1
|
Shin HS, Choi JI, Chung HW, Park HJ, Park H, Rim JH, Lim JB. Targeted inhibition of Ninjurin2 promotes chemosensitivity in chemoresistant gastric cancer by suppressing cancer-initiating cells. Biomark Res 2025; 13:84. [PMID: 40518514 PMCID: PMC12168268 DOI: 10.1186/s40364-025-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/23/2025] [Indexed: 06/18/2025] Open
Abstract
BACKGROUND The combination of epirubicin, cisplatin, and 5-fluorouracil (ECF) is widely used for gastric cancer treatment. However, cancer cells can acquire chemoresistance over multiple treatment cycles, leading to recurrence. This study aimed to investigate a novel biomarker for predicting ECF resistance and its biological roles in gastric cancer. METHODS ECF-resistant (ECF-R) gastric cancer cell lines were established through stepwise ECF treatment. Transcriptome analysis was performed to identify resistance-related genes, which were validated in tumor organoids and in vivo models. Additionally, gastric cancer patient tumor tissues were analyzed for clinical relevance. RESULTS Transcriptome analysis revealed that NINJURIN2 and CD44 were highly expressed in ECF-R cells but rarely expressed in normal gastric tissues. NINJURIN2 inhibition significantly increased chemosensitivity to ECF in vitro and in vivo. Liquid chromatography-tandem mass spectrometry identified periostin as a binding partner of NINJURIN2, mediating chemoresistance. Furthermore, VAV2 phosphorylation was markedly upregulated in ECF-R cells but was inhibited by NINJURIN2 knockdown. Clinical analysis showed that high NINJURIN2 expression correlated with poor survival outcomes in gastric cancer patients. CONCLUSION Our findings suggest that NINJURIN2 can be used as a novel biomarker for chemoresistant gastric cancer patients and that inhibiting NINJURIN2 along with standard chemotherapy could prevent chemoresistance-associated relapse in gastric cancer.
Collapse
Affiliation(s)
- Hyo Shik Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Il Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hye Won Chung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hee Jung Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hak Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - John Hoon Rim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong-Baeck Lim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhao G, Zeng Y, Cheng W, Karkampouna S, Papadopoulou P, Hu B, Zang S, Wezenberg E, Forn-Cuní G, Lopes-Bastos B, Julio MKD, Kros A, Snaar-Jagalska BE. Peptide-Modified Lipid Nanoparticles Boost the Antitumor Efficacy of RNA Therapeutics. ACS NANO 2025; 19:13685-13704. [PMID: 40176316 PMCID: PMC12004924 DOI: 10.1021/acsnano.4c14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
RNA therapeutics offer a promising approach to cancer treatment by precisely regulating cancer-related genes. While lipid nanoparticles (LNPs) are currently the most advanced nonviral clinically approved vectors for RNA therapeutics, their antitumor efficacy is limited by their unspecific hepatic accumulation after systemic administration. Thus, there is an urgent need to enhance the delivery efficiency of LNPs to target tumor-residing tissues. Here, we conjugated the cluster of differentiation 44 (CD44)-specific targeting peptide A6 (KPSSPPEE) to the cholesterol of LNPs via PEG, named AKPC-LNP, enabling specific tumor delivery. This modification significantly improved delivery to breast cancer cells both in vitro and in vivo, as shown by flow cytometry and confocal microscopy. We further used AKPC-siYT to codeliver siRNAs targeting the transcriptional coactivators YAP and TAZ, achieving potent gene silencing and increased cell death in both 2D cultures and 3D tumor spheroids, outperforming unmodified LNPs. In a breast tumor cell xenografted zebrafish model, systemically administered AKPC-siYT induced robust silencing of YAP/TAZ and downstream genes and significantly enhanced tumor suppression compared to unmodified LNPs. Additionally, AKPC-siYT effectively reduced proliferation in prostate cancer organoids and tumor growth in a patient-derived xenograft (PDX) model. Overall, we developed highly efficient AKPC-LNPs carrying RNA therapeutics for targeted cancer therapy.
Collapse
Affiliation(s)
- Gangyin Zhao
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
- Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 51800, China
| | - Ye Zeng
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Wanli Cheng
- Urology
Research Laboratory, Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
| | - Sofia Karkampouna
- Urology
Research Laboratory, Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
- Department
of Urology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Panagiota Papadopoulou
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bochuan Hu
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Shuya Zang
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Emma Wezenberg
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Gabriel Forn-Cuní
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bruno Lopes-Bastos
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Marianna Kruithof-de Julio
- Department
of Urology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Alexander Kros
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - B. Ewa Snaar-Jagalska
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| |
Collapse
|
3
|
Kattner N, Hang Y, Krentz NAJ, Russell LA, Palmer M, Flaxman C, Plett N, Coulthard R, Al-Selwi Y, Dyson N, Honkanen-Scott M, Kim SK, Tiniakos D, Klöppel G, Richardson SJ, Shaw JAM. Identification of a vimentin-expressing α-cell phenotype in CF and normal pancreas. J Endocrinol 2025; 264:e240190. [PMID: 39836539 PMCID: PMC11850051 DOI: 10.1530/joe-24-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
Endocrine dysfunction and diabetes can develop secondary to fibrotic diseases within the pancreas, including cystic fibrosis (CF). A phenotypic shift within epithelial cells has been recognised in association with pro-fibrotic signalling. We sought evidence of endocrine cell epithelial-to-mesenchymal transition in CF and non-CF pancreas. Post-mortem pancreatic sections from 24 people with CF and 10 organ donors without CF or diabetes were stained for insulin/glucagon/vimentin and Sirius red/fast green with collagen distribution assessed semi-quantitatively (CF) and quantitatively (non-CF). Analysis of existing single-cell RNA-sequencing datasets (three adult donors without diabetes and nine with chronic pancreatitis) for α-cell vimentin expression was performed. Cells co-expressing glucagon/vimentin were detected in a proportion (32(4,61)% (median (Q1,Q3))) of islets in all CF pancreata except donors dying perinatally. CF histopathology was characterised by peri-islet fibrosis, and 60(45,80)% of islets were surrounded by collagen strands. A positive correlation between islet fibrosis and vimentin-expressing α-cells was seen in non-CF donors <31 years (r = 0.972; P = 0.006). A possible association with donor age was seen in all donors (r = 0.343; P = 0.047). Single-cell RNA-sequencing analysis of isolated islets from non-diabetic donors and donors with chronic pancreatitis confirmed the presence of vimentin-positive and vimentin-negative α-cells. Differentiated α-cell function-associated gene expression was maintained. Differentially upregulated processes in co-expressing cells included pathways associated with extracellular matrix organisation, cell-cell adhesion, migratory capability and self-renewal. We have identified and characterised an intermediate epithelial/mesenchymal state in a sub-population of α-cells present throughout post-natal life, which may play a role in their response to extrinsic stressors, including fibrosis and ageing.
Collapse
Affiliation(s)
- Nicole Kattner
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
- Stanford Diabetes Research Centre, Stanford University School of Medicine, Stanford, California, USA
| | - Nicole A J Krentz
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lydia A Russell
- Islet Biology Group (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Matthew Palmer
- Islet Biology Group (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Christine Flaxman
- Islet Biology Group (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Nadine Plett
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rowan Coulthard
- Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Yara Al-Selwi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nicola Dyson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Minna Honkanen-Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
- Stanford Diabetes Research Centre, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine (Endocrinology Division), Stanford University School of Medicine, Stanford, California, USA
- Department of Pediatrics (Endocrinology Division), Stanford University School of Medicine, Stanford, California, USA
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Günter Klöppel
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Sarah J Richardson
- Islet Biology Group (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Jiang F, Ahmad S, Kanwal S, Hameed Y, Tang Q. Key wound healing genes as diagnostic biomarkers and therapeutic targets in uterine corpus endometrial carcinoma: an integrated in silico and in vitro study. Hereditas 2025; 162:5. [PMID: 39833941 PMCID: PMC11748876 DOI: 10.1186/s41065-025-00369-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Uterine Corpus Endometrial Carcinoma (UCEC) is a prevalent gynecologic malignancy with complex molecular underpinnings. This study identifies key woundhealing genes involved in UCEC and elucidates their roles through a comprehensive analysis. METHODS In silico and in vitro experiments. RESULTS Seventy wound healing-associated genes were extracted from the Gene Ontology (GO) database, and a protein-protein interaction (PPI) network was constructed using the STRING database. CytoHubba analysis in Cytoscape identified six pivotal hub genes: CD44, FGF2, FGF10, KDM6A, FN1, and MMP2. These genes exhibited significantly lower expression in UCEC cell lines compared to normal controls, as confirmed by RT-qPCR. Receiver Operating Characteristic (ROC) analysis demonstrated their potential as diagnostic biomarkers, with Area Under the Curve (AUC) values ranging from 0.94 to 1.00. Validation using TCGA datasets revealed consistent downregulation of these genes in UCEC samples, corroborated by immunohistochemical staining. Promoter methylation analysis showed significantly higher methylation levels in UCEC, correlating with decreased mRNA expression and poor survival outcomes. Genetic alteration analysis indicated frequent mutations in FN1 and KDM6A, although these did not significantly affect survival. Functional analysis using the CancerSEA database highlighted the involvement of these genes in critical cancer-related processes, including angiogenesis, apoptosis, and metastasis. Immune correlation studies revealed significant associations with immune inhibitor genes and distinct expression patterns across immune subtypes. Overexpression studies in UCEC cell lines demonstrated that CD44 and MMP2 reduce proliferative ability while enhancing migration and wound healing. CONCLUSION Collectively, these findings underscore the crucial roles of CD44, FGF2, FGF10, KDM6A, FN1, and MMP2 in UCEC pathogenesis, highlighting their potential as biomarkers and therapeutic targets in this malignancy.
Collapse
Affiliation(s)
- Fuchuan Jiang
- Department of Gynaecology and Obstetrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Sajjad Ahmad
- Gomal Medical College, D. I. Khan, KPK, Pakistan
| | - Sadia Kanwal
- Al Nafees Medical College and Hospital Islamabad, Islamabad, Pakistan
| | - Yasir Hameed
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Qian Tang
- Department of Gynaecology and Obstetrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
5
|
Tchaparian E, Lin HY, Chen Y, Hunter JN, Yin S, Ng H, Wu A. Mass balance, metabolic disposition, and pharmacokinetics of a single IV dose of [14C]CA102N in HT-29 xenograft athymic nude mice. Front Pharmacol 2024; 15:1440679. [PMID: 39703390 PMCID: PMC11655901 DOI: 10.3389/fphar.2024.1440679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction CA102N is a novel anticancer drug developed by covalently linking H-Nim (N-(4-Amino-2-phenoxyphenyl methanesulfonamide) to Hyaluronic Acid to target CD44 receptor-rich tumors. The proposed approach seeks to enhance the efficacy and overcome limitations associated with H-Nim, including poor solubility and short half-life. Methods The study aimed to evaluate the pharmacokinetics, biodistribution, metabolism, and tumor permeability of [14C] CA102N in xenograft mice following a single intravenous dose of 200 mg/kg. Liquid scintillation counting analysis was used for the pharmacokinetics and mass balance analysis. Metabolite profiling was assessed by HPLC-MS coupled with a radio flow-through detector. Quantitative Whole-Body Autoradiography was used to determine tissue distribution. Concentrations of CA102N and its metabolites were measured using total radioactivity data from urine, feces, and tissue samples. Results About 94.9% of the administered dose was recovered at 240 h post-dose. The primary route of radioactivity elimination was through urine, accounting for an average of 77% of the dose with around 13.2% excreted in the feces. Tissue distribution showed rapid accumulation within 0.5 h post-administration, followed by a fast decline in most tissues except for the tumor, where slow elimination was observed. CA102N/metabolites exhibited a two-phase pharmacokinetic profile, characterized by an initial rapid distribution phase and a slower terminal elimination, with a half-life (t1/2) of 22 h. The mean maximum concentration (Cmax) of 1798.586 µg equivalents per ml was reached at 0.5 h (Tmax). Most of the radioactivity in plasma was attributed to CA102N, while small-molecule hydrolysis products dominated the excreta and tissue samples. Metabolite profiling revealed two major hydrolysis products: H-Nim-disaccharide and H-Nim-tetrasaccharide. No unchanged [14C] CA102N was detected in urine or feces, suggesting that CA102N undergoes extensive metabolism before excretion. Conclusion The current data provided valuable insights into the pharmacokinetics, metabolism, and tissue/tumor distribution of CA102N in mice. These findings demonstrated that metabolic clearance is the primary elimination pathway for CA102N and that the drug exhibits tumor retention, supporting its development as an anticancer therapy. Our results provided a strong pharmacological basis for the advancement of CA102N into the clinic.
