1
|
Pai S, Binu A, Lavanya GS, Harikumar M, Kedlaya Herga S, Citartan M, Mani NK. Advancements of paper-based microfluidics and organ-on-a-chip models in cosmetics hazards. RSC Adv 2025; 15:10319-10335. [PMID: 40182506 PMCID: PMC11966604 DOI: 10.1039/d4ra07336c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
Cosmetics have been used in society for centuries for beautification and personal hygiene maintenance. Modern cosmetics include various makeup, hair, and skincare products that range from moisturizers and shampoos to lipsticks and foundations and have become a quintessential part of our daily grooming activities. However, dangerous adulterants are added during the production of these cosmetics, which range from heavy metals to microbial contaminants. These adulterants not only reduce the quality and efficacy of cosmetic products but also pose a significant risk to human health. Detecting the presence of adulterants in cosmetics is crucial for regulating substandard cosmetic products in the industry. The conventional methods to detect such adulterants and quality testing are expensive and take a lot of effort, particularly when involving advanced analytical detection and clinical trials. Recently, efficient methods such as microfluidic methods have emerged to detect adulterants rapidly. In this review, we mainly focus on various adulterants present in cosmetics and their detection using paper-based microfluidic devices. In addition, this review also sheds light on the organ-on-a-chip model with the goal of developing a human tissue model for cosmetic testing. Combined, these approaches provide an efficient, inexpensive, and sustainable approach for quality testing in the cosmetics industry.
Collapse
Affiliation(s)
- Sanidhya Pai
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability Straubing Germany
| | - Amanda Binu
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - G S Lavanya
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Meenakshi Harikumar
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Srikrishna Kedlaya Herga
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia Kepala Batas Penang 13200 Malaysia
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| |
Collapse
|
2
|
Soares M, Oliveira H, Alves C. Airborne particulate matter inhalation bioaccessibility: A review of methodological aspects. Chem Biol Interact 2025; 408:111403. [PMID: 39862943 DOI: 10.1016/j.cbi.2025.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Research has consistently linked exposure to particulate matter (PM) with adverse health outcomes, including cardiovascular and pulmonary morbidity and mortality. Understanding the mechanisms by which PM leads to these effects on human health is crucial for developing effective mitigation strategies. One aspect of PM research that has gained increasing attention in the past few years is the bioaccessibility of inhaled PM-bound pollutants that have potential to cause adverse health effects. To assess the bioaccessibility of PM-bound pollutants, such as polycyclic aromatic hydrocarbons, phthalate esters, organophosphorus flame retardants and metal(loid)s, simulated lung fluids (SLF) are used as a tool to mimic the conditions in the human respiratory system. In addition to different SLF, various extraction methodologies and experimental conditions (e.g., incubation period, solid to liquid ratio, and pH) have been employed to extract the bioaccessible part of these pollutants, though there is not yet a standardised procedure to do so. This review aims to critically evaluate existing inhalation bioaccessibility methodologies and explore their connection with PM characteristics. More research is needed, and a standardised procedure should be implemented to allow the comparation of data between studies. Better in vitro-in vivo relationships need to be established to enhance the feasibility of in vitro bioaccessibility assays as surrogates in human health exposure assessments. Long-term effects of bioaccessible pollutants and any potential synergetic effects between multiple contaminants should also be explored to assess health repercussions more thoroughly.
Collapse
Affiliation(s)
- Marlene Soares
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Helena Oliveira
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Célia Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
3
|
WANG L, GAO K, LI J, PENG J, YANG Z, YA E, ZHENG C, WEI W, LU L, CHENG S. [Analysis of phthalate esters and their novel alternatives in indoor dust using comprehensive two-dimensional gas chromatography-time of flight mass spectrometry]. Se Pu 2025; 43:185-196. [PMID: 39844709 PMCID: PMC11755752 DOI: 10.3724/sp.j.1123.2023.12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 01/24/2025] Open
Abstract
A comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOF-MS) method was developed to analyze 25 traditional phthalate esters (PAEs) and 19 novel alternatives in indoor dust samples. PAEs are ubiquitous in indoor environments because they are widely used as plasticizers in a variety of consumer products, and potential health concerns have prompted the need for effective monitoring methods. In this study, dust samples were collected from various indoor settings in a university campus, including classrooms, cafeterias, laboratories, and dormitories, and were subsequently ultrasonically extracted with hexane-dichloromethane (1∶1, v/v) solution for 30 min. This method was chosen to maximize PAE recovery while minimizing potential interference from other compounds present in the dust matrix. Compounds were separated on a Rix-5MS column (30 m×0.25 mm×0.25 μm) as the first dimension, with a Rix-17Sil column (1.39 m×0.25 mm×0.25 μm) serving as the second dimension. The following temperature program was used: 60 ℃ for 1 min, then increasing to 220 ℃ at 20 ℃/min, followed by a further increase to 290 ℃ at 5 ℃/min, with the final temperature held for 8 min; this program was optimized to afford maximum target-compound resolution and sensitivity. The developed method rapidly, accurately, and sensitively detected the target PAEs and their alternatives under the optimal conditions, which included a carrier-gas flow rate of 1.4 mL/min, a modulation period of 4 s, and an injection-port temperature of 250 ℃. The 44 target compounds exhibited highly linear calibration curves across a content range of 1-500 μg/g, with all correlation coefficients exceeding 0.99. The limits of detection (LODs) of the method were determined to lie between 0.57 and 13.0 ng/g, which reflects the high sensitivity of the developed approach. At spiked levels of 1, 10, and 50 μg/g, the recoveries of the analyzed compounds varied from 72.8% to 125%, with relative standard deviations ranging from 1.29% to 14.8% (n=3), which indicates that the method is highly precise and reliable. The developed method was used to analyze PAEs and their alternatives in 40 indoor dust samples, which revealed total contents of between 2.07 and 354 μg/g in dust samples. Di-2-ethylhexyl phthalate (DEHP) emerged as the most frequently detected compound, with contents ranging from "not detected" (nd) to 158 μg/g. The novel alternative, bis(2-ethylhexy) terephthalate (DEHTH), was also detected, with levels ranging from nd to 117 μg/g. Notably, significant differences in the compositions and contents of the PAEs and their alternatives were observed across various indoor environments, which suggests that diverse sources and exposure pathways exist for these compounds, highlighting the necessity for ongoing PAE monitoring and risk assessment in various indoor settings. In conclusion, the developed GC×GC-TOF-MS method provides a powerful tool for comprehensively analyzing PAEs and their alternatives in indoor dust; it is well-suited for the routine monitoring of these compounds owing to its simplicity, rapidity, and robustness. These findings provide valuable insight for future research into the sources and health implications of PAEs in indoor environments, and ultimately support risk assessment and regulatory efforts.
Collapse
|
4
|
Rager JE, Koval LE, Hickman E, Ring C, Teitelbaum T, Cohen T, Fragola G, Zylka MJ, Engel LS, Lu K, Engel SM. The environmental neuroactive chemicals list of prioritized substances for human biomonitoring and neurotoxicity testing: A database and high-throughput toxicokinetics approach. ENVIRONMENTAL RESEARCH 2025; 266:120537. [PMID: 39638029 PMCID: PMC11753932 DOI: 10.1016/j.envres.2024.120537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
There is a diversity of chemicals to which humans are potentially exposed. Few of these chemicals have linked human biomonitoring data, and most have very limited neurotoxicity testing. Of particular concern are environmental exposures impacting children, who constitute a population of heightened susceptibility due to rapid neural growth and plasticity, yet lack biomonitoring data compared to other age/population subgroups. This study set out to develop a prioritized list of neuroactive substances, titled the Environmental NeuRoactIve CHemicals (ENRICH) list, to be used as a defined screening library in the evaluation of human biological samples, with emphasis on early childhood-relevant environmental exposures. In silico database mining approaches were used to prioritize chemicals based upon likelihood of neuroactivity, human exposure, and feasible detection in biological samples. Evidence of neuroactivity was compiled across in vitro high-throughput screening, animal testing, and/or human epidemiological findings. Chemicals were considered for their likelihood of human exposure and detection presence in biological samples (including metabolites), with additional evidence indicating presence within child-relevant products. The resulting list of 1827 chemicals were ranked using a Chemical Prioritization Index. Manual inclusion/exclusion criteria were employed for the top-ranking chemical candidates to ensure that chemicals were within the study's scope (i.e., environmentally relevant) and, for the purposes of biomonitoring, had properties amenable to mass spectrometry methods. These elements were combined to produce the ENRICH list of 250 top-ranking chemicals, spanning pesticides and those used in home maintenance, personal care, cleaning products, vehicles, arts and crafts, and consumer electronics, among other sources. Chemicals were additionally evaluated for high-throughput toxicokinetics to predict how much of a chemical and/or its metabolite(s) may reach urine, as an example biological matrix for practical use in biomonitoring efforts. This novel study couples databases and in silico-based predictions to prioritize chemicals in the environment with potential neurological impacts for future study.
Collapse
Affiliation(s)
- Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Center for Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina at Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine the University of North Carolina at Chapel Hill, Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA.
| | - Lauren E Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA
| | - Elise Hickman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Center for Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina at Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine the University of North Carolina at Chapel Hill, Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA
| | - Caroline Ring
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, 109 T.W. Alexander Drive, Mail Drop D143-02, PO Box 12055, Research Triangle Park, NC, 27711, USA
| | - Taylor Teitelbaum
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA
| | - Todd Cohen
- Department of Neurology, School of Medicine, The University of North Carolina at Chapel Hill, 115 Mason Farm Road, CB #7250, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, 111 Mason Farm Road, CB #7545, Chapel Hill, NC, USA; UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, 116 Manning Drive, CB #7250, Chapel Hill, NC, USA
| | - Giulia Fragola
- Department of Neurology, School of Medicine, The University of North Carolina at Chapel Hill, 115 Mason Farm Road, CB #7250, Chapel Hill, NC, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, 111 Mason Farm Road, CB #7545, Chapel Hill, NC, USA; UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, 116 Manning Drive, CB #7250, Chapel Hill, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, 135 Dauer Drive, CB #7435, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine the University of North Carolina at Chapel Hill, Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, 135 Dauer Drive, CB #7435, Chapel Hill, NC, 27599, USA
| |
Collapse
|
5
|
Leader J, Mínguez‐Alarcón L, Williams PL, Ford JB, Dadd R, Chagnon O, Bellinger DC, Oken E, Calafat AM, Hauser R, Braun JM. Paternal and maternal preconception and maternal pregnancy urinary concentrations of parabens in relation to child behavior. Andrology 2025; 13:22-33. [PMID: 38153162 PMCID: PMC11211245 DOI: 10.1111/andr.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Epidemiologic studies of the effects of parental preconception paraben exposures on child behavior are limited despite emerging evidence suggesting that such exposures may affect offspring neurodevelopment. OBJECTIVE We investigated whether maternal and paternal preconception and maternal pregnancy urinary concentrations of parabens were associated with child behavior. METHODS We analyzed data from the Preconception Environmental exposure And Childhood health Effects Study, an ongoing prospective cohort of children aged 6-13 years and their parents. We estimated covariate-adjusted associations of loge-transformed urinary methyl, propyl, and butyl paraben concentrations (individually using linear regression models and as a mixture using quantile g-computation) collected prior to conception and during pregnancy with Behavioral Assessment System for Children-3 and Behavior Rating Inventory of Executive Function T-scores (higher scores indicate more problem behaviors). RESULTS This analysis included 140 mothers, 81 fathers, and 171 children (25 sets of twins); parents were predominantly non-Hispanic white (88% for both mothers and fathers). In single paraben models, higher paternal preconception urinary propyl and methyl paraben concentrations were associated with higher Internalizing Problem T-scores (propyl parabenβ $\beta \;$ = 1.7; 95% confidence interval: 0.6, 2.8, methyl parabenβ $\beta \;$ = 2.2; 95% confidence interval: 0.5, 3.9) and higher Behavioral Symptom Index T-scores (propyl parabenβ $\beta \;$ = 1.4; 95% confidence interval: 0.3, 2.5, methyl parabenβ $\beta \;$ = 1.6; 95% confidence interval: -0.1, 3.3). Each quantile increase in the paternal mixture of three parabens was associated with a 3.4 (95% confidence interval: 0.67, 6.1) and 2.5 (95% confidence interval: 0.01, 5.0) increased internalizing problem and Behavioral Symptom Index T-scores respectively. Higher paternal preconception (β $\beta \;$ = 1.0; 95% confidence interval: 0.04, 1.9) and maternal preconception (β $\beta \;$ = 1.1 95% confidence interval: -0.1, 2.2) concentrations of propyl paraben were associated with higher Behavior Rating Inventory of Executive Function Metacognition Index T-scores in children, but the paraben mixtures was not. CONCLUSION In this cohort, paternal preconception urinary concentrations of propyl and methyl paraben were associated with worse parent-reported child behaviors.
Collapse
Affiliation(s)
- Jordana Leader
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Lidia Mínguez‐Alarcón
- Channing Division of Network MedicineHarvard Medical School and Brigham and Women's HospitalBostonMassachusettsUSA
| | - Paige L. Williams
- Departments of Biostatistics and EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Jennifer B. Ford
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Ramace Dadd
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Olivia Chagnon
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - David C. Bellinger
- Cardiac Neurodevelopment ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of Neurology and PsychologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Emily Oken
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMassachusettsUSA
| | - Antonia M. Calafat
- National Center for Environmental HealthCenters for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Russ Hauser
- Departments of Environmental Health and EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Department of ObstetricsGynecology and Reproductive BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Joseph M. Braun
- Department of EpidemiologyBrown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
6
|
Kim SS, Lee S, Eghan K, Yoo D, Chun HS, Kim WK. Adverse effects of diethyl phthalate and butyl benzyl phthalate on circadian rhythms and sleep patterns in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117350. [PMID: 39571256 DOI: 10.1016/j.ecoenv.2024.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
The zebrafish, a diurnal vertebrate, is commonly used in circadian rhythm studies due to its genetic and neurological similarities to humans. Circadian rhythms, which regulate sleep, neurotransmitter, behavior, and physiological responses to environmental changes, can be disrupted by various environmental factors. Phthalic acid esters (PAEs) are pervasive endocrine disruptors that individuals are frequently exposed to in daily life. However, the impact of PAEs on circadian rhythms during early development remains poorly understood. This study aimed to investigate the effects of exposure to diethyl phthalate (DEP) and butyl benzyl phthalate (BBzP) on the behavior and circadian rhythms of developing zebrafish larvae using a series of layered assays. Zebrafish larvae were exposed to the two PAEs from less than 2 hour post-fertilization (hpf) until 96 hpf. The results demonstrated a concentration-dependent reduction in tail coiling (TC), touch-evoked response (TER), and locomotor activity, alongside an increase in sleep time and alterations in sleep bouts and sleep latency during both 24-hour and Light1/Dark/Light2 (7/10/7-hour) periods. Additionally, exposure to BBzP led to increased acetylcholinesterase (AChE) and dopamine (DA) levels, and a decrease in 5-hydroxytryptamine (5-HT) levels. Gene expression analysis revealed that DEP and BBzP exposure increased the expression of circadian rhythm and light-response-related genes. In conclusion, exposure to these PAEs disrupts the circadian rhythm of zebrafish larvae, providing novel insights into the developmental impact of these common environmental contaminants. Further research is needed to understand the broader implications of these findings for human health and environmental safety.
