1
|
Öberg S, von Schewelov L, Tengman E. The impact of blood flow restriction training on tendon adaptation and tendon rehabilitation - a scoping review. BMC Musculoskelet Disord 2025; 26:503. [PMID: 40405130 PMCID: PMC12096532 DOI: 10.1186/s12891-025-08734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 05/08/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Tendon injuries are common in athletes and in the general population and require extensive rehabilitation. Current conservative treatment often includes different high-load resistance training (HLRT) modalities. However, certain populations may not tolerate HLRT well. Blood flow restriction training (BFRT) incorporates low load while achieving hypertrophy and strength adaptations comparable to HLRT. However, the effects of BFRT on healthy and pathological tendons are unknown. The aims of this scoping review were therefore to summarize the reported impact of BRFT: (1) on tendon adaptation in healthy individuals, and (2) in tendon rehabilitation after injury. METHODS A scoping review based on PRISMA guidelines was performed. A systematic literature search in the electronic databases PubMed, SPORTDiscus and CINAHL was performed in May 2024. This review includes peer-reviewed articles investigating the effects of BFRT on healthy tendons and in tendon rehabilitation. Methodological quality was assessed using the Downs and Black scale and JBI Critical Appraisal Checklist. RESULTS 19 studies with varied design, population, investigated tendon, intervention design and outcome measures were eligible. Ten studies were randomized controlled trials (RCT), one study was a clinical controlled trial, three studies were feasibility studies and five were case reports. The reviewed studies included 351 healthy subjects and 122 individuals with tendon-related disorders (101 subjects with tendinopathy and 21 subjects with tendon ruptures). Tendons investigated were Achilles (n = 6), patellar (n = 6), hamstring (n = 1), gluteal (n = 1), biceps brachii distal (n = 1), tendons of the rotator cuff (n = 2) and lateral elbow extensors (n = 2). In the nine studies on healthy individuals, the effects of BFRT showed contradictory results regarding tendon-related outcomes. However, changes in outcome measures did not differ significantly from HLRT conditions or low-load resistance training (LLRT) conditions. The studies on tendon rehabilitation also showed contradictory results regarding tendon-related outcomes, although several studies do report decreased pain, increased strength, enhanced performance and improved self-reported diagnosis-specific function. CONCLUSIONS The present scoping review shows contradictory results regarding tendon-related outcomes although studies point to increasing tendon function after rehabilitation. BFRT may be a viable option to incorporate into training regimes aimed at inducing tendon adaptation. Further in-depth research is warranted. CLINICAL TRIAL NUMBER This is a review and therefore is Clinical trial number: Not applicable. However, the review has been preregistered at www.osf.io (DOI https://doi.org/10.17605/OSF.IO/PYV43 ) stated in the method section.
Collapse
Affiliation(s)
- Samuel Öberg
- Dept. of Community Medicine and Rehabilitation, Section for Physiotherapy, Umeå University, Umeå, SE-90187, Sweden
| | - Ludvig von Schewelov
- Dept. of Community Medicine and Rehabilitation, Section for Physiotherapy, Umeå University, Umeå, SE-90187, Sweden
| | - Eva Tengman
- Dept. of Community Medicine and Rehabilitation, Section for Physiotherapy, Umeå University, Umeå, SE-90187, Sweden.
- Umeå School of Sport Sciences, Umeå University, Umeå, Sweden.
| |
Collapse
|
2
|
Ni Y, Tian B, Lv J, Li D, Zhang M, Li Y, Jiang Y, Dong Q, Lin S, Zhao J, Huang X. 3D-Printed PCL Scaffolds Loaded with bFGF and BMSCs Enhance Tendon-Bone Healing in Rat Rotator Cuff Tears by Immunomodulation and Osteogenesis Promotion. ACS Biomater Sci Eng 2025; 11:1123-1139. [PMID: 39851055 DOI: 10.1021/acsbiomaterials.4c02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy. As a promising technology, 3D printing enables the customization of scaffold shapes and properties. Bone marrow mesenchymal stem cells (BMSCs) have multidifferentiation potential and valuable immunomodulatory effects. The basic fibroblast growth factor (bFGF), known for its role in proliferation, has been reported to promote osteogenesis. These properties make them applicable in tissue engineering. In this study, we developed a 3D-printed polycaprolactone (PCL) scaffold loaded with bFGF and BMSCs (PCLMF) to restore the tendon-bone interface and regulate the local inflammatory microenvironment. The PCLMF scaffolds significantly improved the biomechanical strength, histological score, and local bone mineral density at regenerated entheses at 2 weeks postsurgery and achieved optimal performance at 8 weeks. Furthermore, PCLMF scaffolds facilitated BMSC osteogenic differentiation and suppressed adipogenic differentiation both in vivo and in vitro. In addition, RNA-seq showed that PCLMF scaffolds could regulate macrophage polarization and inflammation through the MAPK pathway. The implanted scaffold demonstrated excellent biocompatibility and biosafety. Therefore, this study proposes a promising and practical strategy for enhancing tendon-bone healing in rotator cuff tears.
Collapse
Affiliation(s)
- Yichao Ni
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Bo Tian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jinmin Lv
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Dongxiao Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Mingchao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Yuting Li
- School of Public Health, Soochow University, Suzhou, Jiangsu 215006, China
| | - Yuanbin Jiang
- Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou 215200, China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Subin Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xingrui Huang
- Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou 215200, China
| |
Collapse
|
3
|
Bojnec V, Vidmar J, Sužnik Z, Orož Koprivnik A, Špes Škrlec M, Frangež M, Majdič N, Vidmar G, Jesenšek Papež B. Evaluation of Hand Function Using Relative Motion Extension Concept (with or Without Night Wrist Orthosis) or Dynamic Extension Orthosis for Extensor Tendon Injuries in Zones 4-6-A Randomized Controlled Trial. Life (Basel) 2025; 15:249. [PMID: 40003659 PMCID: PMC11856411 DOI: 10.3390/life15020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to compare outcomes of early active motion (EAM) using the relative motion extension (RME) approach to outcomes of early passive motion (EPM) with a dynamic extension orthosis (DEO) and to evaluate whether the RME-only approach is equivalent to the RME-plus approach. Fifty adults were randomized into one of the three intervention groups receiving the DEO, RME only, or RME plus orthosis. The score of the Jebsen-Taylor hand function test (JTHFT) without writing and QuickDASH at T1, all measures of mobility at T1 and T2, and grip strength were better in the RME-only and RME-plus group compared to the DEO group, whereas the values of Patient Evaluation Measure (PEM) at T1 and T2, as well as QuickDASH score at T2, orthosis adherence, and the patient's comfort while wearing the orthoses did not statistically significantly differ among the three groups. The RME concept after extensor tendon injuries in zones 4-6 is superior to the DEO protocol in terms of earlier regain of hand function. The DEO and RME protocols were equivalent regarding patients' adherence and satisfaction with the orthosis. We found no differences in the RME-plus and RME-only protocols, indicating the safe use of the RME-only protocol in single extensor tendon injuries in zones 4-6.
Collapse
Affiliation(s)
- Vida Bojnec
- Institute for Physical and Rehabilitation Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jerneja Vidmar
- Department of Plastic and Reconstructive Surgery and Burns, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Zvezdana Sužnik
- Institute for Physical and Rehabilitation Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Aleksandra Orož Koprivnik
- Institute for Physical and Rehabilitation Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Milena Špes Škrlec
- Institute for Physical and Rehabilitation Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Maša Frangež
- Institute for Physical and Rehabilitation Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Neža Majdič
- Valdoltra Orthopaedic Hospital, 6280 Ankaran, Slovenia
| | - Gaj Vidmar
- University Rehabilitation Institute, 1000 Ljubljana, Slovenia
| | - Breda Jesenšek Papež
- Institute for Physical and Rehabilitation Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
4
|
Adjei-Sowah E, Lecaj E, Adhikari N, Sensini C, Nichols AE, Buckley MR, Loiselle AE. Loss of Cochlin drives impairments in tendon structure and function. Matrix Biol Plus 2025; 25:100168. [PMID: 40094079 PMCID: PMC11908599 DOI: 10.1016/j.mbplus.2025.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Aging tendons undergo disruptions in homeostasis, increased susceptibility to injury, and reduced capacity for healing. Exploring the mechanisms behind this disruption in homeostasis is essential for developing therapeutics aimed at maintaining tendon health through the lifespan. We have previously identified that the extracellular matrix protein, Cochlin, which is highly expressed in healthy flexor tendon, is consistently lost during both natural aging and upon depletion of Scleraxis-lineage cells in young animals, which recapitulates many aging-associated homeostatic disruptions. Therefore, we examined the effects of Cochlin-/- on tendon maturation and hypothesized that loss of Cochlin would disrupt normal tendon maturation and recapitulate phenotypes associated with disrupted adult tendon homeostasis, including alterations in collagen fibril organization, and impaired tendon mechanics. By 3-months of age, Cochlin-/- flexor tendons exhibited altered collagen structure, with these changes persisting through at least 9-months. In addition, Cochlin -/- tendons demonstrated significant declines in structural and material properties at 6-months, and structural properties at 9-months. While Cochlin-/- did not drastically change the overall tendon proteome, consistent decreases in proteins associated with RNA metabolism, extracellular matrix production and the cytoskeleton were observed in Cochlin -/-. Interestingly, disrupted tendon maturation via Cochlin-/- did not impair the tendon healing process. Taken together, these data define a critical role for Cochlin in facilitating physiological tendon maturation.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Elsa Lecaj
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Neeta Adhikari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Clara Sensini
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anne E.C. Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mark R. Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, NY 14642, USA
| |
Collapse
|
5
|
Alhaskawi A, Dong Y, Zou X, Zhou W, Ezzi SHA, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Abdalbary S, Lu H. Advancements in biomaterials and scaffold design for tendon repair and regeneration. J Appl Biomater Funct Mater 2025; 23:22808000241310684. [PMID: 40420476 DOI: 10.1177/22808000241310684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Tendon injuries present a significant clinical challenge due to their limited natural healing capacity and the mechanical demands placed on these tissues. This review provides a comprehensive evaluation of the current strategies and advancements in tendon repair and regeneration, focusing on biomaterial innovations and scaffold design. Through a systematic literature search of databases such as PubMed, Scopus, and Web of Science, key studies were analyzed to assess the efficacy of biocompatible materials like hydrogels, synthetic polymers, and fiber-reinforced scaffolds in promoting tendon healing. Emphasis is placed on the role of collagen fiber architecture, including fiber diameter, alignment, and crimping, in restoring the mechanical strength and functional properties of tendons. Additionally, the review highlights emerging techniques such as electrospinning, melt electrowriting, and hybrid textile methods that allow for precise scaffold designs mimicking native tendon structures. Cutting-edge approaches in regenerative medicine, including stem cell therapies, bioelectronic devices, and bioactive molecules, are also explored for their potential to enhance tendon repair. The findings underscore the transformative impact of these technologies on improving tendon biomechanics and functional recovery. Future research directions are outlined, aiming to overcome the current limitations in scaffold mechanical properties and integration at tendon-bone and tendon-muscle junctions. This review contributes to the development of more effective strategies for tendon regeneration, advancing both clinical outcomes and the field of orthopedic tissue engineering.
Collapse
Affiliation(s)
- Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| | - Xiaodi Zou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
- Department of Orthopedics, Zhejiang Chinese Medical University, The Second Affiliated School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Weijie Zhou
- Department of Orthopedics, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, Zhejiang Province, P. R. China
| | - Sohaib Hasan Abdullah Ezzi
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P. R. China
| | - Vishnu Goutham Kota
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | | | - Sahar Abdalbary
- Faculty of Physical Therapy, Department of Orthopedic Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
6
|
Zhang W, Rao Y, Wong SH, Wu Y, Zhang Y, Yang R, Tsui SK, Ker DFE, Mao C, Frith JE, Cao Q, Tuan RS, Wang DM. Transcriptome-Optimized Hydrogel Design of a Stem Cell Niche for Enhanced Tendon Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2313722. [PMID: 39417770 PMCID: PMC11733723 DOI: 10.1002/adma.202313722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Bioactive hydrogels have emerged as promising artificial niches for enhancing stem cell-mediated tendon repair. However, a substantial knowledge gap remains regarding the optimal combination of niche features for targeted cellular responses, which often leads to lengthy development cycles and uncontrolled healing outcomes. To address this critical gap, an innovative, data-driven materiomics strategy is developed. This approach is based on in-house RNA-seq data that integrates bioinformatics and mathematical modeling, which is a significant departure from traditional trial-and-error methods. It aims to provide both mechanistic insights and quantitative assessments and predictions of the tenogenic effects of adipose-derived stem cells induced by systematically modulated features of a tendon-mimetic hydrogel (TenoGel). The knowledge generated has enabled a rational approach for TenoGel design, addressing key considerations, such as tendon extracellular matrix concentration, uniaxial tensile loading, and in vitro pre-conditioning duration. Remarkably, our optimized TenoGel demonstrated robust tenogenesis in vitro and facilitated tendon regeneration while preventing undesired ectopic ossification in a rat tendon injury model. These findings shed light on the importance of tailoring hydrogel features for efficient tendon repair. They also highlight the tremendous potential of the innovative materiomics strategy as a powerful predictive and assessment tool in biomaterial development for regenerative medicine.