Collapse
Affiliation(s)
- Eskouhie Tchaparian
- Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan
| | - Hua-Yang Lin
- Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan
| | - Yuchih Chen
- Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan
| | - J. Neil Hunter
- Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan
| | - Sindy Yin
- Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan
| | - Huey Ng
- MDT Int’l SA, Geneva, Switzerland
| | - Albert Wu
- Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan
- MDT Int’l SA, Geneva, Switzerland
| |
Collapse
|
6
|
Han EH, Cho SH, Lee SN, Cho MY, Lee H, Lee SY, Ngoc Thi Tran C, Park HS, Min JY, Kim HM, Park MS, Kim TD, Lim YT, Hong KS. 3D Scaffold-Based Culture System Enhances Preclinical Evaluation of Natural Killer Cell Therapy in A549 Lung Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:7194-7206. [PMID: 39392900 DOI: 10.1021/acsabm.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Cell-based immunotherapies have emerged as promising cancer treatment modalities, demonstrating remarkable clinical efficacy. As interest in applying immune cell-based therapies to solid tumors has gained momentum, experimental models that enable long-term monitoring and mimic clinical administration are increasingly necessary. This study explores the potential of scaffold-based cell culture technologies, specifically three-dimensional (3D) extracellular matrix (ECM)-like frameworks, as promising solutions. These frameworks facilitate unhindered immune cell growth and enable continuous cancer cell culture. The three-dimensional (3D) cell culture model was developed using tailored scaffolds for natural killer (NK) cell culture. Within this framework, A549 lung cancer cells were cocultured with NK cells, allowing real-time monitoring for up to 28 days. The expression of critical markers associated with anticancer drug resistance and epithelial-mesenchymal transition (EMT) was evaluated in cancer cells within this 3D culture context. Compared to conventional 2D monolayer cultures, this 3D scaffold-based culture revealed that solid tumor cells, specifically A549 cells, exhibited heightened resistance to anticancer drugs. Additionally, the 3D culture environment upregulated the expression of EMT markers namely vimentin, N-cadherin, and fibronectin, while NK and zEGFR-CAR-NK cells displayed anticancer effects. In the two-dimensional (2D) coculture, only zEGFR-CAR-NK cells exhibited such effects in the 3D coculture system, highlighting an intriguing inconsistency with the 2D culture model, further confirmed by in vivo experiments. This in vitro 3D cell culture model reliably predicts outcomes in NK immunotherapy experiments. Thus, it represents a valuable tool for investigating drug resistance mechanisms and assessing the efficacy of immune cell-based therapies. By bridging the gap between in vitro and in vivo investigations, this model effectively translates potential treatments into animal models and facilitates rigorous preclinical evaluations.
Collapse
Affiliation(s)
- Eun Hee Han
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sun-Hee Cho
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Sang Nam Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi Young Cho
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) and School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunseung Lee
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Soo Yun Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chau Ngoc Thi Tran
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hye Sun Park
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Jin Young Min
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Hye Min Kim
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Min Sung Park
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae-Don Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT) and School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwan Soo Hong
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Oz O, Irmak Yuzuguldu R, Yazici A, Kocatepe Cavdar D, Yilmaz C, Ozturk M, Duzel H, Gurel D. The differences between pure and mixed invasive micropapillary breast cancer: the epithelial-mesenchymal transition molecules and prognosis. Breast Cancer Res Treat 2024; 208:41-55. [PMID: 38955980 PMCID: PMC11452530 DOI: 10.1007/s10549-024-07384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Invasive micropapillary carcinoma (IMPC) of the breast is known for its high metastatic potential, but the definition of pure and mixed IMPC remains unclear. This retrospective cohort study aims to investigate the prognostic significance of the micropapillary component ratio and the expression of critical molecules of epithelial-mesenchymal transition (EMT), including E-cadherin (E-cad), N-cadherin (N-cad), CD44s, and β-catenin (β-cat), in distinguishing between pure and mixed IMPCs. METHODS We analyzed 100 cases of locally advanced IMPC between 2000 and 2018 and excluded patients who received neoadjuvant chemotherapy. Pure IMPC was defined as having a micropapillary component of over 90%. A comprehensive recording of prognostic parameters was conducted. The IMPC areas were analyzed using the immunohistochemical (IHC) staining method on the microarray set for pure and mixed IMPC patients. Pearson's chi-square, Fisher's exact tests, Kaplan-Meier analysis, and Cox proportional hazards analysis were employed. RESULTS The comparative survival analysis of the entire group, based on overall survival (OS) and disease-free survival (DFS), revealed no significant difference between the pure and mixed groups (P = 0.480, HR = 1.474 [0.502-4.325] and P = 0.390, HR = 1.587 [0.550-4.640], respectively). However, in the pure IMPC group, certain factors were found to be associated with a higher risk of short survival. These factors included skin involvement (P = 0.050), pT3&4 category (P = 0.006), a ratio of intraductal component (> 5%) (P = 0.032), and high-level expression of N-cad (P = 0.020). Notably, none of the risk factors identified for short OS in pure IMPC cases were observed as significant risks in mixed cases and vice versa. Furthermore, N-cad was identified as a poor prognostic marker for OS in pure IMPCs (P = 0.002). CONCLUSION The selection of a 90% ratio for classifying pure IMPCs revealed significant differences in certain molecular and prognostic parameters between pure and mixed groups. Notably, the involvement of N-cadherin in the epithelial-mesenchymal transition (EMT) process provided crucial insights for predicting OS and DFS while also distinguishing between the two groups. These findings strongly support the notion that the pure IMPC subgroup represents a distinct entity characterized by unique molecular characteristics and behavioral patterns.
Collapse
Affiliation(s)
- Ozden Oz
- Department of Pathology, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Izmir, Turkey.
| | | | - Ayse Yazici
- Department of Pathology, Faculty of Medicine, Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkey
| | - Demet Kocatepe Cavdar
- Department of Pathology, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Cengiz Yilmaz
- Department of Medical Oncology, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Mucteba Ozturk
- Department of General Surgery, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Hilal Duzel
- Department of Public Health, Medical Faculty, Dokuz Eylul University, Izmir, Turkey
| | - Duygu Gurel
- Department of Pathology, Medical Faculty, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
8
|
Miteva M, Mihaylova Z, Mitev V, Aleksiev E, Stanimirov P, Praskova M, Dimitrova VS, Vasileva A, Calenic B, Constantinescu I, Perlea P, Ishkitiev N. A Review of Stem Cell Attributes Derived from the Oral Cavity. Int Dent J 2024; 74:1129-1141. [PMID: 38582718 PMCID: PMC11561491 DOI: 10.1016/j.identj.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024] Open
Abstract
Oral cavity stem cells (OCSCs) have been the focus of intense scientific efforts due to their accessibility and stem cell properties. The present work aims to compare the different characteristics of 6 types of dental stem cells derived from the oral cavity: dental pulp stem cells (DPSC), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSC), stem cells from the apical papilla (SCAP), bone marrow mesenchymal stem cells (BMSC), and gingival mesenchymal stem cells (GMSC). Using immunofluorescence and real-time polymerase chain reaction techniques, we analysed the cells for stem cell, differentiation, adhesion, and extracellular matrix markers; the ability to proliferate in vitro; and multilineage differentiation potential. Markers such as vimentin, CD44, alkaline phosphatase, CD146, CD271, CD49f, Oct 3/4, Sox 9, FGF7, nestin, and BMP4 showed significant differences in expression levels, highlighting the heterogeneity and unique characteristics of each cell type. At the same time, we confirmed that all cell types successfully differentiated into osteogenic, chondrogenic, or adipose lineages, with different readiness. In conclusion, our study reveals the distinct properties and potential applications of various dental-derived stem cells. These findings contribute to a deeper understanding of OCSCs and their significance in future clinical applications.
Collapse
Affiliation(s)
- Marina Miteva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Zornitsa Mihaylova
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Evgeniy Aleksiev
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Pavel Stanimirov
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Maria Praskova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Violeta S Dimitrova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Anelia Vasileva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Bogdan Calenic
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania.
| | - Ileana Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania
| | - Paula Perlea
- Department of Endodontics, UMF Carol Davila, Bucharest, Romania.
| | - Nikolay Ishkitiev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| |
Collapse
|
9
|
Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, George A, Ouyang S, Liu F. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnology 2024; 22:515. [PMID: 39198894 PMCID: PMC11351052 DOI: 10.1186/s12951-024-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyang Gan
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Sihui Ouyang
- College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
10
|
Wang X, Xue X, Pang M, Yu L, Qian J, Li X, Tian M, Lyu A, Lu C, Liu Y. Epithelial-mesenchymal plasticity in cancer: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e659. [PMID: 39092293 PMCID: PMC11292400 DOI: 10.1002/mco2.659] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Currently, cancer is still a leading cause of human death globally. Tumor deterioration comprises multiple events including metastasis, therapeutic resistance and immune evasion, all of which are tightly related to the phenotypic plasticity especially epithelial-mesenchymal plasticity (EMP). Tumor cells with EMP are manifest in three states as epithelial-mesenchymal transition (EMT), partial EMT, and mesenchymal-epithelial transition, which orchestrate the phenotypic switch and heterogeneity of tumor cells via transcriptional regulation and a series of signaling pathways, including transforming growth factor-β, Wnt/β-catenin, and Notch. However, due to the complicated nature of EMP, the diverse process of EMP is still not fully understood. In this review, we systematically conclude the biological background, regulating mechanisms of EMP as well as the role of EMP in therapy response. We also summarize a range of small molecule inhibitors, immune-related therapeutic approaches, and combination therapies that have been developed to target EMP for the outstanding role of EMP-driven tumor deterioration. Additionally, we explore the potential technique for EMP-based tumor mechanistic investigation and therapeutic research, which may burst vigorous prospects. Overall, we elucidate the multifaceted aspects of EMP in tumor progression and suggest a promising direction of cancer treatment based on targeting EMP.
