1
|
Menges S, Michaelis M, Kleinschmidt-Dörr K. Anti-NGF treatment worsens subchondral bone and cartilage measures while improving symptoms in floor-housed rabbits with osteoarthritis. Front Physiol 2023; 14:1201328. [PMID: 37435308 PMCID: PMC10331818 DOI: 10.3389/fphys.2023.1201328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023] Open
Abstract
Objective: Osteoarthritis (OA) is a common joint disorder often affecting the knee. It is characterized by alterations of various joint tissues including subchondral bone and by chronic pain. Anti-nerve growth factor (NGF) antibodies have demonstrated improvement in pain associated with OA in phase 3 clinical trials but have not been approved due to an increased risk of developing rapidly progressive OA. The aim of this study was to investigate effects of systemic anti-NGF-treatment on structure and symptoms in rabbits with surgically induced joint instability. Methods: This was elicited by anterior cruciate ligament transection and partial resection of the medial meniscus in right knee of 63 female rabbits, housed altogether in a 56 m2 floor husbandry. Rabbits received either 0.1, 1 or 3 mg/kg anti-NGF antibody intra-venously at weeks 1, 5 and 14 after surgery or vehicle. During in-life phase, static incapacitance tests were performed and joint diameter was measured. Following necropsy, gross morphological scoring and micro-computed tomography analysis of subchondral bone and cartilage were performed. Results: After surgery, rabbits unloaded operated joints, which was improved with 0.3 and 3 mg/kg anti-NGF compared to vehicle injection during the first half of the study. The diameter of operated knee joints increased over contralateral measures. This increase was bigger in anti-NGF treated rabbits beginning 2 weeks after the first IV injection and became dose-dependent and more pronounced with time. In the 3 mg/kg anti-NGF group, the bone volume fraction and trabecular thickness increased in the medio-femoral region of operated joints compared to contralateral and to vehicle-treated animals, while cartilage volume and to a lesser extent thickness decreased. Enlarged bony areas were found in right medio-femoral cartilage surfaces of animals receiving 1 and 3 mg/kg anti-NGF. Alterations of all structural parameters were particularly distinct in a subgroup of three rabbits, which also exhibited more prominent symptomatic improvement. Conclusion: This study showed that anti-NGF administration exerted negative impact on structure in destabilized joints of rabbits, while pain-induced unloading of joints was improved. Our findings open up the possibility to better understand the effects of systemic anti-NGF, particularly on subchondral bone, and thus the occurrence of rapidly progressive OA in patients.
Collapse
|
2
|
Ojanen SP, Finnilä MAJ, Herzog W, Saarakkala S, Korhonen RK, Rieppo L. Micro-computed Tomography-Based Collagen Orientation and Anisotropy Analysis of Rabbit Articular Cartilage. Ann Biomed Eng 2023:10.1007/s10439-023-03183-4. [PMID: 37005948 DOI: 10.1007/s10439-023-03183-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
The collagen network is the highly organized backbone of articular cartilage providing tissue tensile stiffness and restricting proteoglycan bleaching out of the tissue. Osteoarthritis (OA) diminishes proper collagen network adaptation. Our aim was to provide quantitative three-dimensional (3D) information of the cartilage collagen network adaptation in early osteoarthritis using high resolution micro-computed tomography (µCT)-imaging. Osteochondral samples from the femoral condyles were collected from healthy (N = 8, both legs) and experimental OA rabbit model with anterior cruciate ligament transection (N = 14, single leg). Samples were processed for cartilage µCT-imaging and histological evaluation with polarized light microscopy (PLM). Structure tensor analysis was used to analyse the collagen fibre orientation and anisotropy of the µCT-images, and PLM was used as a validation for structural changes. Depth-wise comparison of collagen fibre orientation acquired with µCT-imaging and PLM correlated well, but the values obtained with PLM were systematically greater than those measured with µCT-imaging. Structure tensor analysis allowed for 3D quantification of collagen network anisotropy. Finally, µCT-imaging revealed only minor differences between the control and experimental groups.
Collapse
Affiliation(s)
- Simo P Ojanen
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland.
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
| | - Mikko A J Finnilä
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Simo Saarakkala
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Lassi Rieppo
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
| |
Collapse
|
3
|
Lombardi AF, Guma M, Chung CB, Chang EY, Du J, Ma YJ. Ultrashort echo time magnetic resonance imaging of the osteochondral junction. NMR IN BIOMEDICINE 2023; 36:e4843. [PMID: 36264245 PMCID: PMC9845195 DOI: 10.1002/nbm.4843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Osteoarthritis is a common chronic degenerative disease that causes pain and disability with increasing incidence worldwide. The osteochondral junction is a dynamic region of the joint that is associated with the early development and progression of osteoarthritis. Despite the substantial advances achieved in the imaging of cartilage and application to osteoarthritis in recent years, the osteochondral junction has received limited attention. This is primarily related to technical limitations encountered with conventional MR sequences that are relatively insensitive to short T2 tissues and the rapid signal decay that characterizes these tissues. MR sequences with ultrashort echo time (UTE) are of great interest because they can provide images of high resolution and contrast in this region. Here, we briefly review the anatomy and function of cartilage, focusing on the osteochondral junction. We also review basic concepts and recent applications of UTE MR sequences focusing on the osteochondral junction.