Collapse
Affiliation(s)
- Wanqi Zhang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Ying Rao
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Shing Hei Wong
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Yeung Wu
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Yuanhao Zhang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Rui Yang
- Department of Sports MedicineOrthopedicsSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Stephen Kwok‐Wing Tsui
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Dai Fei Elmer Ker
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SARChina
| | - Jessica E. Frith
- Materials Science and EngineeringMonash UniversityClayton3800VICAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClayton3800VICAustralia
- Australian Research Council Training Centre for Cell and Tissue Engineering TechnologiesMonash UniversityClayton3800VICAustralia
| | - Qin Cao
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Rocky S. Tuan
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| | - Dan Michelle Wang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| |
Collapse
|
7
|
Fernandez‐Yague MA, Palma M, Tofail SAM, Duffy M, Quinlan LR, Dalby MJ, Pandit A, Biggs MJ. A Tympanic Piezo-Bioreactor Modulates Ion Channel-Associated Mechanosignaling to Stabilize Phenotype and Promote Tenogenesis in Human Tendon-Derived Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405711. [PMID: 39439240 PMCID: PMC11615817 DOI: 10.1002/advs.202405711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/22/2024] [Indexed: 10/25/2024]
Abstract
Preserving the function of human tendon-derived cells (hTDCs) during cell expansion is a significant challenge in regenerative medicine. In this study, a non-genetic approach is introduced to control the differentiation of hTDCs using a newly developed tympanic bioreactor. The system mimics the functionality of the human tympanic membrane, employing a piezoelectrically tuned acoustic diaphragm made of polyvinylidene fluoride-co-trifluoroethylene and boron nitride nanotubes. The diaphragm is vibrationally actuated to deliver targeted electromechanical stimulation to hTDCs. The results demonstrate that the system effectively maintains the tendon-specific phenotype of hTDCs, even under conditions that typically induce nonspecific differentiation, such as osteogenesis. This stabilization is achieved by modulating integrin-mediated mechanosignaling via ion channel-regulated calcium activity, potentially by TREK-1 and PIEZO1, yet targeted studies are required for confirmation. Finally, the system sustains the activation of key differentiation pathways (bone morphogenetic protein, BMP) while downregulating osteogenesis-associated (mitogen-ctivated protein kinase, MAPK and wingless integrated, WNT) pathways and upregulating Focal Adhesion Kinase (FAK) signaling. This approach offers a finely tunable, dose-dependent control over hTDC differentiation, presenting significant potential for non-genetic approaches in cell therapy, tendon tissue engineering, and the regeneration of other mechanosensitive tissues.
Collapse
Affiliation(s)
- Marc A. Fernandez‐Yague
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91W2TYIreland
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUnited Kingdom
| | - Matteo Palma
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUnited Kingdom
| | - Syed A. M. Tofail
- Department of Physics and Bernal InstituteUniversity of LimerickLimerickV94 T9PXIreland
| | - Maeve Duffy
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91W2TYIreland
| | - Leo R. Quinlan
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91W2TYIreland
| | - Mathew J. Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research CentreUniversity of Glasgow11 Chapel LaneGlasgowG11 6EWUnited Kingdom
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91W2TYIreland
| | - Manus J. Biggs
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91W2TYIreland
| |
Collapse
|
8
|
Adjei-Sowah E, Lecaj E, Adhikari N, Sensini C, Nichols AE, Buckley MR, Loiselle AE. Loss of Cochlin drives impairments in tendon structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623674. [PMID: 39605598 PMCID: PMC11601365 DOI: 10.1101/2024.11.14.623674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Aging tendons undergo disruptions in homeostasis, increased susceptibility to injury, and reduced capacity for healing. Exploring the mechanisms behind this disruption in homeostasis is essential for developing therapeutics aimed at maintaining tendon health through the lifespan. We have previously identified that the extracellular matrix protein, Cochlin, which is highly expressed in healthy flexor tendon, is consistently lost during both natural aging and upon depletion of Scleraxis-lineage cells in young animals, which recapitulates many aging-associated homeostatic disruptions. Therefore, we hypothesized that loss of Cochlin would disrupt tendon homeostasis, including alterations in collagen fibril organization, and impaired tendon mechanics. By 3-months of age, Cochlin -/- flexor tendons exhibited altered collagen structure, with these changes persisting through at least 9-months. In addition, Cochlin-/- tendons demonstrated significant declines in structural and material properties at 6-months, and structural properties at 9-months. While Cochlin -/- did not drastically change the overall tendon proteome, consistent decreases in proteins associated with RNA metabolism, extracellular matrix production and the cytoskeleton were observed in Cochlin -/-. Interestingly, homeostatic disruption via Cochlin -/- did not impair the tendon healing process. Taken together, these data define a critical role for Cochlin in maintaining tendon homeostasis and suggest retention or restoration of Cochlin as a potential therapeutic approach to retain tendon structure and function through the lifespan.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester; Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Elsa Lecaj
- Department of Biomedical Engineering, University of Rochester; Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Neeta Adhikari
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Clara Sensini
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Anne E.C. Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Mark R. Buckley
- Department of Biomedical Engineering, University of Rochester; Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering, University of Rochester; Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center; Rochester, NY 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center; NY, 14642, USA
| |
Collapse
|
9
|
Cohen JS, Fung AK, Stein MK, Darrieutort-Laffite C, Weiss SN, Shetye SS, Thurlow NA, Nuss CA, Dyment NA, Soslowsky LJ. Tendon-targeted knockout of collagen XI disrupts patellar and Achilles tendon structure and mechanical properties during murine postnatal development. Connect Tissue Res 2024; 65:497-510. [PMID: 39620714 PMCID: PMC11759649 DOI: 10.1080/03008207.2024.2432324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Collagen XI is a fibril-forming collagen typically associated with type II collagen tissues but is also expressed in type I collagen-rich tendons, especially during development. We previously showed that tendon-targeted (Scx-Cre) Col11a1 knockout mice have smaller tendons in adulthood with aberrant fibril structure and impaired mechanical properties. However, the manifestation of this phenotype is not clearly understood. Therefore, our objective is to define the spatiotemporal roles of collagen XI in tendon structure-function during postnatal development. Given the high expression of collagen XI during embryonic development, we hypothesized that collagen XI knockout leads to the deposition of weakened extracellular matrix during early postnatal timepoints, disrupting the establishment of tendon structure and function. METHODS Patellar and Achilles tendons from postnatal (P) days 0, 10, 20, and 30 tendon-targeted scleraxis-Cre heterozygous and homozygous Col11a1 knockout mice were evaluated for morphology, nuclear organization, fibril morphology, mechanical properties, and gene expression. RESULTS At P0, there were no differences in tendon length or fibril diameter of either tendon. By P10, striking structural and functional differences emerged, with collagen XI deficiency resulting in increased tendon length, a heterogeneous and larger diameter population of fibrils, and inferior mechanical properties in both patellar and Achilles tendons. Differences increased in magnitude through P30, supporting our hypothesis that impaired structure-function during postnatal development may drive tendon lengthening and reduced mechanical properties. CONCLUSIONS Though collagen XI is a quantitatively minor component of the tendon extracellular matrix, these results highlight the critical role of collagen XI in the acquisition of tendon structure-function.
Collapse
Affiliation(s)
- Jordan S. Cohen
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Ashley K. Fung
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew K. Stein
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Christelle Darrieutort-Laffite
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Stephanie N. Weiss
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Nat A. Thurlow
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Courtney A. Nuss
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathaniel A. Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Oorloff M, Hruby A, Averbukh M, Alcala A, Dutta N, Minor C, Castro Torres T, Moaddeli D, Vega M, Kim J, Bong A, Coakley AJ, Hicks D, Wang J, Wang T, Hoang S, Tharp KM, Garcia G, Higuchi-Sanabria R. Growth on stiffer substrates impacts animal health and longevity in C. elegans. PLoS One 2024; 19:e0302673. [PMID: 39264947 PMCID: PMC11392421 DOI: 10.1371/journal.pone.0302673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/09/2024] [Indexed: 09/14/2024] Open
Abstract
Mechanical stress is a measure of internal resistance exhibited by a body or material when external forces, such as compression, tension, bending, etc. are applied. The study of mechanical stress on health and aging is a continuously growing field, as major changes to the extracellular matrix and cell-to-cell adhesions can result in dramatic changes to tissue stiffness during aging and diseased conditions. For example, during normal aging, many tissues including the ovaries, skin, blood vessels, and heart exhibit increased stiffness, which can result in a significant reduction in function of that organ. As such, numerous model systems have recently emerged to study the impact of mechanical and physical stress on cell and tissue health, including cell-culture conditions with matrigels and other surfaces that alter substrate stiffness and ex vivo tissue models that can apply stress directly to organs like muscle or tendons. Here, we sought to develop a novel method in an in vivo model organism setting to study the impact of altering substrate stiffness on aging by changing the stiffness of solid agar medium used for growth of C. elegans. We found that greater substrate stiffness had limited effects on cellular health, gene expression, organismal health, stress resilience, and longevity. Overall, our study reveals that altering substrate stiffness of growth medium for C. elegans has only mild impact on animal health and longevity; however, these impacts were not nominal and open up important considerations for C. elegans biologists in standardizing agar medium choice for experimental assays.
Collapse
Affiliation(s)
- Maria Oorloff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Cray Minor
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States of America
| | - Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Andrew Bong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Aeowynn J. Coakley
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Daniel Hicks
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Jing Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Tiffany Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Sally Hoang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Kevin M. Tharp
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States of America
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
11
|
Marrone W, Andrews R, Reynolds A, Vignona P, Patel S, O'Malley M. Rehabilitation and Return to Sports after Achilles Tendon Repair. Int J Sports Phys Ther 2024; 19:1152-1165. [PMID: 39246413 PMCID: PMC11379499 DOI: 10.26603/001c.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Rehabilitation protocols post-Achilles tendon repair vary widely, particularly regarding weight bearing (WB) and immobilization duration, impacting recovery trajectories significantly. This commentary focuses on rehabilitation strategies following acute Achilles tendon repair (ATR), emphasizing early mobilization and progressive loading. Techniques such as blood flow restriction training (BFRT) and progressive loading to restore strength and tendon mechanical properties are discussed in the context of optimizing recovery, minimizing tendon elongation and facilitating safe return to sport (RTS). This manuscript highlights current evidence and clinical insights to guide practitioners in optimizing rehabilitation protocols for athletes recovering from ATR, aiming to improve functional outcomes and support safe return to athletic activity.
Collapse
Affiliation(s)
| | | | | | | | - Snehal Patel
- Sports Medicine Institute Hospital for Special Surgery
| | | |
Collapse
|
12
|
Troop LD, Puetzer JL. Intermittent cyclic stretch of engineered ligaments drives hierarchical collagen fiber maturation in a dose- and organizational-dependent manner. Acta Biomater 2024; 185:296-311. [PMID: 39025395 PMCID: PMC11381169 DOI: 10.1016/j.actbio.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Hierarchical collagen fibers are the primary source of strength in tendons and ligaments; however, these fibers largely do not regenerate after injury or with repair, resulting in limited treatment options. We previously developed a static culture system that guides ACL fibroblasts to produce native-sized fibers and early fascicles by 6 weeks. These constructs are promising ligament replacements, but further maturation is needed. Mechanical cues are critical for development in vivo and in engineered tissues; however, the effect on larger fiber and fascicle formation is largely unknown. Our objective was to investigate whether intermittent cyclic stretch, mimicking rapid muscle activity, drives further maturation in our system to create stronger engineered replacements and to explore whether cyclic loading has differential effects on cells at different degrees of collagen organization to better inform engineered tissue maturation protocols. Constructs were loaded with an established intermittent cyclic loading regime at 5 or 10 % strain for up to 6 weeks and compared to static controls. Cyclic loading drove cells to increase hierarchical collagen organization, collagen crimp, and tissue tensile properties, ultimately producing constructs that matched or exceeded immature ACL properties. Further, the effect of loading on cells varied depending on degree of organization. Specifically, 10 % load drove early improvements in tensile properties and composition, while 5 % load was more beneficial later in culture, suggesting a shift in mechanotransduction. This study provides new insight into how cyclic loading affects cell-driven hierarchical fiber formation and maturation, which will help to develop better rehabilitation protocols and engineer stronger replacements. STATEMENT OF SIGNIFICANCE: Collagen fibers are the primary source of strength and function in tendons and ligaments throughout the body. These fibers have limited regenerate after injury, with repair, and in engineered replacements, reducing treatment options. Cyclic load has been shown to improve fibril level alignment, but its effect at the larger fiber and fascicle length-scale is largely unknown. Here, we demonstrate intermittent cyclic loading increases cell-driven hierarchical fiber formation and tissue mechanics, producing engineered replacements with similar organization and mechanics as immature ACLs. This study provides new insight into how cyclic loading affects cell-driven fiber maturation. A better understanding of how mechanical cues regulate fiber formation will help to develop better engineered replacements and rehabilitation protocols to drive repair after injury.