Collapse
Affiliation(s)
- Xiangpeng Wang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoxia Xue
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Mingshi Pang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Liuchunyang Yu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jinxiu Qian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoyu Li
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Meng Tian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Aiping Lyu
- School of Chinese MedicineHong Kong Baptist UniversityKowloonHong KongChina
| | - Cheng Lu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanyan Liu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
11
|
Uddin MB, Holl MMB, Chowdhury EH. Delivery of siRNAs Against Selective Ion Channels and Transporter Genes Using Hyaluronic Acid-coupled Carbonate Apatite Nanoparticles Synergistically Inhibits Growth and Survival of Breast Cancer Cells. Int J Nanomedicine 2024; 19:7709-7727. [PMID: 39099788 PMCID: PMC11297548 DOI: 10.2147/ijn.s440419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Dysregulated calcium homeostasis and consequentially aberrant Ca2+ signalling could enhance survival, proliferation and metastasis in various cancers. Despite rapid development in exploring the ion channel functions in relation to cancer, most of the mechanisms accounting for the impact of ion channel modulators have yet to be fully clarified. Although harnessing small interfering RNA (siRNA) to specifically silence gene expression has the potential to be a pivotal approach, its success in therapeutic intervention is dependent on an efficient delivery system. Nanoparticles have the capacity to strongly bind siRNAs. They remain in the circulation and eventually deliver the siRNA payload to the target organ. Afterward, they interact with the cell surface and enter the cell via endocytosis. Finally, they help escape the endo-lysosomal degradation system prior to unload the siRNAs into cytosol. Carbonate apatite (CA) nanocrystals primarily is composed of Ca2+, carbonate and phosphate. CA possesses both anion and cation binding domains to target negatively charged siRNA molecules. Methods Hybrid CA was synthesized by complexing CA NPs with a hydrophilic polysaccharide - hyaluronic acid (HA). The average diameter of the composite particles was determined using Zetasizer and FE-SEM and their zeta potential values were also measured. Results and Discussion The stronger binding affinity and cellular uptake of a fluorescent siRNA were observed for HA-CA NPs as compared to plain CA NPs. Hybrid CA was electrostatically bound individually and combined with three different siRNAs to silence expression of calcium ion channel and transporter genes, TRPC6, TRPM8 and SLC41A1 in a human breast cancer cell line (MCF-7) and evaluate their potential for treating breast cancer. Hybrid NPs carrying TRPC6, TRPM8 and SLC41A1 siRNAs could significantly enhance cytotoxicity both in vitro and in vivo. The resultant composite CA influenced biodistribution of the delivered siRNA, facilitating reduced off target distribution and enhanced breast tumor targetability.
Collapse
Affiliation(s)
- Mohammad Borhan Uddin
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Mark M Banaszak Holl
- Department of Mechanical and Materials Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia
- Nanoflex LLC, Leesburg, FL, 34748, USA
| |
Collapse
|
12
|
Oz O, Tasli FA, Yuzuguldu RI, Zengel B, Cavdar DK, Durak MG, Durusoy R. Comprehensive Immunohistochemical Analysis of Epithelial-Mesenchymal Transition Biomarkers in the Invasive Micropapillary Cancer of the Breast. Int J Breast Cancer 2024; 2024:2350073. [PMID: 38903413 PMCID: PMC11189676 DOI: 10.1155/2024/2350073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/13/2024] [Accepted: 03/30/2024] [Indexed: 06/22/2024] Open
Abstract
Background: Invasive micropapillary carcinoma (IMPC) of the breast is commonly associated with a poor prognosis due to its high incidence of lymphovascular invasion and lymph node metastasis (LNM). Our study is aimed at investigating the prognostic significance of the expressions of E-cadherin (E-cad), N-cadherin (N-cad), CD44s, and β-catenin (β-cat). In addition, it is aimed at deciphering the consistency of these markers between the IMPC, the invasive breast carcinoma, no-special type (IBC-NST), and LNM components in the same IMPC cases. Methods: Sixty-two IMPC cases with LNM from 1996 to 2018 were analyzed. Immunohistochemical staining was performed separately on the three regions for each patient. Statistical analyses included Kaplan-Meier, Cox regression, and McNemar's statistical tests. Results: Loss of CD44 expression in IMPC, IBC-NST, and LNM areas was associated with poor prognosis in overall survival (OS) (p = 0.010, p < 0.0005, p = 0.025). Loss of CD44 expression in the IBC-NST, gain of N-cad expression in the IMPC, and loss of β-cat expression in the LNM areas were indicators of poor prognosis in disease-free survival (DFS) (p = 0.005, p = 0.041, p = 0.009). Conclusion: Our evaluation of this rare subtype, focusing on the expression of key epithelial-mesenchymal transition (EMT) molecules, revealed that it shares characteristics with the IBC-NST component within mixed tumors. Notably, contrary to expectations, a reduction in CD44 expression was found to adversely affect both OS and DFS. By conducting staining procedures simultaneously across three regions within the same patient, a novel approach has provided valuable insights into the mechanisms of EMT.
Collapse
Affiliation(s)
- Ozden Oz
- Izmir Bozyaka Training and Research HospitalDepartment of PathologyUniversity of Health Sciences, Izmir, Türkiye
| | - Funda Alkan Tasli
- Izmir Bozyaka Training and Research HospitalDepartment of PathologyUniversity of Health Sciences, Izmir, Türkiye
| | - Resmiye Irmak Yuzuguldu
- Faculty of MedicineTraining and Research HospitalDepartments of PathologyMugla Sıtkı Koçman University, Mugla, Türkiye
| | - Baha Zengel
- Izmir Bozyaka Training and Research HospitalDepartment of PathologyUniversity of Health Sciences, Izmir, Türkiye
| | - Demet Kocatepe Cavdar
- Izmir Bozyaka Training and Research HospitalDepartment of PathologyUniversity of Health Sciences, Izmir, Türkiye
| | - Merih Guray Durak
- Medical FacultyDepartments of PathologyDokuz Eylul University, Izmir, Türkiye
| | - Raika Durusoy
- Department of Public HealthMedical FacultyEge University, Izmir, Türkiye
| |
Collapse
|
13
|
Pickett MR, Chen YI, Kamra M, Kumar S, Kalkunte N, Sugerman GP, Varodom K, Rausch MK, Zoldan J, Yeh HC, Parekh SH. Assessing the impact of extracellular matrix fiber orientation on breast cancer cellular metabolism. Cancer Cell Int 2024; 24:199. [PMID: 38840117 PMCID: PMC11151503 DOI: 10.1186/s12935-024-03385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/25/2024] [Indexed: 06/07/2024] Open
Abstract
The extracellular matrix (ECM) is a dynamic and complex microenvironment that modulates cell behavior and cell fate. Changes in ECM composition and architecture have been correlated with development, differentiation, and disease progression in various pathologies, including breast cancer [1]. Studies have shown that aligned fibers drive a pro-metastatic microenvironment, promoting the transformation of mammary epithelial cells into invasive ductal carcinoma via the epithelial-to-mesenchymal transition (EMT) [2]. The impact of ECM orientation on breast cancer metabolism, however, is largely unknown. Here, we employ two non-invasive imaging techniques, fluorescence-lifetime imaging microscopy (FLIM) and intensity-based multiphoton microscopy, to assess the metabolic states of cancer cells cultured on ECM-mimicking nanofibers in a random and aligned orientation. By tracking the changes in the intrinsic fluorescence of nicotinamide adenine dinucleotide and flavin adenine dinucleotide, as well as expression levels of metastatic markers, we reveal how ECM fiber orientation alters cancer metabolism and EMT progression. Our study indicates that aligned cellular microenvironments play a key role in promoting metastatic phenotypes of breast cancer as evidenced by a more glycolytic metabolic signature on nanofiber scaffolds of aligned orientation compared to scaffolds of random orientation. This finding is particularly relevant for subsets of breast cancer marked by high levels of collagen remodeling (e.g. pregnancy associated breast cancer), and may serve as a platform for predicting clinical outcomes within these subsets [3-6].
Collapse
Affiliation(s)
- Madison R Pickett
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA.
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Mohini Kamra
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Sachin Kumar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Nikhith Kalkunte
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Kelsey Varodom
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 78712, Austin, TX, USA
- Department of Mechanical Engineering, The University of Texas at Austin, 78712, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Hsin-Chin Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA.
| |
Collapse
|
14
|
Sobral DV, Salgado MRT, Martins MR, Vasconcelos CDS, Anunciação CEC, de Andrade VP, Torres LC. Prognostic role of SOX2 and STAT3 expression on circulating T lymphocytes and CD44+/CD24 neg cells in the locally advanced and metastatic breast cancer. J Surg Oncol 2024. [PMID: 38825982 DOI: 10.1002/jso.27716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Breast cancer (BC) is associated with a continuous increase in incidence, with high mortality rates in several countries. CD44, STAT3, and SOX2 are related to regulating of somatic cell division, tumorigenesis, and metastasis in BC. METHODS A cross-sectional study was carried out at the Hospital de Cancer de Pernambuco (HCP) between 2017 and 2018. Fifty-one women with locally advanced (LA) and 14 with metastatic BC were included in the study. RESULTS High CD44+/CD24neg and CD44+/CD24neg/SOX2+ levels in Luminal B (LB), HER2+, and triple-negative breast cancer (TNBC) compared with controls (p < 0.05). Low CD44+/CD24negSTAT3+ levels in LB, HER2+, and TNBC compared with controls (p < 0.05). High T lymphocytes, and low STAT3 + T, and SOX2 + T levels in BC patients (p < 0.05). High SOX2 + T levels in patients with axillary lymph node-negative (N0) compared with the axillary lymph node-positives (N1 and N2 groups; p < 0.05). High SOX2 + T levels in N1 compared to N2 (p < 0.05). High T lymphocytes and low SOX2 + T levels in the LA tumor compared to metastatic disease (p = 0.0007 and p = 0.02, respectively). High CD44 + /CD24negSTAT3+, and T lymphocyte levels in TNBC patients with LA tumor compared to metastatic (p < 0.05). Low STAT3 + T levels in TBNC patients with LA tumor compared to metastatic (p = 0.0266). CONCLUSION SOX2 and STAT3 expression on circulating T lymphocytes and CD44 + /CD24neg cells in peripheral blood have prognostic roles in breast cancer. SOX2 and STAT3 expression are potential predictive biomarkers of disease progression in breast cancer regardless of tumor subtype.
Collapse
Affiliation(s)
- Denise V Sobral
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Sociedade Pernambucana de Combate ao Cancer, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
- International Research Center, A.C. Camargo Cancer, CenterSão Paulo, Brazil
| | - Marcelo R T Salgado
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Sociedade Pernambucana de Combate ao Cancer, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
- International Research Center, A.C. Camargo Cancer, CenterSão Paulo, Brazil
| | - Mario R Martins
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Sociedade Pernambucana de Combate ao Cancer, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
- International Research Center, A.C. Camargo Cancer, CenterSão Paulo, Brazil
| | - Carolina de S Vasconcelos
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Sociedade Pernambucana de Combate ao Cancer, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
| | - Carlos E C Anunciação
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Sociedade Pernambucana de Combate ao Cancer, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
- International Research Center, A.C. Camargo Cancer, CenterSão Paulo, Brazil
| | | | - Leuridan C Torres
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Sociedade Pernambucana de Combate ao Cancer, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
16
|
Wu S, Tan Y, Li F, Han Y, Zhang S, Lin X. CD44: a cancer stem cell marker and therapeutic target in leukemia treatment. Front Immunol 2024; 15:1354992. [PMID: 38736891 PMCID: PMC11082360 DOI: 10.3389/fimmu.2024.1354992] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
CD44 is a ubiquitous leukocyte adhesion molecule involved in cell-cell interaction, cell adhesion, migration, homing and differentiation. CD44 can mediate the interaction between leukemic stem cells and the surrounding extracellular matrix, thereby inducing a cascade of signaling pathways to regulate their various behaviors. In this review, we focus on the impact of CD44s/CD44v as biomarkers in leukemia development and discuss the current research and prospects for CD44-related interventions in clinical application.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yicheng Tan
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Fanfan Li
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixiang Han
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenghui Zhang
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofei Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Wu Z, Lu J, Loo A, Ho N, Nguyen D, Cheng PY, Mohammed AI, Cirillo N. Role of CD44 in Chemotherapy Treatment Outcome: A Scoping Review of Clinical Studies. Int J Mol Sci 2024; 25:3141. [PMID: 38542115 PMCID: PMC10970610 DOI: 10.3390/ijms25063141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 01/31/2025] Open
Abstract
Cluster of differentiation 44 (CD44), a cell surface adhesion molecule overexpressed in cancer stem cells, has been implicated in chemoresistance. This scoping review, following PRISMA-ScR guidelines, systematically identified and evaluated clinical studies on the impact of CD44 expression on chemotherapy treatment outcomes across various cancer types. The search encompassed PubMed (1985-2023) and SCOPUS (1936-2023) databases, yielding a total of 12,659 articles, of which 40 met the inclusion criteria and were included in the qualitative synthesis using a predefined data extraction table. Data collected included the cancer type, sample size, interventions, control, treatment outcome, study type, expression of CD44 variants and isoforms, and effect of CD44 on chemotherapy outcome. Most of the studies demonstrated an association between increased CD44 expression and negative chemotherapeutic outcomes such as shorter overall survival, increased tumor recurrence, and resistance to chemotherapy, indicating a potential role of CD44 upregulation in chemoresistance in cancer patients. However, a subset of studies also reported non-significant relationships or conflicting results. In summary, this scoping review highlighted the breadth of the available literature investigating the clinical association between CD44 and chemotherapeutic outcomes. Further research is required to elucidate this relationship to aid clinicians in managing CD44-positive cancer patients.
