatic) and 4T1.2 (metastatic) models with Triple-Negative Breast Cancer (TNBC) as well as transgenic mouses (12-week-old MMTV-PyMT). The results have shown the ability to precisely distinguish metabolically active CTCs from the blood using the proposed SDM device. The workflow is simple and robust which can eliminate the need for specialised equipment and expertise required for single-cell analysis of CTCs and facilitate on-site metabolic screening of cancer cells.
Collapse
|
40
|
Through the Looking Glass: Updated Insights on Ovarian Cancer Diagnostics. Diagnostics (Basel) 2023; 13:diagnostics13040713. [PMID: 36832201 PMCID: PMC9955065 DOI: 10.3390/diagnostics13040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynaecological malignancy and the eighth most prevalent cancer in women, with an abysmal mortality rate of two million worldwide. The existence of multiple overlapping symptoms with other gastrointestinal, genitourinary, and gynaecological maladies often leads to late-stage diagnosis and extensive extra-ovarian metastasis. Due to the absence of any clear early-stage symptoms, current tools only aid in the diagnosis of advanced-stage patients, wherein the 5-year survival plummets further to less than 30%. Therefore, there is a dire need for the identification of novel approaches that not only allow early diagnosis of the disease but also have a greater prognostic value. Toward this, biomarkers provide a gamut of powerful and dynamic tools to allow the identification of a spectrum of different malignancies. Both serum cancer antigen 125 (CA-125) and human epididymis 4 (HE4) are currently being used in clinics not only for EOC but also peritoneal and GI tract cancers. Screening of multiple biomarkers is gradually emerging as a beneficial strategy for early-stage diagnosis, proving instrumental in administration of first-line chemotherapy. These novel biomarkers seem to exhibit an enhanced potential as a diagnostic tool. This review summarizes existing knowledge of the ever-growing field of biomarker identification along with potential future ones, especially for ovarian cancer.
Collapse
|
41
|
Analysis of circulating tumour cells separation in a curved microchannel under a high gravitational field. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Datta B, Dutta N, Ashish A, Mandal M, Shukla J, Suresh R, Choudhury P, Chaudhury K, Dutta G. Electrochemical Detection of Cancer Fingerprint: A Systematic Review on Recent Progress in Extracellular Vesicle Research from Lab to Market. NEXT-GENERATION NANOBIOSENSOR DEVICES FOR POINT-OF-CARE DIAGNOSTICS 2023:47-77. [DOI: 10.1007/978-981-19-7130-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
43
|
Visan KS, Wu LY, Voss S, Wuethrich A, Möller A. Status quo of Extracellular Vesicle isolation and detection methods for clinical utility. Semin Cancer Biol 2023; 88:157-171. [PMID: 36581020 DOI: 10.1016/j.semcancer.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized particles that hold tremendous potential in the clinical space, as their biomolecular profiles hold a key to non-invasive liquid biopsy for cancer diagnosis and prognosis. EVs are present in most bodily fluids, hence are easily obtainable from patients, advantageous to that of traditional, invasive tissue biopsies and imaging techniques. However, there are certain constraints that hinder clinical use of EVs. The translation of EV biomarkers from "bench-to-bedside" is encumbered by the methods of EV isolation and subsequent biomarker detection currently implemented in laboratories. Although current isolation and detection methods are effective, they lack practicality, with their requirement for high bodily fluid volumes, low equipment availability, slow turnaround times and high costs. The high demand for techniques that overcome these limitations has resulted in significant advancements in nanotechnological devices. These devices are designed to integrate EV isolation and biomarker detection into a one-step method of direct EV detection from bodily fluids. This provides promise for the acceleration of EVs into current clinical standards. This review highlights the importance of EVs as cancer biomarkers, the methodological obstacles currently faced in clinical studies and how novel nanodevices could advance clinical translation.