Collapse
Affiliation(s)
- Leia D Troop
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States; Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA 23284, United States.
| |
Collapse
|
13
|
Leahy TP, Chenna SS, Soslowsky LJ, Dyment NA. Focal adhesion kinase regulates tendon cell mechanoresponse and physiological tendon development. FASEB J 2024; 38:e70050. [PMID: 39259535 PMCID: PMC11522781 DOI: 10.1096/fj.202400151r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Tendons enable locomotion by transmitting high tensile mechanical forces between muscle and bone via their dense extracellular matrix (ECM). The application of extrinsic mechanical stimuli via muscle contraction is necessary to regulate healthy tendon function. Specifically, applied physiological levels of mechanical loading elicit an anabolic tendon cell response, while decreased mechanical loading evokes a degradative tendon state. Although the tendon response to mechanical stimuli has implications in disease pathogenesis and clinical treatment strategies, the cell signaling mechanisms by which tendon cells sense and respond to mechanical stimuli within the native tendon ECM remain largely unknown. Therefore, we explored the role of cell-ECM adhesions in regulating tendon cell mechanotransduction by perturbing the genetic expression and signaling activity of focal adhesion kinase (FAK) through both in vitro and in vivo approaches. We determined that FAK regulates tendon cell spreading behavior and focal adhesion morphology, nuclear deformation in response to applied mechanical strain, and mechanosensitive gene expression. In addition, our data reveal that FAK signaling plays an essential role in in vivo tendon development and postnatal growth, as FAK-knockout mouse tendons demonstrated reduced tendon size, altered mechanical properties, differences in cellular composition, and reduced maturity of the deposited ECM. These data provide a foundational understanding of the role of FAK signaling as a critical regulator of in situ tendon cell mechanotransduction. Importantly, an increased understanding of tendon cell mechanotransductive mechanisms may inform clinical practice as well as lead to the discovery of diagnostic and/or therapeutic molecular targets.
Collapse
Affiliation(s)
- Thomas P. Leahy
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Srish S. Chenna
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J. Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathaniel A. Dyment
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Usami Y, Iijima H, Kokubun T. Exploring the role of mechanical forces on tendon development using in vivo model: A scoping review. Dev Dyn 2024; 253:550-565. [PMID: 37947268 DOI: 10.1002/dvdy.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/25/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
Tendons transmit the muscle contraction forces to bones and drive joint movement throughout life. While extensive research have indicated the essentiality of mechanical forces on tendon development, a comprehensive understanding of the fundamental role of mechanical forces still needs to be impaerted. This scoping review aimed to summarize the current knowledge about the role of mechanical forces during the tendon developmental phase. The electronic database search using PubMed, performed in May 2023, yielded 651 articles, of which 16 met the prespecified inclusion criteria. We summarized and divided the methods to reduce the mechanical force into three groups: loss of muscle, muscle dysfunction, and weight-bearing regulation. In contrast, there were few studies to analyze the increased mechanical force model. Most studies suggested that mechanical force has some roles in tendon development in the embryo to postnatal phase. However, we identified species variability and methodological heterogeneity to modulate mechanical force. To establish a comprehensive understanding, methodological commonality to modulate the mechanical force is needed in this field. Additionally, summarizing chronological changes in developmental processes across animal species helps to understand the essence of developmental tendon mechanobiology. We expect that the findings summarized in the current review serve as a groundwork for future study in the fields of tendon developmantal biology and mechanobiology.
Collapse
Affiliation(s)
- Yuna Usami
- Graduate School of Health, Medicine, and Welfare, Saitama Prefectural University, Koshigaya, Japan
| | - Hirotaka Iijima
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, Massachusetts, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Takanori Kokubun
- Graduate School of Health, Medicine, and Welfare, Saitama Prefectural University, Koshigaya, Japan
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Koshigaya, Japan
| |
Collapse
|
15
|
Oorloff M, Hruby A, Averbukh M, Alcala A, Dutta N, Torres TC, Moaddeli D, Vega M, Kim J, Bong A, Coakley AJ, Hicks D, Wang J, Wang T, Hoang S, Tharp KM, Garcia G, Higuchi-Sanabria R. Mechanical stress through growth on stiffer substrates impacts animal health and longevity in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589121. [PMID: 38645203 PMCID: PMC11030433 DOI: 10.1101/2024.04.11.589121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Mechanical stress is a measure of internal resistance exhibited by a body or material when external forces, such as compression, tension, bending, etc. are applied. The study of mechanical stress on health and aging is a continuously growing field, as major changes to the extracellular matrix and cell-to-cell adhesions can result in dramatic changes to tissue stiffness during aging and diseased conditions. For example, during normal aging, many tissues including the ovaries, skin, blood vessels, and heart exhibit increased stiffness, which can result in a significant reduction in function of that organ. As such, numerous model systems have recently emerged to study the impact of mechanical and physical stress on cell and tissue health, including cell-culture conditions with matrigels and other surfaces that alter substrate stiffness and ex vivo tissue models that can apply stress directly to organs like muscle or tendons. Here, we sought to develop a novel method in an in vivo, model organism setting to study the impact of mechanical stress on aging, by increasing substrate stiffness in solid agar medium of C. elegans. To our surprise, we found shockingly limited impact of growth of C. elegans on stiffer substrates, including limited effects on cellular health, gene expression, organismal health, stress resilience, and longevity. Overall, our studies reveal that altering substrate stiffness of growth medium for C. elegans have only mild impact on animal health and longevity; however, these impacts were not nominal and open up important considerations for C. elegans biologists in standardizing agar medium choice for experimental assays.
Collapse
Affiliation(s)
- Maria Oorloff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Andrew Bong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Aeowynn J. Coakley
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Daniel Hicks
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Jing Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Tiffany Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Sally Hoang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Kevin M. Tharp
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, 92037
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
16
|
Troop LD, Puetzer JL. Intermittent Cyclic Stretch of Engineered Ligaments Drives Hierarchical Collagen Fiber Maturation in a Dose- and Organizational-Dependent Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588420. [PMID: 38645097 PMCID: PMC11030411 DOI: 10.1101/2024.04.06.588420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Hierarchical collagen fibers are the primary source of strength in tendons and ligaments, however these fibers do not regenerate after injury or with repair, resulting in limited treatment options. We previously developed a culture system that guides ACL fibroblasts to produce native-sized fibers and fascicles by 6 weeks. These constructs are promising ligament replacements, but further maturation is needed. Mechanical cues are critical for development in vivo and in engineered tissues; however, the effect on larger fiber and fascicle formation is largely unknown. Our objective was to investigate whether intermittent cyclic stretch, mimicking rapid muscle activity, drives further maturation in our system to create stronger engineered replacements and to explore whether cyclic loading has differential effects on cells at different degrees of collagen organization to better inform engineered tissue maturation protocols. Constructs were loaded with an established intermittent cyclic loading regime at 5 or 10% strain for up to 6 weeks and compared to static controls. Cyclic loading drove cells to increase hierarchical collagen organization, collagen crimp, and tissue mechanics, ultimately producing constructs that matched or exceeded immature ACL properties. Further, the effect of loading on cells varied depending on degree of organization. Specifically, 10% load drove early improvements in mechanics and composition, while 5% load was more beneficial later in culture, suggesting a cellular threshold response and a shift in mechanotransduction. This study provides new insight into how cyclic loading affects cell-driven hierarchical fiber formation and maturation, which will help to develop better rehabilitation protocols and engineer stronger replacements.
Collapse
Affiliation(s)
- Leia D. Troop
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States
| | - Jennifer L. Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, 23284, United States
| |
Collapse
|
17
|
Li SN, Peeling P, Scott BR, Peiffer JJ, Shaykevich A, Girard O. Recovery following exercise-induced fatigue: Influence of a single heart rate clamped cycling session under systemic hypoxia. J Sports Sci 2024; 42:350-357. [PMID: 38502604 DOI: 10.1080/02640414.2024.2330816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
We investigated whether a single heart rate clamped cycling session under systemic hypoxia affects the recovery of physical and psycho-physiological responses from residual fatigue compared to normoxia. On separate occasions, twelve trained males performed a 3-d acute training camp scenario. On days 1 and 3, participants cycled for 60 min at a constant heart rate (80% of ventilatory threshold). On day 2, fatigue was induced through a simulated team game circuit (STGC), followed by a 60-min intervention of either: (1) heart rate clamped cycling in normoxia; (2) heart rate clamped cycling in hypoxia (simulated altitude ~ 3500 m); or (3) no cycling. Countermovement jump height and leg stiffness were assessed before and after every session. Perceptual fatigue was evaluated daily. Compared to baseline, jump height decreased at all timepoints following the STGC (all p < 0.05). Leg stiffness and cycling power output only decreased immediately following the STGC, with a 48% further decrease in cycling power output in hypoxia compared to normoxia (p < 0.05). Perceived fatigue, decreased sleep quality, and increased muscle soreness responses occurred on day 3 (p < 0.05). A single heart rate-clamped cycling session in hypoxia reduced mechanical output without affecting recovery of physical performance and perceptual measures from residual fatigue induced through team sport activity.
Collapse
Affiliation(s)
- Siu Nam Li
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, WA, Australia
| | - Peter Peeling
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, WA, Australia
- Department of Sport Science, Western Australian Institute of Sport, Perth, WA, Australia
| | - Brendan R Scott
- Murdoch Applied Sport Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA, Australia
- Centre for Healthy Ageing, Murdoch University, Perth, WA, Australia
| | - Jeremiah J Peiffer
- Murdoch Applied Sport Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA, Australia
- Centre for Healthy Ageing, Murdoch University, Perth, WA, Australia
| | - Alex Shaykevich
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
18
|
Jahn J, Ehlen QT, Huang CY. Finding the Goldilocks Zone of Mechanical Loading: A Comprehensive Review of Mechanical Loading in the Prevention and Treatment of Knee Osteoarthritis. Bioengineering (Basel) 2024; 11:110. [PMID: 38391596 PMCID: PMC10886318 DOI: 10.3390/bioengineering11020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
In this review, we discuss the interaction of mechanical factors influencing knee osteoarthritis (KOA) and post-traumatic osteoarthritis (PTOA) pathogenesis. Emphasizing the importance of mechanotransduction within inflammatory responses, we discuss its capacity for being utilized and harnessed within the context of prevention and rehabilitation of osteoarthritis (OA). Additionally, we introduce a discussion on the Goldilocks zone, which describes the necessity of maintaining a balance of adequate, but not excessive mechanical loading to maintain proper knee joint health. Expanding beyond these, we synthesize findings from current literature that explore the biomechanical loading of various rehabilitation exercises, in hopes of aiding future recommendations for physicians managing KOA and PTOA and athletic training staff strategically planning athlete loads to mitigate the risk of joint injury. The integration of these concepts provides a multifactorial analysis of the contributing factors of KOA and PTOA, in order to spur further research and illuminate the potential of utilizing the body's own physiological responses to mechanical stimuli in the management of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.)
| | - Chun-Yuh Huang
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
19
|
Schneebeli A, Barbero M, Filardo G, Testa E, Riegger M, Sangiorgio A, Cescon C, Soldini E, Falla D. Shear Wave Tensiometry Can Detect Loading Differences Between Operated and Unaffected Achilles Tendon. Foot Ankle Int 2023; 44:1295-1304. [PMID: 37924256 DOI: 10.1177/10711007231201156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
BACKGROUND The clinically relevant healing process of a ruptured and repaired Achilles tendon (AT) can last more than a year. The purpose of this cross-sectional study was to test if shear wave tensiometry is able to detect AT loading changes between a surgically managed AT rupture versus the unaffected contralateral tendon. Our secondary aims were to evaluate differences in mechanical properties when measured with myotonometry and morphological properties of the tendons measured with ultrasonographic imaging. METHODS Twenty-one patients with surgically treated AT ruptures were investigated 12-37 months after surgery. Tendon load was measured using a shear wave tensiometer composed of an array of 4 accelerometers fixed on the tendon. Shear wave speed along the Achilles tendon was evaluated at different levels of ankle torque for both the operated and the unaffected side. Mechanical properties of the tendons were evaluated using MyotonPRO and morphological properties using ultrasonographic imaging. Friedman test was used to assess differences in AT wave speed, stiffness, thickness, and cross-sectional area between the operated and the unaffected tendon. RESULTS We found a significant shear wave speed difference between sides at every ankle joint torque (P < .05) with a large effect size for the lowest ankle torque and small to medium effect sizes for higher ankle torque. Stiffness, thickness, and cross-sectional area of the operated tendon remained significantly higher compared to the unaffected side. CONCLUSION In this cohort, we found that shear wave tensiometry can detect differences between operated and unaffected AT during a standardized loading procedure. The shear wave speed along the operated tendon, as well as the mechanical and morphologic properties, remains higher for 1-3 years after a rupture. LEVEL OF EVIDENCE Level III, case-control study.