Collapse
Affiliation(s)
- Zihao Wu
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Jillian Lu
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Andrew Loo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Nathan Ho
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Danny Nguyen
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Po Yueh Cheng
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Ali I. Mohammed
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
18
|
Matsushita K, Toyoda T, Akane H, Morikawa T, Ogawa K. Role of CD44 expressed in renal tubules during maladaptive repair in renal fibrogenesis in an allopurinol-induced rat model of chronic kidney disease. J Appl Toxicol 2024; 44:455-469. [PMID: 37876353 DOI: 10.1002/jat.4554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023]
Abstract
The kidney is a major target organ for the adverse effects of pharmaceuticals; renal tubular epithelial cells (TECs) are particularly vulnerable to drug-induced toxicity. TECs have regenerative capacity; however, maladaptive repair of TECs after injury leads to renal fibrosis, resulting in chronic kidney disease (CKD). We previously reported the specific expression of CD44 in failed-repair TECs of rat CKD model induced by ischemia reperfusion injury. Here, we investigated the pathophysiological role of CD44 in renal fibrogenesis in allopurinol-treated rat CKD model. Dilated or atrophic TECs expressing CD44 in fibrotic areas were collected by laser microdissection and subjected to microarray analysis. Gene ontology showed that extracellular matrix (ECM)-related genes were upregulated and differentiation-related genes were downregulated in dilated/atrophic TECs. Ingenuity Pathway Analysis identified CD44 as an upstream regulator of fibrosis-related genes, including Fn1, which encodes fibronectin. Immunohistochemistry demonstrated that dilated/atrophic TECs expressing CD44 showed decreases in differentiation markers of TECs and clear expression of mesenchymal markers during basement membrane attachment. In situ hybridization revealed an increase in Fn1 mRNA in the cytoplasm of dilated/atrophic TECs, whereas fibronectin was localized in the stroma around these TECs, supporting the production/secretion of ECM by dilated/atrophic TECs. Overall, these data indicated that dilated/atrophic TECs underwent a partial epithelial-mesenchymal transition (pEMT) and that CD44 promoted renal fibrogenesis via induction of ECM production in failed-repair TECs exhibiting pEMT. CD44 was detected in the urine and serum of APL-treated rats, which may reflect the expression of CD44 in the kidney.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Hirotoshi Akane
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
19
|
Piwocka O, Musielak M, Ampuła K, Piotrowski I, Adamczyk B, Fundowicz M, Suchorska WM, Malicki J. Navigating challenges: optimising methods for primary cell culture isolation. Cancer Cell Int 2024; 24:28. [PMID: 38212739 PMCID: PMC10785493 DOI: 10.1186/s12935-023-03190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/24/2023] [Indexed: 01/13/2024] Open
Abstract
Primary cell lines are invaluable for exploring cancer biology and investigating novel treatments. Despite their numerous advantages, primary cultures are laborious to obtain and maintain in culture. Hence, established cell lines are still more common. This study aimed to evaluate a range of techniques for isolating primary breast cancer cultures, employing distinct enzymatic compositions, incubation durations, and mechanical approaches, including filtration. Out of several protocols, we opted for a highly effective method (Method 5) that gave rise to a primary cell culture (BC160). This method combines mechanical disaggregation and enzymatic digestion with hyaluronidase and collagenase. Moreover, the paper addresses common issues in isolating primary cultures, shedding light on the struggle against fibroblasts overgrowing cancer cell populations. To make primary cell lines a preferred model, it is essential to elaborate and categorise isolation methods, develop approaches to separate heterogeneous cultures and investigate factors influencing the establishment of primary cell lines.
Collapse
Affiliation(s)
- Oliwia Piwocka
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, 61-701, Poland.
- Doctoral School, Poznan University of Medical Sciences, Poznan, 61-701, Poland.
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, 61- 866, Poland.
| | - Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, 61-701, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, 61- 866, Poland
| | - Karolina Ampuła
- Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Igor Piotrowski
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, 61- 866, Poland
| | - Beata Adamczyk
- Breast Surgical Oncology Department, Greater Poland Cancer Centre, Poznan, 61-866, Poland
| | | | - Wiktoria Maria Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, 61- 866, Poland
| | - Julian Malicki
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
- Medical Physics Department, Greater Poland Cancer Centre, Poznan, 61-866, Poland
| |
Collapse
|
20
|
Crosse EI, Binagui-Casas A, Gordon-Keylock S, Rybtsov S, Tamagno S, Olofsson D, Anderson RA, Medvinsky A. An interactive resource of molecular signalling in the developing human haematopoietic stem cell niche. Development 2023; 150:dev201972. [PMID: 37840454 PMCID: PMC10730088 DOI: 10.1242/dev.201972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
The emergence of definitive human haematopoietic stem cells (HSCs) from Carnegie Stage (CS) 14 to CS17 in the aorta-gonad-mesonephros (AGM) region is a tightly regulated process. Previously, we conducted spatial transcriptomic analysis of the human AGM region at the end of this period (CS16/CS17) and identified secreted factors involved in HSC development. Here, we extend our analysis to investigate the progression of dorso-ventral polarised signalling around the dorsal aorta over the entire period of HSC emergence. Our results reveal a dramatic increase in ventral signalling complexity from the CS13-CS14 transition, coinciding with the first appearance of definitive HSCs. We further observe stage-specific changes in signalling up to CS17, which may underpin the step-wise maturation of HSCs described in the mouse model. The data-rich resource is also presented in an online interface enabling in silico analysis of molecular interactions between spatially defined domains of the AGM region. This resource will be of particular interest for researchers studying mechanisms underlying human HSC development as well as those developing in vitro methods for the generation of clinically relevant HSCs from pluripotent stem cells.
Collapse
Affiliation(s)
- Edie I. Crosse
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Anahi Binagui-Casas
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Stanislav Rybtsov
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sara Tamagno
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Didrik Olofsson
- Omiqa Bioinformatics GmbH, Altensteinstraße 40, 14195 Berlin, Germany
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alexander Medvinsky
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
21
|
Deng H, Gao J, Cao B, Qiu Z, Li T, Zhao R, Li H, Wei B. LncRNA CCAT2 promotes malignant progression of metastatic gastric cancer through regulating CD44 alternative splicing. Cell Oncol (Dordr) 2023; 46:1675-1690. [PMID: 37354353 DOI: 10.1007/s13402-023-00835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVE Gastric cancer (GC) is one of the most malignant tumors worldwide. Thus, it is necessary to explore the underlying mechanisms of GC progression and develop novel therapeutic regimens. Long non-coding RNAs (lncRNAs) have been demonstrated to be abnormally expressed and regulate the malignant behaviors of cancer cells. Our previous research demonstrated that lncRNA colon cancer-associated transcript 2 (CCAT2) has potential value for GC diagnosis and discrimination. However, the functional mechanisms of lncRNA CCAT2 in GC development remain to be explored. METHODS GC and normal adjacent tissues were collected to detect the expression of lncRNA CCAT2, ESRP1 and CD44 in clinical specimens and their clinical significance for GC patients. Cell counting kit-8, wound healing and transwell assays were conducted to investigate the malignant behaviors in vitro. The generation of nude mouse xenografts by subcutaneous, intraperitoneal and tail vein injection was performed to examine GC growth and metastasis in vivo. Co-immunoprecipitation, RNA-binding protein pull-down assay and fluorescence in situ hybridization were performed to reveal the binding relationships between ESRP1 and CD44. RESULTS In the present study, lncRNA CCAT2 was overexpressed in GC tissues compared to adjacent normal tissues and correlated with short survival time of patients. lncRNA CCAT2 promoted the proliferation, migration and invasion of GC cells. Its overexpression modulates alternative splicing of Cluster of differentiation 44 (CD44) variants and facilitates the conversion from the standard form to variable CD44 isoform 6 (CD44v6). Mechanistically, lncRNA CCAT2 upregulated CD44v6 expression by binding to epithelial splicing regulatory protein 1 (ESRP1), which subsequently mediates CD44 alternative splicing. The oncogenic role of the lncRNA CCAT2/ESRP1/CD44 axis in the promotion of malignant behaviors was verified by both in vivo and in vitro experiments. CONCLUSIONS Our findings identified a novel mechanism by which lncRNA CCAT2, as a type of protein-binding RNA, regulates alternative splicing of CD44 and promotes GC progression. This axis may become an effective target for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Huan Deng
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing, 100034, China
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jingwang Gao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Ziyu Qiu
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, 100091, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710021, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
22
|
Patel HV, Joshi JS, Shah FD. A clinicopathological exploration of Hedgehog signaling: implications in oral carcinogenesis. J Cancer Res Clin Oncol 2023; 149:16525-16535. [PMID: 37712962 DOI: 10.1007/s00432-023-05383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Hedgehog Signaling, a basic cancer stem cell pathway, plays a major role during the embryonic development, is known to play a quiescent role in adults. However, aberrant activation of Hedgehog signaling in adults is known to play a role in cancer development. Hence, the aim of the study was to identify the role of Hedgehog signaling pathway in the Oral cancers. MATERIALS AND METHODS The expression of Hedgehog signaling pathway was evaluated in 124 patients through the quantitative real-time PCR. The association between the gene expression and clinico-pathological parameters were analyzed using the Pearson chi-square test and survival analysis was carried out using Kaplan-Meier analysis. RESULTS SHH and GLI1 was found to be significantly associated with the Lymph Node Status and SUFU was significantly associated with the Age. SMO and SUFU were found to have a worse prognosis in oral cancer patients. According to our findings, IHH plays a critical role in the activation of the HH signaling pathway in oral cancer. CONCLUSION These findings back up the use of the Hedgehog signaling pathway as a biomarker for early disease prediction in oral cancer, as well as its role in tumor aggressiveness and invasiveness.
Collapse
Affiliation(s)
- Hitarth V Patel
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Jigna S Joshi
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky D Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
23
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Generalov E, Yakovenko L. Receptor basis of biological activity of polysaccharides. Biophys Rev 2023; 15:1209-1222. [PMID: 37975017 PMCID: PMC10643635 DOI: 10.1007/s12551-023-01102-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 11/19/2023] Open
Abstract
Polysaccharides, the most diverse forms of organic molecules in nature, exhibit a large number of different biological activities, such as immunomodulatory, radioprotective, antioxidant, regenerative, metabolic, signaling, antitumor, and anticoagulant. The reaction of cells to a polysaccharide is determined by its specific interaction with receptors present on the cell surface, the type of cells, and their condition. The effect of many polysaccharides depends non-linearly on their concentration. The same polysaccharide in different conditions can have very different effects on cells and organisms, up to the opposite; therefore, when conducting studies of the biological activity of polysaccharides, both for the purpose of developing new drugs or approaches to the treatment of patients, and in order to clarify the features of intracellular processes, information about already known research results is needed. There is a lot of scattered data on the biological activities of polysaccharides, but there are few reviews that would consider natural polysaccharides from various sources and possible molecular mechanisms of their action. The purpose of this review is to present the main results published at different times in order to facilitate the search for information necessary for conducting relevant studies.