Collapse
Affiliation(s)
- Soon Seok Kim
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Sangwoo Lee
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Kojo Eghan
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea.
| | - Donggon Yoo
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Hang-Suk Chun
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea.
| | - Woo-Keun Kim
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
7
|
Ortlund KE, Schantz SL, Aguiar A, Merced-Nieves FM, Woodbury ML, Goin DE, Calafat AM, Milne GL, Eick SM. Oxidative stress as a potential mechanism linking gestational phthalates exposure to cognitive development in infancy. Neurotoxicol Teratol 2024; 106:107397. [PMID: 39362385 PMCID: PMC11646183 DOI: 10.1016/j.ntt.2024.107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Gestational exposure to phthalates, endocrine disrupting chemicals widely used in consumer products, has been associated with poor recognition memory in infancy. Oxidative stress may represent one pathway linking this association. Hence, we examined whether exposure to phthalates was associated with elevated oxidative stress during pregnancy, and whether oxidative stress mediates the relationship between phthalate exposure and recognition memory. METHODS Our analysis included a subset of mother-child pairs enrolled in the Illinois Kids Development Study (IKIDS, N = 225, recruitment years 2013-2018). Concentrations of 12 phthalate metabolites were quantified in 2nd trimester urine samples. Four oxidative stress biomarkers (8-isoprostane-PGF2α, 2,3-dinor-5,6-dihydro-8-isoPGF2α, 2,3-dinor-8-isoPGF2α, and prostaglandin-F2α) were measured in 2nd and 3rd trimester urine. Recognition memory was evaluated at 7.5 months, with looking times to familiar and novel stimuli recorded via infrared eye-tracking. Novelty preference (proportion of time looking at a novel stimulus when paired with a familiar one) was considered a measure of recognition memory. Linear mixed effect models were used to estimate associations between monoethyl phthalate (MEP), sum of di(2-ethylhexyl) phthalate metabolites (ΣDEHP), sum of di(isononyl) phthalate metabolites (ΣDINP), and sum of anti-androgenic phthalate metabolites (ΣAA) and oxidative stress biomarkers. Mediation analysis was performed to assess whether oxidative stress biomarkers mediated the effect of gestational phthalate exposure on novelty preference. RESULTS The average maternal age at delivery was 31 years and approximately 50 % of participants had a graduate degree. A natural log unit increase in ΣAA, ΣDINP, and ΣDEHP was associated with a statistically significant increase in 8-isoPGF2α, 2,3-dinor-5,6-dihydro-8-isoPGF2α, and 2,3-dinor-8-isoPGF2α. The association was greatest in magnitude for ΣAA and 2,3-dinor-5,6-dihydro-8-isoPGF2α (β = 0.45, 95 % confidence interval = 0.14, 0.76). The relationship between ΣAA, ΣDINP, ΣDEHP, and novelty preference was partially mediated by 2,3-dinor-8-isoPGF2α. CONCLUSIONS Gestational exposure to some phthalates is positively associated with oxidative stress biomarkers, highlighting one mechanistic pathway through which these chemicals may impair early cognitive development.
Collapse
Affiliation(s)
- Kaegan E Ortlund
- Department of Environmental Sciences, College of Arts and Sciences, Emory University, Atlanta, GA, USA
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA; Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Andréa Aguiar
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA; Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Francheska M Merced-Nieves
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan L Woodbury
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Dana E Goin
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Eteng OE, Ugwor EI, James AS, Moses CA, Ogbonna CU, Iwara IA, Akamo AJ, Akintunde JK, Blessing OA, Tola YM, Eru EM, Igiri AO. Vanillic acid ameliorates diethyl phthalate and bisphenol S-induced oxidative stress and neuroinflammation in the hippocampus of experimental rats. J Biochem Mol Toxicol 2024; 38:e70017. [PMID: 39415675 DOI: 10.1002/jbt.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Long-term adverse effects on human health are caused by exogenous compounds that alter the functions of biological systems, especially neuroendocrine disruptors like diethyl phthalate (DEP) and bisphenol S (BPS). Although vanillic acid (VA) has pertinent neuropharmacological characteristics, its effect against DEP + BPS-induced neurotoxicity has not been explored. This study proposed that VA may offer protection against the neurotoxicity caused by DEP + BPS. Thirty male Wistar rats were randomly distributed across five groups: a control group receiving DMSO, a group exposed to a mixture of BPS and DEP, two BPS + DEP-exposed groups treated with VA at doses of 25 mg/kg or 50 mg/kg, and a nonexposed group treated with 50 mg VA/kg. After 21 days, the hippocampal tissues were processed for biochemical analyses. Our results indicate that exposure to DEP + BPS upregulated neurosignaling mediators (NTPDase, ADA, MAO-A, and Ca2+), inhibited others (AChE and Ca2+/Mg2+-ATPase), decreased hippocampus antioxidants (GSH, GPx, CAT, and SOD), and elevated markers of oxidative stress/damage (NO, H2O2, MDA, and AOPP). AR, BAX, TNF-α, BAK1, and IL-1β expressions were upregulated, while IL-10 and BDNF expressions were downregulated. NF-κB and caspase-3/9 pathways were also upregulated. Co-treatment with vanillic acid remarkably precluded these neurotoxic outcomes by improving neurosignaling, augmenting antioxidant status, abrogating oxidative damage, inflammation (TNF-α, IL-1β), and apoptosis (BAX, BAK1, caspase-3/9). Vanillic acid also restored IL-10 and BDNF levels, thereby exhibiting neuroprotective effects, corroborated by histological examinations. We posit vanillic acid as a safe and effective therapeutic agent against neurotoxicity occasioned by exposure to neuroendocrine disruptors.
Collapse
Affiliation(s)
- Ofem Effiom Eteng
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | | | - Adewale Segun James
- Department of Chemical Sciences, Faculty of Science, Augustine University, Ilara-Epe P.M.B1100, Lagos State, Nigeria
| | - Ceaser Antiya Moses
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Chukwuka Uzoamaka Ogbonna
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
- Department of Biochemistry, Pollution Control and Biotechnology Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Iwara Arikpo Iwara
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Adio Jamiu Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Jacob Kehinde Akintunde
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | | | - Yinus Mujeeb Tola
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Eru Mba Eru
- Department of Biochemistry, University of Calabar, Cross River State
| | | |
Collapse
|
9
|
Braun G, Herberth G, Krauss M, König M, Wojtysiak N, Zenclussen AC, Escher BI. Neurotoxic mixture effects of chemicals extracted from blood of pregnant women. Science 2024; 386:301-309. [PMID: 39418383 DOI: 10.1126/science.adq0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Human biomonitoring studies typically capture only a small and unknown fraction of the entire chemical universe. We combined chemical analysis with a high-throughput in vitro assay for neurotoxicity to capture complex mixtures of organic chemicals in blood. Plasma samples of 624 pregnant women from the German LiNA cohort were extracted with a nonselective extraction method for organic chemicals. 294 of >1000 target analytes were detected and quantified. Many of the detected chemicals as well as the whole extracts interfered with neurite development. Experimental testing of simulated complex mixtures of detected chemicals in the neurotoxicity assay confirmed additive mixture effects at concentrations less than individual chemicals' effect thresholds. The use of high-throughput target screening combined with bioassays has the potential to improve human biomonitoring and provide a new approach to including mixture effects in epidemiological studies.
Collapse
Affiliation(s)
- Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Niklas Wojtysiak
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
- Environmental Pediatric Immunology, Medical Faculty, Leipzig University, Leipzig 04103, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Leipzig 04103, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Leipzig 04103, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen 72074, Germany
| |
Collapse
|
10
|
Hickman E, Frey J, Wylie A, Hartwell HJ, Herkert NJ, Short SJ, Mills-Koonce WR, Fry RC, Stapleton HM, Propper C, Rager JE. Chemical and non-chemical stressors in a postpartum cohort through wristband and self report data: Links between increased chemical burden, economic, and racial stress. ENVIRONMENT INTERNATIONAL 2024; 191:108976. [PMID: 39216331 PMCID: PMC11460120 DOI: 10.1016/j.envint.2024.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Multiple external stressors are known to have adverse impacts on health and development. Certain groups are more vulnerable and/or more likely to be exposed toenvironmental, psychological, and social stressors simultaneously. Yet, few studies have examined combined exposure to environmental toxicants and psychosocial stress. Here, we integrated environmental chemical exposure data collected using silicone wristbands and self-report social stressor data within the Brain and Early Experience (BEE) perinatal cohort to understand co-exposure to environmental chemicals and social stress. Silicone wristbands were worn for one week by mothers throughout central North Carolina who were 6 months postpartum (n = 97). Exposure to 110 environmental chemicals across eight chemical classes was quantified on silicone wristbands using gas chromatography mass spectrometry. Social stress was evaluated using eight established self-report questionnaires (e.g., Brief Symptom Inventory, Perceived Stress Scale), quantifying experiences such as race-related stress, economic strain, and relationship conflict. Hair cortisol levels were measured as an additional metric of stress. The chemical exposure landscape and associations among chemical exposure, demographic characteristics, and social stress were characterized through individual variable analyses, cluster and data reduction, and compiled scoring approaches to comprehensively evaluate chemical and social stress burdens. We found that chemicals contain co-occurring patterns largely based on chemical class, with phthalates representing the chemical class with highest exposure and polychlorinated biphenyls the lowest. Chemicals showed differential exposure across racial groups, with diethyl phthalate, triphenyl phosphate, and tris(3,5-dimethyl phenyl) phosphate at higher levels in Black participants compared with White participants. Integrating social stressor profiling with chemical exposure data identified one particularly vulnerable subset of participants in which high chemical exposure burden coincided with high experiences of racism and economic stress. These findings demonstrate co-occurring chemical and social stress, warranting further investigation to better understand how these combined stressors may contribute to disparities in maternal and child health.
Collapse
Affiliation(s)
- Elise Hickman
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC Chapel Hill, 170 Rosenau Hall, CB #7400, 135 Dauer Drive, Chapel Hill, NC 27599, United States; Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, 4004 Mary Ellen Jones Building, CB # 7325, 116 Manning Drive, Chapel Hill, NC 27599, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, CB #7431, Chapel Hill, NC 27599, United States.
| | - Jenna Frey
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC Chapel Hill, 170 Rosenau Hall, CB #7400, 135 Dauer Drive, Chapel Hill, NC 27599, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, CB #7431, Chapel Hill, NC 27599, United States.
| | - Amanda Wylie
- Department of Psychology and Neuroscience, UNC Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599, United States; Frank Porter Graham Child Development Institute, UNC Chapel Hill, 910 Raleigh Rd, Chapel Hill, NC 27514, United States.
| | - Hadley J Hartwell
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC Chapel Hill, 170 Rosenau Hall, CB #7400, 135 Dauer Drive, Chapel Hill, NC 27599, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, CB #7431, Chapel Hill, NC 27599, United States.
| | - Nicholas J Herkert
- Nicholas School of the Environment, Duke University, 9 Circuit Dr, Durham, NC 27710, United States.
| | - Sarah J Short
- Department of Educational Psychology, University of Wisconsin-Madison, 1025 W. Johnson St., Madison, WI 53706, United States; Center for Healthy Minds, University of Wisconsin-Madison, 625 W. Washington Ave., Madison, WI 53703, United States.
| | - W Roger Mills-Koonce
- School of Education, UNC Chapel Hill, Peabody Hall, CB #3500, Chapel Hill, NC 27599, United States.
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC Chapel Hill, 170 Rosenau Hall, CB #7400, 135 Dauer Drive, Chapel Hill, NC 27599, United States; Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, 4004 Mary Ellen Jones Building, CB # 7325, 116 Manning Drive, Chapel Hill, NC 27599, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, CB #7431, Chapel Hill, NC 27599, United States.
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, 9 Circuit Dr, Durham, NC 27710, United States.
| | - Cathi Propper
- Frank Porter Graham Child Development Institute, UNC Chapel Hill, 910 Raleigh Rd, Chapel Hill, NC 27514, United States; School of Nursing, UNC Chapel Hill, 120 Medical Drive, CB #7460, Chapel Hill, NC 27599, United States.
| | - Julia E Rager
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC Chapel Hill, 170 Rosenau Hall, CB #7400, 135 Dauer Drive, Chapel Hill, NC 27599, United States; Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, 4004 Mary Ellen Jones Building, CB # 7325, 116 Manning Drive, Chapel Hill, NC 27599, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, CB #7431, Chapel Hill, NC 27599, United States.