Collapse
Affiliation(s)
- Alecio F. Lombardi
- Department of Radiology, University of California San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, CA, United States
| | - Monica Guma
- Research Service, Veterans Affairs San Diego Healthcare System, CA, United States
- Department of Medicine, University of California San Diego, CA, United States
| | - Christine B. Chung
- Department of Radiology, University of California San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, CA, United States
| | - Eric Y. Chang
- Department of Radiology, University of California San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, CA, United States
| | - Jiang Du
- Department of Radiology, University of California San Diego, CA, United States
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, CA, United States
| |
Collapse
|
4
|
Yang L, Martin JA, Brouillette MJ, Buckwalter JA, Goetz JE. Objective evaluation of chondrocyte density & cloning after joint injury using convolutional neural networks. J Orthop Res 2022; 40:2609-2619. [PMID: 35171527 PMCID: PMC9378771 DOI: 10.1002/jor.25295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Variations in chondrocyte density and organization in cartilage histology sections are associated with osteoarthritis progression. Rapid, accurate quantification of these two features can facilitate the evaluation of cartilage health and advance the understanding of their significance. The goal of this work was to adapt deep-learning-based methods to detect articular chondrocytes and chondrocyte clones from safranin-O-stained cartilage to evaluate chondrocyte cellularity and organization. The U-net and "you-only-look-once" (YOLO) models were trained and validated for identifying chondrocytes and chondrocyte clones, respectively. Validated models were then used to quantify chondrocyte and clone density in talar cartilage from Yucatan minipigs sacrificed 1 week, 3, 6, and 12 months after fixation of an intra-articular fracture of the hock joint. There was excellent/good agreement between expert researchers and the developed models in identifying chondrocytes/clones (U-net: R2 = 0.93, y = 0.90x-0.69; median F1 score: 0.87/YOLO: R2 = 0.79, y = 0.95x; median F1 score: 0.67). Average chondrocyte density increased 1 week after fracture (from 774 to 856 cells/mm2 ), decreased substantially 3 months after fracture (610 cells/mm2 ), and slowly increased 6 and 12 months after fracture (638 and 683 cells/mm2 , respectively). Average detected clone density 3, 6, and 12 months after fracture (11, 11, 9 clones/mm2 ) was higher than the 4-5 clones/mm2 detected in normal tissue or 1 week after fracture and show local increases in clone density that varied across the joint surface with time. The accurate evaluation of cartilage cellularity and organization provided by this deep learning approach will increase objectivity of cartilage injury and regeneration assessments.
Collapse
Affiliation(s)
- Linjun Yang
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
- Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - James A. Martin
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
- Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Marc J. Brouillette
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | | | - Jessica E. Goetz
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
- Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
5
|
A Cationic Contrast Agent in X-ray Imaging of Articular Cartilage: Pre-Clinical Evaluation of Diffusion and Attenuation Properties. Diagnostics (Basel) 2022; 12:diagnostics12092111. [PMID: 36140512 PMCID: PMC9497730 DOI: 10.3390/diagnostics12092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was the preliminary assessment of a new cationic contrast agent, the CA4+, via the analysis of spatial distribution in cartilage of ex vivo bovine samples, at micrometer and millimeter scale. Osteochondral plugs (n = 18) extracted from bovine stifle joints (n = 2) were immersed in CA4+ solution up to 26 h. Planar images were acquired at different time points, using a microCT apparatus. The CA4+ distribution in cartilage and saturation time were evaluated. Tibial plates from bovine stifle joints (n = 3) were imaged with CT, before and after 24 h-CA4+ bath immersion, at different concentrations. Afterward, potential CA4+ washout from cartilage was investigated. From microCT acquisitions, the CA4+ distribution differentiated into three distinct layers inside the cartilage, reflecting the spatial distribution of proteoglycans. After 24 h of diffusion, the iodine concentration reached in cartilage was approximately seven times that of the CA4+ bath. The resulting saturation time was 1.9 ± 0.9 h and 2.6 ± 2.9 h for femoral and tibial samples, respectively. Analysis of clinical CT acquisitions confirmed overall contrast enhancement of cartilage after 24 h immersion, observed for each CA4+ concentration. Distinct contrast enhancement was reached in different cartilage regions, depending on tissue’s local features. Incomplete but remarkable washout of cartilage was observed. CA4+ significantly improved cartilage visualization and its qualitative analysis.
Collapse
|
6
|
Shang X, Fang Y, Xin W, You H. The Application of Extracellular Vesicles Mediated miRNAs in Osteoarthritis: Current Knowledge and Perspective. J Inflamm Res 2022; 15:2583-2599. [PMID: 35479833 PMCID: PMC9037713 DOI: 10.2147/jir.s359887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a whole joint disease characterized by synovitis, cartilage destruction, and subchondral bone sclerosis and cyst. Despite decades’ study, effective treatment is rare for this chronic disease. Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptosis bodies, are nano-sized vesicles with a cargo containing biologically active agents, such as nucleic acids, lipids, and proteins. As a group of short non-coding RNAs, microRNAs (miRNAs) can be delivered by parental cells secreted EVs. Negatively regulate the target mRNAs at the posttranscriptional level and regulate gene expression in recipient cells without modifying gene sequence. Recently, most studies focused on the function of EVs mediated miRNAs in the pathophysiological process of OA. However, all kinds of EVs specific and OA specific factors might influence the administration of EVs-miRNAs, especially the precise quantitative management. As a result, the flourishing of current research about EVs in the laboratory might not promote the relevant clinical transformation in OA treatment. In this review, we reviewed the present application of EVs-miRNAs in the therapeutic of OA and further analyzed the potential factors that might influence its application. Further progress in the quantitative management of EVs-miRNAs would accelerate the clinical transformation of miRNAs enriched EVs in the OA field.
Collapse
Affiliation(s)
- Xiaobin Shang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yan Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 352000, People’s Republic of China
| | - Hongbo You
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Correspondence: Hongbo You, Email
| |
Collapse
|
7
|
Gomez-Contreras PC, Kluz PN, Hines MR, Coleman MC. Intersections Between Mitochondrial Metabolism and Redox Biology Mediate Posttraumatic Osteoarthritis. Curr Rheumatol Rep 2021; 23:32. [PMID: 33893892 DOI: 10.1007/s11926-021-00994-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW This review will cover foundational studies and recent findings that established key concepts for understanding the importance of redox biology to chondrocyte mitochondrial function and osteoarthritis pathophysiology after injury. RECENT FINDINGS Articular chondrocyte mitochondria can be protected with a wide variety of antioxidants that will be discussed within a framework suggested by classic studies. These agents not only underscore the importance of thiol metabolism and associated redox function for chondrocyte mitochondria but also suggest complex interactions with signal transduction pathways and other molecular features of osteoarthritis that require more thorough investigation. Emerging evidence also indicates that reductive stress could occur alongside oxidative stress. Recent studies have shed new light on historic paradoxes in chondrocyte redox and mitochondrial physiology, leading to the development of promising disease-modifying therapies for posttraumatic osteoarthritis.