Collapse
Affiliation(s)
- Alessandro Schneebeli
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Marco Barbero
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Giuseppe Filardo
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Enrique Testa
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Martin Riegger
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Alessandro Sangiorgio
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
| | - Corrado Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Emiliano Soldini
- Competence Centre for Healthcare Practices and Policies, Department of Business Economics, Health, and Social Care, University of Applied. Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Brown ME, Puetzer JL. Enthesis maturation in engineered ligaments is differentially driven by loads that mimic slow growth elongation and rapid cyclic muscle movement. Acta Biomater 2023; 172:106-122. [PMID: 37839633 DOI: 10.1016/j.actbio.2023.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Entheses are complex attachments that translate load between elastic-ligaments and stiff-bone via organizational and compositional gradients. Neither natural healing, repair, nor engineered replacements restore these gradients, contributing to high re-tear rates. Previously, we developed a culture system which guides ligament fibroblasts in high-density collagen gels to develop early postnatal-like entheses, however further maturation is needed. Mechanical cues, including slow growth elongation and cyclic muscle activity, are critical to enthesis development in vivo but these cues have not been widely explored in engineered entheses and their individual contribution to maturation is largely unknown. Our objective here was to investigate how slow stretch, mimicking ACL growth rates, and intermittent cyclic loading, mimicking muscle activity, individually drive enthesis maturation in our system so to shed light on the cues governing enthesis development, while further developing our tissue engineered replacements. Interestingly, we found these loads differentially drive organizational maturation, with slow stretch driving improvements in the interface/enthesis region, and cyclic load improving the ligament region. However, despite differentially affecting organization, both loads produced improvements to interface mechanics and zonal composition. This study provides insight into how mechanical cues differentially affect enthesis development, while producing some of the most organized engineered enthesis to date. STATEMENT OF SIGNIFICANCE: Entheses attach ligaments to bone and are critical to load transfer; however, entheses do not regenerate with repair or replacement, contributing to high re-tear rates. Mechanical cues are critical to enthesis development in vivo but their individual contribution to maturation is largely unknown and they have not been widely explored in engineered replacements. Here, using a novel culture system, we provide new insight into how slow stretch, mimicking ACL growth rates, and intermittent cyclic loading, mimicking muscle activity, differentially affect enthesis maturation in engineered ligament-to-bone tissues, ultimately producing some of the most organized entheses to date. This system is a promising platform to explore cues regulating enthesis formation so to produce functional engineered replacements and better drive regeneration following repair.
Collapse
Affiliation(s)
- M Ethan Brown
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States; Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, 23284, United States.
| |
Collapse
|
21
|
Diao L, Peng Y, Wang J, Chen J, Wang G, Jia S, Zheng C. Eccentric Contraction Enhances Healing of the Bone-Tendon Interface After Rotator Cuff Repair in Mice. Am J Sports Med 2023; 51:3835-3844. [PMID: 37861235 DOI: 10.1177/03635465231202901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
BACKGROUND Various muscle contraction modalities have differing effects on the musculoskeletal system. To understand the magnitude of these effects, the authors investigated the effects of eccentric and concentric contractions on the bone-tendon interface after rotator cuff repair in mice. HYPOTHESIS Eccentric contraction promotes healing of the bone-tendon interface after rotator cuff repair in mice better than other muscle contraction patterns. STUDY DESIGN Controlled laboratory study. METHODS The authors performed acute supraspinatus tendon repair of the right shoulder in 104 C57BL/6 mice. Animals were randomized into 4 groups postoperatively: control group (Con group), horizontal running group (Horz group), +15° uphill running group (Up group), and -15° downhill running group (Down group), with 26 animals in each group. At 4 and 8 weeks postoperatively, the authors removed the eyeball, collected blood samples, and extracted the supraspinatus tendon-humerus complex for histological, immunological, bone morphological, and biomechanical tests. RESULTS At 4 and 8 weeks postoperatively, the Down group exhibited a better collagen cell arrangement and fibrocartilage layer than the other 3 groups. At 4 weeks postoperatively, anti-inflammatory macrophages (M2 macrophages) were observed at the repair site in all groups except for the Con group. At 8 weeks postoperatively, M2 macrophages were withdrawn from the tendon site in all groups. The transforming growth factor β1 concentration in the Down group was greater than that in the other 3 groups at 4 weeks postoperatively, and it was higher than that in the Con group at 8 weeks postoperatively. The bone volume fraction, number of trabeculae, and thickness of trabeculae at the repair site in the Down group, as well as the ultimate strength and failure load in the biomechanical tests, were greater than those in the other 3 groups at 8 weeks postoperatively. CONCLUSION Eccentric contraction promotes healing of the bone-tendon interface after rotator cuff repair in mice better than other muscle contraction patterns. CLINICAL RELEVANCE After clinical rotator cuff repair, patients can be rehabilitated by eccentric training to speed up the functional recovery of the shoulder joint.
Collapse
Affiliation(s)
- Luyu Diao
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Yundong Peng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Juan Wang
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jian Chen
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Guanglan Wang
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- Hubei Key Laboratory of Sport Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Cheng Zheng
- Department of Sports Medicine, Affiliated Hospital, Wuhan Sports University, Wuhan, China
| |
Collapse
|
22
|
Wang Y, Li J. Current progress in growth factors and extracellular vesicles in tendon healing. Int Wound J 2023; 20:3871-3883. [PMID: 37291064 PMCID: PMC10588330 DOI: 10.1111/iwj.14261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023] Open
Abstract
Tendon injury healing is a complex process that involves the participation of a significant number of molecules and cells, including growth factors molecules in a key role. Numerous studies have demonstrated the function of growth factors in tendon healing, and the recent emergence of EV has also provided a new visual field for promoting tendon healing. This review examines the tendon structure, growth, and development, as well as the physiological process of its healing after injury. The review assesses the role of six substances in tendon healing: insulin-like growth factor-I (IGF-I), transforming growth factor β (TGFβ), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and EV. Different growth factors are active at various stages of healing and exhibit separate physiological activities. IGF-1 is expressed immediately after injury and stimulates the mitosis of various cells while suppressing the response to inflammation. VEGF, which is also active immediately after injury, accelerates local metabolism by promoting vascular network formation and positively impacts the activities of other growth factors. However, VEGF's protracted action could be harmful to tendon healing. PDGF, the earliest discovered cytokine to influence tendon healing, has a powerful cell chemotaxis and promotes cell proliferation, but it can equally accelerate the response to inflammation and relieve local adhesions. Also useful for relieving tendon adhesion is TGF- β, which is active almost during the entire phase of tendon healing. As a powerful active substance, in addition to its participation in the field of cardiovascular and cerebrovascular vessels, tumour and chronic wounds, TGF- β reportedly plays a role in promoting cell proliferation, activating growth factors, and inhibiting inflammatory response during tendon healing.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Li M, Wu Y, Yuan T, Su H, Qin M, Yang X, Mi S. Biofabrication of Composite Tendon Constructs with the Fibrous Arrangement, High Cell Density, and Enhanced Cell Alignment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47989-48000. [PMID: 37796904 DOI: 10.1021/acsami.3c10697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Current tissue-engineered tendons are mostly limited to the replication of fibrous organizations of native tendons, which lack the biomimicry of a densely packed cell arrangement. In this study, composite tendon constructs (CTCs) with fibrous arrangement, high cell density, and enhanced cell alignment were developed by integrating the electrohydrodynamic jet 3D printing (e-jetting) technique and the fabrication of tissue strands (TSs). A tubular polycaprolactone (PCL) scaffold was created using e-jetting, followed by coating a thin layer of alginate. Human mesenchymal stem cells were then microinjected into the PCL scaffolds, aggregated into TSs, and formed CTCs with a core-shell structure. Owing to the presence of TSs, CTCs demonstrated the anatomically relevant cell density and morphology, and cells migrated from the TSs onto e-jetted scaffolds. Also, the mechanical strength of CTCs approached that of native tendons due to the existence of e-jetted scaffolds (Young's modulus: ∼21 MPa, ultimate strength: ∼5 MPa). During the entire culture period, CTCs maintained high survival rates and good structural integrity without the observation of necrotic cores and disintegration of two portions. In addition, CTCs that were cultured with uniaxial cyclic stretching revealed not only the increased expression of tendon-related proteins but also the enhanced cellular orientation. The promising results demonstrated the potential of this novel biofabrication strategy for building tissue-engineered tendon constructs with the proper biological, mechanical, and histological relevance..
Collapse
Affiliation(s)
- Ming Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tianying Yuan
- Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Hao Su
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Minghao Qin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shengli Mi
- Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
24
|
Kwan KYC, Ng KWK, Rao Y, Zhu C, Qi S, Tuan RS, Ker DFE, Wang DM. Effect of Aging on Tendon Biology, Biomechanics and Implications for Treatment Approaches. Int J Mol Sci 2023; 24:15183. [PMID: 37894875 PMCID: PMC10607611 DOI: 10.3390/ijms242015183] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Tendon aging is associated with an increasing prevalence of tendon injuries and/or chronic tendon diseases, such as tendinopathy, which affects approximately 25% of the adult population. Aged tendons are often characterized by a reduction in the number and functionality of tendon stem/progenitor cells (TSPCs), fragmented or disorganized collagen bundles, and an increased deposition of glycosaminoglycans (GAGs), leading to pain, inflammation, and impaired mobility. Although the exact pathology is unknown, overuse and microtrauma from aging are thought to be major causative factors. Due to the hypovascular and hypocellular nature of the tendon microenvironment, healing of aged tendons and related injuries is difficult using current pain/inflammation and surgical management techniques. Therefore, there is a need for novel therapies, specifically cellular therapy such as cell rejuvenation, due to the decreased regenerative capacity during aging. To augment the therapeutic strategies for treating tendon-aging-associated diseases and injuries, a comprehensive understanding of tendon aging pathology is needed. This review summarizes age-related tendon changes, including cell behaviors, extracellular matrix (ECM) composition, biomechanical properties and healing capacity. Additionally, the impact of conventional treatments (diet, exercise, and surgery) is discussed, and recent advanced strategies (cell rejuvenation) are highlighted to address aged tendon healing. This review underscores the molecular and cellular linkages between aged tendon biomechanical properties and the healing response, and provides an overview of current and novel strategies for treating aged tendons. Understanding the underlying rationale for future basic and translational studies of tendon aging is crucial to the development of advanced therapeutics for tendon regeneration.
Collapse
Affiliation(s)
- Ka Yu Carissa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Wai Kerry Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenxian Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200040, China;
| | - Rocky S. Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Lu J, Chen H, Lyu K, Jiang L, Chen Y, Long L, Wang X, Shi H, Li S. The Functions and Mechanisms of Tendon Stem/Progenitor Cells in Tendon Healing. Stem Cells Int 2023; 2023:1258024. [PMID: 37731626 PMCID: PMC10509002 DOI: 10.1155/2023/1258024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Tendon injury is one of the prevalent disorders of the musculoskeletal system in orthopedics and is characterized by pain and limitation of joint function. Due to the difficulty of spontaneous tendon healing, and the scar tissue and low mechanical properties that usually develops after healing. Therefore, the healing of tendon injury remains a clinical challenge. Although there are a multitude of approaches to treating tendon injury, the therapeutic effects have not been satisfactory to date. Recent studies have shown that stem cell therapy has a facilitative effect on tendon healing. In particular, tendon stem/progenitor cells (TSPCs), a type of stem cell from tendon tissue, play an important role not only in tendon development and tendon homeostasis, but also in tendon healing. Compared to other stem cells, TSPCs have the potential to spontaneously differentiate into tenocytes and express higher levels of tendon-related genes. TSPCs promote tendon healing by three mechanisms: modulating the inflammatory response, promoting tenocyte proliferation, and accelerating collagen production and balancing extracellular matrix remodeling. However, current investigations have shown that TSPCs also have a negative effect on tendon healing. For example, misdifferentiation of TSPCs leads to a "failed healing response," which in turn leads to the development of chronic tendon injury (tendinopathy). The focus of this paper is to describe the characteristics of TSPCs and tenocytes, to demonstrate the roles of TSPCs in tendon healing, while discussing the approaches used to culture and differentiate TSPCs. In addition, the limitations of TSPCs in clinical application and their potential therapeutic strategies are elucidated.