Collapse
Affiliation(s)
- Evgenii Generalov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Leonid Yakovenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
25
|
Wang F, Zhang Y, Pang R, Shi S, Wang R. Scoulerine promotes cytotoxicity and attenuates stemness in ovarian cancer by targeting PI3K/AKT/mTOR axis. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:475-488. [PMID: 37708956 DOI: 10.2478/acph-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 09/16/2023]
Abstract
In women, ovarian cancer is a common gynecological cancer associated with poor prognosis, reoccurrence and chemoresistance. Scoulerine, a benzylisoquinoline alkaloid, has been reported effective against several carcinomas. Thus, we investigated the impact of scoulerine on ovarian cancer cells (OVCAR3). Cell viability was assessed by MTT assay, migration was determined by Boyden Chamber assay, while the invasion was monitored by Boyden Chamber assay using the matrigel. The stemness properties of OVCAR3 cells were observed by tumorsphere assay. Epithelial to mesenchymal transition (EMT) and stemness-related protein markers were monitored by real-time PCR analysis and immunoblotting. Scoulerine inhibits the viability of OVCAR3 cells with the IC 50 observed at 10 µmol L-1 after 48 h treatment. Scoulerine inhibited the colony-forming ability, migration and invasiveness of OVCAR3 cells in a dose-dependent fashion. Scoulerine treatment also drastically reduced the spheroid-forming ability of OVCAR3 cells. The mesenchymal and stemness--related markers like N-cadherin, vimentin, CD-44, Oct-4, Sox-2 and Aldh1A1 were downregulated, whereas the epithelial markers like E-cadherin and CD-24 were upregulated in scoulerine-treated cells. The upstream PI3K/Akt/mTOR-axis was downregulated in scoulerine-treated cells. We concluded that scoulerine successfully perturbs the cancerous properties of OVCAR3 cells by targeting the PI3K/Akt/mTOR axis. In vivo studies revealed a substantial decrease in tumor mass and volume after scoulerine treatment. Furthermore, scoulerine treatment was found to decrease oxidative stress factors in ovarian cancer mice model. Scoulerine is a potential anticancer agent against ovarian cancer and can be considered as a lead molecule for this malignancy, provided further investigations are performed.
Collapse
Affiliation(s)
- Fang Wang
- Department of Gynaecology, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang, Jiangsu, China
| | - Yang Zhang
- Department of Gynaecology, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang, Jiangsu, China
| | - Rui Pang
- Department of Gynaecology, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang, Jiangsu, China
| | - Shaohong Shi
- Department of Gynaecology, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang, Jiangsu, China
| | - Ran Wang
- Department of Clinical laboratory, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang Jiangsu, China
| |
Collapse
|
26
|
Boyce MA, Durham EL, Kuo S, Taylor JM, Kishinchand R, LaRue AC, Cray JJ. In utero exposure to selective serotonin re-uptake inhibitor affects murine mandibular development. Orthod Craniofac Res 2023; 26:415-424. [PMID: 36458927 DOI: 10.1111/ocr.12624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVES Antidepressants, specifically Selective Serotonin Re-uptake Inhibitors (SSRIs), that alter serotonin metabolism are currently the most commonly prescribed drugs for the treatment of depression. There is some evidence to suggest these drugs contribute to birth defects. As jaw development is often altered in craniofacial birth defects, the purpose of this study was to interrogate the effects of in utero SSRI exposure in a preclinical model of mandible development. MATERIALS AND METHODS Wild-type C57BL6 mice were used to produce litters that were exposed in utero to an SSRI, Citalopram (500 μg/day). Murine mandibles from P15 pups were analysed for a change in shape and composition. RESULTS Analysis indicated an overall shape change with total mandibular length and ramus height being shorter in exposed pups as compared to controls. Histomorphometric analysis revealed that first molar length was longer in exposed pups while third molar length was shorter in exposed as compared to control. Histological investigation of molars and surrounding periodontium revealed no change in collagen content of the molar in exposed pups, some alteration in collagen composition in the periodontium, increased alkaline phosphatase in molars and periodontium and decreased mesenchymal cell marker presence in exposed mandibles. CONCLUSION The results of this study reveal SSRI exposure may interrupt mandible growth as well as overall dental maturation in a model of development giving insight into the expectation that children exposed to SSRIs may require orthodontic intervention.
Collapse
Affiliation(s)
- Mark A Boyce
- Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Emily L Durham
- Department of Anthropology, The Pennsylvania State University, State College, Pennsylvania, USA
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sharon Kuo
- Department of Anthropology, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Jane M Taylor
- Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Rajiv Kishinchand
- Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| | - James J Cray
- Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| |
Collapse
|
27
|
Trujillo-Fernández YGV, Yzabal-Barbedillo C, Saucedo-Sarinaña AM, Tovar-Jácome CDJ, Godínez-Rodríguez MY, Barros-Núñez P, Gallegos-Arreola MP, Juárez-Vázquez CI, Pineda-Razo TD, Marín-Contreras ME, Rosales-Reynoso MA. Functional Variants in MicroRNAs (rs895819, rs11614913 and rs2910164) Are Associated with Susceptibility and Clinicopathological Features in Mexican Patients with Colorectal Cancer. ARCHIVES OF IRANIAN MEDICINE 2023; 26:439-446. [PMID: 38301106 PMCID: PMC10685737 DOI: 10.34172/aim.2023.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/03/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND miRNAs are non-coding RNAs participating actively in the post-translational regulation of oncogenes, tumor suppressor, and DNA repair genes implicated in colorectal cancer (CRC). This study aims to examine the association of the variants miR-27a (rs895819 A>G), miR-196a2 (rs11614913 T>G) and miR-146a (rs2910164 C>G) in Mexican CRC patients. METHODS DNA samples from 183 patients and 186 healthy Mexican subjects were analyzed. Variants were identified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methodology. Association was calculated by the odds ratio (OR) and adjusted by the Bonferroni test. RESULTS Patients carrying the G/G genotype of the rs895819 variant in the miR-27a gene showed an increased risk of CRC (19% vs 12%, P=0.013). A similar tendency was noticed for patients younger than 50 years carrying A/G (48% vs 41%, P=0.014). The A/G genotype in TNM stages I+II (55.7% vs 40.8%, P=0.011) and tumor location in the colon (69.5 vs 40.8%, P=0.001) were also increased. For the variant rs11614913 of the miR-196a2 gene, carriers of the C/C genotype showed an increased risk of CRC (32% vs 22%, P=0.009). This genotype was more frequent in TNM stage III+IV (36.8% vs 22.5%, P=0.007) and the tumor had a more recurrent location in the rectum (31.6% vs 22.5%, P=0.013). The rs2910164 variant of the miR-146a gene was found to have no significant risk associations. CONCLUSION Our results reveal that the rs895819 variant in miR-27a and rs11614913 in miR-196a2 have a substantial impact on the development of CRC.
Collapse
Affiliation(s)
- Yuri Giovanna Vanessa Trujillo-Fernández
- Molecular Medicine Division, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | - Carmen Yzabal-Barbedillo
- Molecular Medicine Division, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Anilú Margarita Saucedo-Sarinaña
- Department of Devices and Systems I, Facultad de Medicina. Decanato Ciencias de la Salud, Universidad Autónoma de Guadalajara (UAG). Zapopan, Jalisco, México
| | - César de Jesús Tovar-Jácome
- Molecular Medicine Division, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Miriam Yadira Godínez-Rodríguez
- Molecular Medicine Division, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Patricio Barros-Núñez
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | - Martha Patricia Gallegos-Arreola
- Genetic Division, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Clara Ibet Juárez-Vázquez
- Department of Devices and Systems I, Facultad de Medicina. Decanato Ciencias de la Salud, Universidad Autónoma de Guadalajara (UAG). Zapopan, Jalisco, México
| | - Tomás Daniel Pineda-Razo
- Medical Oncology Service, Hospital de Especialidades, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - María Eugenia Marín-Contreras
- Gastroenterology Service, Hospital de Especialidades, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Mónica Alejandra Rosales-Reynoso
- Molecular Medicine Division, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| |
Collapse
|
28
|
Serini S, Trombino S, Curcio F, Sole R, Cassano R, Calviello G. Hyaluronic Acid-Mediated Phenolic Compound Nanodelivery for Cancer Therapy. Pharmaceutics 2023; 15:1751. [PMID: 37376199 DOI: 10.3390/pharmaceutics15061751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Phenolic compounds are bioactive phytochemicals showing a wide range of pharmacological activities, including anti-inflammatory, antioxidant, immunomodulatory, and anticancer effects. Moreover, they are associated with fewer side effects compared to most currently used antitumor drugs. Combinations of phenolic compounds with commonly used drugs have been largely studied as an approach aimed at enhancing the efficacy of anticancer drugs and reducing their deleterious systemic effects. In addition, some of these compounds are reported to reduce tumor cell drug resistance by modulating different signaling pathways. However, often, their application is limited due to their chemical instability, low water solubility, or scarce bioavailability. Nanoformulations, including polyphenols in combination or not with anticancer drugs, represent a suitable strategy to enhance their stability and bioavailability and, thus, improve their therapeutic activity. In recent years, the development of hyaluronic acid-based systems for specific drug delivery to cancer cells has represented a pursued therapeutic strategy. This is related to the fact that this natural polysaccharide binds to the CD44 receptor that is overexpressed in most solid cancers, thus allowing its efficient internalization in tumor cells. Moreover, it is characterized by high biodegradability, biocompatibility, and low toxicity. Here, we will focus on and critically analyze the results obtained in recent studies regarding the use of hyaluronic acid for the targeted delivery of bioactive phenolic compounds to cancer cells of different origins, alone or in combination with drugs.
Collapse
Affiliation(s)
- Simona Serini
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Gabriella Calviello
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| |
Collapse
|
29
|
Zer NS, Ben-Ghedalia-Peled N, Gheber LA, Vago R. CD44 in Bone Metastasis Development: A Key Player in the Fate Decisions of the Invading Cells? Clin Exp Metastasis 2023; 40:125-135. [PMID: 37038009 DOI: 10.1007/s10585-023-10203-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/10/2023] [Indexed: 04/12/2023]
Abstract
A participant in key developmental processes, the adhesion glycoprotein CD44 is also expressed in several types of malignancies and can promote metastasis. In addition, the expression of CD44 isoforms in different types of cancer such as prostate and breast cancers may facilitate bone metastases by enhancing tumorigenicity, osteomimicry, cell migration, homing to bone, and anchorage within the bone specialized domains. Moreover, there is evidence that the CD44-ICD fragments in breast cancer cells may promote the cells' osteolytic nature. Yet the mechanisms by which CD44 and its downstream effectors promote the establishment of these cells within the bone are not fully elucidated. In this review, we summarize the current data on the roles played by CD44 in cancer progression and bone metastasis and the possible effects of its interaction with the different components of the bone marrow milieu.
Collapse
Affiliation(s)
- Noy Shir Zer
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Noa Ben-Ghedalia-Peled
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Levi A Gheber
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Razi Vago
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
30
|
Hu M, Zhang R, Yang J, Zhao C, Liu W, Huang Y, Lyu H, Xiao S, Guo D, Zhou C, Tang J. The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death Dis 2023; 14:222. [PMID: 36990999 PMCID: PMC10060418 DOI: 10.1038/s41419-023-05733-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
N-glycosylation is one of the most common types of protein modifications and it plays a vital role in normal physiological processes. However, aberrant N-glycan modifications are closely associated with the pathogenesis of diverse diseases, including processes such as malignant transformation and tumor progression. It is known that the N-glycan conformation of the associated glycoproteins is altered during different stages of hepatocarcinogenesis. Characterizing the heterogeneity and biological functions of glycans in liver cancer patients will facilitate a deeper understanding of the molecular mechanisms of liver injury and hepatocarcinogenesis. In this article, we review the role of N-glycosylation in hepatocarcinogenesis, focusing on epithelial-mesenchymal transition, extracellular matrix changes, and tumor microenvironment formation. We highlight the role of N-glycosylation in the pathogenesis of liver cancer and its potential applications in the treatment or diagnosis of liver cancer.