Collapse
Affiliation(s)
| | - Paige N Kluz
- University of Iowa, 1182 Biomedical Laboratories, 500 Newton Road, Iowa City, 52242, USA
| | - Madeline R Hines
- University of Iowa, 1182 Biomedical Laboratories, 500 Newton Road, Iowa City, 52242, USA
| | - Mitchell C Coleman
- University of Iowa, 1182 Biomedical Laboratories, 500 Newton Road, Iowa City, 52242, USA.
| |
Collapse
|
8
|
Fernández-Martín S, González-Cantalapiedra A, Permuy M, García-González M, López-Peña M, Muñoz F. Histomorphometric Quantitative Evaluation of Long-Term Risedronate Use in a Knee Osteoarthritis Rabbit Model. Front Vet Sci 2021; 8:669815. [PMID: 33969044 PMCID: PMC8100024 DOI: 10.3389/fvets.2021.669815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) treatment is a major orthopedic challenge given that there is no ideal drug capable to reverse or stop the progression of the OA. In that regard, bisphosphonates have been proposed as potential disease-modifying drugs due to their possible chondroprotective effect related to obtaining a greater subchondral bone quality. However, their effectiveness in OA is still controversial and additionally, there is little evidence focused on their long-term effect in preclinical studies. The aim of this study was to evaluate the risedronate quantitative effect on articular and subchondral periarticular bone by histomorphometry, in an experimental rabbit model in an advanced stage of OA. Twenty-four adult New Zealand rabbits were included in the study. OA was surgically induced in one randomly chosen knee, using the contralateral as healthy control. Animals were divided into three groups (n = 8): placebo control group, sham surgery group and risedronate-treated group. After 24 weeks of treatment, cartilage and subchondral femorotibial pathology was evaluated by micro-computed tomography (micro-CT) and undecalcified histology. The research results demonstrated that the experimental animal model induced osteoarthritic changes in the operated joints, showing an increased cartilage thickness and fibrillation associated with underlying subchondral bone thinning and decreased trabecular bone quality. These changes were especially highlighted in the medial tibial compartments as a possible response to surgical instability. Regarding the trabecular analysis, significant correlations were found between 2D histomorphometry and 3D imaging micro-CT for the trabecular bone volume, trabecular separation, and the trabecular number. However, these associations were not strongly correlated, obtaining more precise measurements in the micro-CT analysis. Concerning the long-term risedronate treatment, it did not seem to have the capacity to reduce the osteoarthritic hypertrophic cartilage response and failed to diminish the superficial cartilage damage or prevent the trabecular bone loss. This study provides novel information about the quantitative effect of long-term risedronate use on synovial joint tissues.
Collapse
Affiliation(s)
- Silvia Fernández-Martín
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain
| | - Antonio González-Cantalapiedra
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain.,Ibonelab S.L., Laboratory of Biomaterials, Lugo, Spain
| | - María Permuy
- Ibonelab S.L., Laboratory of Biomaterials, Lugo, Spain
| | - Mario García-González
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain
| | - Mónica López-Peña
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain.,Ibonelab S.L., Laboratory of Biomaterials, Lugo, Spain
| | - Fernando Muñoz
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain.,Ibonelab S.L., Laboratory of Biomaterials, Lugo, Spain
| |
Collapse
|
9
|
Baer K, Kieser S, Schon B, Rajendran K, Ten Harkel T, Ramyar M, Löbker C, Bateman C, Butler A, Raja A, Hooper G, Anderson N, Woodfield T. Spectral CT imaging of human osteoarthritic cartilage via quantitative assessment of glycosaminoglycan content using multiple contrast agents. APL Bioeng 2021; 5:026101. [PMID: 33834156 PMCID: PMC8018795 DOI: 10.1063/5.0035312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/22/2021] [Indexed: 01/06/2023] Open
Abstract
Detection of early osteoarthritis to stabilize or reverse the damage to articular cartilage would improve patient function, reduce disability, and limit the need for joint replacement. In this study, we investigated nondestructive photon-processing spectral computed tomography (CT) for the quantitative measurement of the glycosaminoglycan (GAG) content compared to destructive histological and biochemical assay techniques in normal and osteoarthritic tissues. Cartilage-bone cores from healthy bovine stifles were incubated in 50% ioxaglate (Hexabrix®) or 100% gadobenate dimeglumine (MultiHance®). A photon-processing spectral CT (MARS) scanner with a CdTe-Medipix3RX detector imaged samples. Calibration phantoms of ioxaglate and gadobenate dimeglumine were used to determine iodine and gadolinium concentrations from photon-processing spectral CT images to correlate with the GAG content measured using a dimethylmethylene blue assay. The zonal distribution of GAG was compared between photon-processing spectral CT images and histological sections. Furthermore, discrimination and quantification of GAG in osteoarthritic human tibial plateau tissue using the same contrast agents were demonstrated. Contrast agent concentrations were inversely related to the GAG content. The GAG concentration increased from 25 μg/ml (85 mg/ml iodine or 43 mg/ml gadolinium) in the superficial layer to 75 μg/ml (65 mg/ml iodine or 37 mg/ml gadolinium) in the deep layer of healthy bovine cartilage. Deep zone articular cartilage could be distinguished from subchondral bone by utilizing the material decomposition technique. Photon-processing spectral CT images correlated with histological sections in healthy and osteoarthritic tissues. Post-imaging material decomposition was able to quantify the GAG content and distribution throughout healthy and osteoarthritic cartilage using Hexabrix® and MultiHance® while differentiating the underlying subchondral bone.