| |
Collapse
|
11
|
Salamanca-Fernández E, Espín-Moreno L, Olivas-Martínez A, Pérez-Cantero A, Martín-Rodríguez JL, Poyatos RM, Barbone F, Rosolen V, Mariuz M, Ronfani L, Palkovičová Murínová Ľ, Fábelová L, Szigeti T, Kakucs R, Sakhi AK, Haug LS, Lindeman B, Snoj Tratnik J, Kosjek T, Jacobs G, Voorspoels S, Jurdáková H, Górová R, Petrovičová I, Kolena B, Esteban M, Pedraza-Díaz S, Kolossa-Gehring M, Remy S, Govarts E, Schoeters G, Fernández MF, Mustieles V. Associations between Urinary Phthalate Metabolites with BDNF and Behavioral Function among European Children from Five HBM4EU Aligned Studies. TOXICS 2024; 12:642. [PMID: 39330570 PMCID: PMC11436069 DOI: 10.3390/toxics12090642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Based on toxicological evidence, children's exposure to phthalates may contribute to altered neurodevelopment and abnormal regulation of brain-derived neurotrophic factor (BDNF). We analyzed data from five aligned studies of the Human Biomonitoring for Europe (HBM4EU) project. Ten phthalate metabolites and protein BDNF levels were measured in the urine samples of 1148 children aged 6-12 years from Italy (NACII-IT cohort), Slovakia (PCB-SK cohort), Hungary (InAirQ-HU cohort) and Norway (NEBII-NO). Serum BDNF was also available in 124 Slovenian children (CRP-SLO cohort). Children's total, externalizing and internalizing behavioral problems were assessed using the Child Behavior Checklist at 7 years of age (only available in the NACII-IT cohort). Adjusted linear and negative binomial regression models were fitted, together with weighted quantile sum (WQS) regression models to assess phthalate mixture associations. Results showed that, in boys but not girls of the NACII-IT cohort, each natural-log-unit increase in mono-n-butyl phthalate (MnBP) and Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) was cross-sectionally associated with higher externalizing problems [incidence rate ratio (IRR): 1.20; 95% CI: 1.02, 1.42 and 1.26; 95% CI: 1.03, 1.55, respectively]. A suggestive mixture association with externalizing problems was also observed per each tertile mixture increase in the whole population (WQS-IRR = 1.15; 95% CI: 0.97, 1.36) and boys (IRR = 1.20; 95% CI: 0.96, 1.49). In NACII-IT, PCB-SK, InAirQ-HU and NEBII-NO cohorts together, urinary phthalate metabolites were strongly associated with higher urinary BDNF levels, with WQS regression confirming a mixture association in the whole population (percent change (PC) = 25.9%; 95% CI: 17.6, 34.7), in girls (PC = 18.6%; 95% CI: 7.92, 30.5) and mainly among boys (PC = 36.0%; 95% CI: 24.3, 48.9). Among CRP-SLO boys, each natural-log-unit increase in ∑DINCH concentration was associated with lower serum BDNF levels (PC: -8.8%; 95% CI: -16.7, -0.3). In the NACII-IT cohort, each natural-log-unit increase in urinary BDNF levels predicted worse internalizing scores among all children (IRR: 1.15; 95% CI: 1.00, 1.32). Results suggest that (1) children's exposure to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) metabolites is associated with more externalizing problems in boys, (2) higher exposure to DINCH may associate with lower systemic BDNF levels in boys, (3) higher phthalate exposure is associated with higher urinary BDNF concentrations (although caution is needed since the possibility of a "urine concentration bias" that could also explain these associations in noncausal terms was identified) and (4) higher urinary BDNF concentrations may predict internalizing problems. Given this is the first study to examine the relationship between phthalate metabolite exposure and BDNF biomarkers, future studies are needed to validate the observed associations.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | | | | | - Ainhoa Pérez-Cantero
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
| | - José L Martín-Rodríguez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| | - Rafael M Poyatos
- Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa di Risparmio 10, 34121 Trieste, Italy
| | - Marika Mariuz
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Luca Ronfani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 04 Bratislava, Slovakia
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 04 Bratislava, Slovakia
| | - Tamás Szigeti
- Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Réka Kakucs
- Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Amrit K Sakhi
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Line S Haug
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Birgitte Lindeman
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | | | - Tina Kosjek
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Griet Jacobs
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Stefan Voorspoels
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Helena Jurdáková
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Renáta Górová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Ida Petrovičová
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia
| | - Branislav Kolena
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia
| | - Marta Esteban
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28034 Madrid, Spain
| | | | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - Vicente Mustieles
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
- Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| |
Collapse
|
12
|
Yang J, Song J, Gao X, Li M, Qin H, Niu Y, Luan H, Chen X, Guo J, Yuan T, Liu W. Integrated toxicity of secondary, tertiary, wetland effluents on human stem cells triggered by ERα and PPARγ agonists. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173419. [PMID: 38802024 DOI: 10.1016/j.scitotenv.2024.173419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Residual pollutants in discharged and reused water pose both direct and indirect human exposure. However, health effects caused by whole effluent remain largely unknown due to the lack of human relevant model for toxicity test. Effluents from four secondary wastewater treatment plants (SWTPs), a tertiary wastewater treatment plant (TWTP) and a constructed wetland (CW) were evaluated for the integrated toxicity of the organic extractions. Multiple-endpoint human mesenchymal stem cells (MSCs) assay was used as an in vitro model relevant to human health. The effluents caused cytotoxicity, oxidative stress and genotoxicity in MSCs. The osteogenic and neurogenic differentiation were inhibited and the adipogenic differentiation were stimulated by some of the effluent extractions. The SWTP, TWTP and CW treatments reduced integrated biomarker response (IBR) by 26.3 %, 17.5 % and 33.3 % respectively, where the IBR values of final CW (8.3) and TWTP (8.2) effluents were relatively lower than SWTPs (9.1). Among multiple biomarkers, the inhibition of osteogenesis was the least reduced by wastewater treatment. Besides, ozone disinfection in tertiary treatment increased cytotoxicity and differentiation effects suggesting the generation of toxic products. The mRNA expressions of estrogen receptor alpha (ERα) and peroxisome proliferator-activated receptor gamma (PPARγ) were significantly upregulated by effluents. The inhibitory effects of effluents on neural differentiation were mitigated after antagonizing ERα and PPARγ in the cells. It is suggested that ERα and PPARγ agonists in effluents were largely accountable for the impairment of stem cell differentiation. Besides, the concentrations of n-C29H60, o-cresol, fluorene and phenanthrene in the effluents were significantly correlated with the intergrated stem cell toxicity. The present study provided toxicological evidence for the relation between water contamination and human health, with an insight into the key toxicity drivers. The necessity for deep water treatment and the potential means were suggested for improving water quality.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingyang Song
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minghan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hui Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuxin Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaofeng Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Junyan Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tuwan Yuan
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
13
|
Jeong DS, Lee JY, Han HJ, Ko SM, Lee DH, Lee Y, Son WC. Two-year carcinogenicity study of a novel plasticizer, bis(2-ethylhexyl) cyclohexane-1,4-dicarboxylate (Eco-DEHCH), by oral diet in Han Wistar rats. Regul Toxicol Pharmacol 2024; 151:105664. [PMID: 38897446 DOI: 10.1016/j.yrtph.2024.105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Plasticizers are necessary for the usability of various products, including food contact materials. Exposure to plasticizers is most commonly made through the oral route. Several plasticizers have been reported to have adverse effects on humans and the environment. Thus, the present study aimed to determine the long-term toxicity and carcinogenicity of a novel plasticizer called bis(2-ethylhexyl) cyclohexane-1,4-dicarboxylate (Eco-DEHCH), which is an ecofriendly and biologically less harmful replacer. Groups of 50 male and 50 female Han Wistar rats were fed Eco-DEHCH at daily doses of 1,600, 5,000, or 16,000 ppm in their diet for at least 104 weeks. The rats were regularly monitored for mortality, clinical signs, body weight, food consumption, food efficiency, and perceivable mass. All animals were subjected to complete necropsy and histopathological examination. The results indicate that the rats well tolerated chronic exposure to Eco-DEHCH at highest daily doses of 16,000 ppm, with was equivalent to 805.1 mg/kg/day in males and 1060.6 mg/kg/day in females and did not show signs of toxicity or carcinogenicity. In conclusion, Eco-DEHCH could be a safe and promising alternative plasticizer.
Collapse
Affiliation(s)
- Da Som Jeong
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Ji-Young Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Hyo-Jeong Han
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Soo Min Ko
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Dong Hyun Lee
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Yerin Lee
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
14
|
Michaels BS, Ayers T, Brooks-McLaughlin J, McLaughlin RJ, Sandoval-Warren K, Schlenker C, Ronaldson L, Ardagh S. Potential for Glove Risk Amplification via Direct Physical, Chemical, and Microbiological Contamination. J Food Prot 2024; 87:100283. [PMID: 38679200 DOI: 10.1016/j.jfp.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
This review focuses on the potential direct physical, chemical, and microbiological contamination from disposable gloves when utilized in food environments, inclusive of the risks posed to food products as well as worker safety. Unrecognized problems endemic to glove manufacturing were magnified during the COVID-19 pandemic due to high demand, increased focus on PPE performance, availability, supply chain instability, and labor shortages. Multiple evidence-based reports of contamination, toxicity, illness, deaths, and related regulatory action linked to contaminated gloves in food and healthcare have highlighted problems indicative of systemic glove industry shortcomings. The glove manufacturing process was diagramed with sources and pathways of contamination identified, indicating weak points with documented occurrences detailed. Numerous unsafe ingredients can introduce chemical contaminants, potentially posing risks to food and to glove users. Microbial hazards present significant challenges to overall glove safety as contaminants appear to be introduced via polluted water sources or flawed glove manufacturing processes, resulting in increased risks within food and healthcare environments. Frank and opportunistic pathogens along with food spoilage organisms can be introduced to foods and wearers. When the sources and pathways of glove-borne contamination were explored, it was found that physical failures play a pivotal role in the release of sweat build-up, liquefaction of chemical residues, and incubation of microbial contaminants from hands and gloves. Thus, with glove physical integrity issues, including punctures in new, unused gloves that can develop into significant rips and tears, not only can direct physical food contamination occur but also chemical and microbiological contamination can find their way into food. Enhanced regulatory requirements for Acceptable Quality Limits of food-grade gloves, and the establishment of appropriate bioburden standards would enhance safety in food applications. Based on the information provided, together with a false sense of security associated with glove use, the unconditional belief in glove chemical and microbiological purity may be unfounded.
Collapse
Affiliation(s)
- Barry S Michaels
- B. Michaels Group Inc., 487 West River Road, Palatka, FL 32177, USA.
| | - Troy Ayers
- Eurofins Microbiology Laboratories Inc., Des Moines, IA 50321, USA
| | | | | | | | | | - Lynda Ronaldson
- Eagle Protect PBC, South Lake Tahoe, CA 96150, USA; Eagle Protect Ltd. Christchurch 8011, New Zealand
| | - Steve Ardagh
- Eagle Protect PBC, South Lake Tahoe, CA 96150, USA; Eagle Protect Ltd. Christchurch 8011, New Zealand
| |
Collapse
|
15
|
Tao Y, Yi X, Gu Y, Yang R, Li Z, Guo X, Zhao D, Zhang Y. Neurotoxicity of dibutyl phthalate in zebrafish larvae: Decreased energy acquisition by neurons. Food Chem Toxicol 2024; 188:114666. [PMID: 38621509 DOI: 10.1016/j.fct.2024.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/26/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
This work was designed to investigate the neurotoxic effects of the typical plasticizer dibutyl phthalate (DBP) using zebrafish larvae as a model. The results of exhibited that zebrafish larvae exposed to DBP at concentrations of 5 μg/L and 10 μg/L exhibited brain malformations (24 h) and behavioral abnormalities (72 h). After 72 h of exposure to DBP, microglia in the brain were over-activated, reactive oxygen species (ROS) formation was increased, and apoptosis was observed. Meanwhile, it was found that neurons exhibited impaired mitochondrial structure, absent mitochondrial membrane potential and up-regulated autophagy. Further comprehensive biochemical analyses and RNA-Seq, validated by RT-qPCR, glutamate metabolism and PPAR signaling pathway were significantly enriched in the DBP stress group, this may be the main reason for the disruption of glycolysis/gluconeogenesis processes and the reduction of energy substrates for the astrocyte-neuron lactate shuttle (ANLS). In addition, the DBP-exposed group showed aberrant activation of endoplasmic reticulum (ER) stress signaling pathway, which may be related to ROS as well as neuronal apoptosis and autophagy. In conclusion, DBP-induced neurotoxicity may be the combined result of insufficient neuronal energy acquisition, damage to mitochondrial structure, apoptosis and autophagy. These results provide a theoretical basis for understanding the neurotoxic effects of DBP.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodong Yi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanyan Gu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Rongyi Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangyong Guo
- Fuyu County Agricultural Technology Extension Center, Qiqihar, 161299, China
| | - Donglin Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
16
|
Yin S, den Ouden F, Cleys P, Klimowska A, Bombeke J, Poma G, Covaci A. Personal environmental exposure to plasticizers and organophosphate flame retardants using silicone wristbands and urine: Patterns, comparisons, and correlations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172187. [PMID: 38582107 DOI: 10.1016/j.scitotenv.2024.172187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Plasticizers (PLs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment due to their widespread use and potential for leaching from consumer products. Environmental exposure is a critical aspect of the human exposome, revealing complex interactions between environmental contaminants and potential health effects. Silicone wristbands (SWBs) have emerged as a novel and non-invasive sampling device for assessing personal external exposure. In this study, SWBs were used as a proxy to estimate personal dermal adsorption (EDdermal) to PLs and OPFRs in Belgian participants for one week; four morning urine samples were also collected and analyzed for estimated daily intake (EDI). The results of the SWBs samples showed that all the participants were exposed to these chemicals, and the exposure was found to be highest for the legacy and alternative plasticizers (LP and AP), followed by the legacy and emerging OPFRs (LOPFR and EOPFR). In urine samples, the highest levels were observed for metabolites of diethyl phthalate (DEP), di-isobutyl phthalate (DiBP) and di-n-butyl phthalate (DnBP) among LPs and di(2-ethylhexyl) terephthalate (DEHT) for APs. Outliers among the participants indicated that there were other sources of exposure that were not identified. Results showed a significant correlation between EDdermal and EDI for DiBP, tris (2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPhP). These correlations indicated their suitability for predicting exposure via SWB monitoring for total chemical exposure. The results of this pilot study advance our understanding of SWB sampling and its relevance for predicting aggregate environmental chemical exposures, while highlighting the potential of SWBs as low-cost, non-invasive personal samplers for future research. This innovative approach has the potential to advance the assessment of environmental exposures and their impact on public health.
Collapse
Affiliation(s)
- Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Fatima den Ouden
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Anna Klimowska
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Toxicology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
17
|
Oh J, Schweitzer JB, Buckley JP, Upadhyaya S, Kannan K, Herbstman JB, Ghassabian A, Schmidt RJ, Hertz-Picciotto I, Bennett DH. Early childhood exposures to phthalates in association with attention-deficit/hyperactivity disorder behaviors in middle childhood and adolescence in the ReCHARGE study. Int J Hyg Environ Health 2024; 259:114377. [PMID: 38692176 PMCID: PMC11567690 DOI: 10.1016/j.ijheh.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Early-life exposure to phthalates alters behaviors in animals. However, epidemiological evidence on childhood phthalate exposure and attention-deficit/hyperactivity disorder (ADHD) behaviors is limited. METHODS This study included 243 children from the ReCHARGE (Revisiting Childhood Autism Risks from Genetics and Environment) study, who were previously classified as having autism spectrum disorder (ASD), developmental delay, other early concerns, and typical development in the CHARGE case-control study. Twenty phthalate metabolites were measured in spot urine samples collected from children aged 2-5 years. Parents reported on children's ADHD symptoms at ages 8-18 years using Conners-3 Parent Rating Scale. Covariate-adjusted negative binomial generalized linear models were used to investigate associations between individual phthalate metabolite concentrations and raw scores. Weighted quantile sum (WQS) regression with repeated holdout validation was used to examine mixture effects of phthalate metabolites on behavioral scores. Effect modification by child sex was evaluated. RESULTS Among 12 phthalate metabolites detected in >75% of the samples, higher mono-2-heptyl phthalate (MHPP) was associated with higher scores on Inattentive (β per doubling = 0.05, 95% confidence interval [CI]: 0.02, 0.08) and Hyperactive/Impulsive scales (β = 0.04, 95% CI: 0.00, 0.07), especially among children with ASD. Higher mono-carboxy isooctyl phthalate (MCiOP) was associated with higher Hyperactivity/Impulsivity scores (β = 0.07, 95% CI: -0.01, 0.15), especially among typically developing children. The associations of the molar sum of high molecular weight (HMW) phthalate metabolites and a phthalate metabolite mixture with Hyperactivity/Impulsivity scores were modified by sex, showing more pronounced adverse associations among females. CONCLUSION Exposure to phthalates during early childhood may impact ADHD behaviors in middle childhood and adolescence, particularly among females. Although our findings may not be broadly generalizable due to the diverse diagnostic profiles within our study population, our robust findings on sex-specific associations warrant further investigations.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Julie B Schweitzer
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, Sacramento, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sudhi Upadhyaya
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics and Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA.
| |
Collapse
|
18
|
Zhou X, Fang W, Dong X, Li W, Liu J, Wang X. QSPR modeling for the prediction of partitioning of VOCs and SVOCs to indoor fabrics: Integrating environmental factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133945. [PMID: 38447372 DOI: 10.1016/j.jhazmat.2024.133945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Porous fabrics have a significant impact on indoor air quality by adsorbing and emitting chemical substances, such as volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs). Understanding the partition behavior between organic compound molecules and indoor fabrics is crucial for assessing their environmental fate and associated human exposure. The physicochemical properties of fabrics and compounds are fundamental in determining the free energy of partitioning. Moreover, environmental factors like temperature and humidity critically affect the partition process by modifying the thermal and moisture conditions of the fabric. However, existing methods for determining the fabric-air partition coefficient are limited to specific fabric-chemical combinations and lack a comprehensive consideration of indoor environmental factors. In this study, large amounts of experimental data on fabric-air partition coefficients (Kfa) of (S)VOCs were collected for silk, polyester, and cotton fabrics. Key molecular descriptors were identified, integrating the influences of physicochemical properties, temperature, and humidity. Subsequently, two typical quantitative structure-property relationship (QSPR) models were developed to correlate the Kfa values with the molecular descriptors. The fitting performance, robustness, and predictive ability of the two QSPR models were evaluated through statistical analysis and internal/external validation. This research provides insights for the high-throughput prediction of the environmental behaviors of indoor organic compounds.