Collapse
Affiliation(s)
- Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jiaren Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Chenshu Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Wei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
31
|
Hu M, Zhang R, Yang J, Zhao C, Liu W, Huang Y, Lyu H, Xiao S, Guo D, Zhou C, Tang J. The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death Dis 2023; 14:222. [PMID: 36990999 DOI: 10.1038/s41419-023-05733-z.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 10/14/2024]
Abstract
N-glycosylation is one of the most common types of protein modifications and it plays a vital role in normal physiological processes. However, aberrant N-glycan modifications are closely associated with the pathogenesis of diverse diseases, including processes such as malignant transformation and tumor progression. It is known that the N-glycan conformation of the associated glycoproteins is altered during different stages of hepatocarcinogenesis. Characterizing the heterogeneity and biological functions of glycans in liver cancer patients will facilitate a deeper understanding of the molecular mechanisms of liver injury and hepatocarcinogenesis. In this article, we review the role of N-glycosylation in hepatocarcinogenesis, focusing on epithelial-mesenchymal transition, extracellular matrix changes, and tumor microenvironment formation. We highlight the role of N-glycosylation in the pathogenesis of liver cancer and its potential applications in the treatment or diagnosis of liver cancer.
Collapse
Affiliation(s)
- Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jiaren Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Chenshu Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Wei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
32
|
Liu J, Smith S, Wang C. Photothermal Attenuation of Cancer Cell Stemness, Chemoresistance, and Migration Using CD44-Targeted MoS 2 Nanosheets. NANO LETTERS 2023; 23:1989-1999. [PMID: 36827209 PMCID: PMC10497231 DOI: 10.1021/acs.nanolett.3c00089] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer stem-like cells (CSCs) play key roles in chemoresistance, tumor metastasis, and clinical relapse. However, current CSC inhibitors lack specificity, efficacy, and applicability to different cancers. Herein, we introduce a nanomaterial-based approach to photothermally induce the differentiation of CSCs, termed "photothermal differentiation", leading to the attenuation of cancer cell stemness, chemoresistance, and metastasis. MoS2 nanosheets and a moderate photothermal treatment were applied to target a CSC surface receptor (i.e., CD44) and modulate its downstream signaling pathway. This treatment forces the more stem-like cancer cells to lose the mesenchymal phenotype and adopt an epithelial, less stem-like state, which shows attenuated self-renewal capacity, more response to anticancer drugs, and less invasiveness. This approach could be applicable to various cancers due to the broad availability of the CD44 biomarker. The concept of using photothermal nanomaterials to regulate specific cellular activities driving the differentiation of CSCs offers a new avenue for treating refractory cancers.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
| | - Steve Smith
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
| | - Congzhou Wang
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
| |
Collapse
|
33
|
Bawadud RS, Alkhatib MH. Growth and invasion inhibition of T47D ductal carcinoma cells by the association of docetaxel with a bioactive agent in neutral nanosuspension. BIOIMPACTS : BI 2023; 13:145-157. [PMID: 37193079 PMCID: PMC10182446 DOI: 10.34172/bi.2023.23515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 05/18/2023]
Abstract
Introduction: The approach for drug delivery has impressively developed with the emergence of nanosuspension, particularly the targeted nanoemulsions (NEs). It can potentially improve the bioavailability of drugs, enhancing their therapeutic efficiency. This study aims to examine the potential role of NE as a delivery system for the combination of docetaxel (DTX), a microtubule-targeting agent, and thymoquinone (TQ) in the treatment of human ductal carcinoma cells T47D. Methods: NEs were synthesized by ultra-sonication and characterized physically by dynamic light scattering (DLS). A sulforhodamine B assay was performed to evaluate cytotoxicity, and a flow cytometry analysis for cell cycle, apoptosis, autophagy, and cancer stem cell evaluations. A quantitative polymerase chain reaction further assessed the epithelial-mesenchymal transition gene expirations of SNAIL-1, ZEB-1, and TWIST-1. Results: The optimal sizes of blank-NEs and NE-DTX+TQ were found at 117.3 ± 8 nm and 373 ± 6.8 nm, respectively. The synergistic effect of the NE-DTX+TQ formulation significantly inhibited the in vitro proliferation of T47D cells. It caused a significant increase in apoptosis, accompanied by the stimulation of autophagy. Moreover, this formulation arrested T47D cells at the G2/M phase, promoted the reduction of the breast cancer stem cell (BCSC) population, and repressed the expression of TWIST-1 and ZEB-1. Conclusion: Co-delivery of NE-DTX+TQ may probably inhibit the proliferation of T47D via the induction of apoptosis and autophagy pathways and impede the migration by reducing the BCSC population and downregulating TWIST-1 expression to decrease the epithelial-to-mesenchymal transition (EMT) of breast cancer cells. Therefore, the study suggests the NE-DTX+TQ formula as a potential approach to inhibit breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Raghdah S. Bawadud
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mayson H. Alkhatib
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
34
|
Salkin H, Yay A, Gokdemir NS, Gönen ZB, Özdamar S, Yakan B. TGF-B1-over-expressed adipose stem cells-derived secretome exhibits CD44 suppressor and anti-cancer properties via antagonistic effects against SMAD4 in breast cancer cells. AMERICAN JOURNAL OF STEM CELLS 2022; 11:64-78. [PMID: 36660741 PMCID: PMC9845842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVES This study aimed to investigate the effect of TGF-B1-transfected adipose-derived mesenchymal stem cell (AD-MSC) conditional medium (TGF-B1-CM) on CD44 expression and biological activities in MCF-7 and MDA-MB-231 cells. METHODS In the study, the experimental groups were created as a standard medium, AD-MSC-CM, TGF-B1-CM, and TGF-B1 recombinant protein. The medium and proteins specified in these groups were applied to MCF-7 and MDA-MB-231 cells separately at 24, 48 and 72 hours. Western blot and immunofluorescent staining were performed with antibodies suitable for CD44 and canonical smad signaling pathway analyses between groups. Cellular proliferation in MCF-7 and MDA-MB-231 cells was measured by MTT. Biological activity analyses such as apoptosis, cell cycle, proliferation, DNA damage, and membrane depolarization between groups were tested on the Muse Cell Analyzer using appropriate kits. Cellular migration between groups was determined by showing cells that migrated to the scar area with in vitro scar formation. Statistics were performed with GraphPad Prism 8.02 software. RESULTS It was determined that TGF-B1-CM activates the smad signaling pathway in MCF-7 and MDA-MB-231 cells. TGF-B1-CM increased pSMAD2/3 expression and decreased SMAD4 expression in breast cancer cells. A decrease in CD44 expression was found at points of increase in pSMAD2/3 expression. Decreased expression of SMAD4 in breast cancer cells with TGF-B1-CM was associated with decreased expression of CD44. In MCF-7 and MDA-MB-231 cells, TGF-B1-CM was found to increase apoptosis, decrease proliferation, disrupt membrane depolarization, and arrest cells at G0/G1 stage. TGF-B1-CM suppressed MCF-7 and MDA-MB-231 migrations. CONCLUSION SMAD4-targeted therapeutic strategies may be considered to suppress CD44 expression in breast cancer cells. Both the anti-tumorigenic factors released by AD-MSCs and the secretomes obtained as a result of supporting these factors with the overexpression of TGF-B1, severely suppressed breast cancer cells. With this study, it was planned to obtain a targeted biological product that suppresses breast cancer cells in vitro.
Collapse
Affiliation(s)
- Hasan Salkin
- Department of Medical Services and Techniques, Program of Pathology Laboratory Techniques, Vocational School, Beykent UniversityIstanbul, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes UniversityKayseri, Turkey
| | | | | | - Saim Özdamar
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale UniversityKayseri, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes UniversityKayseri, Turkey
| |
Collapse
|
35
|
Karagiorgou Z, Fountas PN, Manou D, Knutsen E, Theocharis AD. Proteoglycans Determine the Dynamic Landscape of EMT and Cancer Cell Stemness. Cancers (Basel) 2022; 14:5328. [PMID: 36358747 PMCID: PMC9653992 DOI: 10.3390/cancers14215328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 03/15/2024] Open
Abstract
Proteoglycans (PGs) are pivotal components of extracellular matrices, involved in a variety of processes such as migration, invasion, morphogenesis, differentiation, drug resistance, and epithelial-to-mesenchymal transition (EMT). Cellular plasticity is a crucial intermediate phenotypic state acquired by cancer cells, which can modulate EMT and the generation of cancer stem cells (CSCs). PGs affect cell plasticity, stemness, and EMT, altering the cellular shape and functions. PGs control these functions, either by direct activation of signaling cascades, acting as co-receptors, or through regulation of the availability of biological compounds such as growth factors and cytokines. Differential expression of microRNAs is also associated with the expression of PGs and their interplay is implicated in the fine tuning of cancer cell phenotype and potential. This review summarizes the involvement of PGs in the regulation of EMT and stemness of cancer cells and highlights the molecular mechanisms.
Collapse
Affiliation(s)
- Zoi Karagiorgou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Panagiotis N. Fountas
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9010 Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
36
|
Park NR, Cha JH, Sung PS, Jang JW, Choi JY, Yoon SK, Bae SH. MiR-23b-3p suppresses epithelial-mesenchymal transition, migration, and invasion of hepatocellular carcinoma cells by targeting c-MET. Heliyon 2022; 8:e11135. [PMID: 36281372 PMCID: PMC9586913 DOI: 10.1016/j.heliyon.2022.e11135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Aberrant expression of c-MET is known to be associated with tumor recurrence and metastasis by promoting cell proliferation, epithelial-mesenchymal transition (EMT), and migration in hepatocellular carcinoma (HCC). Recently, miR-23b-3p has been identified as a tumor suppressor, but detailed role of miR-23b-3p in HCC is still unclear. Our study aimed to investigate how miR-23b-3p is associated with the malignant potential of HCC cells. METHODS HCC tissues and their adjacent non-tumor tissues were acquired from 30 patients with HCC. Expression of EMT- or stemness-related genes were examined in the two HCC cell lines. Migration of HCC cells was analyzed using transwell and wound healing assays. RESULTS c-MET was overexpressed in HCC tissues compared to the adjacent non-tumor tissues. c-MET knockdown inhibited EMT and reduced migration and invasion of HCC cells. Furthermore, c-MET was a target of miR-23b-3p, and miR-23b-3p expression was decreased in HCC tissues compared to non-tumor tissues. Treatment of miR-23b-3p inhibitor in HCC cells promoted EMT, cell migration, and invasion. In contrast, miR-23b-3p overexpression suppressed EMT, cell migration, and invasion, concomitantly reducing c-MET expression. Transfection of miR-23b-3p inhibitor with concomitant c-MET knockdown mitigated the effects of miR-23b-3p inhibitor on EMT in HCC cells. In addition, transforming growth factor beta1 (TGF-β1) stimulation after miR-23b-3p overexpression induced neither the mesenchymal phenotype nor migratory property of HCC cells. CONCLUSION In this study, we confirmed that miR-23b-3p downregulation significantly increased EMT, migration, and invasion of HCC cells. In addition, c-MET was confirmed to be a target of miR-23b-3p in HCC cells and regulated the functional effects of miR-23b-3p. These results suggest that miR-23b-3p can be used as a prognostic biomarker and candidate target for HCC treatment.