Collapse
Affiliation(s)
| | - Sandra Kieser
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE), Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | | | | | | | - Mohsen Ramyar
- Department of Radiology, University of Otago Christchurch, Christchurch 8011, New Zealand
| | | | - Christopher Bateman
- Department of Radiology, University of Otago Christchurch, Christchurch 8011, New Zealand
| | | | | | | | - Nigel Anderson
- Department of Radiology, University of Otago Christchurch, Christchurch 8011, New Zealand
| | | |
Collapse
|
10
|
Saraswat R, Ratnayake I, Perez EC, Schutz WM, Zhu Z, Ahrenkiel SP, Wood ST. Micropatterned Biphasic Nanocomposite Platform for Maintaining Chondrocyte Morphology. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14814-14824. [PMID: 32202764 DOI: 10.1021/acsami.9b22596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One major limitation hindering the translation of in vitro osteoarthritis research into clinical disease-modifying therapies is that chondrocytes rapidly spread and dedifferentiate under standard monolayer conditions. Current strategies to maintain rounded morphologies of chondrocytes in culture either unnaturally restrict adhesion and place chondrocytes in an excessively stiff mechanical environment or are impractical for use in many applications. To address the limitations of current techniques, we have developed a unique composite thin-film cell culture platform, the CellWell, to model articular cartilage that utilizes micropatterned hemispheroidal wells, precisely sized to fit individual cells (12-18 μm diameters), to promote physiologically spheroidal chondrocyte morphologies while maintaining compatibility with standard cell culture and analytical techniques. CellWells were constructed of 15-μm-thick 5% agarose films embedded with electrospun poly(vinyl alcohol) (PVA) nanofibers. Transmission electron microscope (TEM) images of PVA nanofibers revealed a mean diameter of 60.9 ± 24 nm, closely matching the observed 53.8 ± 29 nm mean diameter of human ankle collagen II fibers. Using AFM nanoindentation, CellWells were found to have compressive moduli of 158 ± 0.60 kPa at 15 μm/s indentation, closely matching published stiffness values of the native pericellular matrix. Primary human articular chondrocytes taken from ankle cartilage were seeded in CellWells and assessed at 24 h. Chondrocytes maintained their rounded morphology in CellWells (mean aspect ratio of 0.87 ± 0.1 vs three-dimensional (3D) control [0.86 ± 0.1]) more effectively than those seeded under standard conditions (0.65 ± 0.3), with average viability of >85%. The CellWell's design, with open, hemispheroidal wells in a thin film substrate of physiological stiffness, combines the practical advantages of two-dimensional (2D) culture systems with the physiological advantages of 3D systems. Through its ease of use and ability to maintain the physiological morphology of chondrocytes, we expect that the CellWell will enhance the clinical translatability of future studies conducted using this culture platform.
Collapse
Affiliation(s)
- Ram Saraswat
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| | - Ishara Ratnayake
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| | - E Celeste Perez
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| | - William M Schutz
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| | - Zhengtao Zhu
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
- Chemistry and Applied Biological Sciences, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| | - S Phillip Ahrenkiel
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| | - Scott T Wood
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, Rapid City, South Dakota 57701, United States
| |
Collapse
|
11
|
Cope P, Ourradi K, Li Y, Sharif M. Models of osteoarthritis: the good, the bad and the promising. Osteoarthritis Cartilage 2019; 27:230-239. [PMID: 30391394 PMCID: PMC6350005 DOI: 10.1016/j.joca.2018.09.016] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease of diarthrodial joints most commonly affecting people over the age of forty. The causes of OA are still unknown and there is much debate in the literature as to the exact sequence of events that trigger the onset of the heterogeneous disease we recognise as OA. There is currently no consensus model for OA that naturally reflects human disease. Existing ex-vivo models do not incorporate the important inter-tissue communication between joint components required for disease progression and differences in size, anatomy, histology and biomechanics between different animal models makes translation to the human model very difficult. This narrative review highlights the advantages and disadvantages of the current models used to study OA. It discusses the challenges of producing a more reliable OA-model and proposes a direction for the development of a consensus model that reflects the natural environment of human OA. We suggest that a human osteochondral plug-based model may overcome many of the fundamental limitations associated with animal and in-vitro models based on isolated cells. Such a model will also provide a platform for the development and testing of targeted treatment and validation of novel OA markers directly on human tissues.
Collapse
Affiliation(s)
| | | | | | - M. Sharif
- Address correspondence and reprint requests to: M. Sharif, Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Learning and Research Building level 2, Southmead Hospital, Bristol, BS10 5NB, UK. Tel: 44-117-414-7926.
| |
Collapse
|
12
|
Brown S, Pistiner J, Adjei IM, Sharma B. Nanoparticle Properties for Delivery to Cartilage: The Implications of Disease State, Synovial Fluid, and Off-Target Uptake. Mol Pharm 2018; 16:469-479. [PMID: 28669194 DOI: 10.1021/acs.molpharmaceut.7b00484] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A major hurdle limiting the ability to treat and cure osteoarthritis, a common and debilitating disease, is rapid joint clearance and limited cartilage targeting of intra-articular therapies. Nanoscale drug carriers have the potential to improve therapeutic targeting and retention in the joint after direct injection; however, there still lacks a fundamental understanding of how the physicochemical properties of nanoparticles (NPs) influence localization to the degenerating cartilage and how joint conditions such as disease state and synovial fluid impact NP biodistribution. The goal of this study was to assess how physicochemical properties of NPs influence their interactions with joint tissues and, ultimately, cartilage localization. Ex vivo models of joint tissues were used to study how poly(lactide- co-glycolide) (PLGA) and polystyrene (PS) NP size, charge, and surface chemistry influence cartilage retention under normal and disease-mimicking conditions. Of the particles investigated, PLGA NPs surface-modified with a quaternary ammonium cation had the greatest retention within cartilage explants; however, retention was diminished 2- to 2.9-fold in arthritic tissue and in the presence of synovial fluid. Interactions with synovial fluid induced changes to NP surface properties and colloidal stability in vitro. The impact of NP charge on "off-target" synoviocyte uptake was also dependent on synovial fluid interactions. The results suggest that the design of nanocarriers for targeted drug delivery within the joint cannot be based on a single parameter such as zeta potential or size, and that the fate of injected delivery systems will likely be influenced by the disease state of the joint and the presence of synovial fluid.