Collapse
Affiliation(s)
- Kekoolani S Visan
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Li-Ying Wu
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Sarah Voss
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
44
|
Radfar P, Ding L, Es HA, Warkiani ME. A Microfluidic Approach for Enrichment and Single-Cell Characterization of Circulating Tumor Cells from Peripheral Blood. Methods Mol Biol 2023; 2679:141-150. [PMID: 37300613 DOI: 10.1007/978-1-0716-3271-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The emergence of enabling technologies for the analysis of circulating tumor cells has been shedding new lights into cancer management in the recent years. However, majority of the technologies developed suffer from excessive cost, time-consuming workflows, and reliance on specialized equipment and operators. Herein, we propose a simple workflow for the isolation and characterization of single circulating tumor cells using microfluidic devices. The entire process can be operated by a laboratory technician without relying on any microfluidic expertise and can be completed within few hours of sample collection.
Collapse
Affiliation(s)
- Payar Radfar
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Lin Ding
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia.
- Institute for Biomedical Materials and Devices (IBMD), University of Technology Sydney, Sydney, NSW, Australia.
- SUStech-UTS Joint Research Centre for Biomedical Materials and Devices, Southern University of Science and Technology, Shenzhen, People's Republic of China.
- Institute of Molecular Medicine, Sechenov University, Moscow, Russia.
| |
Collapse
|
45
|
Visser E, de Kock R, Genet S, Borne BVD, Soud MYE, Belderbos H, Stege G, de Saegher M, ’t Westeinde SV, Broeren M, Eduati F, Deiman B, Scharnhorst V. Up-front mutation detection in circulating tumor DNA by droplet digital PCR has added diagnostic value in lung cancer. Transl Oncol 2022; 27:101589. [PMID: 36413862 PMCID: PMC9679361 DOI: 10.1016/j.tranon.2022.101589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
Abstract
Identification of actionable mutations in advanced stage non-squamous non-small-cell lung cancer (NSCLC) patients is recommended by guidelines as it enables treatment with targeted therapies. In current practice, mutations are identified by next-generation sequencing of tumor DNA (tDNA-NGS), which requires tissue biopsies of sufficient quality. Alternatively, circulating tumor DNA (ctDNA) could be used for mutation analysis. This prospective, multicenter study establishes the diagnostic value of ctDNA analysis by droplet digital PCR (ctDNA-ddPCR) in patients with primary lung cancer. CtDNA from 458 primary lung cancer patients was analyzed using a panel of multiplex ddPCRs for EGFR (Ex19Del, G719S, L858R, L861Q and S768I), KRAS G12/G13 and BRAF V600 mutations. For 142 of 175 advanced stage non-squamous NSCLC patients tDNA-NGS results were available to compare to ctDNA-ddPCR. tDNA-NGS identified 98 mutations, of which ctDNA-ddPCR found 53 mutations (54%), including 32 of 45 (71%) targetable driver mutations. In 2 of these 142 patients, a mutation was found by ctDNA-ddPCR only. In 33 advanced stage patients lacking tDNA-NGS results, ctDNA-ddPCR detected 15 additional mutations, of which 7 targetable. Overall, ctDNA-ddPCR detected 70 mutations and tDNA-NGS 98 mutations in 175 advanced NSCLC patients. Using an up-front ctDNA-ddPCR strategy, followed by tDNA-NGS only if ctDNA-ddPCR analysis is negative, increases the number of mutations found from 98 to 115 (17%). At the same time, up-front ctDNA-ddPCR reduces tDNA-NGS analyses by 40%, decreasing the need to perform (additional) biopsies.