Collapse
Affiliation(s)
- Xiaojun Zhou
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Weipeng Fang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xuejiao Dong
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenlong Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jialu Liu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
19
|
Wang K, Sartor MA, Colacino JA, Dolinoy DC, Svoboda LK. Sex-Specific Deflection of Age-Related DNA Methylation and Gene Expression in Mouse Heart by Perinatal Toxicant Exposures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591125. [PMID: 38712146 PMCID: PMC11071472 DOI: 10.1101/2024.04.25.591125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Global and site-specific changes in DNA methylation and gene expression are associated with cardiovascular aging and disease, but how toxicant exposures during early development influence the normal trajectory of these age-related molecular changes, and whether there are sex differences, has not yet been investigated. Objectives We used an established mouse model of developmental exposures to investigate the effects of perinatal exposure to either lead (Pb) or diethylhexyl phthalate (DEHP), two ubiquitous environmental contaminants strongly associated with CVD, on age-related cardiac DNA methylation and gene expression. Methods Dams were randomly assigned to receive human physiologically relevant levels of Pb (32 ppm in water), DEHP (25 mg/kg chow), or control water and chow. Exposures started two weeks prior to mating and continued until weaning at postnatal day 21 (3 weeks of age). Approximately one male and one female offspring per litter were followed to 3 weeks, 5 months, or 10 months of age, at which time whole hearts were collected (n ≥ 5 per sex per exposure). Enhanced reduced representation bisulfite sequencing (ERRBS) was used to assess the cardiac DNA methylome at 3 weeks and 10 months, and RNA-seq was conducted at all 3 time points. MethylSig and edgeR were used to identify age-related differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively, within each sex and exposure group. Cell type deconvolution of bulk RNA-seq data was conducted using the MuSiC algorithm and publicly available single cell RNA-seq data. Results Thousands of DMRs and hundreds of DEGs were identified in control, DEHP, and Pb-exposed hearts across time between 3 weeks and 10 months of age. A closer look at the genes and pathways showing differential DNA methylation revealed that the majority were unique to each sex and exposure group. Overall, pathways governing development and differentiation were most frequently altered with age in all conditions. A small number of genes in each group showed significant changes in DNA methylation and gene expression with age, including several that were altered by both toxicants but were unchanged in control. We also observed subtle, but significant changes in the proportion of several cell types due to age, sex, and developmental exposure. Discussion Together these data show that perinatal Pb or DEHP exposures deflect normal age-related gene expression, DNA methylation programs, and cellular composition across the life course, long after cessation of exposure, and highlight potential biomarkers of developmental toxicant exposures. Further studies are needed to investigate how these epigenetic and transcriptional changes impact cardiovascular health across the life course.
Collapse
|
20
|
Zhao Y, Chang YH, Ren HR, Lou M, Jiang FW, Wang JX, Chen MS, Liu S, Shi YS, Zhu HM, Li JL. Phthalates Induce Neurotoxicity by Disrupting the Mfn2-PERK Axis-Mediated Endoplasmic Reticulum-Mitochondria Interaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7411-7422. [PMID: 38390847 DOI: 10.1021/acs.jafc.3c07752] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), as the most common phthalate, has been extensively used as a plasticizer to improve the plasticity of agricultural products, which pose severe harm to human health. Mitochondrial dynamics and endoplasmic reticulum (ER) homeostasis are indispensable for maintaining mitochondria-associated ER membrane (MAM) integrity. In this study, we aimed to explore the effect of DEHP on the nervous system and its association with the ER-mitochondria interaction. Here, we showed that DEHP caused morphological changes, motor deficits, cognitive impairments, and blood-brain barrier disruption in the brain. DEHP triggered ER stress, which is mainly mediated by protein kinase R-like endoplasmic reticulum kinase (PERK) signaling. Moreover, DEHP-induced mitofusin-2 (Mfn2) downregulation results in imbalance of the mitochondrial dynamics. Interestingly, DEHP exposure impaired MAMs by inhibiting the Mfn2-PERK interaction. Above all, this study elucidates the disruption of the Mfn2-PERK axis-mediated ER-mitochondria interaction as a phthalate-induced neurotoxicity that could be potentially developed as a novel therapy for neurological diseases.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yuan-Hang Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hao-Ran Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ming Lou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
21
|
Smith MN, Stump S, van Bergen SK, Davies HG, Fanning E, Eaton R, Manahan CC, Sergent A, Zarker K. A Hazard-Based Framework for Identifying Safer Alternatives to Classes of Chemicals: A Case Study on Phthalates in Consumer Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:45002. [PMID: 38683745 PMCID: PMC11057665 DOI: 10.1289/ehp13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Humans are exposed to hazardous chemicals found in consumer products. In 2019, the Pollution Prevention for Healthy People and Puget Sound Act was passed in Washington State. This law is meant to reduce hazardous chemicals in consumer products and protect human health and the environment. The law directs the Washington State Department of Ecology to assess chemicals and chemical classes found in products, determine whether there are safer alternatives, and make regulatory determinations. OBJECTIVES To implement the law, the Department of Ecology developed a hazard-based framework for identifying safer alternatives to classes of chemicals. METHODS We developed a hazard-based framework, termed the "Criteria for Safer," to set a transparent bar for determining whether new chemical alternatives are safer than existing classes of chemicals. Our "Criteria for Safer" is a framework that builds on existing hazard assessment methodologies and published approaches for assessing chemicals and chemical classes. DISCUSSION We describe implementation of our criteria using a case study on the phthalates chemical class in two categories of consumer products: vinyl flooring and fragrances used in personal care and beauty products. Additional context and considerations that guided our decision-making process are also discussed, as well as benefits and limitations of our approach. This paper gives insight into our development and implementation of a hazard-based framework to address classes of chemicals in consumer products and will aid others working to build and employ similar approaches. https://doi.org/10.1289/EHP13549.
Collapse
Affiliation(s)
- Marissa N. Smith
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Sascha Stump
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Saskia K. van Bergen
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Holly G. Davies
- Environmental Public Health Sciences, Washington State Department of Health, Tumwater, Washington, USA
| | - Elinor Fanning
- Environmental Public Health Sciences, Washington State Department of Health, Tumwater, Washington, USA
| | - Rae Eaton
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Craig C. Manahan
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Amber Sergent
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Ken Zarker
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| |
Collapse
|
22
|
Hunt K, Davies A, Fraser A, Burden C, Howell A, Buckley K, Harding S, Bakhbakhi D. Exposure to microplastics and human reproductive outcomes: A systematic review. BJOG 2024; 131:675-683. [PMID: 38287142 DOI: 10.1111/1471-0528.17756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/23/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Microplastics, produced through degradation of environmental plastic pollution, have been detected in human tissues including placenta and fetal meconium. Cell culture and animal studies have demonstrated potential reproductive toxicity of these particles; however, their association with adverse fertility or pregnancy outcomes in humans is not known. OBJECTIVES To synthesise evidence for the presence of microplastics in human reproductive tissue and their associations with environmental exposures and reproductive outcomes. SEARCH STRATEGY MEDLINE, Embase, Emcare, CINAHL, ClinicalTrials.gov and ICTRP were searched from inception to 03/02/2023. SELECTION CRITERIA Studies of human participants, assessing presence of microplastics in reproductive tissues, environmental exposures to microplastics, and fertility- or pregnancy-related outcomes. DATA COLLECTION AND ANALYSIS Two independent reviewers selected studies and extracted data on study characteristics, microplastics detected, environmental exposures and reproductive outcomes. Narrative synthesis was performed due to methodological heterogeneity. MAIN RESULTS Of 1094 citations, seven studies were included, covering 96 participants. Microplastics composed of 16 different polymer types were detected in both placental and meconium samples. Two studies reported associations between lifestyle factors (daily water intake, use of scrub cleanser or toothpaste, bottled water and takeaway food) and placental microplastics. One study reported associations between meconium microplastics and reduced microbiota diversity. One reported placental microplastic levels correlated with reduced birthweights and 1-minute Apgar scores. CONCLUSIONS There is a need for high-quality observational studies to assess the effects of microplastics on human reproductive health.
Collapse
Affiliation(s)
- Kathryn Hunt
- Department of Obstetrics and Gynaecology, North Bristol NHS Trust, Bristol, UK
| | - Anna Davies
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Abigail Fraser
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christy Burden
- Department of Obstetrics and Gynaecology, North Bristol NHS Trust, Bristol, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Amy Howell
- Faculty of Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kirsten Buckley
- Library and Knowledge Service, North Bristol NHS Trust, Bristol, UK
| | - Sam Harding
- Research and Development, North Bristol NHS Trust, Bristol, UK
| | - Danya Bakhbakhi
- Department of Obstetrics and Gynaecology, North Bristol NHS Trust, Bristol, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
23
|
Panneel L, Cleys P, Poma G, Ait Bamai Y, Jorens PG, Covaci A, Mulder A. Ongoing exposure to endocrine disrupting phthalates and alternative plasticizers in neonatal intensive care unit patients. ENVIRONMENT INTERNATIONAL 2024; 186:108605. [PMID: 38569425 DOI: 10.1016/j.envint.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Due to endocrine disrupting effects, di-(2-ethylhexyl) phthalate (DEHP), a plasticizer used to soften plastic medical devices, was restricted in the EU Medical Devices Regulation (EU MDR 2017/745) and gradually replaced by alternative plasticizers. Neonates hospitalized in the neonatal intensive care unit (NICU) are vulnerable to toxic effects of plasticizers. From June 2020 to August 2022, urine samples (n = 1070) were repeatedly collected from premature neonates (n = 132, 4-10 samples per patient) born at <31 weeks gestational age and/or <1500 g birth weight in the Antwerp University Hospital, Belgium. Term control neonates (n = 21, 1 sample per patient) were included from the maternity ward. Phthalate and alternative plasticizers' metabolites were analyzed using liquid-chromatography coupled to tandem mass spectrometry. Phthalate metabolites were detected in almost all urine samples. Metabolites of alternative plasticizers, di-(2-ethylhexyl)-adipate (DEHA), di-(2-ethylhexyl)-terephthalate (DEHT) and cyclohexane-1,2-dicarboxylic-di-isononyl-ester (DINCH), had detection frequencies ranging 30-95 %. Urinary phthalate metabolite concentrations were significantly higher in premature compared to control neonates (p = 0.023). NICU exposure to respiratory support devices and blood products showed increased phthalate metabolite concentrations (p < 0.001). Phthalate exposure increased from birth until four weeks postnatally. The estimated phthalate intake exceeded animal-derived no-effect-levels (DNEL) in 10 % of samples, with maximum values reaching 24 times the DNEL. 29 % of premature neonates had at least once an estimated phthalate intake above the DNEL. Preterm neonates are still exposed to phthalates during NICU stay, despite the EU Medical Devices Regulation. NICU exposure to alternative plasticizers is increasing, though currently not regulated, with insufficient knowledge on their hazard profile.
Collapse
Affiliation(s)
- Lucas Panneel
- Neonatal Intensive Care Unit, Antwerp University Hospital, Edegem, Belgium; Laboratory for Experimental Medicine and Paediatrics, University of Antwerp, Wilrijk, Belgium.
| | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Wilrijk, Belgium
| | - Yu Ait Bamai
- Toxicological Centre, University of Antwerp, Wilrijk, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Philippe G Jorens
- Laboratory for Experimental Medicine and Paediatrics, University of Antwerp, Wilrijk, Belgium; Department of Intensive Care Medicine and Clinical Pharmacology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Wilrijk, Belgium
| | - Antonius Mulder
- Neonatal Intensive Care Unit, Antwerp University Hospital, Edegem, Belgium; Laboratory for Experimental Medicine and Paediatrics, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
24
|
Woodruff TJ. Health Effects of Fossil Fuel-Derived Endocrine Disruptors. N Engl J Med 2024; 390:922-933. [PMID: 38446677 DOI: 10.1056/nejmra2300476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Affiliation(s)
- Tracey J Woodruff
- From the Program on Reproductive Health and the Environment, Environmental Research and Translation for Health Center, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco
| |
Collapse
|
25
|
Sieck NE, Bruening M, van Woerden I, Whisner C, Payne-Sturges DC. Effects of Behavioral, Clinical, and Policy Interventions in Reducing Human Exposure to Bisphenols and Phthalates: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:36001. [PMID: 38477609 PMCID: PMC10936218 DOI: 10.1289/ehp11760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND There is growing interest in evidence-based interventions, programs, and policies to mitigate exposures to bisphenols and phthalates and in using implementation science frameworks to evaluate hypotheses regarding the importance of specific approaches to individual or household behavior change or institutions adopting interventions. OBJECTIVES This scoping review aimed to identify, categorize, and summarize the effects of behavioral, clinical, and policy interventions focused on exposure to the most widely used and studied bisphenols [bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF)] and phthalates with an implementation science lens. METHODS A comprehensive search of all individual behavior, clinical, and policy interventions to reduce exposure to bisphenols and phthalates was conducted using PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Google Scholar. We included studies published between January 2000 and November 2022. Two reviewers screened references in CADIMA, then extracted data (population characteristics, intervention design, chemicals assessed, and outcomes) for studies meeting inclusion criteria for the present review. RESULTS A total of 58 interventions met the inclusion criteria. We classified interventions as dietary (n = 27 ), clinical (n = 13 ), policy (n = 14 ), and those falling outside of these three categories as "other" (n = 4 ). Most interventions (81%, 47/58) demonstrated a decrease in exposure to bisphenols and/or phthalates, with policy level interventions having the largest magnitude of effect. DISCUSSION Studies evaluating policy interventions that targeted the reduction of phthalates and BPA in goods and packaging showed widespread, long-term impact on decreasing exposure to bisphenols and phthalates. Clinical interventions removing bisphenol and phthalate materials from medical devices and equipment showed overall reductions in exposure biomarkers. Dietary interventions tended to lower exposure with the greatest magnitude of effect in trials where fresh foods were provided to participants. The lower exposure reductions observed in pragmatic nutrition education trials and the lack of diversity (sociodemographic backgrounds) present limitations for generalizability to all populations. https://doi.org/10.1289/EHP11760.
Collapse
Affiliation(s)
- Nicole E. Sieck
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Meg Bruening
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Irene van Woerden
- Department of Community and Public Health, Idaho State University, Pocatello, Idaho, USA
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
26
|
Zhou X, Kang L, Wang X, Meng H. A novel method for assessing indoor di 2-ethylhexyl phthalate (DEHP) contamination and exposure based on dust-phase concentration. CHEMOSPHERE 2024; 349:140994. [PMID: 38141675 DOI: 10.1016/j.chemosphere.2023.140994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Phthalates (PAEs) are a group of typical semivolatile organic compounds that are widely present in indoor environments with multiple phases. Indoor air, airborne particle and settled dust are considered to be typical indicators of PAE contamination as well as media of human exposure, and the interactions between them are complex. Among various phthalate compounds, di 2-ethylhexyl phthalate (DEHP) was identified as the predominant individual phthalate in settled dust. The existing DEHP contamination assessment requires multiphase sampling or solving the dynamic mass transfer models with multiple partial differential equations, which are both complicated and time-consuming. This study investigated the influence of the indoor source loading rate, surface type, particle size and cleaning frequency on the partitioning between the settled dust-phase, airborne particle-phase and gas-phase. The concentration correlations of DEHP between multiphases were consequently derived, which balance accuracy and complexity well. By comparison with field sampling data in the literatures, the rationality and accuracy of the concentration correlations were validated. Based on the concentration correlations, a new method of directly using dust-phase concentration to estimate the non-dietary exposure to DEHP was proposed. The results indicated that ingestion of settled dust contributes the most to non-dietary exposure. Special attention should be given to infants and toddlers, who suffer the highest daily exposure to DEHP among all age groups. This study provides a new and efficient solution for estimating indoor DEHP pollution loads conveniently and rapidly, offering valuable insights for future research in this field.