Collapse
Affiliation(s)
- Shannon Brown
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville , Florida 32611-6131 , United States
| | - Jake Pistiner
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville , Florida 32611-6131 , United States
| | - Isaac M Adjei
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville , Florida 32611-6131 , United States
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville , Florida 32611-6131 , United States
| |
Collapse
|
13
|
Quantifying birefringence in the bovine model of early osteoarthritis using polarisation-sensitive optical coherence tomography and mechanical indentation. Sci Rep 2018; 8:8568. [PMID: 29872079 PMCID: PMC5988768 DOI: 10.1038/s41598-018-25982-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/24/2018] [Indexed: 01/14/2023] Open
Abstract
Recent studies have shown potential for using polarisation sensitive optical coherence tomography (PS-OCT) to study cartilage morphology, and to be potentially used as an in vivo, non-invasive tool for detecting osteoarthritic changes. However, there has been relatively limited ability of this method to quantify the subtle changes that occur in the early stages of cartilage degeneration. An established mechanical indenting technique that has previously been used to examine the microstructural response of articular cartilage was employed to fix the bovine samples in an indented state. The samples were subject to creep loading with a constant compressive stress of 4.5 MPa and, when imaged using PS-OCT, enabled birefringent banding patterns to be observed. The magnitude of the birefringence was quantified using the birefringence coefficient (BRC) and statistical analysis revealed that PS-OCT is able to detect and quantify significant changes between healthy and early osteoarthritic cartilage (p < 0.001). This presents a novel utilization of PS-OCT for future development as an in vivo assessment tool.
Collapse
|
14
|
Peters AE, Akhtar R, Comerford EJ, Bates KT. Tissue material properties and computational modelling of the human tibiofemoral joint: a critical review. PeerJ 2018; 6:e4298. [PMID: 29379690 PMCID: PMC5787350 DOI: 10.7717/peerj.4298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/08/2018] [Indexed: 02/03/2023] Open
Abstract
Understanding how structural and functional alterations of individual tissues impact on whole-joint function is challenging, particularly in humans where direct invasive experimentation is difficult. Finite element (FE) computational models produce quantitative predictions of the mechanical and physiological behaviour of multiple tissues simultaneously, thereby providing a means to study changes that occur through healthy ageing and disease such as osteoarthritis (OA). As a result, significant research investment has been placed in developing such models of the human knee. Previous work has highlighted that model predictions are highly sensitive to the various inputs used to build them, particularly the mathematical definition of material properties of biological tissues. The goal of this systematic review is two-fold. First, we provide a comprehensive summation and evaluation of existing linear elastic material property data for human tibiofemoral joint tissues, tabulating numerical values as a reference resource for future studies. Second, we review efforts to model tibiofemoral joint mechanical behaviour through FE modelling with particular focus on how studies have sourced tissue material properties. The last decade has seen a renaissance in material testing fuelled by development of a variety of new engineering techniques that allow the mechanical behaviour of both soft and hard tissues to be characterised at a spectrum of scales from nano- to bulk tissue level. As a result, there now exists an extremely broad range of published values for human tibiofemoral joint tissues. However, our systematic review highlights gaps and ambiguities that mean quantitative understanding of how tissue material properties alter with age and OA is limited. It is therefore currently challenging to construct FE models of the knee that are truly representative of a specific age or disease-state. Consequently, recent tibiofemoral joint FE models have been highly generic in terms of material properties even relying on non-human data from multiple species. We highlight this by critically evaluating current ability to quantitatively compare and model (1) young and old and (2) healthy and OA human tibiofemoral joints. We suggest that future research into both healthy and diseased knee function will benefit greatly from a subject- or cohort-specific approach in which FE models are constructed using material properties, medical imagery and loading data from cohorts with consistent demographics and/or disease states.
Collapse
Affiliation(s)
- Abby E. Peters
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
| | - Eithne J. Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Karl T. Bates
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Al-Ayadhi L, Alhowikan AM, Halepoto DM. Impact of Auditory Integrative Training on Transforming Growth Factor-β1 and Its Effect on Behavioral and Social Emotions in Children with Autism Spectrum Disorder. Med Princ Pract 2018; 27:23-29. [PMID: 29298441 PMCID: PMC5968258 DOI: 10.1159/000486572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/03/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To explore the impact of auditory integrative training (AIT) on the inflammatory biomarker transforming growth factor (TGF)-β1 and to assess its effect on social behavior in children with autism spectrum disorder (ASD). SUBJECTS AND METHODS In this cross-sectional study, 15 patients (14 males and 1 female) with ASD aged 3-12 years were recruited. All were screened for autism using the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Plasma levels of TGF-β1 were measured in all patients using a sandwich enzyme-linked immunoassay (ELISA) immediately and 1 and 3 months after the AIT sessions. Pre- and post-AIT behavioral scores were also calculated for each child using the Childhood Autism Rating Scale (CARS), the Social Responsiveness Scale (SRS), and the Short Sensory Profile (SSP). Data were analyzed using the Statistical Package for the Social Sciences (SPSS 21.0 for Windows). RESULTS Plasma levels of TGF-β1 significantly increased to 85% immediately after AIT (20.13 ± 12 ng/mL, p < 0.05), to 95% 1 month after AIT (21.2 ± 11 ng/mL, p < 0.01), and to 105% 3 months after AIT (22.25 ± 16 ng/mL, p < 0.01) compared to before AIT (10.85 ± 8 ng/mL). Results also revealed that behavioral rating scales (CARS, SRS, and SSP) improved in terms of disease severity after AIT. CONCLUSION Increased plasma levels of TGF-β1 support the therapeutic effect of AIT on TGF-β1 followed by improvement in social awareness, social cognition, and social communication in children with ASD. Furthermore, TGF-β1 was associated with severity in all scores tested (CARS, SRS, and SSP); if confirmed in studies with larger sample sizes, TGF-β1 may be considered as a marker of ASD severity and to assess the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Laila Al-Ayadhi