Collapse
Affiliation(s)
- Jingwei Lu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Hui Chen
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Kexin Lyu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Longhai Long
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqiang Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houyin Shi
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Johnson PA, Ackerman JE, Kurowska-Stolarska M, Coles M, Buckley CD, Dakin SG. Three-dimensional, in-vitro approaches for modelling soft-tissue joint diseases. THE LANCET. RHEUMATOLOGY 2023; 5:e553-e563. [PMID: 38251499 DOI: 10.1016/s2665-9913(23)00190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 01/23/2024]
Abstract
Diseases affecting the soft tissues of the joint represent a considerable global health burden, causing pain and disability and increasing the likelihood of developing metabolic comorbidities. Current approaches to investigating the cellular basis of joint diseases, including osteoarthritis, rheumatoid arthritis, tendinopathy, and arthrofibrosis, involve well phenotyped human tissues, animal disease models, and in-vitro tissue culture models. Inherent challenges in preclinical drug discovery have driven the development of state-of-the-art, in-vitro human tissue models to rapidly advance therapeutic target discovery. The clinical potential of such models has been substantiated through successful recapitulation of the pathobiology of cancers, generating accurate predictions of patient responses to therapeutics and providing a basis for equivalent musculoskeletal models. In this Review, we discuss the requirement to develop physiologically relevant three-dimensional (3D) culture systems that could advance understanding of the cellular and molecular basis of diseases that affect the soft tissues of the joint. We discuss the practicalities and challenges associated with modelling the complex extracellular matrix of joint tissues-including cartilage, synovium, tendon, and ligament-highlighting the importance of considering the joint as a whole organ to encompass crosstalk across tissues and between diverse cell types. The design of bespoke in-vitro models for soft-tissue joint diseases has the potential to inform functional studies of the cellular and molecular mechanisms underlying disease onset, progression, and resolution. Use of these models could inform precision therapeutic targeting and advance the field towards personalised medicine for patients with common musculoskeletal diseases.
Collapse
Affiliation(s)
- Peter A Johnson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jessica E Ackerman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Mark Coles
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Christopher D Buckley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Gaffney LS, Fisher MB, Freytes DO. Tendon Extracellular Matrix Promotes Myotendinous Junction Protein Expression in Engineered Muscle Tissue under Both Static and Mechanically Stimulated Culture Conditions. J Tissue Eng Regen Med 2023; 2023:6658543. [PMID: 40226411 PMCID: PMC11918950 DOI: 10.1155/2023/6658543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 04/15/2025]
Abstract
Studying the crosstalk between the muscle and tendon tissue is an important yet understudied area in musculoskeletal research. In vitro models can help elucidate the function and repair of the myotendinous junction (MTJ) under static and dynamic culture conditions using engineered muscle tissues. The goal of this study was to culture engineered muscle tissues in a novel bioreactor in both static and mechanically stimulated cultures and evaluate the expression of MTJ-specific proteins within the muscle-tendon unit(paxillin and type XXII collagen). C2C12 myoblasts were seeded in hydrogels made from type I collagen ortendon-derived extracellular matrix (tECM) and allowed to form around movable anchors. Engineered tissues were allowed to form and stabilize for 10 days. After 10 days in the culture, stimulated cultures were cyclically stimulated for 3 hours per day for 2 and 4 weeks alongside static cultures. Strain values at the maximum displacement of the anchors averaged about 0.10, a target that has been shown to induce myogenic phenotype in C2C12s. Protein expression of paxillin after 2 weeks did not differ between hydrogel materials in static cultures but increased by 62% in tECM when mechanically stimulated. These differences continued after 4 weeks, with 31% and 57% increases in tECM tissues relative to type I collagen. Expression of type XXII collagen was similarly influenced by hydrogel material and culture conditions. Overall, this research combined a relevant microenvironment to study muscle and tendon interactions with a novel bioreactor to apply mechanical strain, an important regulator of the formation and maintenance of the native MTJ.
Collapse
Affiliation(s)
- Lewis S. Gaffney
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
| | - Matthew B. Fisher
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, NC 25799, USA
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
| |
Collapse
|
28
|
Mousavizadeh R, West VC, Inguito KL, Elliott DM, Parreno J. The application of mechanical load onto mouse tendons by magnetic restraining represses Mmp-3 expression. BMC Res Notes 2023; 16:127. [PMID: 37391824 PMCID: PMC10314558 DOI: 10.1186/s13104-023-06413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
OBJECTIVES Mechanical loading is crucial for tendon matrix homeostasis. Under-stimulation of tendon tissue promotes matrix degradation and ultimately tendon failure. In this study, we examined the expression of tendon matrix molecules and matrix-degrading enzymes (matrix metalloproteinases) in stress-deprived tail tendons and compared to tendons that were mechanically loaded by a simple restraining method. DATA DESCRIPTION Isolated mouse tail fascicles were either floated or restrained by magnets in cell culture media for 24 h. The gene expression of tendon matrix molecules and matrix metalloproteinases in the tendon fascicles of mouse tails were examined by real-time RT-PCR. Stress deprivation of tail tendons increase Mmp3 mRNA levels. Restraining tendons represses these increases in Mmp3. The gene expression response to restraining was specific to Mmp3 at 24 h as we did not observe mRNA level changes in other matrix related genes that we examined (Col1, Col3, Tnc, Acan, and Mmp13). To elucidate, the mechanisms that may regulate load transmission in tendon tissue, we examined filamentous (F-)actin staining and nuclear morphology. As compared to stress deprived tendons, restrained tendons had greater staining for F-actin. The nuclei of restrained tendons are smaller and more elongated. These results indicate that mechanical loading regulates specific gene expression potentially through F-actin regulation of nuclear morphology. A further understanding on the mechanisms involved in regulating Mmp3 gene expression may lead to new strategies to prevent tendon degeneration.
Collapse
Affiliation(s)
- Rouhollah Mousavizadeh
- Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Valerie C West
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kameron L Inguito
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Justin Parreno
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
29
|
Hardy M, Feehan L, Savvides G, Wong J. How controlled motion alters the biophysical properties of musculoskeletal tissue architecture. J Hand Ther 2023; 36:269-279. [PMID: 37029054 DOI: 10.1016/j.jht.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 04/09/2023]
Abstract
INTRODUCTION Movement is fundamental to the normal behaviour of the hand, not only for day-to-day activity, but also for fundamental processes like development, tissue homeostasis and repair. Controlled motion is a concept that hand therapists apply to their patients daily for functional gains, yet the scientific understanding of how this works is poorly understood. PURPOSE OF THE ARTICLE To review the biology of the tissues in the hand that respond to movement and provide a basic science understanding of how it can be manipulated to facilitate better functionThe review outlines the concept of controlled motion and actions across the scales of tissue architecture, highlighting the the role of movement forces in tissue development, homeostasis and repair. The biophysical behaviour of mechanosensitve tissues of the hand such as skin, tendon, bone and cartilage are discussed. CONCLUSION Controlled motion during early healing is a form of controlled stress and can be harnessed to generate appropriate reparative tissues. Understanding the temporal and spatial biology of tissue repair allows therapists to tailor therapies that allow optimal recovery based around progressive biophysical stimuli by movement.
Collapse
Affiliation(s)
- Maureen Hardy
- Past Director Rehab Services and Hand Management Center, St. Dominic Hospital, Jackson, MS, USA
| | - Lynne Feehan
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgia Savvides
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jason Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
30
|
Li K, Zhang X, Wang D, Tuan RS, Ker DFE. Synergistic effects of growth factor-based serum-free medium and tendon-like substrate topography on tenogenesis of mesenchymal stem cells. BIOMATERIALS ADVANCES 2023; 146:213316. [PMID: 36736265 DOI: 10.1016/j.bioadv.2023.213316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Addressing clinical challenges for tendon injuries requires a deeper understanding of the effects that biological and biophysical cues have on tenogenesis. Although prior studies have identified tenogenic growth factors (GFs) or elucidated the effects of substrate topography on tenocyte behavior, few have characterized their combined effect in the presence of a tendon-like substrate. In this study, we assessed the effect of biological (GFs) and biophysical (substrate topography) cues on tenogenic proliferation and differentiation under defined, serum-free conditions. Specifically, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured in a serum-free culture medium containing a GF cocktail comprised of fibroblast growth factor-2 (FGF-2), transforming growth factor-beta 3 (TGF-β3), and insulin-like growth factor-1 (IGF-1), either alone or in combination with tendon-like substrate topography produced by replica casting of tendon tissue sections. Our data demonstrated that the use of serum-free GF cocktail medium alone promoted hMSC proliferation, as shown via DNA staining as well as Ki67 protein levels and gene expression. In particular, gene expression of Ki67 was increased by 8.46-fold in all three donors relative to serum-free medium control. Also, serum-free GF cocktail promoted tenogenic differentiation, on the basis of expression of tendon-associated gene and protein markers, scleraxis (SCX), tenascin C (TNC), and collagen type I (COL1A1) including increased normalized collagen production by 1.4-fold in two donors relative to serum-free medium control. Interestingly, hMSCs cultured on a tendon-like substrate exhibited highly oriented cell morphology and extracellular matrix (ECM) alignment reminiscent of tendon. In particular, when this GF cocktail was combined with tendon-like topography, they showed a synergistically increased expression of tendon-related markers and anisotropic organization of ECM proteins with moderate-to-large effect sizes. Together, in addition to showing the utility of a GF cocktail for expansion and differentiation of tenocyte-like cells, our findings clearly demonstrate the synergistic relationship between GF-mediated and substrate topography-related effects on hMSC tenogenic differentiation. This information provides insights into the design of strategies that combine biological and biophysical cues for ex vivo tenocyte production and tendon tissue engineering.
Collapse
Affiliation(s)
- Ke Li
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
31
|
Chakraborty S, Akter MA, Rahman MS, Yesmin N, Juyena NS, Alam MM. Congenital digital flexural deformity (knuckling): Epidemiology, the association of trace elements and surgical treatment in neonatal bovine calves. J Adv Vet Anim Res 2023; 10:88-95. [PMID: 37155544 PMCID: PMC10122952 DOI: 10.5455/javar.2023.j656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 05/10/2023] Open
Abstract
Objectives This study aimed to investigate the prevalence and pattern of congenital flexural deformity (knuckling), to identify the association between trace elements and vitamins with the deformity, and to apply different surgical techniques for correcting this congenital malformation in newborn bovine calves. Materials and Methods The study was implemented on 17 newborn calves with carpal (knee) and fetlock (foot) knuckling presented to the Veterinary Teaching Hospital of Bangladesh Agricultural University, Mymensingh, from January to December 2020. The serum biochemical alterations and clinical outcomes were assessed on days 0 and 21 following surgery. Two surgical methods: tendon transection and tendon elongation by Z-tenotomy, were performed for surgical restoration. Results We found that knuckling comprised 12% of the total congenitally malformed calves. The male calves had a higher prevalence (52%, n = 9) and the same in the winter season (65%, n = 11). The majority of the knuckling was bilateral types (88%, n = 15), involving the carpal joint (82%, n = 14) and moderately angulated (59%, n = 10). The serum level of magnesium, iron, vitamin D, and zinc were significantly (p < 0.05) changed from the pre-surgical stage to the stage of non-lameness after surgery. The disorder was surgically treated by tendon transection or tendon elongation procedure and had a good prognosis. Conclusion The current study concluded that the development of knuckling in calves might be related to a deficiency/excess of specific minerals and vitamins and that it can be effectively corrected by surgical intervention; however, early diagnosis and the use of proper surgical techniques are crucial for improving the prognosis.
Collapse
Affiliation(s)
- Shrabony Chakraborty
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mst Antora Akter
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Sabuj Rahman
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Nelema Yesmin
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Nasrin Sultana Juyena
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Mahmudul Alam
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
32
|
Adipose and Bone Marrow Derived-Mesenchymal Stromal Cells Express Similar Tenogenic Expression Levels when Subjected to Mechanical Uniaxial Stretching In Vitro. Stem Cells Int 2023; 2023:4907230. [PMID: 36756494 PMCID: PMC9902123 DOI: 10.1155/2023/4907230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/12/2022] [Accepted: 09/03/2022] [Indexed: 01/31/2023] Open
Abstract
The present study was conducted to determine whether adipose derived mesenchymal stromal cells (AD-MSCs) or bone marrow derived-MSCs (BM-MSCs) would provide superior tenogenic expressions when subjected to cyclical tensile loading. The results for this would indicate the best choice of MSCs source to be used for cell-based tendon repair strategies. Both AD-MSCs and BM-MSCs were obtained from ten adult donors (N = 10) and cultured in vitro. At passaged-2, cells from both groups were subjected to cyclical stretching at 1 Hz and 8% of strain. Cellular morphology, orientation, proliferation rate, protein, and gene expression levels were compared at 0, 24, and 48 hours of stretching. In both groups, mechanical stretching results in similar morphological changes, and the redirection of cell alignment is perpendicular to the direction of stretching. Loading at 8% strain did not significantly increase proliferation rates but caused an increase in total collagen expression and tenogenic gene expression levels. In both groups, these levels demonstrated no significant differences suggesting that in a similar loading environment, both cell types possess similar tenogenic potential. In conclusion, AD-MSCs and BM-MSCs both demonstrate similar tenogenic phenotypic and gene expression levels when subjected to cyclic tensile loading at 1 Hz and 8% strain, thus, suggesting that the use of either cell source may be suitable for tendon repair.