Collapse
Affiliation(s)
- Xiaojun Zhou
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Lingyi Kang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Hui Meng
- Higher Engineering Education Museum, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
27
|
Baker BH, Melough MM, Paquette AG, Barrett ES, Day DB, Kannan K, Hn Nguyen R, Bush NR, LeWinn KZ, Carroll KN, Swan SH, Zhao Q, Sathyanarayana S. Ultra-processed and fast food consumption, exposure to phthalates during pregnancy, and socioeconomic disparities in phthalate exposures. ENVIRONMENT INTERNATIONAL 2024; 183:108427. [PMID: 38194756 PMCID: PMC10834835 DOI: 10.1016/j.envint.2024.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Consuming ultra-processed foods may increase exposure to phthalates, a group of endocrine disruptors prevalent in food contact materials. OBJECTIVES Investigate associations between ultra-processed food intake and urinary phthalates during pregnancy, and evaluate whether ultra-processed foods mediate socioeconomic disparities in phthalate exposures. METHODS In a socioeconomically diverse sample of 1031 pregnant women from the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) Study in the urban South, the Block Food Frequency Questionnaire was administered and urinary phthalate metabolites were measured in the second trimester. Linear regressions modeled associations between phthalates and overall ultra-processed food consumption, individual ultra-processed foods, and exploratory factor analysis dietary patterns. Causal mediation analyses examined whether ultra-processed food intake mediates relationships between socioeconomic disparities and phthalate exposures. RESULTS Ultra-processed foods constituted 9.8-59.0 % (mean = 38.6 %) of participants' diets. 10 % higher dietary proportion of ultra-processed foods was associated with 13.1 % (95 %CI: 3.4 %-22.9 %) higher molar sum concentrations of di(2-ethylhexyl) phthalate metabolites (ΣDEHP). 10 % higher consumption of minimally-processed foods was associated with lower ΣDEHP (10.8 %: 3.4 %-22.9 %). Ultra- and minimally-processed food consumption were not associated with non-DEHP metabolites. Standard deviation higher consumptions of hamburger/cheeseburger, French fries, soda, and cake were associated with 10.5 % (4.2 %-17.1 %), 9.2 % (2.6 %-16.2 %), 7.4 % (1.4 %-13.6 %), and 6.0 % (0.0 %-12.4 %), respectively, higher ΣDEHP. Exploratory factor analysis corroborated positive associations of processed food with ΣDEHP, and uncovered a healthy dietary pattern associated with lower urinary ΣDEHP, mono(2-ethyl-5-hydroxyhexyl) (MEHHP), mono(2-ethyl-5-carboxypentyl) (MECPP), mono(2-carboxymethylhexyl) (MCMHP), and mono-isononyl (MINP) phthalates. Significant indirect effects indicated that lower income and education levels were associated with 1.9 % (0.2 %-4.2 %) and 1.4 % (0.1 %-3.3 %) higher ΣDEHP, respectively, mediated via increased ultra-processed food consumption. CONCLUSIONS Consumption of ultra-processed foods may increase exposure to phthalates. Policies to reduce dietary phthalate exposures from food packaging and processing are needed, as socioeconomic barriers can preclude dietary recommendations as a sole means to reduce phthalate exposures.
Collapse
Affiliation(s)
- Brennan H Baker
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA.
| | | | - Alison G Paquette
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Drew B Day
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Nicole R Bush
- University of California San Francisco, San Francisco, CA, USA
| | - Kaja Z LeWinn
- University of California San Francisco, San Francisco, CA, USA
| | | | - Shanna H Swan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qi Zhao
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Sheela Sathyanarayana
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
28
|
Leader J, Mínguez-Alarcón L, Williams PL, Ford JB, Dadd R, Chagnon O, Bellinger DC, Oken E, Calafat AM, Hauser R, Braun JM. Paternal and maternal preconception and maternal pregnancy urinary phthalate metabolite and BPA concentrations in relation to child behavior. ENVIRONMENT INTERNATIONAL 2024; 183:108337. [PMID: 38088019 PMCID: PMC10868726 DOI: 10.1016/j.envint.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Epidemiologic studies on health effects of parental preconception exposures are limited despite emerging evidence from toxicological studies suggesting that such exposures, including to environmental chemicals, may affect offspring health. OBJECTIVE We investigated whether maternal and paternal preconception and maternal pregnancy urinary phthalate metabolite and bisphenol A (BPA) concentrations were associated with child behavior. METHODS We analyzed data from the Preconception Environmental exposure And Childhood health Effects (PEACE) Study, an ongoing prospective cohort study of children aged 6-11 years whose parent(s) previously enrolled in the prospective preconception Environment and Reproductive Health (EARTH) study. Using linear mixed models, we estimated covariate-adjusted associations of 11 urinary phthalate metabolite and BPA concentrations collected prior to conception and during pregnancy with Behavioral Assessment System for Children-3 (BASC-3) T-scores (higher scores indicate more problem behaviors). RESULTS This analysis included 134 mothers, 87 fathers and 157 children (24 sets of twins); parents were predominantly non-Hispanic white (mothers and fathers86%). Higher maternal preconception or pregnancy monobenzyl phthalate (MBzP) concentrations were related to higher mean externalizing problems T-scores in their children (β = 1.3 per 1-loge unit increase; 95 % CI: -0.2, 2.4 and β = 2.1, 95 % CI: 0.7, 3.6, respectively). Higher maternal preconception monocarboxyoctyl phthalate (MCOP) was suggested to be related to lower mean externalizing problems T-scores (β = -0.9; 95 % CI: -1.8, 0.0). Higher paternal preconception MCOP was suggestively associated with lower internalizing problems (β = -0.9; 95 %CI:-1.9, 0.1) and lower Behavioral Symptoms Index (BSI) T-scores (β = -1.3; 95 % CI: -2.1, -0.4). CONCLUSION In this cohort, higher maternal preconception and pregnancy MBzP were associated with worse parent-reported child behavior, while higher maternal and paternal preconception MCOP concentrations were related to lower BASC-3 scores.
Collapse
Affiliation(s)
- Jordana Leader
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, Boston, MA, USA
| | - Paige L Williams
- Departments of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ramace Dadd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olivia Chagnon
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Bellinger
- Research Director Emeritus, Cardiac Neurodevelopment Program, Boston Children's Hospital, Boston, MA, USA; Professor of Neurology and Psychology, Harvard Medical School, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
29
|
Yu Z, Iyer L, Swiercz AP, Paronett E, Ramadan M, Marvar PJ, Posnack NG. The Impact of Chronic Phthalate Exposure on Rodent Anxiety and Cognition. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:203-212. [PMID: 38298799 PMCID: PMC10829632 DOI: 10.1016/j.bpsgos.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 02/02/2024] Open
Abstract
Background There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). For example, increased biomonitoring and epidemiological studies suggest that daily phthalate chemical exposure contributes to neurological and behavioral abnormalities; however, these mechanisms remain poorly understood. Therefore, the current study was aimed at examining the effects of chronic phthalate exposure on rodent anxiety behaviors and cognition and the impact on hypothalamic-pituitary-adrenal axis function. Methods Adult male mice (C57BL6/J) were administered MEHP via drinking water (1 mg/mL), and anxiety-like behavior and cognition combined with hypothalamic-pituitary-adrenal axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. Results MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze and center exploration in the open field. Tests of spatial memory and cognition were unchanged. Following MEHP administration, circulating levels of corticosterone and proinflammatory cytokines were significantly increased, while at the tissue level, there were MEHP-dependent reductions in glucocorticoid metabolism genes Hsd11b1 and Hsd11b2. Conclusions These data suggest that chronic MEHP exposure leads to enhanced generalized anxiety behaviors independent of rodent measures of cognition and memory, which may be driven by MEHP-dependent effects on hypothalamic-pituitary-adrenal axis and peripheral glucocorticoid metabolism function.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Laxmi Iyer
- Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, Maryland
| | - Adam P. Swiercz
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Paronett
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Manelle Ramadan
- Children’s National Heart Institute, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC
| | - Paul J. Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
- Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC
| | - Nikki Gillum Posnack
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
- Children’s National Heart Institute, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC
| |
Collapse
|
30
|
Emont J, Wang M, Wright K. Health system decarbonization on obstetric and newborn units. Semin Perinatol 2023; 47:151844. [PMID: 37852893 DOI: 10.1016/j.semperi.2023.151844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The healthcare industry makes up 4.6 % of greenhouse gas (GHS) emissions worldwide. Although it is not known what proportion of GHGs come from obstetric and newborn units, newborns and pregnant individuals are likely to face some of the largest consequences from climate change. We review the literature in the areas of decarbonization on labor and delivery (L&D) and neonatal units and describe innovations from the fields of surgery and anesthesia. Best practices for L&D include refining disposable equipment packs, decreasing the use of single-use medical devices, adequately triaging waste, and decreasing the use of potent anesthetic gases such as nitrous oxide and desflurane. In neonatal settings, similarly triaging waste and decreasing the use of plastics containing endocrine disrupting chemicals can lower the carbon and environmental footprint and improve neonatal health. Additionally, avoiding unnecessary cesarean deliveries and increasing breastfeeding practices are also likely to improve the carbon footprint of L&D and neonatal units.
Collapse
Affiliation(s)
- Jordan Emont
- Department of Obstetrics and Gynecology, Columbia University Medical Center - New York Presbyterian Hospital, 622 W 168th St, New York, NY 10032, USA.
| | - Melissa Wang
- Department of Obstetrics and Gynecology, Columbia University Medical Center - New York Presbyterian Hospital, 622 W 168th St, New York, NY 10032, USA
| | - Kelly Wright
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
31
|
Welch BM, Keil AP, Buckley JP, Engel SM, James-Todd T, Zota AR, Alshawabkeh AN, Barrett ES, Bloom MS, Bush NR, Cordero JF, Dabelea D, Eskenazi B, Lanphear BP, Padmanabhan V, Sathyanarayana S, Swan SH, Aalborg J, Baird DD, Binder AM, Bradman A, Braun JM, Calafat AM, Cantonwine DE, Christenbury KE, Factor-Litvak P, Harley KG, Hauser R, Herbstman JB, Hertz-Picciotto I, Holland N, Jukic AMZ, McElrath TF, Meeker JD, Messerlian C, Michels KB, Newman RB, Nguyen RH, O’Brien KM, Rauh VA, Redmon B, Rich DQ, Rosen EM, Schmidt RJ, Sparks AE, Starling AP, Wang C, Watkins DJ, Weinberg CR, Weinberger B, Wenzel AG, Wilcox AJ, Yolton K, Zhang Y, Ferguson KK. Racial and Ethnic Disparities in Phthalate Exposure and Preterm Birth: A Pooled Study of Sixteen U.S. Cohorts. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127015. [PMID: 38117586 PMCID: PMC10732302 DOI: 10.1289/ehp12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND Phthalate exposures are ubiquitous during pregnancy and may contribute to racial and ethnic disparities in preterm birth. OBJECTIVES We investigated race and ethnicity in the relationship between biomarkers of phthalate exposure and preterm birth by examining: a) how hypothetical reductions in racial and ethnic disparities in phthalate metabolites might reduce the probability of preterm birth; and b) exposure-response models stratified by race and ethnicity. METHODS We pooled individual-level data on 6,045 pregnancies from 16 U.S. cohorts. We investigated covariate-adjusted differences in nine urinary phthalate metabolite concentrations by race and ethnicity [non-Hispanic White (White, 43%), non-Hispanic Black (Black, 13%), Hispanic/Latina (38%), and Asian/Pacific Islander (3%)]. Using g-computation, we estimated changes in the probability of preterm birth under hypothetical interventions to eliminate disparities in levels of urinary phthalate metabolites by proportionally lowering average concentrations in Black and Hispanic/Latina participants to be approximately equal to the averages in White participants. We also used race and ethnicity-stratified logistic regression to characterize associations between phthalate metabolites and preterm birth. RESULTS In comparison with concentrations among White participants, adjusted mean phthalate metabolite concentrations were consistently higher among Black and Hispanic/Latina participants by 23%-148% and 4%-94%, respectively. Asian/Pacific Islander participants had metabolite levels that were similar to those of White participants. Hypothetical interventions to reduce disparities in metabolite mixtures were associated with lower probabilities of preterm birth for Black [13% relative reduction; 95% confidence interval (CI): - 34 % , 8.6%] and Hispanic/Latina (9% relative reduction; 95% CI: - 19 % , 0.8%) participants. Odds ratios for preterm birth in association with phthalate metabolites demonstrated heterogeneity by race and ethnicity for two individual metabolites (mono-n-butyl and monoisobutyl phthalate), with positive associations that were larger in magnitude observed among Black or Hispanic/Latina participants. CONCLUSIONS Phthalate metabolite concentrations differed substantially by race and ethnicity. Our results show hypothetical interventions to reduce population-level racial and ethnic disparities in biomarkers of phthalate exposure could potentially reduce the probability of preterm birth. https://doi.org/10.1289/EHP12831.