- Autism Research and Treatment Centre, King Saud University, Riyadh, Saudi Arabia
| | | | - Dost Muhammad Halepoto
- Autism Research and Treatment Centre, King Saud University, Riyadh, Saudi Arabia
- *Dost Muhammad Halepoto, Faculty of Medicine, King Saud University, PO Box 2925, Riyadh 11461 (Saudi Arabia), E-Mail
| |
Collapse
|
16
|
Mantripragada VP, Piuzzi NS, Zachos T, Obuchowski NA, Muschler GF, Midura RJ. Histopathological assessment of primary osteoarthritic knees in large patient cohort reveal the possibility of several potential patterns of osteoarthritis initiation. Curr Res Transl Med 2017; 65:133-139. [PMID: 29132902 PMCID: PMC5731834 DOI: 10.1016/j.retram.2017.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The two main objectives of the study include (1) Test the hypothesis that the lateral femoral condyle (LFC) in patients with primary OA and varus knees undergoing total knee arthroplasty (TKA) can be used as a model to better characterize varying histological features of human OA, (2) Correlate characteristic OA features using the established histopathological scoring systems (HHGS and OARSI) to understand potential histopathological patterns of OA initiation. DESIGN Two osteochondral specimens (4×4×8mm) were collected from fifty patient's LFC at the time of TKA (total 100 specimens), who presented preserved lateral knee compartment with joint space width>2mm. Three independent readers graded the sections on three different occasions using HHGS and OARSI systems. The correlation between individual parameters of the two scoring systems and their inter- and intra-reader variability, reliability and reproducibility were estimated. RESULTS All samples in this cohort showed abnormal histopathological features. Total histopathological scores of the LFC ranged from HHGS median=4.6 (range=0 to 11), and OARSI median=5.2 (range=0 to 19.5). The four individual sub-items of HHGS scoring system (structure, cells, safraninO staining, tidemark) were weakly correlated, with the correlation between structure and cellularity being the strongest (r=0.40). Both the scoring systems had similar repeatability and reproducibility coefficients of<21%. CONCLUSIONS OA changes in the LFC are not confined to any one region, and maybe seen in different regions of cartilage, tidemark, subchondral bone, and/or the marrow space vascularity. These variations may point to the possibility of several potential patterns of initiation in OA.
Collapse
Affiliation(s)
- V P Mantripragada
- Department of biomedical engineering, Lerner research institute, Cleveland clinic, 9500 Euclid avenue, OH 44195 Cleveland, USA.
| | - N S Piuzzi
- Department of biomedical engineering, Lerner research institute, Cleveland clinic, 9500 Euclid avenue, OH 44195 Cleveland, USA; Department of orthopedic surgery, Cleveland clinic, OH 44195 Cleveland, USA; Instituto Universitario del Hospital Italiano de Buenos Aires, Potosí 4234, C1199ACL Caba, Argentina
| | - T Zachos
- Department of orthopedic surgery, Cleveland clinic, OH 44195 Cleveland, USA
| | - N A Obuchowski
- Department of quantitative health science, Cleveland clinic, OH 44195 Cleveland, USA
| | - G F Muschler
- Department of biomedical engineering, Lerner research institute, Cleveland clinic, 9500 Euclid avenue, OH 44195 Cleveland, USA; Department of orthopedic surgery, Cleveland clinic, OH 44195 Cleveland, USA
| | - R J Midura
- Department of biomedical engineering, Lerner research institute, Cleveland clinic, 9500 Euclid avenue, OH 44195 Cleveland, USA
| |
Collapse
|
17
|
Goetz JE, Coleman MC, Fredericks DC, Petersen E, Martin JA, McKinley TO, Tochigi Y. Time-dependent loss of mitochondrial function precedes progressive histologic cartilage degeneration in a rabbit meniscal destabilization model. J Orthop Res 2017; 35:590-599. [PMID: 27279147 PMCID: PMC5148713 DOI: 10.1002/jor.23327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 02/04/2023]
Abstract
The goals of this work were to characterize progression of osteoarthritic cartilage degeneration in a rabbit medial meniscus destabilization (MMD) model and then to use the model to identify pre-histologic disruptions in chondrocyte metabolism under chronically elevated joint contact stresses in vivo. To characterize PTOA progression, 24 rabbits received either MMD or sham surgery. Limb loading was analyzed preoperatively and at regular postoperative intervals using a Tekscan pressure-sensitive walkway. Animals were euthanized 8 (n = 8 MMD; n = 8 sham) or 26 weeks (n = 8 MMD) postoperatively for histological cartilage evaluation by an objective, semi-automated Mankin scoring routine. To examine pre-histologic pathology, MMD was performed on an additional 20 rabbits, euthanized 1 (n = 9) or 4 weeks (n = 10) postoperatively. Chondrocytes were harvested fresh for measurement of mitochondrial function, an intracellular indicator of pathology after mechanical injury. Both MMD and sham surgery caused slight decreases in limb loading which returned to preoperative levels after 2 weeks. Histologically apparent cartilage damage progressed from 8 to 26 weeks after MMD. Changes in chondrocyte respiration were variable at 1 week, but by 4 weeks postoperatively chondrocyte mitochondrial function was significantly reduced. Many human injuries that lead to PTOA are relatively mild, and the cell-level mechanisms leading to disease remain unclear. We have documented PTOA progression in an animal model of subtle joint injury under continued use, and demonstrated that this model provides a realistic environment for investigation of multi-stage cellular pathology that develops prior to overt tissue degeneration and which could be targeted for disease modifying treatments. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:590-599, 2017.