Collapse
Affiliation(s)
- Na Ri Park
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jung Hoon Cha
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, 03382, Republic of Korea
| |
Collapse
|
37
|
Park S, Park JM, Park M, Ko D, Kim S, Seo J, Nam KD, Jung E, Farrand L, Kim YJ, Kim JY, Seo JH. β-Escin overcomes trastuzumab resistance in HER2-positive breast cancer by targeting cancer stem-like features. Cancer Cell Int 2022; 22:289. [PMID: 36127671 PMCID: PMC9490928 DOI: 10.1186/s12935-022-02713-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background The emergence of de novo or intrinsic trastuzumab resistance is exceedingly high in breast cancer that is HER2 positive and correlates with an abundant cancer stem cell (CSC)-like population. We sought to examine the capacity of β-escin, an anti-inflammatory drug, to address trastuzumab resistance in HER2-positive breast cancer cells. Methods The effect of β-escin on trastuzumab-resistant and -sensitive cell lines in vitro was evaluated for apoptosis, expression of HER2 family members, and impact on CSC-like properties. An in vivo model of trastuzumab-resistant JIMT-1 was used to examine the efficacy and toxicity of β-escin. Results β-escin induced mitochondrial-mediated apoptosis accompanied by reactive oxygen species (ROS) production and increased active p18Bax fragmentation, leading to caspase-3/-7 activation. Attenuation of CSC-related features by β-escin challenge was accompanied by marked reductions in CD44high/CD24low stem-like cells and aldehyde dehydrogenase 1 (ALDH1) activity as well as hindrance of mammosphere formation. β-escin administration also significantly retarded tumor growth and angiogenesis in a trastuzumab-resistant JIMT-1 xenograft model via downregulation of CSC-associated markers and intracellular domain HER2. Importantly, β-escin selectively inhibited malignant cells and was less toxic to normal mammary cells, and no toxic effects were found in liver and kidney function in animals. Conclusions Taken together, our findings highlight β-escin as a promising candidate for the treatment of trastuzumab-resistant HER2-positive breast cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02713-9.
Collapse
Affiliation(s)
- Soeun Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Jung Min Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Minsu Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Dongmi Ko
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Seongjae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Juyeon Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Kee Dal Nam
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Eunsun Jung
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Lee Farrand
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Yoon-Jae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Jae Hong Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
38
|
Morales-Valencia J, Lau L, Martí-Nin T, Ozerdem U, David G. Therapy-induced senescence promotes breast cancer cells plasticity by inducing Lipocalin-2 expression. Oncogene 2022; 41:4361-4370. [PMID: 35953598 PMCID: PMC9482949 DOI: 10.1038/s41388-022-02433-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 01/29/2023]
Abstract
The acquisition of novel detrimental cellular properties following exposure to cytotoxic drugs leads to aggressive and metastatic tumors that often translates into an incurable disease. While the bulk of the primary tumor is eliminated upon exposure to chemotherapeutic treatment, residual cancer cells and non-transformed cells within the host can engage a stable cell cycle exit program named senescence. Senescent cells secrete a distinct set of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP). Upon exposure to the SASP, cancer cells undergo cellular plasticity resulting in increased proliferation, migration and epithelial-to-mesenchymal transition. The molecular mechanisms by which the SASP regulates these pro-tumorigenic features are poorly understood. Here, we report that breast cancer cells exposed to the SASP strongly upregulate Lipocalin-2 (LCN2). Furthermore, we demonstrate that LCN2 is critical for SASP-induced increased migration in breast cancer cells, and its inactivation potentiates the response to chemotherapeutic treatment in mouse models of breast cancer. Finally, we show that neoadjuvant chemotherapy treatment leads to LCN2 upregulation in residual human breast tumors, and correlates with worse overall survival. These findings provide the foundation for targeting LCN2 as an adjuvant therapeutic approach to prevent the emergence of aggressive tumors following chemotherapy.
Collapse
Affiliation(s)
- Jorge Morales-Valencia
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
- NYU Langone Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Lena Lau
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Teresa Martí-Nin
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Ugur Ozerdem
- Department of Pathology, New York University School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA.
- NYU Langone Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA.
- Department of Urology, New York University School of Medicine, NYU Langone Health, New York, NY, 10016, USA.
| |
Collapse
|
39
|
Fernández-Tabanera E, Melero-Fernández de Mera RM, Alonso J. CD44 In Sarcomas: A Comprehensive Review and Future Perspectives. Front Oncol 2022; 12:909450. [PMID: 35785191 PMCID: PMC9247467 DOI: 10.3389/fonc.2022.909450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
It is widely accepted that the tumor microenvironment, particularly the extracellular matrix, plays an essential role in the development of tumors through the interaction with specific protein-membrane receptors. One of the most relevant proteins in this context is the transmembrane protein CD44. The role of CD44 in tumor progression, invasion, and metastasis has been well established in many cancers, although a comprehensive review concerning its role in sarcomas has not been published. CD44 is overexpressed in most sarcomas and several in vitro and in vivo experiments have shown a direct effect on tumor progression, dissemination, and drug resistance. Moreover, CD44 has been revealed as a useful marker for prognostic and diagnostic (CD44v6 isoform) in osteosarcoma. Besides, some innovative treatments such as HA-functionalized liposomes therapy have become an excellent CD44-mediated intracellular delivery system for osteosarcoma. Unfortunately, the reduced number of studies deciphering the prognostic/diagnostic value of CD44 in other sarcoma subgroups, neither than osteosarcoma, in addition to the low number of patients involved in those studies, have produced inconclusive results. In this review, we have gone through the information available on the role of CD44 in the development, maintenance, and progression of sarcomas, analyzing their implications at the prognostic, therapeutic, and mechanistic levels. Moreover, we illustrate how research involving the specific role of CD44 in the different sarcoma subgroups could suppose a chance to advance towards a more innovative perspective for novel therapies and future clinical trials.
Collapse
Affiliation(s)
- Enrique Fernández-Tabanera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Raquel M. Melero-Fernández de Mera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- *Correspondence: Javier Alonso,
| |
Collapse
|
40
|
Pejovic T, Abate PV, Ma H, Thiessen J, Corless CL, Peterson A, Allard-Chamard H, Labrie M. Single-Cell Proteomics Analysis of Recurrent Low-Grade Serous Ovarian Carcinoma and Associated Brain Metastases. Front Oncol 2022; 12:903806. [PMID: 35692807 PMCID: PMC9174542 DOI: 10.3389/fonc.2022.903806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Between 2% and 6% of epithelial ovarian cancer (EOC) patients develop brain metastases (brain mets), which are incurable and invariably result in death. This poor outcome is associated with a lack of established guidelines for the detection and treatment of brain mets in EOC patients. In this study, we characterize an unusual case of low-grade serous ovarian carcinoma (LGSOC) that metastasized to the brain. Using a spatially oriented single-cell proteomics platform, we compared sequential biopsies of a primary tumor with a peritoneal recurrence and brain mets. We identified several targetable oncogenic pathways and immunosuppressive mechanisms that are amplified in the brain mets and could be involved in the progression of LGSOC to the brain. Furthermore, we were able to identify cell populations that are shared between the primary tumor and the brain mets, suggesting that cells that have a propensity for metastasis to the brain could be identified early during the course of disease. Taken together, our findings further a path for personalized therapeutic decisions in LGSOC.
Collapse
Affiliation(s)
- Tanja Pejovic
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Pierre-Valérien Abate
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hongli Ma
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jaclyn Thiessen
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR, United States
| | - Christopher L Corless
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Abigail Peterson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Hugues Allard-Chamard
- Service of Rheumatology, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marilyne Labrie
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
41
|
Role of CD44 isoforms in epithelial-mesenchymal plasticity and metastasis. Clin Exp Metastasis 2022; 39:391-406. [PMID: 35023031 PMCID: PMC10042269 DOI: 10.1007/s10585-022-10146-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 01/21/2023]
Abstract
Cellular plasticity lies at the core of cancer progression, metastasis, and resistance to treatment. Stemness and epithelial-mesenchymal plasticity in cancer are concepts that represent a cancer cell's ability to coopt and adapt normal developmental programs to promote survival and expansion. The cancer stem cell model states that a small subset of cancer cells with stem cell-like properties are responsible for driving tumorigenesis and metastasis while remaining especially resistant to common chemotherapeutic drugs. Epithelial-mesenchymal plasticity describes a cancer cell's ability to transition between epithelial and mesenchymal phenotypes which drives invasion and metastasis. Recent research supports the existence of stable epithelial/mesenchymal hybrid phenotypes which represent highly plastic states with cancer stem cell characteristics. The cell adhesion molecule CD44 is a widely accepted marker for cancer stem cells, and it lies at a functional intersection between signaling networks regulating both stemness and epithelial-mesenchymal plasticity. CD44 expression is complex, with alternative splicing producing many isoforms. Interestingly, not only does the pattern of isoform expression change during transitions between epithelial and mesenchymal phenotypes in cancer, but these isoforms have distinct effects on cell behavior including the promotion of metastasis and stemness. The role of CD44 both downstream and upstream of signaling pathways regulating epithelial-mesenchymal plasticity and stemness make this protein a valuable target for further research and therapeutic intervention.
Collapse
|
42
|
Sima LE, Matei D, Condello S. The Outside-In Journey of Tissue Transglutaminase in Cancer. Cells 2022; 11:cells11111779. [PMID: 35681474 PMCID: PMC9179582 DOI: 10.3390/cells11111779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue transglutaminase (TG2) is a member of the transglutaminase family that catalyzes Ca2+-dependent protein crosslinks and hydrolyzes guanosine 5′-triphosphate (GTP). The conformation and functions of TG2 are regulated by Ca2+ and GTP levels; the TG2 enzymatically active open conformation is modulated by high Ca2+ concentrations, while high intracellular GTP promotes the closed conformation, with inhibition of the TG-ase activity. TG2’s unique characteristics and its ubiquitous distribution in the intracellular compartment, coupled with its secretion in the extracellular matrix, contribute to modulate the functions of the protein. Its aberrant expression has been observed in several cancer types where it was linked to metastatic progression, resistance to chemotherapy, stemness, and worse clinical outcomes. The N-terminal domain of TG2 binds to the 42 kDa gelatin-binding domain of fibronectin with high affinity, facilitating the formation of a complex with β-integrins, essential for cellular adhesion to the matrix. This mechanism allows TG2 to interact with key matrix proteins and to regulate epithelial to mesenchymal transition and stemness. Here, we highlight the current knowledge on TG2 involvement in cancer, focusing on its roles translating extracellular cues into activation of oncogenic programs. Improved understanding of these mechanisms could lead to new therapeutic strategies targeting this multi-functional protein.
Collapse
Affiliation(s)
- Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania;
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
43
|
Murtazina A, Ruiz Alcala G, Jimenez-Martinez Y, Marchal JA, Tarabayeva A, Bitanova E, McDougall G, Bishimbayeva N, Boulaiz H. Anti-Cancerous Potential of Polysaccharides Derived from Wheat Cell Culture. Pharmaceutics 2022; 14:pharmaceutics14051100. [PMID: 35631686 PMCID: PMC9147229 DOI: 10.3390/pharmaceutics14051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
There is a global need to discover effective anti-cancerous compounds from natural sources. Cultivated wheat cells can be a valuable source of non-toxic or low toxic plant-derived polysaccharides. In this study, we evaluated the anti-cancer ability of seven fractions of wheat cell culture polysaccharides (WCCPSs) in the HCT-116 colon cancer cell line. Almost all (6/7) fractions had an inhibitory effect on the proliferation of colon cancer cells, and two fractions (A-b and A-f) had considerable therapeutic indexes. The WCCPS fractions induced cell cycle arrest in the G1 phase and induced different rates of apoptosis (≤48%). Transmission and scanning electron microscopy revealed that WCCPS fractions caused apoptotic changes in the nucleus and cytoplasm, including damage to mitochondria and external morphological signs of apoptosis. In addition, the WCCPSs induced an increase in the levels of Bax, cytochrome c, and caspases 8 and 3, indicating that cell death progressed through intrinsic and extrinsic pathways of apoptosis. Furthermore, some fractions caused a significant decrease of c-Myc, b-catenin, NFkB2, and HCAM (CD 44) levels, indicating enhanced cell differentiation. Thus, for the first time, our results provide a proof of concept of the anti-cancer capacity of WCCPS fractions in colorectal cancer.