Collapse
Affiliation(s)
- Esther Visser
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Catharina Hospital Eindhoven, Eindhoven, the Netherlands,Máxima Medical Center, Eindhoven, Veldhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands,Corresponding author at: Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Remco de Kock
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Catharina Hospital Eindhoven, Eindhoven, the Netherlands,Máxima Medical Center, Eindhoven, Veldhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands
| | - Sylvia Genet
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Catharina Hospital Eindhoven, Eindhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | | | | | | | | | | | - Maarten Broeren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Máxima Medical Center, Eindhoven, Veldhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands,Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Birgit Deiman
- Catharina Hospital Eindhoven, Eindhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands
| | - Volkher Scharnhorst
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Catharina Hospital Eindhoven, Eindhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands,Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
46
|
Bożyk A, Nicoś M. The Overview of Perspectives of Clinical Application of Liquid Biopsy in Non-Small-Cell Lung Cancer. Life (Basel) 2022; 12:1640. [PMID: 36295075 PMCID: PMC9604747 DOI: 10.3390/life12101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2023] Open
Abstract
The standard diagnostics procedure for non-small-cell lung cancer (NSCLC) requires a pathological evaluation of tissue samples obtained by surgery or biopsy, which are considered invasive sampling procedures. Due to this fact, re-sampling of the primary tumor at the moment of progression is limited and depends on the patient's condition, even if it could reveal a mechanism of resistance to applied therapy. Recently, many studies have indicated that liquid biopsy could be provided for the noninvasive management of NSCLC patients who receive molecularly targeted therapies or immunotherapy. The liquid biopsy of neoplastic patients harbors small fragments of circulating-free DNA (cfDNA) and cell-free RNA (cfRNA) secreted to the circulation from normal cells, as well as a subset of tumor-derived circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA). In NSCLC patients, a longitudinal assessment of genetic alterations in "druggable" genes in liquid biopsy might improve the follow-up of treatment efficacy and allow for the detection of an early progression before it is detectable in computed tomography or a clinical image. However, a liquid biopsy may be used to determine a variety of relevant molecular or genetic information for understanding tumor biology and its evolutionary trajectories. Thus, liquid biopsy is currently associated with greater hope for common diagnostic and clinical applications. In this review, we would like to highlight diagnostic challenges in the application of liquid biopsy into the clinical routine and indicate its implications on the metastatic spread of NSCLC or monitoring of personalized treatment regimens.
Collapse
Affiliation(s)
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
47
|
Shah UJ, Alsulimani A, Ahmad F, Mathkor DM, Alsaieedi A, Harakeh S, Nasiruddin M, Haque S. Bioplatforms in liquid biopsy: advances in the techniques for isolation, characterization and clinical applications. Biotechnol Genet Eng Rev 2022; 38:339-383. [PMID: 35968863 DOI: 10.1080/02648725.2022.2108994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue biopsy analysis has conventionally been the gold standard for cancer prognosis, diagnosis and prediction of responses/resistances to treatments. The existing biopsy procedures used in clinical practice are, however, invasive, painful and often associated with pitfalls like poor recovery of tumor cells and infeasibility for repetition in single patients. To circumvent these limitations, alternative non-invasive, rapid and economical, yet sturdy, consistent and dependable, biopsy techniques are required. Liquid biopsy is an emerging technology that fulfills these criteria and potentially much more in terms of subject-specific real-time monitoring of cancer progression, determination of tumor heterogeneity and treatment responses, and specific identification of the type and stages of cancers. The present review first briefly revisits the state-of-the-art technique of liquid biopsy and then proceeds to address in detail, the advances in the potential clinical applications of four major biological agencies present in liquid biopsy samples (circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs)). Finally, the authors conclude with the limitations that need to be addressed in order for liquid biopsy to effectively replace the conventional invasive biopsy methods in the clinical settings.
Collapse
Affiliation(s)
- Ushma Jaykamal Shah
- MedGenome Labs Ltd, Kailash Cancer Hospital and Research Center, Vadodara, India
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Nasiruddin
- MedGenome Labs Ltd, Narayana Health City, Bangalore, India.,Genomics Lab, Orbito Asia Diagnostics, Coimbatore, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
48
|
Wang Y, Gao Y, Song Y. Microfluidics-Based Urine Biopsy for Cancer Diagnosis: Recent Advances and Future Trends. ChemMedChem 2022; 17:e202200422. [PMID: 36040297 DOI: 10.1002/cmdc.202200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Indexed: 11/08/2022]
Abstract
Urine biopsy, allowing for the detection, analysis and monitoring of numerous cancer-associated urinary biomarkers to provide insights into cancer occurrence, progression and metastasis, has emerged as an attractive liquid biopsy strategy with enormous advantages over traditional tissue biopsy, such as noninvasiveness, large sample volume, and simple sampling operation. Microfluidics enables precise manipulation of fluids in a tiny chip and exhibits outstanding performance in urine biopsy owing to its minimization, low cost, high integration, high throughput and low sample consumption. Herein, we review recent advances in microfluidic techniques employed in urine biopsy for cancer detection. After briefly summarizing the major urinary biomarkers used for cancer diagnosis, we provide an overview of the typical microfluidic techniques utilized to develop urine biopsy devices. Some prospects along with the major challenges to be addressed for the future of microfluidic-based urine biopsy are also discussed.