Collapse
Affiliation(s)
- Jessica E. Goetz
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USA,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Mitchell C. Coleman
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Douglas C. Fredericks
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Emily Petersen
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - James A. Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USA,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Todd O. McKinley
- Department of Orthopaedics, Indiana University Methodist Hospital, Indianapolis, IN, USA
| | - Yuki Tochigi
- Department of Orthopaedics, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Saitama, Japan
| |
Collapse
|
18
|
Nakagawa Y, Muneta T, Otabe K, Ozeki N, Mizuno M, Udo M, Saito R, Yanagisawa K, Ichinose S, Koga H, Tsuji K, Sekiya I. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo. PLoS One 2016; 11:e0148777. [PMID: 26867127 PMCID: PMC4750963 DOI: 10.1371/journal.pone.0148777] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs) are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1) whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2) whether aggregates of human MSCs promoted lubricin expression, and (3) whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats. METHODS For in vitro analysis, human bone marrow (BM) MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages. RESULTS In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4), which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in the superficial cartilage. CONCLUSION Cartilage derived from MSCs expressed lubricin protein both in vitro and in vivo. Aggregation promoted lubricin expression of MSCs in vitro and transplantation of aggregates of MSCs regenerated cartilage including the superficial zone in a rat osteochondral defect model. Our results indicate that aggregated MSCs could be clinically relevant for therapeutic approaches to articular cartilage regeneration with an appropriate superficial zone in the future.
Collapse
Affiliation(s)
- Yusuke Nakagawa
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koji Otabe
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mio Udo
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryusuke Saito
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuaki Yanagisawa
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shizuko Ichinose
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Goetz JE, Fredericks D, Petersen E, Rudert MJ, Baer T, Swanson E, Roberts N, Martin J, Tochigi Y. A clinically realistic large animal model of intra-articular fracture that progresses to post-traumatic osteoarthritis. Osteoarthritis Cartilage 2015; 23:1797-805. [PMID: 26033166 DOI: 10.1016/j.joca.2015.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Translation of promising treatments for post-traumatic osteoarthritis (PTOA) to patients with intra-articular fracture (IAF) has been limited by the lack of a realistic large animal model. To address this issue we developed a large animal model of IAF in the distal tibia of Yucatan minipigs and documented the natural progression of this injury. DESIGN Twenty-two fractures were treated using open reduction and internal fixation with either an anatomic reduction or an intentional 2-mm step-off. Pre-operatively, and 3 days, 1, 2, 4, 8, and 12 weeks post-operatively, animals were sedated for synovial fluid draws and radiographs. Limb loading was monitored at the same time points using a Tekscan Walkway. Animals were sacrificed at 12 weeks and the limbs were harvested for histological evaluation. RESULTS All animals achieved bony union by 12 weeks, facilitating nearly complete recovery of the initial 60% decrease in limb loading. TNFα, IL1β, IL6, and IL8 concentrations in the fractured limbs were elevated (P < 0.05) at specific times during the 2 weeks after fracture. Histological cartilage degeneration was more severe in the step-off group (0.0001 < P < 0.27 compared to normal) than in the anatomic reconstruction group (0.27 < P < 0.99 compared to normal). CONCLUSIONS This model replicated key features of a human IAF, including surgical stabilization, inflammatory responses, and progression to osteoarthritic cartilage degeneration, thereby providing a potentially useful model for translating promising treatment options to clinical practice.
Collapse
Affiliation(s)
- J E Goetz
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.
| | - D Fredericks
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - E Petersen
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - M J Rudert
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - T Baer
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - E Swanson
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - N Roberts
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - J Martin
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Y Tochigi
- Department of Orthopaedics, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| |
Collapse
|
20
|
Chokhandre S, Colbrunn R, Bennetts C, Erdemir A. A Comprehensive Specimen-Specific Multiscale Data Set for Anatomical and Mechanical Characterization of the Tibiofemoral Joint. PLoS One 2015; 10:e0138226. [PMID: 26381404 PMCID: PMC4575171 DOI: 10.1371/journal.pone.0138226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/27/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding of tibiofemoral joint mechanics at multiple spatial scales is essential for developing effective preventive measures and treatments for both pathology and injury management. Currently, there is a distinct lack of specimen-specific biomechanical data at multiple spatial scales, e.g., joint, tissue, and cell scales. Comprehensive multiscale data may improve the understanding of the relationship between biomechanical and anatomical markers across various scales. Furthermore, specimen-specific multiscale data for the tibiofemoral joint may assist development and validation of specimen-specific computational models that may be useful for more thorough analyses of the biomechanical behavior of the joint. This study describes an aggregation of procedures for acquisition of multiscale anatomical and biomechanical data for the tibiofemoral joint. Magnetic resonance imaging was used to acquire anatomical morphology at the joint scale. A robotic testing system was used to quantify joint level biomechanical response under various loading scenarios. Tissue level material properties were obtained from the same specimen for the femoral and tibial articular cartilage, medial and lateral menisci, anterior and posterior cruciate ligaments, and medial and lateral collateral ligaments. Histology data were also obtained for all tissue types to measure specimen-specific cell scale information, e.g., cellular distribution. This study is the first of its kind to establish a comprehensive multiscale data set for a musculoskeletal joint and the presented data collection approach can be used as a general template to guide acquisition of specimen-specific comprehensive multiscale data for musculoskeletal joints.
Collapse
Affiliation(s)
- Snehal Chokhandre
- Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
| | - Robb Colbrunn
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
- BioRobotics and Mechanical Testing Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
| | - Craig Bennetts
- Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
| | - Ahmet Erdemir
- Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
- * E-mail:
| |
Collapse
|
21
|
Establishment of a rat model of adjuvant-induced osteoarthritis of the lumbar facet joint. Cell Biochem Biophys 2015; 70:1545-51. [PMID: 24973958 DOI: 10.1007/s12013-014-0091-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To study the establishment of adjuvant-induced osteoarthritis of the lumbar facet joint in a rat model. Complete Freund's adjuvant (experimental group) and saline (control group) were randomly injected into the right and left side of rat, respectively. The rats were killed, and degeneration of lumbar facet joint was evaluated at macroscopic level and scored based on OARSI scores system. Moreover, Interleukin-1β and tumor necrosis factor-α levels in the synovium were measured. The macroscopic scores and OARSI scores of experimental group were higher than the control group (P < 0.05). The concentration of tumor necrosis factor-α was significantly increased only on 3- and 7-day post-surgery when compared with controls, and interleukin-1β was increased on days 3,7 and 14 post-surgery (P < 0.05). The rat model of adjuvant can induce degeneration of the lumbar facet joint. It can be useful for studies on mechanisms and treatment of lumbar facet joint osteoarthritis.