Collapse
Affiliation(s)
- Barrett M. Welch
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- University of Nevada, Reno, Reno, Nevada, USA
| | | | - Jessie P. Buckley
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stephanie M. Engel
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tamarra James-Todd
- Harvard TH Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Ami R. Zota
- Columbia University Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Emily S. Barrett
- Rutgers School of Public Health, Rutgers University, Piscataway, New Jersey, USA
| | | | - Nicole R. Bush
- University of California, San Francisco, San Francisco, California, USA
| | | | - Dana Dabelea
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | | | | | - Sheela Sathyanarayana
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Shanna H. Swan
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jenny Aalborg
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Donna D. Baird
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Asa Bradman
- University of California, Merced, Merced, California, USA
| | | | - Antonia M. Calafat
- National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Kate E. Christenbury
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, North Carolina, USA
| | - Pam Factor-Litvak
- Columbia University Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kim G. Harley
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | - Russ Hauser
- Harvard TH Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Julie B. Herbstman
- Columbia University Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | - Anne Marie Z. Jukic
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - John D. Meeker
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Carmen Messerlian
- Harvard TH Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Karin B. Michels
- University of California, Los Angeles, Los Angeles, California, USA
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Roger B. Newman
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ruby H.N. Nguyen
- University of Minnesota, School of Public Health, Minneapolis, Minnesota, USA
| | - Katie M. O’Brien
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Virginia A. Rauh
- Columbia University Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Bruce Redmon
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - David Q. Rich
- University of Rochester Medical Center, Rochester, New York, USA
| | - Emma M. Rosen
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Anne P. Starling
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christina Wang
- The Lundquist Institute at Harbor, UCLA Medical Center, West Carson, California, USA
| | - Deborah J. Watkins
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Clarice R. Weinberg
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Barry Weinberger
- Cohen Children’s Medical Center of New York, Northwell Health, Queens, New York, USA
| | - Abby G. Wenzel
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Allen J. Wilcox
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kimberly Yolton
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yu Zhang
- Harvard TH Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Kelly K. Ferguson
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
32
|
Ghassabian A, van den Dries M, Trasande L, Lamballais S, Spaan S, Martinez-Moral MP, Kannan K, Jaddoe VWV, Engel SM, Pronk A, White T, Tiemeier H, Guxens M. Prenatal exposure to common plasticizers: a longitudinal study on phthalates, brain volumetric measures, and IQ in youth. Mol Psychiatry 2023; 28:4814-4822. [PMID: 37644173 PMCID: PMC11062447 DOI: 10.1038/s41380-023-02225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Exposure to phthalates, used as plasticizers and solvents in consumer products, is ubiquitous. Despite growing concerns regarding their neurotoxicity, brain differences associated with gestational exposure to phthalates are understudied. We included 775 mother-child pairs from Generation R, a population-based pediatric neuroimaging study with prenatal recruitment, who had data on maternal gestational phthalate levels and T1-weighted magnetic resonance imaging in children at age 10 years. Maternal urinary concentrations of phthalate metabolites were measured at early, mid-, and late pregnancy. Child IQ was assessed at age 14 years. We investigated the extent to which prenatal exposure to phthalates is associated with brain volumetric measures and whether brain structural measures mediate the association of prenatal phthalate exposure with IQ. We found that higher maternal concentrations of monoethyl phthalate (mEP, averaged across pregnancy) were associated with smaller total gray matter volumes in offspring at age 10 years (β per log10 increase in creatinine adjusted mEP = -10.7, 95%CI: -18.12, -3.28). Total gray matter volumes partially mediated the association between higher maternal mEP and lower child IQ (β for mediated path =-0.31, 95%CI: -0.62, 0.01, p = 0.05, proportion mediated = 18%). An association of higher monoisobutyl phthalate (mIBP) and smaller cerebral white matter volumes was present only in girls, with cerebral white matter volumes mediating the association between higher maternal mIBP and lower IQ in girls. Our findings suggest the global impact of prenatal phthalate exposure on brain volumetric measures that extends into adolescence and underlies less optimal cognitive development.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Michiel van den Dries
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- ISGlobal, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- New York University College of Global Public Health, New York City, NY, USA
- New York University Wagner School of Public Service, New York City, NY, USA
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, TNO, Utrecht, the Netherlands
| | | | | | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stephanie M Engel
- Department of Epidemiology, Gilling School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, TNO, Utrecht, the Netherlands
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health Bethesda, Bethesda, MD, USA
| | - Henning Tiemeier
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
- ISGlobal, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
33
|
Sellinger EP, Brinks AS, Javeri RR, Theurer SL, Wang R, Juraska JM. Region- and age-specific effects of perinatal phthalate exposure on developmental cell death and adult anatomy of dorsal and ventral hippocampus and associated cognitive behaviors. Neurotoxicol Teratol 2023; 99:107288. [PMID: 37595675 PMCID: PMC10530334 DOI: 10.1016/j.ntt.2023.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Humans are exposed to phthalates, a class of endocrine-disrupting chemicals used in food packaging/processing, PVC plastics, and personal care products. Gestational exposure may lead to adverse neurodevelopmental outcomes. In a rat model, perinatal exposure to an environmentally relevant mixture and dose of phthalates leads to increased developmental apoptosis in the medial prefrontal cortex (mPFC) and a subsequent reduction in neurons and in cognitive flexibility measured in adults of both sexes (Sellinger et al., 2021b; Kougias et al., 2018b). However, whether these effects generalize to other cognitive regions, like the hippocampus, is less well understood as existing studies used single phthalates at large doses, unrepresentative of human exposure. In the current study, patterns of naturally occurring cell death were first established in the dorsal and ventral hippocampal subfields (CA3 and CA1). Both dorsal and ventral CA3 reached high levels of cell death on P2 while levels in dorsal and ventral CA1 peaked on P5 in both sexes. Exposure to a phthalate mixture (0.2 and 1 mg/kg/day) throughout gestation through postnatal day 10 resulted in subtle age- and region-specific decreases in developmental cell death, however there were no significant changes in adult neuron number or associated behaviors: the Morris water maze and social recognition. Therefore, perinatal exposure to a low dose mixture of phthalates does not result in the dramatic structural and behavioral changes seen with high doses of single phthalates. This study also adds to our understanding of the distinct neurodevelopmental effects of phthalates on different brain regions.
Collapse
Affiliation(s)
- Elli P Sellinger
- Neuroscience Program, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL 61820, United States of America.
| | - Amara S Brinks
- Neuroscience Program, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL 61820, United States of America.
| | - Rajvi R Javeri
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL 61820, United States of America.
| | - Savannah L Theurer
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL 61820, United States of America.
| | - Ruibin Wang
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL 61820, United States of America.
| | - Janice M Juraska
- Neuroscience Program, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL 61820, United States of America; Department of Psychology, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL 61820, United States of America.
| |
Collapse
|
34
|
Krithivasan R, Miller GZ, Belliveau M, Gearhart J, Krishnamoorthi V, Lee S, Kannan K. Analysis of ortho-phthalates and other plasticizers in select organic and conventional foods in the United States. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:778-786. [PMID: 37726506 DOI: 10.1038/s41370-023-00596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND ortho-phthalates and other plasticizers impart flexibility to plastics in food production, processing, and packaging; food consumption is a dominant plasticizer exposure pathway. Lower molecular weight ortho-phthalates are being replaced in plastic products due to toxicity concerns, but toxic hazards of and exposures to replacement ortho-phthalates and other plasticizers are poorly understood. OBJECTIVE We measured 12 ortho-phthalates and 9 other plasticizers in conventional and organic U.S. food products to assess magnitude and profiles of contamination. METHODS We measured plasticizers in 34 vegetable oils, 10 milks, 18 infant formulas, and 9 cheese powders from macaroni kits using gas chromatography coupled with mass spectrometry (GC-MS). We analyzed plastic packaging composition using FTIR spectroscopy. RESULTS We detected eight ortho-phthalates and three alternatives ((1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), diethylhexyl terephthalate (DEHT), and diisobutyl adipate (DIBA). Diethylhexyl phthalate (DEHP) was measured in all 71 products. DEHT had the highest concentration of any plasticizer (>10,000 ng/g in three oils). Oils had the highest total plasticizer (median = 770 ng/g, max = 14,900 ng/g) and milk the lowest (median = 88 ng/g, max = 120 ng/g). Organic milk and refined oils had higher median plasticizer levels than conventional. Refined oils had significantly lower concentrations than unrefined oils. Maximum contributors for every category were non-ortho-phthalates: DEHT (powdered infant formula and oils) and DIBA (cheese powder, milk and liquid formula). Plasticizers were not detected in packaging except epoxidized soybean oil in liquid formula lids. IMPACT STATEMENT Human exposure to plasticizers is a significant public health concern. Nevertheless, sources of such exposures are poorly characterized. This study adds valuable information for estimating legacy and alternative plasticizer exposures from foods. The method developed for measuring DINCH, DINP and DIDP broadens the range of plasticizers other researchers may analyze in future work. The profiles of plasticizer contamination varied depending on the food type. We also document that food processing may be a source of plasticizer contamination in foods.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunmi Lee
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, Empire State Plaza, Albany, NY, 12201, USA
| |
Collapse
|
35
|
Payne-Sturges DC, Taiwo TK, Ellickson K, Mullen H, Tchangalova N, Anderko L, Chen A, Swanson M. Disparities in Toxic Chemical Exposures and Associated Neurodevelopmental Outcomes: A Scoping Review and Systematic Evidence Map of the Epidemiological Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:96001. [PMID: 37754677 PMCID: PMC10525348 DOI: 10.1289/ehp11750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Children are routinely exposed to chemicals known or suspected of harming brain development. Targeting Environmental Neuro-Development Risks (Project TENDR), an alliance of > 50 leading scientists, health professionals, and advocates, is working to protect children from these toxic chemicals and pollutants, especially the disproportionate exposures experienced by children from families with low incomes and families of color. OBJECTIVE This scoping review was initiated to map existing literature on disparities in neurodevelopmental outcomes for U.S. children from population groups who have been historically economically/socially marginalized and exposed to seven exemplar neurotoxicants: combustion-related air pollution (AP), lead (Pb), mercury (Hg), organophosphate pesticides (OPs), phthalates (Phth), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). METHODS Systematic literature searches for the seven exemplar chemicals, informed by the Population, Exposure, Comparator, Outcome (PECO) framework, were conducted through 18 November 2022, using PubMed, CINAHL Plus (EBSCO), GreenFILE (EBSCO), and Web of Science sources. We examined these studies regarding authors' conceptualization and operationalization of race, ethnicity, and other indicators of sociodemographic and socioeconomic disadvantage; whether studies presented data on exposure and outcome disparities and the patterns of those disparities; and the evidence of effect modification by or interaction with race and ethnicity. RESULTS Two hundred twelve individual studies met the search criteria and were reviewed, resulting in 218 studies or investigations being included in this review. AP and Pb were the most commonly studied exposures. The most frequently identified neurodevelopmental outcomes were cognitive and behavioral/psychological. Approximately a third (74 studies) reported investigations of interactions or effect modification with 69% (51 of 74 studies) reporting the presence of interactions or effect modification. However, less than half of the studies presented data on disparities in the outcome or the exposure, and fewer conducted formal tests of heterogeneity. Ninety-two percent of the 165 articles that examined race and ethnicity did not provide an explanation of their constructs for these variables, creating an incomplete picture. DISCUSSION As a whole, the studies we reviewed indicated a complex story about how racial and ethnic minority and low-income children may be disproportionately harmed by exposures to neurotoxicants, and this has implications for targeting interventions, policy change, and other necessary investments to eliminate these health disparities. We provide recommendations on improving environmental epidemiological studies on environmental health disparities. To achieve environmental justice and health equity, we recommend concomitant strategies to eradicate both neurotoxic chemical exposures and systems that perpetuate social inequities. https://doi.org/10.1289/EHP11750.
Collapse
Affiliation(s)
| | | | - Kristie Ellickson
- Minnesota Pollution Control Agency, St. Paul, Minnesota, USA
- Union of Concerned Scientists, Cambridge, Massachusetts, USA
| | - Haley Mullen
- Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
| | | | - Laura Anderko
- M. Fitzpatrick College of Nursing, Villanova University, Villanova, Pennsylvania, USA
| | - Aimin Chen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
36
|
Milton SG, Tejiram RA, Joglekar R, Hoffman K. Characterizing the Contribution of Indoor Residential Phthalate and Phthalate Alternative Dust Concentrations to Internal Dose in the US General Population: An Updated Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6589. [PMID: 37623174 PMCID: PMC10454216 DOI: 10.3390/ijerph20166589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Diet is the primary exposure pathway for phthalates, but relative contributions of other exposure sources are not well characterized. This study quantifies the relative contribution of indoor residential dust phthalate and phthalate alternative concentrations to total internal dose estimated from the National Health and Nutrition Examination Survey (NHANES) urinary metabolite concentrations. Specifically, median phthalate and phthalate alternative concentrations measured in residential dust were determined by updating a pre-existing systematic review and meta-analysis published in 2015 and the attributable internal dose was estimated using intake and reverse dosimetry models. Employing a predetermined search strategy, 12 studies published between January 2000 and April 2022 from Web of Science and PubMed measuring phthalates and phthalate alternatives in residential dust were identified. From the data extracted, it was estimated that dust contributed more significantly to the internal dose of low-molecular weight chemicals such as DEP and BBP when compared to high-molecular weight chemicals such as DEHTP. Additionally, findings showed that the chemical profile of residential dust is changing temporally with more phthalate alternatives being detected in the indoor environment. Future studies should seek to characterize the contribution of dust to an overall phthalate and phthalate alternative intake for individuals who have higher than normal exposures.
Collapse
Affiliation(s)
- Sashoy G. Milton
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA;
| | - Rachel A. Tejiram
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Rashmi Joglekar
- Earthjustice, Toxic Exposure and Health Program, Washington, DC 20001, USA
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA;
| |
Collapse
|
37
|
Mustieles V, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Muckle G, Guichardet K, Slama R, Philippat C. Early-Life Exposure to a Mixture of Phenols and Phthalates in Relation to Child Social Behavior: Applying an Evidence-Based Prioritization to a Cohort with Improved Exposure Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87006. [PMID: 37556305 PMCID: PMC10411634 DOI: 10.1289/ehp11798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Previous studies aiming at relating exposure to phenols and phthalates with child social behavior characterized exposure using one or a few spot urine samples, resulting in substantial exposure misclassification. Moreover, early infancy exposure was rarely studied. OBJECTIVES We aimed to examine the associations of phthalates and phenols with child social behavior in a cohort with improved exposure assessment and to a priori identify the chemicals supported by a higher weight of evidence. METHODS Among 406 mother-child pairs from the French Assessment of Air Pollution exposure during Pregnancy and Effect on Health (SEPAGES) cohort, 25 phenols/phthalate metabolites were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (∼ 21 samples/trimester) and at 2 months and 1-year of age (∼ 7 samples/period). Social behavior was parent-reported at 3 years of age of the child using the Social Responsiveness Scale (SRS). A structured literature review of the animal and human evidence was performed to prioritize the measured phthalates/phenols based on their likelihood to affect social behavior. Both adjusted linear regression and Bayesian Weighted Quantile Sum (BWQS) regression models were fitted. False discovery rate (FDR) correction was applied only to nonprioritized chemicals. RESULTS Prioritized compounds included bisphenol A, bisphenol S, triclosan (TCS), diethyl-hexyl phthalate (Σ DEHP ), mono-ethyl phthalate (MEP), mono-n -butyl phthalate (MnBP), and mono-benzyl phthalate (MBzP). With the exception of bisphenols, which showed a mixed pattern of positive and negative associations in pregnant mothers and neonates, few prenatal associations were observed. Most associations were observed with prioritized chemicals measured in 1-y-old infants: Each doubling in urinary TCS (β = 0.78 ; 95% CI: 0.00, 1.55) and MEP (β = 0.92 ; 95% CI: - 0.11 , 1.96) concentrations were associated with worse total SRS scores, whereas MnBP and Σ DEHP were associated with worse Social Awareness (β = 0.25 ; 95% CI: 0.01, 0.50) and Social Communication (β = 0.43 ; 95% CI: - 0.02 , 0.89) scores, respectively. BWQS also suggested worse total SRS [Beta 1 = 1.38 ; 95% credible interval (CrI): - 0.18 , 2.97], Social Awareness (Beta 1 = 0.37 ; 95% CrI: 0.06, 0.70), and Social Communication (Beta 1 = 0.91 ; 95% CrI: 0.31, 1.53) scores per quartile increase in the mixture of prioritized compounds assessed in 1-y-old infants. The few associations observed with nonprioritized chemicals did not remain after FDR correction, with the exception of benzophenone-3 exposure in 1-y-old infants, which was suggestively associated with worse Social Communication scores (corrected p = 0.07 ). DISCUSSION The literature search allowed us to adapt our statistical analysis according to the weight of evidence and create a corpus of experimental and epidemiological knowledge to better interpret our findings. Early infancy appears to be a sensitive exposure window that should be further investigated. https://doi.org/10.1289/EHP11798.