Collapse
Affiliation(s)
- Yanping Wang
- Nanjing University of Science and Technology, Sino-French Engineer School, CHINA
| | - Yanfeng Gao
- Nanjing University, College of Engineering and Applied Sciences, CHINA
| | - Yujun Song
- Nanjing University, Biomedical Engineering, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
49
|
Di Santo R, Vaccaro M, Romanò S, Di Giacinto F, Papi M, Rapaccini GL, De Spirito M, Miele L, Basile U, Ciasca G. Machine Learning-Assisted FTIR Analysis of Circulating Extracellular Vesicles for Cancer Liquid Biopsy. J Pers Med 2022; 12:jpm12060949. [PMID: 35743734 PMCID: PMC9224706 DOI: 10.3390/jpm12060949] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are abundantly released into the systemic circulation, where they show remarkable stability and harbor molecular constituents that provide biochemical information about their cells of origin. Due to this characteristic, EVs are attracting increasing attention as a source of circulating biomarkers for cancer liquid biopsy and personalized medicine. Despite this potential, none of the discovered biomarkers has entered the clinical practice so far, and novel approaches for the label-free characterization of EVs are highly demanded. In this regard, Fourier Transform Infrared Spectroscopy (FTIR) has great potential as it provides a quick, reproducible, and informative biomolecular fingerprint of EVs. In this pilot study, we investigated, for the first time in the literature, the capability of FTIR spectroscopy to distinguish between EVs extracted from sera of cancer patients and controls based on their mid-IR spectral response. For this purpose, EV-enriched suspensions were obtained from the serum of patients diagnosed with Hepatocellular Carcinoma (HCC) of nonviral origin and noncancer subjects. Our data point out the presence of statistically significant differences in the integrated intensities of major mid-IR absorption bands, including the carbohydrate and nucleic acids band, the protein amide I and II bands, and the lipid CH stretching band. Additionally, we used Principal Component Analysis combined with Linear Discriminant Analysis (PCA-LDA) for the automated classification of spectral data according to the shape of specific mid-IR spectral signatures. The diagnostic performances of the proposed spectral biomarkers, alone and combined, were evaluated using multivariate logistic regression followed by a Receiving Operator Curve analysis, obtaining large Areas Under the Curve (AUC = 0.91, 95% CI 0.81–1.0). Very interestingly, our analyses suggest that the discussed spectral biomarkers can outperform the classification ability of two widely used circulating HCC markers measured on the same groups of subjects, namely alpha-fetoprotein (AFP), and protein induced by the absence of vitamin K or antagonist-II (PIVKA-II).
Collapse
Affiliation(s)
- Riccardo Di Santo
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Correspondence:
| | - Maria Vaccaro
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Massimiliano Papi
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Gian Ludovico Rapaccini
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Sezione di Medicina Interna, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Marco De Spirito
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Luca Miele
- Sezione di Medicina Interna, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Umberto Basile
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
50
|
Liu S, Wang J. Current and Future Perspectives of Cell-Free DNA in Liquid Biopsy. Curr Issues Mol Biol 2022; 44:2695-2709. [PMID: 35735625 PMCID: PMC9222159 DOI: 10.3390/cimb44060184] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
A liquid biopsy is a minimally invasive or non-invasive method to analyze a range of tumor material in blood or other body fluids, including circulating tumor cells (CTCs), cell-free DNA (cfDNA), messenger RNA (mRNA), microRNA (miRNA), and exosomes, which is a very promising technology. Among these cancer biomarkers, plasma cfDNA is the most widely used in clinical practice. Compared with a tissue biopsy of traditional cancer diagnosis, in assessing tumor heterogeneity, a liquid biopsy is more reliable because all tumor sites release cfDNA into the blood. Therefore, a cfDNA liquid biopsy is less invasive and comprehensive. Moreover, the development of next-generation sequencing technology makes cfDNA sequencing more sensitive than a tissue biopsy, with higher clinical applicability and wider application. In this publication, we aim to review the latest perspectives of cfDNA liquid biopsy clinical significance and application in cancer diagnosis, treatment, and prognosis. We introduce the sequencing techniques and challenges of cfDNA detection, analysis, and clinical applications, and discuss future research directions.
Collapse
Affiliation(s)
- Shicai Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|