Collapse
|
33
|
Shiroud Heidari B, Ruan R, Vahabli E, Chen P, De-Juan-Pardo EM, Zheng M, Doyle B. Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments. Bioact Mater 2023; 19:179-197. [PMID: 35510172 PMCID: PMC9034322 DOI: 10.1016/j.bioactmat.2022.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Tendon and ligament (TL) injuries affect millions of people annually. Biopolymers play a significant role in TL tissue repair, whether the treatment relies on tissue engineering strategies or using artificial tendon grafts. The biopolymer governs the mechanical properties, biocompatibility, degradation, and fabrication method of the TL scaffold. Many natural, synthetic and hybrid biopolymers have been studied in TL regeneration, often combined with therapeutic agents and minerals to engineer novel scaffold systems. However, most of the advanced biopolymers have not advanced to clinical use yet. Here, we aim to review recent biopolymers and discuss their features for TL tissue engineering. After introducing the properties of the native tissue, we discuss different types of natural, synthetic and hybrid biopolymers used in TL tissue engineering. Then, we review biopolymers used in commercial absorbable and non-absorbable TL grafts. Finally, we explain the challenges and future directions for the development of novel biopolymers in TL regenerative treatment.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Ebrahim Vahabli
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Peilin Chen
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Elena M. De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Australia
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Minghao Zheng
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- BHF Centre for Cardiovascular Science, The University of Edinburgh, UK
| |
Collapse
|
34
|
Liu Y, Wang L, Li S, Zhang T, Chen C, Hu J, Sun D, Lu H. Mechanical stimulation improves rotator cuff tendon-bone healing via activating IL-4/JAK/STAT signaling pathway mediated macrophage M2 polarization. J Orthop Translat 2022; 37:78-88. [PMID: 36262964 PMCID: PMC9550856 DOI: 10.1016/j.jot.2022.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background It is well known that appropriate mechanical stimulation benefits tendon-bone (T-B) healing, however, the mechanisms behind this are still uncovered completely. Here, we aimed to explore whether the IL-4/JAK/STAT signaling pathway mediated macrophage polarization was involved in mechanical stimulation induced T-B healing. Method C57BL/6 mice rotator cuff (RC) repair model was established, and the mice were randomly allocated to the following group. 1. Mice were allowed for free cage activities after surgery (FC group); 2. Mice received treadmill running initiated on postoperative day 7 (TR group); 3. Mice only received a local injection of hydrogel containing IL-4 neutralizing antibody without postoperative intervention (FC + AF-404-SP group); 4. Mice received a local injection of hydrogel containing IL-4 neutralizing antibody and postoperative treadmill running (TR + AF-404-SP group). The expression of IL-4 within supraspinatus tendon (SST) enthesis was measured by Enzyme-linked immunosorbent assay (ELISA). In addition, the activation of JAK/STAT signaling pathway in macrophages and identification of macrophage phenotype at the RC insertion site was detected by Flow cytometry and qRT-PCR. T-B healing quality in this RC repair model was evaluated by histological staining, Micro-computed tomography (Micro-CT) scanning, and biomechanical testing. Result In this study, using the RC repair model, we confirmed that generation of IL-4, activation of the JAK/STAT signaling pathway in macrophages, the ability of macrophages to polarize towards M2 subtype, and T-B healing quality were significantly enhanced in TR group compared to FC group. When comparing FC + AF-404-SP group with TR + AF-404-SP group, it was found that the mechanical stimulation induced this effect was depleted following the blockade of the IL-4/JAK/STAT signaling pathway. Conclusion Our finding suggested that mechanical stimulation could accelerate T-B healing via activating the IL-4/JAK/STAT signaling pathway that modulates macrophages to polarize towards M2 subtype. The translational potential of this article This is the first study to reveal a significant role of mechanical stimulation in the IL-4/JAK/STAT signaling pathway activation and macrophage polarization during RC T-B healing, which highlights the IL-4/JAK/STAT signaling pathway as a potential target to mediate macrophage M2 polarization and improves T-B healing for RC repair.
Collapse
Affiliation(s)
- Yuqian Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Deyi Sun
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Jaramillo Quiceno GA, Sarmiento Riveros PA, Arias Perez RD, Soto Gomez MP, Ramirez AO. Augmentation in the repair of traumatic patellar tendon ruptures. A novel mechanical and biological construct: Technical note. J ISAKOS 2022; 8:122-127. [PMID: 36328345 DOI: 10.1016/j.jisako.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/09/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Patellar tendon ruptures are infrequent and potentially disabling injuries. These injuries are usually repaired with transosseous suture tunnels. However, this technique can produce a significant gap formation and prolonged postoperative immobilization. Although several techniques have been described to improve the integrity of the repair, the surgical technique of choice is a matter of debate especially when there is tissue loss due to high-energy trauma. This study aims to evaluate the clinical outcomes of patients with acute patellar tendon ruptures due to high-energy trauma treated with a novel construct configuration that includes a suture anchor and a figure-of-eight augmentation with hamstring autograft with medial and lateral reinforcement. To determine the clinical outcomes the International Knee Documentation Committee (IKDC) score was obtained pre-surgery and at 12 months of follow-up. A total of six patients were recruited, with a median age of 27.5 years, five of these were male. Three lesions were in the proximal pole of the tendon, two were mid-substance and one was in the junction with tibial tuberosity. The IKDC clinical score significantly increased from pre-surgery to the 12-month follow-up with a median difference of 32.8 (95% CI, 19.5-42.6, p = 0.0313). Likewise, the patients presented a post-surgery quadriceps strength level with a median of 5/5. All patients had full active knee extension with a median of 0-120°. There was no statistical difference in the range of motion comparing the surgical knee to the contralateral knee (p = 0.6883). No patient presented any type of reintervention or complication during the follow-up period. The configuration of the construct presented in the technique had not been reported before in the literature and combines the advantages of the use of suture anchors and biological augmentation with lateral and medial reinforcement. This technique may be useful in patients with traumatic injuries with and without loss of tissue. Although it is a small series with concomitant injuries, satisfactory clinical results were presented during follow-up.
Collapse
Affiliation(s)
- German A Jaramillo Quiceno
- Head of Orthopedic and Traumatology Service of Fundación Clínica Del Norte, Address Av. 38 #59-50, Bello-Antioquia, 051050, Colombia.
| | - Paula A Sarmiento Riveros
- Orthopedic and Traumatology Service of Fundación Clínica Del Norte, Address Av. 38 #59-50, Bello-Antioquia, 051050, Colombia
| | - Ruben D Arias Perez
- Biomedicas Uniremington Research Group, Corporación Universitaria Remington, Faculty of Health Sciences, Address Coltabaco Building, Street 51 #51- 27, Medellín, 050010, Colombia
| | - Maria P Soto Gomez
- Fundación Clínica Del Norte, Address Av. 38 #59-50, Bello-Antioquia, 051050, Colombia
| | - Antonio O Ramirez
- Fundación Clínica Del Norte, Address Av. 38 #59-50, Bello-Antioquia, 051050, Colombia
| |
Collapse
|
36
|
Janvier AJ, Pendleton EG, Mortensen LJ, Green DC, Henstock JR, Canty-Laird EG. Multimodal analysis of the differential effects of cyclic strain on collagen isoform composition, fibril architecture and biomechanics of tissue engineered tendon. J Tissue Eng 2022; 13:20417314221130486. [PMID: 36339372 PMCID: PMC9629721 DOI: 10.1177/20417314221130486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022] Open
Abstract
Tendon is predominantly composed of aligned type I collagen, but additional isoforms are known to influence fibril architecture and maturation, which contribute to the tendon’s overall biomechanical performance. The role of the less well-studied collagen isoforms on fibrillogenesis in tissue engineered tendons is currently unknown, and correlating their relative abundance with biomechanical changes in response to cyclic strain is a promising method for characterising optimised bioengineered tendon grafts. In this study, human mesenchymal stem cells (MSCs) were cultured in a fibrin scaffold with 3%, 5% or 10% cyclic strain at 0.5 Hz for 3 weeks, and a comprehensive multimodal analysis comprising qPCR, western blotting, histology, mechanical testing, fluorescent probe CLSM, TEM and label-free second-harmonic imaging was performed. Molecular data indicated complex transcriptional and translational regulation of collagen isoforms I, II, III, V XI, XII and XIV in response to cyclic strain. Isoforms (XII and XIV) associated with embryonic tenogenesis were deposited in the formation of neo-tendons from hMSCs, suggesting that these engineered tendons form through some recapitulation of a developmental pathway. Tendons cultured with 3% strain had the smallest median fibril diameter but highest resistance to stress, whilst at 10% strain tendons had the highest median fibril diameter and the highest rate of stress relaxation. Second harmonic generation exposed distinct structural arrangements of collagen fibres in each strain group. Fluorescent probe images correlated increasing cyclic strain with increased fibril alignment from 40% (static strain) to 61.5% alignment (10% cyclic strain). These results indicate that cyclic strain rates stimulate differential cell responses via complex regulation of collagen isoforms which influence the structural organisation of developing fibril architectures.
Collapse
Affiliation(s)
- Adam J Janvier
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Emily G Pendleton
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Luke J Mortensen
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Daniel C Green
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK,The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - James R Henstock
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK,The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK,Elizabeth G Canty-Laird, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
37
|
Association between Body Weight and Body Mass Index and Patellar Tendinopathy in Elite Basketball and Volleyball Players, a Systematic Review and Meta-Analysis. Healthcare (Basel) 2022; 10:healthcare10101928. [PMID: 36292375 PMCID: PMC9601617 DOI: 10.3390/healthcare10101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022] Open
Abstract
The features of Patellar-Tendinopathy are (1): pain localised to the inferior pole of the patellar; (2): the presence of load-related pain. Body-Weight and Body-Mass-Index, as two easily-measured variables, could potentially aid the prediction of PT. This review aims to establish relationships between Body-Weight and Body-Mass-Index and Patellar-Tendinopathy via synthesising the evidence from prospective-cohort and cross-sectional studies in elite basketball and volleyball players. Seven databases (PubMed, EMBASE, CINAHL, Google Scholar, Health-Management-Information-Consortium, National-Technical-Information-Service, ClinicalTrial.gov) and citation chasing were used to identify English peer-review articles from 2000 to 2022. An adapted version of the Newcastle-Ottawa scale was used for critical appraisal. Two reviewers were involved in literature searching, data extraction, and quality review. Two prospective cohort and five cross-sectional studies met the inclusion criteria, providing 849 subjects (male:female: 436:413). Five studies found BW is associated with PT. Three studies found a relationship between BMI and PT. Six out of seven studies were classified as very good studies. All studies were level IV evidence. The very low certainty evidence suggests an association between BW and PT. There is moderate certainty evidence that BMI is associated with PT. These preliminary findings should be treated cautiously due to the lack of strong evidence.
Collapse
|
38
|
Kent MH, Jacob JC, Bowen G, Bhalerao J, Desinor S, Vavra D, Leserve D, Ott KR, Angeles B, Martis M, Sciandra K, Gillenwater K, Glory C, Meisel E, Choe A, Olivares-Navarrete R, Puetzer JL, Lambert K. Disrupted development from head to tail: Pervasive effects of postnatal restricted resources on neurobiological, behavioral, and morphometric outcomes. Front Behav Neurosci 2022; 16:910056. [PMID: 35990727 PMCID: PMC9389412 DOI: 10.3389/fnbeh.2022.910056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
When a maternal rat nurtures her pups, she relies on adequate resources to provide optimal care for her offspring. Accordingly, limited environmental resources may result in atypical maternal care, disrupting various developmental outcomes. In the current study, maternal Long-Evans rats were randomly assigned to either a standard resource (SR) group, provided with four cups of bedding and two paper towels for nesting material or a limited resource (LR) group, provided with a quarter of the bedding and nesting material provided for the SR group. Offspring were monitored at various developmental phases throughout the study. After weaning, pups were housed in same-sex dyads in environments with SRs for continued observations. Subsequent behavioral tests revealed a sex × resource interaction in play behavior on PND 28; specifically, LR reduced play attacks in males while LR increased play attacks in females. A sex × resource interaction was also observed in anxiety-related responses in the open field task with an increase in thigmotaxis in LR females and, in the social interaction task, females exhibited more external rears oriented away from the social target. Focusing on morphological variables, tail length measurements of LR males and females were shorter on PND 9, 16, and 21; however, differences in tail length were no longer present at PND 35. Following the behavioral assessments, animals were perfused at 56 days of age and subsequent immunohistochemical assays indicated increased glucocorticoid receptors in the lateral habenula of LR offspring and higher c-Fos immunoreactivity in the basolateral amygdala of SR offspring. Further, when tail vertebrae and tail tendons were assessed via micro-CT and hydroxyproline assays, results indicated increased trabecular separation, decreased bone volume fraction, and decreased connectivity density in bones, along with reduced collagen concentration in tendons in the LR animals. In sum, although the restricted resources only persisted for a brief duration, the effects appear to be far-reaching and pervasive in this early life stress animal model.