Collapse
Affiliation(s)
- Vicente Mustieles
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Isabelle Pin
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | | | | | | | - Gina Muckle
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, Canada
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
38
|
Shih PC, Chen HP, Hsu CC, Lin CH, Ko CY, Hsueh CW, Huang CY, Chu TH, Wu CC, Ho YC, Nguyen NUN, Huang SC, Fang CC, Tzou SJ, Wu YJ, Chen TY, Chang CF, Lee YK. Long-term DEHP/MEHP exposure promotes colorectal cancer stemness associated with glycosylation alterations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121476. [PMID: 36997141 DOI: 10.1016/j.envpol.2023.121476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Plasticizers are considered as environmental pollution released from medical devices and increased potential oncogenic risks in clinical therapy. Our previous studies have shown that long-term exposure to di-ethylhexyl phthalate (DEHP)/mono-ethylhexyl phthalate (MEHP) promotes chemotherapeutic drug resistance in colorectal cancer. In this study, we investigated the alteration of glycosylation in colorectal cancer following long-term plasticizers exposure. First, we determined the profiles of cell surface N-glycomes by using mass spectrometry and found out the alterations of α2,8-linkages glycans. Next, we analyzed the correlation between serum DEHP/MEHP levels and ST8SIA6 expression from matched tissues in total 110 colorectal cancer patients. Moreover, clinical specimens and TCGA database were used to analyze the expression of ST8SIA6 in advanced stage of cancer. Finally, we showed that ST8SIA6 regulated stemness in vitro and in vivo. Our results revealed long-term DEHP/MEHP exposure significantly caused cancer patients with poorer survival outcome and attenuated the expression of ST8SIA6 in cancer cells and tissue samples. As expected, silencing of ST8SIA6 promoted cancer stemness and tumorigenicity by upregulating stemness-associated proteins. In addition, the cell viability assay showed enhanced drug resistance in ST8SIA6 silencing cells treated with irinotecan. Besides, ST8SIA6 was downregulated in the advanced stage and positively correlated with tumor recurrence in colorectal cancer. Our results imply that ST8SIA6 potentially plays an important role in oncogenic effects with long-term phthalates exposure.
Collapse
Affiliation(s)
- Pei-Chun Shih
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsin-Pao Chen
- Division of Colon and Rectal Surgery, Department of Surgery, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ching-Cheng Hsu
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas TX 75390, USA
| | - Chung-Hsien Lin
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chou-Yuan Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chao-Wen Hsueh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Yi Huang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Tian-Huei Chu
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas TX 75390, USA
| | - Shih-Chung Huang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Division of Cardiology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | | | - Shiow-Jyu Tzou
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Nursing, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Yueh-Jung Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Tung-Yuan Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Chuan-Fa Chang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yung-Kuo Lee
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
| |
Collapse
|
39
|
Lucaccioni L, Palandri L, Passini E, Trevisani V, Calandra Buonaura F, Bertoncelli N, Talucci G, Ferrari A, Ferrari E, Predieri B, Facchinetti F, Iughetti L, Righi E. Perinatal and postnatal exposure to phthalates and early neurodevelopment at 6 months in healthy infants born at term. Front Endocrinol (Lausanne) 2023; 14:1172743. [PMID: 37293488 PMCID: PMC10244530 DOI: 10.3389/fendo.2023.1172743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Background Phthalates are non-persistent chemicals largely used as plasticizers and considered ubiquitous pollutants with endocrine disrupting activity. The exposure during sensible temporal windows as pregnancy and early childhood, may influence physiological neurodevelopment. Aims and Scope The aim of this study is to analyze the relationship between the urinary levels of phthalate metabolites in newborn and infants and the global development measured by the Griffiths Scales of Children Development (GSCD) at six months. Methods Longitudinal cohort study in healthy Italian term newborn and their mothers from birth to the first 6 months of life. Urine samples were collected at respectively 0 (T0), 3 (T3), 6 (T6) months, and around the delivery for mothers. Urine samples were analyzed for a total of 7 major phthalate metabolites of 5 of the most commonly used phthalates. At six months of age a global child development assessment using the third edition of the Griffith Scales of Child Development (GSCD III) was performed in 104 participants. Results In a total of 387 urine samples, the seven metabolites analyzed appeared widespread and were detected in most of the urine samples collected at any time of sampling (66-100%). At six months most of the Developmental Quotients (DQs) falls in average range, except for the subscale B, which presents a DQ median score of 87 (85-95). Adjusted linear regressions between DQs and urinary phthalate metabolite concentrations in mothers at T0 and in infants at T0, T3 and T6 identified several negative associations both for infants' and mothers especially for DEHP and MBzP. Moreover, once stratified by children's sex, negative associations were found in boys while positive in girls. Conclusions Phthalates exposure is widespread, especially for not regulated compounds. Urinary phthalate metabolites were found to be associated to GSCD III scores, showing inverse association with higher phthalate levels related to lower development scores. Our data suggested differences related to the child's sex.
Collapse
Affiliation(s)
- Laura Lucaccioni
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucia Palandri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Erica Passini
- Post graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Viola Trevisani
- Post graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Natascia Bertoncelli
- Neonatology Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Talucci
- Neonatology Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Ferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Ferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Predieri
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Facchinetti
- Unit of Obstetrics and Gynecology, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- Post graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Righi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
40
|
Andrady AL, Heikkilä AM, Pandey KK, Bruckman LS, White CC, Zhu M, Zhu L. Effects of UV radiation on natural and synthetic materials. Photochem Photobiol Sci 2023; 22:1177-1202. [PMID: 37039962 PMCID: PMC10088630 DOI: 10.1007/s43630-023-00377-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/13/2023] [Indexed: 04/12/2023]
Abstract
The deleterious effects of solar ultraviolet (UV) radiation on construction materials, especially wood and plastics, and the consequent impacts on their useful lifetimes, are well documented in scientific literature. Any future increase in solar UV radiation and ambient temperature due to climate change will therefore shorten service lifetimes of materials, which will require higher levels of stabilisation or other interventions to maintain their lifetimes at the present levels. The implementation of the Montreal Protocol and its amendments on substances that deplete the ozone layer, controls the solar UV-B radiation received on Earth. This current quadrennial assessment provides a comprehensive update on the deleterious effects of solar UV radiation on the durability of natural and synthetic materials, as well as recent innovations in better stabilising of materials against solar UV radiation-induced damage. Pertinent emerging technologies for wood and plastics used in construction, composite materials used in construction, textile fibres, comfort fabric, and photovoltaic materials, are addressed in detail. Also addressed are the trends in technology designed to increase sustainability via replacing toxic, unsustainable, legacy additives with 'greener' benign substitutes that may indirectly affect the UV stability of the redesigned materials. An emerging class of efficient photostabilisers are the nanoscale particles that include oxide fillers and nanocarbons used in high-performance composites, which provide good UV stability to materials. They also allow the design of UV-shielding fabric materials with impressive UV protection factors. An emerging environmental issue related to the photodegradation of plastics is the generation of ubiquitous micro-scale particles from plastic litter exposed to solar UV radiation.
Collapse
Affiliation(s)
- A. L. Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC USA
| | | | - K. K. Pandey
- Indian Academy of Wood Science, Bangalore, India
| | - L. S. Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH USA
| | | | - M. Zhu
- College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - L. Zhu
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, Donghua University, Shanghai, China
| |
Collapse
|
41
|
Payne-Sturges D, De Saram S, Cory-Slechta DA. Cumulative Risk Evaluation of Phthalates Under TSCA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6403-6414. [PMID: 37043345 DOI: 10.1021/acs.est.2c08364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The U.S. Environmental Protection Agency (EPA) is currently conducting separate Toxic Substances Control Act (TSCA) risk evaluations for seven phthalates: dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), diisobutyl phthalate (DIBP), dicyclohexyl phthalate (DCHP), di-isodecyl phthalate (DIDP), and diisononyl phthalate (DINP). Phthalates are highly abundant plastic additives used primarily to soften materials and make them flexible, and biomonitoring shows widespread human exposure to a mixture of phthalates. Evidence supports biological additivity of phthalate mixture exposures, including the enhancement of toxicity affecting common biological targets. Risk estimates based on individual phthalate exposure may not be protective of public health. Thus, a cumulative risk approach is warranted. While EPA initially did not signal that it would incorporate cumulative risk assessment (CRA) as part of its current risk evaluation for the seven phthalates, the agency recently announced that it is reconsidering if CRA for phthalates would be appropriate. Based on our review of existing chemical mixtures risk assessment guidance, current TSCA scoping documents for the seven phthalates, and pertinent peer-reviewed literature, we delineate a CRA approach that EPA can easily implement for phthalates. The strategy for using CRA to inform TSCA risk evaluation for existing chemicals is based upon integrative physiology and a common adverse health outcome algorithm for identifying and grouping relevant nonchemical and chemical stressors. We recommend adjustments for how hazard indices (HIs) or margins of exposure (MOEs) based on CRA are interpreted for determining "unreasonable risk" under TSCA.
Collapse
Affiliation(s)
- Devon Payne-Sturges
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 255 Valley Drive, College Park, Maryland 20742, United States
| | - Sulakkhana De Saram
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 255 Valley Drive, College Park, Maryland 20742, United States
| | - Deborah A Cory-Slechta
- University of Rochester School of Medicine, Box EHSC, Rochester, New York 14642, United States
| |
Collapse
|
42
|
Yu Z, Iyer L, Swiercz AP, Paronett E, Ramadan M, Marvar PJ, Posnack NG. The Impact of Chronic Phthalate Exposure on Rodent Anxiety and Cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536567. [PMID: 37886449 PMCID: PMC10602041 DOI: 10.1101/2023.04.13.536567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). Increased biomonitoring and epidemiological studies, for example, suggest that daily phthalate chemical exposure contribute to neurological and behavioral abnormalities, however these mechanisms remain poorly understood. The current study therefore aimed to examine the effects of chronic phthalate exposure on rodent anxiety behaviors, cognition, and the impact on hypothalamic-pituitary- adrenal (HPA)-axis function. Adult male mice (C57BL6/J) were administered mono-2-ethylhexyl phthalate (MEHP) via drinking water (1 mg/ml), and anxiety-like behavior, cognition combined with HPA- axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze (EPM) and center exploration in the open field (OF). Tests of spatial, cognition and memory function were unchanged. Following MEHP administration, circulating levels of corticosterone and pro- inflammatory cytokines were significantly increased, while at the tissue level, MEHP-dependent reductions in glucocorticoid metabolism genes 11β-hydroxysteroid dehydrogenase (11β-HSD) 1 and 2. These data suggest that chronic MEHP exposure leads to enhanced generalized-anxiety behaviors independent of rodent measures of cognition and memory, which maybe driven by MEHP-dependent effects on HPA-axis and peripheral glucocorticoid metabolism function.
Collapse
|
43
|
Huang M, Zeng Y, Luo K, Lan B, Luo J, Zeng L, Kang Y. Inhalation bioacessibility and lung cell penetration of indoor PM 2.5-bound PAEs and its implication in risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121216. [PMID: 36746290 DOI: 10.1016/j.envpol.2023.121216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/11/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Several studies have evaluated the human exposure of phthalate esters (PAEs) in PM2.5 via inhalation route, however, inhalation bioaccessibility and the lung cell penetration of PAEs were barely considered in risk assessment. In the present study, PM2.5 samples collected from indoor environments were investigated for inhalation bioaccessibility of PAEs using two simulated lung fluids (gamble's solution (GMB) and artificial lysosomal fluid (ALF)). The results showed that the inhalation bioaccessibility of PAEs (except for diethyl phthalate) under healthy state (GMB: 8.9%-62.8%) was lower than that under the inflammatory condition (ALF: 14.5%-67.6%). Lung cell permeation and metabolism of three selected PAEs (diethyl phthalate, di(n-butyl)phthalate and di-2-ethylhexyl phthalate) was tested using equivalent lung cell (A549) model. The inhalation bioavailability obtained by combination of the bioaccessibility of PAEs in indoor PM2.5 and permeability data of A549 cell ranged from 11.7% to 51.1% in health condition, and 13.5%-55.0% in inflammatory state. The calibration parameter (Fc) based on the inhalation bioavailability was established in present study and could provide a reference for a more accurate risk assessment of PM2.5-bound PAEs.
Collapse
Affiliation(s)
- Mantuo Huang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yuqi Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Kesong Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Bingyan Lan
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jiwen Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Lixuan Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yuan Kang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
44
|
Wang H, He H, Wei Y, Gao X, Zhang T, Zhai J. Do phthalates and their metabolites cause poor semen quality? A systematic review and meta-analysis of epidemiological studies on risk of decline in sperm quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34214-34228. [PMID: 36504299 DOI: 10.1007/s11356-022-24215-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
A systematic review and meta-analysis were conducted to understand the association of phthalates and their metabolites with sperm quality in humans. By June 30, 2022, relevant literature on the effects of phthalates and their metabolites on sperm quality were searched and collected using three English-language databases including PubMed, EMbase, and Web of Science. Two researchers independently screened literature, extracted data, and assessed risk of bias. Stata 11 and RevMan 5.3 were used to conduct meta-analysis, test publication bias, and sensitivity analysis. A total of 12 literature were included for meta-analysis, excluding literature with different effect sizes. The results of meta-analysis indicated that monobutyl phthalate (MBP) and monobenzyl phthalate (MBzP) in urine were negatively correlated with semen concentration, and the results were statistically significant (MBP, pooled odds ratio (OR), 95% confidence interval (CI): 2.186 (1.471, 3.248), P < 0.05) and (MBzP, pooled OR (95%CI): 1.882 (1.471, 3.248), P < 0.05). Furthermore, the level of Di-(2-ethylhexyl) phthalate (DEHP) in semen was negatively correlated with semen concentration and the combined effect size was (pooled correlation coefficients (r) (95%CI): -0.225 (-0.319, -0.192), P < 0.05). However, the associations between MBP and MBzP with sperm motility and sperm morphology were not statistically significant (P > 0.05). And there was also no significant correlation between monoethyl phthalate (MEP), monomethyl phthalate (MMP), and mono-2-ethylhexyl phthalate (MEHP) and semen parameters, including semen concentration, sperm motility, and sperm morphology (P > 0.05). In summary, this current study provides moderate-certainty evidence for the data demonstrated that is a negative correlation between urine MBP levels, urine MBzP levels, and semen DEHP levels with semen concentration. In the future, more longitudinal cohort studies are needed to help elucidate the overall association.
Collapse
Affiliation(s)
- Houpeng Wang
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Huan He
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Yu Wei
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Xin Gao
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Taifa Zhang
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
45
|
Akinlolu A, Emojevwe V, Uwejigho R, Ilesanmi J, Owolabi R, Igandan A. Neuro-protective potentials of N-acetylcysteine and zinc against di(2-ethylhexyl)-phthalate-induced neuro-histopathology and dys-regulations of Dopamine and Glutamate in rat brain. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:81-90. [PMID: 36852734 DOI: 10.1080/10934529.2023.2177449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
This study examined neuro-protective potentials of N-acetyl-cysteine (NAC) and Zinc on expression levels of Dopamine and Glutamate in the Cerebrum, Hypothalami and Pituitary Glands in Di(2-ethylhexyl)-phthalate (DEHP)-induced neurotoxicity in rats. Thirty-six adult male Wistar rats were randomly divided into 6 groups (n = 6). Group 1 was control. Groups 2-6 received oral administrations of 100 mg/kg NAC, 0.5 mg/kg Zinc, 750 mg/kg DEHP, DEHP + NAC doses and DEHP + Zinc doses respectively for 21 days. Brain histology (Heamatoxyline and Eosine technique), histochemical and enzyme-linked-immunosorbent assays of Dopamine and Glutamate in homogenates of Cerebrum, Hypothalami and Pituitary Glands were evaluated. Data were statistically analyzed using One-way-ANOVA with Tukey-post-hoc test at p ≤ 0.05. Histo-pathological evaluations of Cerebrum, Hypothalami and Pituitary Glands showed gross histo-alterations and neurodegenerative changes (Group 4), mild histo- and neuro-degenerative changes (Groups 5 and 6) and normal histology (Group 1). Histochemical analyses showed higher Dopamine levels in Hypothalami (Group 5) and Pituitary Glands (Groups 5 and 6), compared with Group 4. Furthermore, results showed lower Glutamate levels in Cerebrum, Hypothalami and Pituitary Glands of Groups 5 and 6, compared with Group 4. Overall, NAC and Zinc conferred neuro-protection and histo-protection against DEHP-induced neuro-toxicity, neuro-histopathology, decreased Dopamine levels and increased Glutamate levels.