Collapse
|
22
|
Abstract
Osteoarthritis (OA) is unquestionably one of the most important chronic health issues in humans, affecting millions of individuals and costing billions of dollars annually. Despite widespread awareness of this disease and its devastating impact, the pathogenesis of early OA is not completely understood, hampering the development of effective tools for early diagnosis and disease-modifying therapeutics. Most human tissue available for study is obtained at the time of joint replacement, when OA lesions are end stage and little can be concluded about the factors that played a role in disease development. To overcome this limitation, over the past 50 years, numerous induced and spontaneous animal models have been utilized to study disease onset and progression, as well as to test novel therapeutic interventions. Reflecting the heterogeneity of OA itself, no single "gold standard" animal model for OA exists; thus, a challenge for researchers lies in selecting the most appropriate model to answer a particular scientific question of interest. This review provides general considerations for model selection, as well as important features of species such as mouse, rat, guinea pig, sheep, goat, and horse, which researchers should be mindful of when choosing the "best" animal model for their intended purpose. Special consideration is given to key variations in pathology among species as well as recommended guidelines for reporting the histologic features of each model.
Collapse
Affiliation(s)
- A M McCoy
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| |
Collapse
|
23
|
|
24
|
Kubaszewski Ł, Zioła-Frankowska A, Frankowski M, Rogala P, Gasik Z, Kaczmarczyk J, Nowakowski A, Dabrowski M, Labedz W, Miękisiak G, Gasik R. Comparison of trace element concentration in bone and intervertebral disc tissue by atomic absorption spectrometry techniques. J Orthop Surg Res 2014; 9:99. [PMID: 25342441 PMCID: PMC4220064 DOI: 10.1186/s13018-014-0099-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Trace element (TE) analysis in human tissue has the dual purpose of assessing environmental pollution and metabolism. In literature, bone TE analysis is common, but studies in intervertebral disc (IVD) tissue are lacking. The aim of the study was evaluation of the difference of TE concentration in intervertebral disc and bone in patients with degenerative changes. The comparison of the tissues differing in metabolism, blood perfusion, or separateness from adjoining tissues but playing similar biomechanical role and presenting some common morphological traits may shed new light on metabolism nuances, degenerative process, as well as accumulation potential of IVD in respect to bone. METHODS In the study, we analyzed two types of samples: intervertebral disc (n =30, from 22 patients operated due to degenerative disc disease) and femoral bone (n =26, separately femoral head and neck, from 26 patients, acquired in total hip arthroplasty procedure in course of idiopathic osteoarthritis of the hip joint). In the samples we analyzed, with atomic absorption spectrometry, the concentrations of Pb, Ni, Mo, Cu, Mg, and Zn. RESULTS The element concentrations identified in bone are comparable to those presented in the literature. In the case of Pb, Ni, Mo, Mg, and Zn, the concentration in the bone was 2 to 25.8 times higher than that observed in the disc. Only the Cu concentration was higher in disc tissue than in bone. In disc tissue, fewer samples had TE concentrations below the detection threshold. We found significant differences in TE profiles in the compared tissues. CONCLUSIONS The results show that the disc could serve as a more stable compartment for evaluating TE concentration, especially for TEs that are environmentally related.
Collapse
Affiliation(s)
- Łukasz Kubaszewski
- Department of Orthopedics and Traumatology, W. Dega University Hospital, University of Medical Science Poznan, 28 Czerwca 1956r St., Poznań, 61-545, Poland.
- Clinic and Polyclinic of Neuroorthopedic and Neurology, Institute of Rheumatology, Warsaw, Spartańska 1, Warsaw, 02-637, Poland.
| | - Anetta Zioła-Frankowska
- Department of Water and Soil Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, Poznań, 61-614, Poland.
| | - Marcin Frankowski
- Department of Water and Soil Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, Poznań, 61-614, Poland.
| | - Piotr Rogala
- Department of Spine Surgery, Oncologic Orthopaedics and Traumatology, W. Dega University Hospital, University of Medical Science Poznan, 28 Czerwca 1956r St., Poznań, 61-545, Poland.
| | - Zuzanna Gasik
- Clinic and Polyclinic of Neuroorthopedic and Neurology, Institute of Rheumatology, Warsaw, Spartańska 1, Warsaw, 02-637, Poland.
| | - Jacek Kaczmarczyk
- Department of Orthopedics and Traumatology, W. Dega University Hospital, University of Medical Science Poznan, 28 Czerwca 1956r St., Poznań, 61-545, Poland.
| | - Andrzej Nowakowski
- Department of Spine Surgery, Oncologic Orthopaedics and Traumatology, W. Dega University Hospital, University of Medical Science Poznan, 28 Czerwca 1956r St., Poznań, 61-545, Poland.
| | - Mikolaj Dabrowski
- Department of Spine Surgery, Oncologic Orthopaedics and Traumatology, W. Dega University Hospital, University of Medical Science Poznan, 28 Czerwca 1956r St., Poznań, 61-545, Poland.
| | - Wojciech Labedz
- Department of Orthopedics and Traumatology, W. Dega University Hospital, University of Medical Science Poznan, 28 Czerwca 1956r St., Poznań, 61-545, Poland.
| | - Grzegorz Miękisiak
- Department of Neurosurgery, Specialist Medical Center, Polanica-Zdroj, Poland.
| | - Robert Gasik
- Clinic and Polyclinic of Neuroorthopedic and Neurology, Institute of Rheumatology, Warsaw, Spartańska 1, Warsaw, 02-637, Poland.
| |
Collapse
|
25
|
Burgin L, Edelsten L, Aspden R. The mechanical and material properties of elderly human articular cartilage subject to impact and slow loading. Med Eng Phys 2014; 36:226-32. [DOI: 10.1016/j.medengphy.2013.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/11/2013] [Accepted: 11/03/2013] [Indexed: 11/26/2022]
|