Collapse
Affiliation(s)
- Molly H. Kent
- Department of Biology, Virginia Military Institute, Lexington, VA, United States
| | - Joanna C. Jacob
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Gabby Bowen
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Janhavi Bhalerao
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Stephanie Desinor
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Dylan Vavra
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Danielle Leserve
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Kelly R. Ott
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Benjamin Angeles
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Martis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Katherine Sciandra
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | | | - Clark Glory
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Eli Meisel
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Allison Choe
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer L. Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Kelly Lambert
- Department of Psychology, University of Richmond, Richmond, VA, United States
- *Correspondence: Kelly Lambert,
| |
Collapse
|
39
|
Han J, Rhee SM, Kim YW, Park SH, Oh JH. Three-dimensionally printed recombinant human parathyroid hormone-soaked nanofiber sheet accelerates tendon-to-bone healing in a rabbit model of chronic rotator cuff tear. J Shoulder Elbow Surg 2022; 31:1628-1639. [PMID: 35337954 DOI: 10.1016/j.jse.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recombinant human parathyroid hormone (rhPTH) promotes tendon-to-bone healing in humans and animals with rotator cuff tear (RCT). However, problems regarding repeated systemic rhPTH injections in humans exist. This study was conducted to evaluate the effect of topical rhPTH administration using 3-dimensionally (3D) printed nanofiber sheets on tendon-to-bone healing in a rabbit RCT model compared to that of direct topical rhPTH administration. METHODS Eighty rabbits were randomly assigned to 5 groups (n = 16 each). To create the chronic RCT model, we induced complete supraspinatus tendon tears in both shoulders and left them untreated for 6 weeks. All transected tendons were repaired in a transosseous manner with saline injection in group A, hyaluronic acid (HA) injection in group B, 3D-printed nanofiber sheet fixation in group C, rhPTH and HA injection in group D, and 3D-printed rhPTH- and HA-soaked nanofiber sheet fixation in group E. Genetic (messenger RNA expression evaluation) and histologic evaluations (hematoxylin and eosin and Masson trichrome staining) were performed in half of the rabbits at 4 weeks postrepair. Genetic, histologic, and biomechanical evaluations (mode of tear and load to failure) were performed in the remaining rabbits at 12 weeks. RESULTS For genetic evaluation, group E showed a higher collagen type I alpha 1 expression level than did the other groups (P = .008) at 4 weeks. However, its expression level was downregulated, and there was no difference at 12 weeks. For histologic evaluation, group E showed greater collagen fiber continuity, denser collagen fibers, and more mature tendon-to-bone junction than did the other groups (P = .001, P = .001, and P = .003, respectively) at 12 weeks. For biomechanical evaluation, group E showed a higher load-to-failure rate than did the other groups (P < .001) at 12 weeks. CONCLUSION Three-dimensionally printed rhPTH-soaked nanofiber sheet fixation can promote tendon-to-bone healing of chronic RCT.
Collapse
Affiliation(s)
- Jian Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Republic of Korea
| | - Sung Min Rhee
- Department of Orthopaedic Surgery, KyungHee University Medical Center, Seoul, Republic of Korea
| | - Young Won Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Suk Hee Park
- School of Mechanical Engineering, Pusan National University, Republic of Korea.
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Republic of Korea.
| |
Collapse
|
40
|
Xu J, Han K, Ye Z, Wu C, Wu X, Li Z, Zhang T, Xu C, Su W, Zhao J. Biomechanical and Histological Results of Dual-Suspensory Reconstruction Using Banded Tendon Graft to Bridge Massive Rotator Cuff Tears in a Chronic Rabbit Model. Am J Sports Med 2022; 50:2767-2781. [PMID: 35853168 DOI: 10.1177/03635465221102744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bridging rotator cuff tendon defects with a patch is a reasonable treatment for massive rotator cuff tears (MRCTs). However, the poor outcomes associated with routine patch repair have prompted exploration into superior bridging techniques and graft structures. PURPOSE To detect whether dual-suspensory reconstruction using a banded graft would be superior to routine bridging using a patch graft to treat MRCTs and to detect the comparative effectiveness of patellar tendon (PT) and fascia lata (FL) grafts in dual-suspensory reconstruction. STUDY DESIGN Controlled laboratory study. METHODS Unilateral chronic MRCTs were created in 72 mature male New Zealand White rabbits, which were randomly divided into 3 groups: (1) patch bridging repair using rectangular FL autograft (PR-FL), (2) dual-suspensory bridging reconstruction using banded FL autograft (DSR-FL), and (3) dual-suspensory bridging reconstruction using banded PT autograft (DSR-PT). In each group, the mean failure load and stiffness of the cuff-graft-humerus (C-G-H) complexes of 6-week and 12-week specimens were recorded, with the failure modes and sites noted. Moreover, cuff-to-graft and graft-to-bone interface healing and graft substance remodeling of the complexes were histologically evaluated (via hematoxylin and eosin, Picrosirius red, Masson trichrome, and Safranin O/fast green staining) at 6 and 12 weeks to assess integrations between the bridging constructs and the native bone or rotator cuff tendons. RESULTS The DSR-PT group had the greatest mean failure loads and stiffness of the C-G-H complexes at 6 and 12 weeks (41.81 ± 7.00 N, 10.34 ± 2.68 N/mm; 87.62 ± 9.20 N, 17.98 ± 1.57 N/mm, respectively), followed by the DSR-FL group (32.04 ± 5.49 N, 8.20 ± 2.27 N/mm; 75.30 ± 7.31 N, 14.39 ± 3.29 N/mm, respectively). In the DSR-PT and DSR-FL groups, fewer specimens failed at the graft-to-bone junction and more failed at the cuff-to-graft junction, but both groups had higher median failure loads at 6 and 12 weeks (DSR-PT: cuff-to-graft junction, 37.80 and 83.76 N; graft-to-bone junction, 45.46 and 95.86 N) (DSR-FL: cuff-to-graft junction, 28.52 and 67.68 N; graft-to-bone junction, 37.92 and 82.18 N) compared with PR-FL (cuff-to-graft junction, 27.17 and 60.04 N; graft-to-bone junction, 30.12 and 55.95 N). At 12 weeks, the DSR-FL group had higher median failure loads at graft substance (72.26 N) than the PR-FL group (61.27 N). Moreover, the PR-FL group showed more inflammatory responses at the 2 healing interfaces and the graft substance in the 6-week specimens and subsequently displayed poorer interface healing (assessed via collagen organization, collagen maturity, and fibrocartilage regeneration) and graft substance remodeling (assessed via collagen organization and maturity) in 12-week specimens compared with the DSR-PT and DSR-FL groups. Superior interface healing and substance remodeling processes were observed in the DSR-PT group compared with the DSR-FL group. CONCLUSION When compared with routine patch repair, the dual-suspensory reconstructions optimized biomechanical properties and improved interface healing and graft substance remodeling for bridging MRCTs. Furthermore, the dual-suspensory technique using the PT graft presented superior histological and biomechanical characteristics than that using FL. CLINICAL RELEVANCE The dual-suspensory reconstruction technique using banded tendon grafts may enhance bridging constructs for MRCTs in humans, warranting further investigations of clinical outcomes.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zipeng Ye
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenliang Wu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiulin Wu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ziyun Li
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tianlun Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Caiqi Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
41
|
Fontenele FF, Bouklas N. Understanding the inelastic response of collagen fibrils: A viscoelastic-plastic constitutive model. Acta Biomater 2022; 163:78-90. [PMID: 35835288 DOI: 10.1016/j.actbio.2022.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/01/2022]
Abstract
Collagen fibrils, which are the lowest level fibrillar unit of organization of collagen, are thus of primary interest towards understanding the mechanical behavior of load-bearing soft tissues. The deformation of collagen fibrils shows unique mechanical features; namely, their high energy dissipation is even superior compared to most engineering materials. Additionally, there are indications that cyclic loading can further improve the toughness of collagen fibrils. Recent experiments from Liu at al. (2018) focused on the response of type I collagen fibrils to uniaxial cyclic loading, revealing some interesting results regarding their rate-dependent and inelastic response. In this work, we aim to develop a model that allows interpreting the complex nonlinear and inelastic response of collagen fibrils under cyclic loading. We propose a constitutive model that accounts for viscoelastic deformations through a decoupled strain-energy density function (into an elastic and a viscous parts), and for plastic deformations through plastic evolution laws. The stress-stretch response results obtained using this constitutive law showed good agreement with experimental data over complex loading paths. Ultimately we use the model to gain more insights on how cyclic loading and rate effects control the interplay between viscoelastic and plastic deformation in collagen fibrils, and to extrapolate the results from experimental data, analyzing how complex cyclic load influences energy dissipation and deformation mechanisms. STATEMENT OF SIGNIFICANCE: In this work, we develop a viscoelastic-plastic constitutive model for collagen fibrils with the aim of analyzing the effects of inelasticity and energy dissipation in this material, and more specifically the competition between viscoelasticity and plasticity in the context of cyclic loading and overload. Experimental and theoretical approaches so far have not fully clarified the interplay between viscous and plastic deformations during cyclic loading of collagen fibrils. Here, we aim to interpret the complex nonlinear response of collagen fibrils and, ultimately, suggest predictive capabilities that can inform tissue-level response and injury. To validate our model, we compare our results against the stress-stretch data obtained from experiments of cyclic loaded single fibrils performed by Liu et al. (2018).
Collapse
Affiliation(s)
- Fernanda F Fontenele
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, NY 14853, USA
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, NY 14853, USA.
| |
Collapse
|
42
|
Marcoux JT, Tong L. Fibrocartilaginous Tissue: Why Does It Fail to Heal? Clin Podiatr Med Surg 2022; 39:437-450. [PMID: 35717061 DOI: 10.1016/j.cpm.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tendons and ligaments are critical components in the function of the musculoskeletal system, as they provide stability and guide motion for the biomechanical transmission of forces into bone. Several common injuries in the foot and ankle require the repair of ruptured or attenuated tendon or ligament to its osseous insertion. Understanding the structure and function of injured ligaments and tendons is complicated by the variability and unpredictable nature of their healing. The healing process at the tendon/ligament to bone interface is challenging and often frustrating to foot and ankle surgeons, as they have a high failure rate necessitating the need for revision.