Collapse
Affiliation(s)
- Adelaja Akinlolu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences Ondo, Ondo City, Ondo State, Nigeria
| | - Victor Emojevwe
- Department of Physiology, Faculty of Basic Medical Sciences, University of Medical Sciences Ondo, Ondo City, Ondo State, Nigeria
| | - Raphael Uwejigho
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences Ondo, Ondo City, Ondo State, Nigeria
| | - Juliet Ilesanmi
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences Ondo, Ondo City, Ondo State, Nigeria
| | - Rokibat Owolabi
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences Ondo, Ondo City, Ondo State, Nigeria
| | - Abimbola Igandan
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences Ondo, Ondo City, Ondo State, Nigeria
| |
Collapse
|
46
|
TOU GADA, GOMES JM, RINCO LSDO, YAMAUTI M, DINIZ IMA, PIRES F, SCHMIDT MEP, MENEZES HC, CARDEAL ZDL, BOTTOLI CBG, MACARI S. Release of leachable products from resinous compounds in the saliva of children with anterior open bite treated with spur. J Appl Oral Sci 2023; 30:e20220227. [PMID: 36753069 PMCID: PMC9936797 DOI: 10.1590/1678-7757-2022-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND To evaluate the release of bisphenol-A glycidyl methacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA), bisphenol A (BPA), and phthalates of the composite resin used in the bonding of spurs applied in the treatment of children with anterior open bite and its effects on human keratinocytes. METHODOLOGY Saliva samples of 22 children were collected before spur attachment (baseline) and 30 minutes (min) and 24 hours (h) after spur bonding. Analysis was performed using high-performance liquid chromatography (HPLC) coupled to tandem mass spectrometry (HPLC-MS/MS) and gas chromatography coupled to mass spectrometry (GC-MS). Standardized resin increments were added to three different dilutions of the cell culture medium. Keratinocytes (HaCaT) were cultivated in the conditioned media and evaluated for cell viability (MTT) and cell scratch assay. RESULTS The levels of BisGMA (1.74±0.27 μg/mL), TEGDMA (2.29±0.36 μg/mL), and BPA (3.264±0.88 μg/L) in the saliva after 30 min, in comparison to baseline (0±0 μg/mL, 0±0 μg/mL, and 1.15±0.21 μg/L, respectively), presented higher numbers. After 24 h, the levels of the monomers were similar to the baseline. Phthalates showed no significant difference among groups. HaCat cells showed increased viability and reduced cell migration over time after exposure to methacrylate-based resin composites. CONCLUSION Resin composites, used to attach spurs in children with anterior open bite during orthodontic treatment, release monomers after polymerization and can influence the behavior of human keratinocytes, even at very low concentrations. Orthodontists should be aware of the risks of the resinous compounds release and preventive procedures should be held to reduce patient exposure.
Collapse
Affiliation(s)
- Gabriel Antônio dos Anjos TOU
- Universidade Federal de Minas GeraisFaculdade de Odontologia Belo HorizonteDepartamento de Odontologia RestauradoraMinas GeraisBrasilUniversidade Federal de Minas Gerais, Faculdade de Odontologia Belo Horizonte, Departamento de Odontologia Restauradora, Minas Gerais, Brasil.
| | - José Messias GOMES
- Universidade Federal de Minas GeraisInstituto de Ciências ExatasDepartamento de QuímicaBelo HorizonteMinas GeraisBrasilUniversidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, Minas Gerais, Brasil.
| | - Luiza Santana de Oliveira RINCO
- Universidade Federal de Minas GeraisFaculdade de Odontologia Belo HorizonteDepartamento de Odontologia RestauradoraMinas GeraisBrasilUniversidade Federal de Minas Gerais, Faculdade de Odontologia Belo Horizonte, Departamento de Odontologia Restauradora, Minas Gerais, Brasil.
| | - Mônica YAMAUTI
- Hokkaido UniversitySchool of DentistryDepartment of Restorative DentistrySapporoJapanHokkaido University, School of Dentistry, Department of Restorative Dentistry, Sapporo, Japan.
| | - Ivana Márcia Alves DINIZ
- Universidade Federal de Minas GeraisFaculdade de Odontologia Belo HorizonteDepartamento de Odontologia RestauradoraMinas GeraisBrasilUniversidade Federal de Minas Gerais, Faculdade de Odontologia Belo Horizonte, Departamento de Odontologia Restauradora, Minas Gerais, Brasil.
| | - Fabiane PIRES
- Universidade Estadual de CampinasInstituto de QuímicaCampinasSão PauloBrasilUniversidade Estadual de Campinas, Instituto de Química, Campinas, São Paulo, Brasil.
| | - Marcella Emilia Petra SCHMIDT
- Universidade Estadual de CampinasInstituto de QuímicaCampinasSão PauloBrasilUniversidade Estadual de Campinas, Instituto de Química, Campinas, São Paulo, Brasil.
| | - Helvécio Costa MENEZES
- Universidade Federal de Minas GeraisInstituto de Ciências ExatasDepartamento de QuímicaBelo HorizonteMinas GeraisBrasilUniversidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, Minas Gerais, Brasil.
| | - Zenilda de Lourdes CARDEAL
- Universidade Federal de Minas GeraisInstituto de Ciências ExatasDepartamento de QuímicaBelo HorizonteMinas GeraisBrasilUniversidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, Minas Gerais, Brasil.
| | - Carla Beatriz Grespan BOTTOLI
- Universidade Estadual de CampinasInstituto de QuímicaCampinasSão PauloBrasilUniversidade Estadual de Campinas, Instituto de Química, Campinas, São Paulo, Brasil.
| | - Soraia MACARI
- Universidade Federal de Minas GeraisFaculdade de Odontologia Belo HorizonteDepartamento de Odontologia RestauradoraMinas GeraisBrasilUniversidade Federal de Minas Gerais, Faculdade de Odontologia Belo Horizonte, Departamento de Odontologia Restauradora, Minas Gerais, Brasil.
| |
Collapse
|
47
|
Treviño MJS, Pereira-Coelho M, López AGR, Zarazúa S, Dos Santos Madureira LA, Majchrzak T, Płotka-Wasylka J. How pesticides affect neonates? - Exposure, health implications and determination of metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158859. [PMID: 36126706 DOI: 10.1016/j.scitotenv.2022.158859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
This review covers key information related to the effects of pesticides on fetal and child health. All humans are exposed to environmental toxicants, however child's health, due to their high vulnerability, should be of special concern. They are continuously exposed to environmental xenobiotics including a wide variety of pesticides, and other pollutants. These compounds can enter the child's body through various routes, both during fetal life, in the first days of life with breast milk, as well as during environmental exposure in later years of life. Consequently, in the body, some of them are metabolized and excreted with urine or faces, while others accumulate in tissues causing toxic effects. This review will provide information on the types of pesticides, their pathways of uptake and metabolism in children's bodies. Determination of the impact of them on children's organism performance is possible through effective identification of these compounds and their metabolites in children's tissues and biofluids. Therefore, the main procedures for the determination of pesticides are reviewed and future trends in this field are indicated. We believe that this comprehensive review can be a good starting place for the future readers interested in the impact of environmental xenobiotics on the health of children as well as the aspects relates with the analytical methods that can be used for analysis and monitoring of these pollutants in children's tissues and biofluids.
Collapse
Affiliation(s)
- María José Santoyo Treviño
- Coordinación para la innovación y aplicación para la Ciencia y la Tecnología, Mexico; Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - Marina Pereira-Coelho
- Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | - Sergio Zarazúa
- Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | | | - Tomasz Majchrzak
- Department of Analytical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| |
Collapse
|
48
|
Maffini MV, Rayasam SDG, Axelrad DA, Birnbaum LS, Cooper C, Franjevic S, MacRoy PM, Nachman KE, Patisaul HB, Rodgers KM, Rossi MS, Schettler T, Solomon GM, Woodruff TJ. Advancing the science on chemical classes. Environ Health 2023; 21:120. [PMID: 36635752 PMCID: PMC9835214 DOI: 10.1186/s12940-022-00919-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Hazard identification, risk assessment, regulatory, and policy activity are usually conducted on a chemical-by-chemical basis. Grouping chemicals into categories or classes is an underutilized approach that could make risk assessment and management of chemicals more efficient for regulators. OBJECTIVE AND METHODS While there are some available methods and regulatory frameworks that include the grouping of chemicals (e.g.,same molecular mechanism or similar chemical structure) there has not been a comprehensive evaluation of these different approaches nor a recommended course of action to better consider chemical classes in decision-making. This manuscript: 1) reviews current national and international approaches to grouping; 2) describes how groups could be defined based on the decision context (e.g., hazard/risk assessment, restrictions, prioritization, product development) and scientific considerations (e.g., intrinsic physical-chemical properties); 3) discusses advantages of developing a decision tree approach for grouping; 4) uses ortho-phthalates as a case study to identify and organize frameworks that could be used across agencies; and 5) discusses opportunities to advance the class concept within various regulatory decision-making scenarios. RESULTS Structural similarity was the most common grouping approach for risk assessment among regulatory agencies (national and state level) and non-regulatory organizations, albeit with some variations in its definition. Toxicity to the same target organ or to the same biological function was also used in a few cases. The phthalates case study showed that a decision tree approach for grouping should include questions about uses regulated by other agencies to encourage more efficient, coherent, and protective chemical risk management. DISCUSSION AND CONCLUSION Our evaluation of how classes of chemicals are defined and used identified commonalities and differences based on regulatory frameworks, risk assessments, and business strategies. We also identified that using a class-based approach could result in a more efficient process to reduce exposures to multiple hazardous chemicals and, ultimately, reduce health risks. We concluded that, in the absence of a prescribed method, a decision tree approach could facilitate the selection of chemicals belonging to a pre-defined class (e.g., chemicals with endocrine-disrupting activity; organohalogen flame retardants [OFR]) based on the decision-making context (e.g., regulatory risk management).
Collapse
Affiliation(s)
| | - Swati D G Rayasam
- Department of Obstetrics, Program on Reproductive Health and the Environment, Gynecology and Reproductive Sciences, University of California, Box 0132, 490 Illinois Street, Floor 10, San Francisco, CA, 94143, USA
| | | | - Linda S Birnbaum
- Scientist Emeritus and Former Director, National Institutes of Environmental Health Sciences and National Toxicology Program, Research Triangle Park, NC, USA
- Scholar in Residence, Duke University, Durham, NC, USA
| | - Courtney Cooper
- Department of Obstetrics, Program on Reproductive Health and the Environment, Gynecology and Reproductive Sciences, University of California, Box 0132, 490 Illinois Street, Floor 10, San Francisco, CA, 94143, USA
| | | | | | - Keeve E Nachman
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Risk Sciences and Public Policy Institute Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | | | | | - Ted Schettler
- Science and Environmental Health Network, Ames, Iowa, USA
| | - Gina M Solomon
- University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Public Health Institute, Oakland, CA, USA
| | - Tracey J Woodruff
- Department of Obstetrics, Program on Reproductive Health and the Environment, Gynecology and Reproductive Sciences, University of California, Box 0132, 490 Illinois Street, Floor 10, San Francisco, CA, 94143, USA
| |
Collapse
|
49
|
Besis A, Avgenikou A, Pantelaki I, Serafeim E, Georgiadou E, Voutsa D, Samara C. Hazardous organic pollutants in indoor dust from elementary schools and kindergartens in Greece: Implications for children's health. CHEMOSPHERE 2023; 310:136750. [PMID: 36241110 DOI: 10.1016/j.chemosphere.2022.136750] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Children spend a significant portion of their day in school, where they may be exposed to hazardous organic compounds accumulated in indoor dust. The aim of this study was to evaluate the concentrations of major hazardous organic contaminants in dust collected from kindergartens and elementary schools in Northern Greece (n = 20). The sum concentrations of 20 targeted polybrominated diphenyl ether congeners (∑20PBDEs) in dust varied from 58 ng g-1 to 1480 ng g-1, while the sum of 4 novel brominated fire retardants (∑4NBFRs) ranged from 28 ng g-1 to 555 ng g-1. Correspondingly, the sum concentrations of phthalate esters (∑9PAEs) ranged between 265 μg g-1 and 2120 μg g-1, while the sum of organophosphate esters (∑11OPEs) was found between 2890 ng g-1 and 16,100 ng g-1. Finally, the sum concentrations of polycyclic aromatic hydrocarbons (∑16PAHs) were found within in the range 212 ng g-1 and 6960 ng g-1. Exposure to indoor dust contaminant via inhalation, ingestion and dermal absorption was investigated for children and adults (teachers). Carcinogenic and non-carcinogenic risks were also estimated. Children's estimated intakes of individual hazardous chemicals via the three exposure routes, were lower than the available health-based reference values.
Collapse
Affiliation(s)
- Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| | - Anna Avgenikou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Ioanna Pantelaki
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Eleni Serafeim
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Eleni Georgiadou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| |
Collapse
|
50
|
Preece AS, Shu H, Knutz M, Krais AM, Bornehag CG. Phthalate levels in prenatal and postnatal bedroom dust in the SELMA study. ENVIRONMENTAL RESEARCH 2022; 212:113429. [PMID: 35533715 DOI: 10.1016/j.envres.2022.113429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are common in polyvinyl chloride (PVC) plastics and numerous consumer goods in our homes from which they can migrate and adhere to indoor dust particles. It is known that indoor dust exposure contribute to human phthalate intake; however, there is a lack of large studies with a repeated-measure design investigating how phthalate levels in indoor dust may vary over time in people's homes. This study investigated levels of seven phthalates and one alternative plasticiser di-iso-nonyl-cyclohexane-di-carboxylate (DiNCH) in bedroom dust collected prenatally around week 25 during pregnancy and postnatally at six months after birth, from 496 Swedish homes. Prenatal and postnatal phthalate levels were compared using correlation and season-adjusted general linear regression models. Over the nine-month period, levels of six out of seven phthalates were associated as indicated by a positive Pearson correlation (0.18 < r < 0.50, P < .001) and Lin's concordance correlation between matched prenatal and postnatal dust samples. Compared to prenatal levels, the season-adjusted postnatal levels decreased for five phthalates, whilst di-ethyl-hexyl phthalate (DEHP), di-2-propylheptyl phthalate (DPHP) and DiNCH increased. The results suggest that families with higher phthalate levels in bedroom dust during pregnancy are likely to remain among those with higher levels in the infancy period. However, all average phthalate levels changed over this specific nine-month period suggesting that available phthalate sources or their use were altered between the dust collections. Changes in home characteristics, family lifestyle, and phthalate replacement trends may contribute to explain the differences.
Collapse
Affiliation(s)
- Anna-Sofia Preece
- Division of Public Health Sciences, Institution of Health Sciences, Karlstad University, SE-651 88, Karlstad, Sweden
| | - Huan Shu
- Division of Public Health Sciences, Institution of Health Sciences, Karlstad University, SE-651 88, Karlstad, Sweden
| | - Malin Knutz
- Division of Public Health Sciences, Institution of Health Sciences, Karlstad University, SE-651 88, Karlstad, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Institution of Laboratory Medicine, Lund University, SE-221 85, Lund, Sweden
| | - Carl-Gustaf Bornehag
- Division of Public Health Sciences, Institution of Health Sciences, Karlstad University, SE-651 88, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|