Collapse
Affiliation(s)
- Alima Murtazina
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty A35B8H9, Kazakhstan; (A.T.); (E.B.)
- Research Center “Bioscience Technologies”, Almaty A15G7B0, Kazakhstan
| | - Gloria Ruiz Alcala
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain
| | - Yaiza Jimenez-Martinez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012 Granada, Spain
- Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Anel Tarabayeva
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty A35B8H9, Kazakhstan; (A.T.); (E.B.)
| | - Elmira Bitanova
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty A35B8H9, Kazakhstan; (A.T.); (E.B.)
| | - Gordon McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Nazira Bishimbayeva
- Research Center “Bioscience Technologies”, Almaty A15G7B0, Kazakhstan
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty A15E3B4, Kazakhstan
- Correspondence: or (N.B.); (H.B.)
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012 Granada, Spain
- Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: or (N.B.); (H.B.)
| |
Collapse
|
44
|
Nisha R, Kumar P, Kumar U, Mishra N, Maurya P, Singh P, Tabassum H, Alka, Singh S, Guleria A, Saraf SA. Assessment of hyaluronic acid-modified imatinib mesylate cubosomes through CD44 targeted drug delivery in NDEA-induced hepatic carcinoma. Int J Pharm 2022; 622:121848. [DOI: 10.1016/j.ijpharm.2022.121848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
|
45
|
Young MJ, Chen YC, Wang SA, Chang HP, Yang WB, Lee CC, Liu CY, Tseng YL, Wang YC, Sun HS, Chang WC, Hung JJ. Estradiol-mediated inhibition of Sp1 decreases miR-3194-5p expression to enhance CD44 expression during lung cancer progression. J Biomed Sci 2022; 29:3. [PMID: 35034634 PMCID: PMC8762881 DOI: 10.1186/s12929-022-00787-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Sp1, an important transcription factor, is involved in the progression of various cancers. Our previous studies have indicated that Sp1 levels are increased in the early stage of lung cancer progression but decrease during the late stage, leading to poor prognosis. In addition, estrogen has been shown to be involved in lung cancer progression. According to previous studies, Sp1 can interact with the estrogen receptor (ER) to coregulate gene expression. The role of interaction between Sp1 and ER in lung cancer progression is still unknown and will be clarified in this study. METHODS The clinical relevance between Sp1 levels and survival rates in young women with lung cancer was studied by immunohistochemistry. We validated the sex dependence of lung cancer progression in EGFRL858R-induced lung cancer mice. Wound healing assays, chamber assays and sphere formation assays in A549 cells, Taxol-induced drug-resistant A549 (A549-T24) and estradiol (E2)-treated A549 (E2-A549) cells were performed to investigate the roles of Taxol and E2 in lung cancer progression. Luciferase reporter assays, immunoblot and q-PCR were performed to evaluate the interaction between Sp1, microRNAs and CD44. Tail vein-injected xenograft experiments were performed to study lung metastasis. Samples obtained from lung cancer patients were used to study the mRNA level of CD44 by q-PCR and the protein levels of Sp1 and CD44 by immunoblot and immunohistochemistry. RESULTS In this study, we found that Sp1 expression was decreased in premenopausal women with late-stage lung cancer, resulting in a poor prognosis. Tumor formation was more substantial in female EGFRL858R mice than in male mice and ovariectomized female mice, indicating that E2 might be involved in the poor prognosis of lung cancer. We herein report that Sp1 negatively regulates metastasis and cancer stemness in E2-A549 and A549-T24 cells. Furthermore, E2 increases the mRNA and protein levels of RING finger protein 4 (RNF4), which is the E3-ligase of Sp1, and thereby decreases Sp1 levels by promoting Sp1 degradation. Sp1 can be recruited to the promoter of miR-3194-5p, and positively regulate its expression. Furthermore, there was a strong inverse correlation between Sp1 and CD44 levels in clinical lung cancer specimens. Sp1 inhibited CD44 expression by increasing the expression of miR-3194-5p, miR-218-5p, miR-193-5p, miR-182-5p and miR-135-5p, ultimately resulting in lung cancer malignancy. CONCLUSION Premenopausal women with lung cancer and decreased Sp1 levels have a poor prognosis. E2 increases RNF4 expression to repress Sp1 levels in premenopausal women with lung cancer, thus decreasing the expression of several miRNAs that can target CD44 and ultimately leading to cancer malignancy.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Ching Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shao-An Wang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ping Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Bin Yang
- TMU Research Center of Neuroscience, Taipei Medical University, 11031, Taipei, Taiwan
| | - Chia-Chi Lee
- Division of Thoracic Surgery, Department of Surgery, College of Medicine National, Cheng Kung University, Tainan, Taiwan
| | - Chia-Yu Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, College of Medicine National, Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chang Chang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
46
|
Gomes INF, da Silva-Oliveira RJ, da Silva LS, Martinho O, Evangelista AF, van Helvoort Lengert A, Leal LF, Silva VAO, dos Santos SP, Nascimento FC, Lopes Carvalho A, Reis RM. Comprehensive Molecular Landscape of Cetuximab Resistance in Head and Neck Cancer Cell Lines. Cells 2022; 11:154. [PMID: 35011716 PMCID: PMC8750399 DOI: 10.3390/cells11010154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Cetuximab is the sole anti-EGFR monoclonal antibody that is FDA approved to treat head and neck squamous cell carcinoma (HNSCC). However, no predictive biomarkers of cetuximab response are known for HNSCC. Herein, we address the molecular mechanisms underlying cetuximab resistance in an in vitro model. We established a cetuximab resistant model (FaDu), using increased cetuximab concentrations for more than eight months. The resistance and parental cells were evaluated for cell viability and functional assays. Protein expression was analyzed by Western blot and human cell surface panel by lyoplate. The mutational profile and copy number alterations (CNA) were analyzed using whole-exome sequencing (WES) and the NanoString platform. FaDu resistant clones exhibited at least two-fold higher IC50 compared to the parental cell line. WES showed relevant mutations in several cancer-related genes, and the comparative mRNA expression analysis showed 36 differentially expressed genes associated with EGFR tyrosine kinase inhibitors resistance, RAS, MAPK, and mTOR signaling. Importantly, we observed that overexpression of KRAS, RhoA, and CD44 was associated with cetuximab resistance. Protein analysis revealed EGFR phosphorylation inhibition and mTOR increase in resistant cells. Moreover, the resistant cell line demonstrated an aggressive phenotype with a significant increase in adhesion, the number of colonies, and migration rates. Overall, we identified several molecular alterations in the cetuximab resistant cell line that may constitute novel biomarkers of cetuximab response such as mTOR and RhoA overexpression. These findings indicate new strategies to overcome anti-EGFR resistance in HNSCC.
Collapse
Affiliation(s)
- Izabela N. F. Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
| | - Renato J. da Silva-Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos 14785-002, Brazil
| | - Luciane Sussuchi da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal; (O.M.); (F.C.N.)
| | - Adriane F. Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
| | - André van Helvoort Lengert
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos 14785-002, Brazil
| | - Viviane Aline Oliveira Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
| | | | - Flávia Caroline Nascimento
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal; (O.M.); (F.C.N.)
| | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal; (O.M.); (F.C.N.)
- Laboratory of Molecular Diagnosis, Barretos Cancer Hospital, Barretos 14784-400, Brazil;
- 3ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
47
|
Poondla N, Sheykhhasan M, Akbari M, Samadi P, Kalhor N, Manoochehri H. The Promise of CAR T-Cell Therapy for the Treatment of Cancer Stem Cells: A Short Review. Curr Stem Cell Res Ther 2022; 17:400-406. [PMID: 35176990 DOI: 10.2174/1574888x17666220217101817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a type of sophisticated tailored immunotherapy used to treat a variety of tumors. Immunotherapy works by utilizing the body's own immune system to discover and destroy malignant cells. In CAR-T therapy, a patient's own immune cells are genetically engineered to recognize and attack cancer. Treatments employing CAR T-cells are currently showing promising therapeutic results in patients with hematologic malignancies, and their safety and feasibility in solid tumors have been verified. In this review, we will discuss in detail the likelihood that CAR Tcells inhibit cancer stem cells (CSCs) by selectively targeting their cell surface markers will ultimately improve the therapeutic response for patients with various forms of cancer. This review addresses the major components of cancer stem cell (CSC)-targeted CAR T-cells against malignancies, from bench to bedside.
Collapse
Affiliation(s)
- Naresh Poondla
- Richmond University Medical Center, 355, Bard Avenue, Staten Island, New York 10310, United States
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Iran
| | - Mohammad Akbari
- Department of Medical School, Faculty of Medical Sciences, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Iran
| | - Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
48
|
Bhanu H, Mittal R, Raman S. Evaluation and Clinicopathological Correlation of CD44 in Colorectal Adenoma with Low/High-Grade Dysplasia and Carcinoma. CLINICAL CANCER INVESTIGATION JOURNAL 2022. [DOI: 10.51847/q4yjbhtgzg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Hernández-Nava E, Montaño LF, Rendón-Huerta EP. Transcriptional and Epigenetic Bioinformatic Analysis of Claudin-9 Regulation in Gastric Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5936905. [PMID: 39296813 PMCID: PMC11410435 DOI: 10.1155/2021/5936905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 09/21/2024]
Abstract
Gastric cancer is a heterogeneous disease that represents 5% to 10% of all new cancer cases worldwide. Advances in histological diagnosis and the discovery of new genes have admitted new genomic classifications. Nevertheless, the bioinformatic analysis of gastric cancer databases has favored the detection of specific differentially expressed genes with biological significance. Claudins, a family of proteins involved in tight junction physiology, have emerged as the key regulators of cellular processes, such as growth, proliferation, and migration, associated with cancer progression. The expression of Claudin-9 in the gastric cancer tissue has been linked to poor prognosis, however, its transcriptional and epigenetic regulations demand a more comprehensive analysis. Using the neural network promoter prediction, TransFact, Uniprot-KB, Expasy-SOPMA, protein data bank, proteomics DB, Interpro, BioGRID, String, and the FASTA protein sequence databases and software, we found the following: (1) the promoter sequence has an unconventional structure, including different transcriptional regulation elements distributed throughout it, (2) GATA 4, GATA 6, and KLF5 are the key regulators of Claudin-9 expression, (3) Oct1, NF-κB, AP-1, c-Ets-1, and HNF-3β have the higher binding affinity to the CLDN9 promoter, (4) Claudin-9 interacts with cell differentiation and development proteins, (5) CLDN9 is highly methylated, and (6) Claudin-9 expression is associated with poor survival. In conclusion, Claudin-9 is a protein that should be considered a diagnostic marker as its gene promoter region binds to the transcription factors associated with the deregulation of cell control, enhanced cell proliferation, and metastasis.
Collapse
Affiliation(s)
- Elizabeth Hernández-Nava
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Luis F Montaño
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Erika P Rendón-Huerta
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| |
Collapse
|
50
|
The Role of ATRA, Natural Ligand of Retinoic Acid Receptors, on EMT-Related Proteins in Breast Cancer: Minireview. Int J Mol Sci 2021; 22:ijms222413345. [PMID: 34948142 PMCID: PMC8705994 DOI: 10.3390/ijms222413345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
The knowledge of the structure, function, and abundance of specific proteins related to the EMT process is essential for developing effective diagnostic approaches to cancer with the perspective of diagnosis and therapy of malignancies. The success of all-trans retinoic acid (ATRA) differentiation therapy in acute promyelocytic leukemia has stimulated studies in the treatment of other tumors with ATRA. This review will discuss the impact of ATRA use, emphasizing epithelial-mesenchymal transition (EMT) proteins in breast cancer, of which metastasis and recurrence are major causes of death.
Collapse
|