Collapse
Affiliation(s)
- John T Marcoux
- Division of Podiatry, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Span 3, Boston, MA 02215, USA.
| | - Lowell Tong
- Division of Podiatry, Department of Surgery, Beth Israel Deaconess Medical Center, 185 Pilgrim Road, Span 3, Boston, MA 02215, USA
| |
Collapse
|
43
|
Chen Z, Zhou B, Wang X, Zhou G, Zhang W, Yi B, Wang W, Liu W. Synergistic effects of mechanical stimulation and crimped topography to stimulate natural collagen development for tendon engineering. Acta Biomater 2022; 145:297-315. [PMID: 35470072 DOI: 10.1016/j.actbio.2022.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022]
Abstract
Suitable scaffold structures and mechanical loading are essential for functional tendon engineering. However, the bipolar fibril structure of native tendon collagen is yet to be recaptured in engineered tendons. This study compared the development of Achilles tendons of postnatal rats with and without (via surgical section) mechanical loading to define the mechanism of mechanical stimulation-mediated tendon development. The results demonstrated that the severed tendons weakened mechanically and exhibited disorganization without a bipolar fibril superstructure. Proteomic analysis revealed differentially expressed key regulatory molecules related to the collagen assembly process, including decreased fibromodulin, keratocan, fibroblast growth factor-1, and increased lumican and collagen5a1 in the severed tendons with immunohistochemical verification. Additionally, a complex regulatory network of mechanical stimulation-mediated collagen assembly in a spatiotemporal manner was also revealed using bioinformatics analysis, wherein PI3K-Akt and HDAC4 may be the predominant signaling pathways. A wavy microgrooved surface (Y = 5.47sin(0.015x)) that biomimics tendon topography was observed to enhance the expression of collagen assembly molecules under mechanical loading, and the aforementioned pathways are particularly involved and verified with their respective inhibitors of LY-294002 and LMK-235. Furthermore, an electrospun crimped nanofiber scaffold (approximately 2 μm fiber diameter and 0.12 crimpness) was fabricated to biomimic the tenogenic niche environment; this was observed to be more effective on enhancing collagen production and assembly under mechanical stimulation. In conclusion, the synergistic effect between topographical niche and mechanical stimulation was observed to be essential for collagen assembly and maturation and should be applied to functional tendon engineering in the future. STATEMENT OF SIGNIFICANCE: In biomaterial-mediated tendon regeneration, mechanical stimulation is essential for tendon collagen assembly. However, the underlying mechanisms remain not fully defined, leading to the failure of the native-like collagen regeneration. In this study, a mechanical stimulation deprivation model of rat tendon was established to reveal the mechanisms in tendon development and define the key regulatory molecules including small leucine-rich proteoglycans, lysyl oxidase and collagen V. After ensuring the importance of biomimetic structure in tendon remodeling, crimped nanofibers were developed to verify these regulatory molecules, and demonstrated that mechanical stimulation significantly enhanced collagen assembly via PIK3 and HDAC4 pathways in biomaterial-regulated tendon regeneration. This study provides more insightful perspectives in the physiologically remodeling progression of tendon collagen and design of tendon scaffolds.
Collapse
Affiliation(s)
- Zhenying Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China
| | - Boya Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China
| | - Bingcheng Yi
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China.
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China.
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China.
| |
Collapse
|
44
|
Lyu K, Liu T, Chen Y, Lu J, Jiang L, Liu X, Liu X, Li Y, Li S. A “cell-free treatment” for tendon injuries: adipose stem cell-derived exosomes. Eur J Med Res 2022; 27:75. [PMID: 35643543 PMCID: PMC9148514 DOI: 10.1186/s40001-022-00707-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractTendon injuries are widespread and chronic disorders of the musculoskeletal system, frequently caused by overload of the tendons. Currently, the most common treatment for tendon injuries is "cell-free therapy", of which exosomes, which can treat a host of diseases, including immune disorders, musculoskeletal injuries and cardiovascular diseases, are one kind. Among the many sources of exosomes, adipose-derived stem cell exosomes (ASC-Exos) have better efficacy. This is attributed not only to the ease of isolation of adipose tissue, but also to the high differentiation capacity of ASCs, their greater paracrine function, and immunomodulatory capacity compared to other exosomes. ASC-Exos promote tendon repair by four mechanisms: promoting angiogenesis under hypoxic conditions, reducing the inflammatory response, promoting tendon cell migration and proliferation, and accelerating collagen synthesis, thus accelerating tendon healing. This review focuses on describing studies of preclinical experiments with various exosomes, the characteristics of ASC-Exos and their mechanisms of action in tendon healing, as well as elaborating the limitations of ASC-Exos in clinical applications.
Collapse
|
45
|
Mechanical activation drives tenogenic differentiation of human mesenchymal stem cells in aligned dense collagen hydrogels. Biomaterials 2022; 286:121606. [DOI: 10.1016/j.biomaterials.2022.121606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
|
46
|
|
47
|
Xiao H, Zhang T, Li CJ, Cao Y, Wang LF, Chen HB, Li SC, Guan CB, Hu JZ, Chen D, Chen C, Lu HB. Mechanical stimulation promotes enthesis injury repair by mobilizing Prrx1+ cells via ciliary TGF-β signaling. eLife 2022; 11:73614. [PMID: 35475783 PMCID: PMC9094755 DOI: 10.7554/elife.73614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Proper mechanical stimulation can improve rotator cuff enthesis injury repair. However, the underlying mechanism of mechanical stimulation promoting injury repair is still unknown. In this study, we found that Prrx1+ cell was essential for murine rotator cuff enthesis development identified by single-cell RNA sequence and involved in the injury repair. Proper mechanical stimulation could promote the migration of Prrx1+ cells to enhance enthesis injury repair. Meantime, TGF-β signaling and primary cilia played an essential role in mediating mechanical stimulation signaling transmission. Proper mechanical stimulation enhanced the release of active TGF-β1 to promote migration of Prrx1+ cells. Inhibition of TGF-β signaling eliminated the stimulatory effect of mechanical stimulation on Prrx1+ cell migration and enthesis injury repair. In addition, knockdown of Pallidin to inhibit TGF-βR2 translocation to the primary cilia or deletion of Ift88 in Prrx1+ cells also restrained the mechanics-induced Prrx1+ cells migration. These findings suggested that mechanical stimulation could increase the release of active TGF-β1 and enhance the mobilization of Prrx1+ cells to promote enthesis injury repair via ciliary TGF-β signaling.
Collapse
Affiliation(s)
- Han Xiao
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Chang Jun Li
- Department of Endocrinology, Xiangya Hospital Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Lin Feng Wang
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Hua Bin Chen
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Sheng Can Li
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Chang Biao Guan
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Jian Zhong Hu
- Department of Spine Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Di Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Can Chen
- Department of Orthopedic, Xiangya Hospital Central South University, Changsha, China
| | - Hong Bin Lu
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
48
|
Biomechanically and biochemically functional scaffold for recruitment of endogenous stem cells to promote tendon regeneration. NPJ Regen Med 2022; 7:26. [PMID: 35474221 PMCID: PMC9043181 DOI: 10.1038/s41536-022-00220-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Tendon regeneration highly relies on biomechanical and biochemical cues in the repair microenvironment. Herein, we combined the decellularized bovine tendon sheet (DBTS) with extracellular matrix (ECM) from tendon-derived stem cells (TDSCs) to fabricate a biomechanically and biochemically functional scaffold (tECM-DBTS), to provide a functional and stem cell ECM-based microenvironment for tendon regeneration. Our prior study showed that DBTS was biomechanically suitable to tendon repair. In this study, the biological function of tECM-DBTS was examined in vitro, and the efficiency of the scaffold for Achilles tendon repair was evaluated using immunofluorescence staining, histological staining, stem cell tracking, biomechanical and functional analyses. It was found that tECM-DBTS increased the content of bioactive factors and had a better performance for the proliferation, migration and tenogenic differentiation of bone marrow-derived stem cells (BMSCs) than DBTS. Furthermore, our results demonstrated that tECM-DBTS promoted tendon regeneration and improved the biomechanical properties of regenerated Achilles tendons in rats by recruiting endogenous stem cells and participating in the functionalization of these stem cells. As a whole, the results of this study demonstrated that the tECM-DBTS can provide a bionic microenvironment for recruiting endogenous stem cells and facilitating in situ regeneration of tendons.
Collapse
|
49
|
Berntsen L, Forghani A, Hayes DJ. Mesenchymal Stem Cell Sheets for Engineering of the Tendon-Bone Interface. Tissue Eng Part A 2022; 28:341-352. [PMID: 34476994 PMCID: PMC9057909 DOI: 10.1089/ten.tea.2021.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/25/2021] [Indexed: 11/12/2022] Open
Abstract
Failure to regenerate the gradient tendon-bone interface of the enthesis results in poor clinical outcomes for surgical repair. The goal of this study was to evaluate the potential of composite cell sheets for engineering of the tendon-bone interface to improve regeneration of the functionally graded tissue. We hypothesize that stacking cell sheets at early stages of differentiation into tenogenic and osteogenic progenitors will create a composite structure with integrated layers. Cell sheets were fabricated on methyl cellulose and poly(N-isopropylacrylamide) thermally reversible polymers with human adipose-derived stem cells and differentiated into progenitors of tendon and bone with chemical induction media. Tenogenic and osteogenic cell sheets were stacked, and the engineered tendon-bone interface (TM-OM) was characterized in vitro in comparison to stacked cell sheet controls cultured in basal growth medium (GM-GM), osteogenic medium (OM-OM), and tenogenic medium (TM-TM). Samples were characterized by histology, quantitative real-time polymerase chain reaction, and immunofluorescent staining for markers of tendon, fibrocartilage, and bone including mineralization, scleraxis, tenomodulin, COL2, COLX, RUNX2, osteonectin, and osterix. After 1 week co-culture in basal growth medium, TM-OM cell sheets formed a tissue construct with integrated layers expressing markers of tendon, mineralized fibrocartilage, and bone with a spatial gradient in RUNX2 expression. Tenogenic cell sheets had increased expression of scleraxis and tenomodulin. Osteogenic cell sheets exhibited mineralization 1 week after stacking and upregulation of osterix and osteonectin. Additionally, in the engineered interface, there was significantly increased gene expression of IHH and COLX, indicative of endochondral ossification. These results highlight the potential for composite cell sheets fabricated with adipose-derived stem cells for engineering of the tendon-bone interface. Impact statement This study presents a method for fabrication of the tendon-bone interface using stacked cell sheets of tenogenic and osteogenic progenitors differentiated from human adipose-derived mesenchymal stem cells, resulting in a composite structure expressing markers of tendon, mineralized fibrocartilage, and bone. This work is an important step toward regeneration of the biological gradient of the enthesis and demonstrates the potential for engineering complex tissue interfaces from a single autologous cell source to facilitate clinical translation.
Collapse
Affiliation(s)
- Lisa Berntsen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anoosha Forghani
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
50
|
Yüce A, Mısır A, Karslıoğlu B, Yerli M, Imren Y, Dedeoğlu SS. Does Sectioning and Then Repairing of the Calcaneofibular Ligament at Subtalar Approach Lead to Residual Lateral Ankle Instability? THE ARCHIVES OF BONE AND JOINT SURGERY 2022; 10:347-352. [PMID: 35721589 PMCID: PMC9169731 DOI: 10.22038/abjs.2021.54080.2702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/26/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND The calcaneofibular ligament is cut to increase vision in surgical field in minimally invasive surgery of displaced intraarticular calcaneus fractures with subtalar incision. We aimed to investigate whether this causes talar tilt instability in ankle stress radiographs due to the calcaneofibular ligament deficiency in postoperative period. METHODS The files of 38 patients who were operated with the diagnosis of displaced calcaneus fracture between 2013 and 2018 were examined retrospectively. All the cases underwent with subtalar approach and the calcaneofibular ligament was repaired after the operation. The age, sex, injury mechanism, follow-up length, type of fracture by the Sanders classification, preoperative and postoperative Bohler's and Gissane's angle measurements, talar tilt measurements of intact and fractured side, postoperative calcaneal length, calcaneal height and calcaneal width of the cases were recorded. The obtained data were evaluated statistically. RESULTS 31 (81.6%) of the cases were men, seven (18.4%) were women. The average age was 31.92±7.95 years. The average follow-up time was 15.82±3.33 months. The preoperative Bohler's angle was 14.16±3.67 degree, while the postoperative Bohler's angle was 31.53±4.60 degree (P<0.05). The average talar tilt was 0.96±0.87 degrees on the intact side and 1.19±1.12 degrees on the fractured side (P:0.001). Although the talar tilt values were statistically higher on the fractured side than the intact side, no radiological instability finding was found in any case. The average postoperative Gissane's angles were 126.45±6.69 degrees. The calcaneal length (P:0.665), calcaneal width (P:0.212) and calcaneal height (P:0.341) were statistically similar between the postoperative fractured foot and intact foot. CONCLUSION Sectioning of the calcaneofibular ligament in the surgical treatment with subtalar approach does not cause lateral ankle instability in stress radiographs but may cause laxity. Possible postoperative lateral ankle injuries can be prevented by ankle proprioception exercises.
Collapse
Affiliation(s)
- Ali Yüce
- Department of Orthopedic and Traumatology, Prof. Dr. Cemil Taşçıoğlu City Hospital, İstanbul, Turkey
| | - Abdulhamit Mısır
- Department of Orthopedic and Traumatology, Prof. Dr. Cemil Taşçıoğlu City Hospital, İstanbul, Turkey
| | - Bülent Karslıoğlu
- Department of Orthopedic and Traumatology, Prof. Dr. Cemil Taşçıoğlu City Hospital, İstanbul, Turkey
| | - Mustafa Yerli
- Department of Orthopedic and Traumatology, Prof. Dr. Cemil Taşçıoğlu City Hospital, İstanbul, Turkey
| | - Yunus Imren
- Department of Orthopedic and Traumatology, Prof. Dr. Cemil Taşçıoğlu City Hospital, İstanbul, Turkey
| | - Süleyman Semih Dedeoğlu
- Department of Orthopedic and Traumatology, Prof. Dr. Cemil Taşçıoğlu City Hospital, İstanbul, Turkey
| |
Collapse
|