1
|
Chen J, Sheng R, Mo Q, Backman LJ, Lu Z, Long Q, Chen Z, Cao Z, Zhang Y, Liu C, Zheng H, Qi Y, Cao M, Rui Y, Zhang W. Controlled TPCA-1 delivery engineers a pro-tenogenic niche to initiate tendon regeneration by targeting IKKβ/NF-κB signaling. Bioact Mater 2025; 44:319-338. [PMID: 39512422 PMCID: PMC11541688 DOI: 10.1016/j.bioactmat.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Tendon repair remains challenging due to its poor intrinsic healing capacity, and stem cell therapy has emerged as a promising strategy to promote tendon regeneration. Nevertheless, the inflammatory environment following acute tendon injuries disrupts stem cell differentiation, leading to unsatisfied outcomes. Our study recognized the critical role of NF-κB signaling in activating inflammation and suppressing tenogenic differentiation of stem cells after acute tendon injury via multiomics analysis. TPCA-1, a selective inhibitor of IKKβ/NF-κB signaling, efficiently restored the impaired tenogenesis of stem cells in the inflammatory environment. By developing a microsphere-incorporated hydrogel system for stem cell delivery and controlled release of TPCA-1, we successfully engineered a pro-tenogenic niche to initiate tenogenesis for tendon regeneration. Collectively, we recognize NF-κB signaling as a critical target to tailor a pro-tenogenic niche and propose the combined delivery of stem cells and TPCA-1 as a potential strategy for acute tendon injuries.
Collapse
Affiliation(s)
- Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
- Department of Ophthalmology, Zhongda Hospital, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058, Hangzhou, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Ludvig J. Backman
- Department of Medical and Translational Biology, Anatomy, Umeå University, 90187, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, 90187, Umeå, Sweden
| | - Zhiyuan Lu
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Qiuzi Long
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Zhicheng Cao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Chuanquan Liu
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Haotian Zheng
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Yu Qi
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Mumin Cao
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 210009, Nanjing, China
| | - Yunfeng Rui
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 210009, Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058, Hangzhou, China
| |
Collapse
|
2
|
Zhang W, Rao Y, Wong SH, Wu Y, Zhang Y, Yang R, Tsui SK, Ker DFE, Mao C, Frith JE, Cao Q, Tuan RS, Wang DM. Transcriptome-Optimized Hydrogel Design of a Stem Cell Niche for Enhanced Tendon Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2313722. [PMID: 39417770 PMCID: PMC11733723 DOI: 10.1002/adma.202313722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Bioactive hydrogels have emerged as promising artificial niches for enhancing stem cell-mediated tendon repair. However, a substantial knowledge gap remains regarding the optimal combination of niche features for targeted cellular responses, which often leads to lengthy development cycles and uncontrolled healing outcomes. To address this critical gap, an innovative, data-driven materiomics strategy is developed. This approach is based on in-house RNA-seq data that integrates bioinformatics and mathematical modeling, which is a significant departure from traditional trial-and-error methods. It aims to provide both mechanistic insights and quantitative assessments and predictions of the tenogenic effects of adipose-derived stem cells induced by systematically modulated features of a tendon-mimetic hydrogel (TenoGel). The knowledge generated has enabled a rational approach for TenoGel design, addressing key considerations, such as tendon extracellular matrix concentration, uniaxial tensile loading, and in vitro pre-conditioning duration. Remarkably, our optimized TenoGel demonstrated robust tenogenesis in vitro and facilitated tendon regeneration while preventing undesired ectopic ossification in a rat tendon injury model. These findings shed light on the importance of tailoring hydrogel features for efficient tendon repair. They also highlight the tremendous potential of the innovative materiomics strategy as a powerful predictive and assessment tool in biomaterial development for regenerative medicine.
Collapse
Affiliation(s)
- Wanqi Zhang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Ying Rao
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Shing Hei Wong
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Yeung Wu
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Yuanhao Zhang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Rui Yang
- Department of Sports MedicineOrthopedicsSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Stephen Kwok‐Wing Tsui
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Dai Fei Elmer Ker
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SARChina
| | - Jessica E. Frith
- Materials Science and EngineeringMonash UniversityClayton3800VICAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClayton3800VICAustralia
- Australian Research Council Training Centre for Cell and Tissue Engineering TechnologiesMonash UniversityClayton3800VICAustralia
| | - Qin Cao
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Rocky S. Tuan
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| | - Dan Michelle Wang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| |
Collapse
|
3
|
Kent RN, Huang AH, Baker BM. Augmentation of Tendon and Ligament Repair with Fiber-Reinforced Hydrogel Composites. Adv Healthc Mater 2024; 13:e2400668. [PMID: 39135411 PMCID: PMC11582515 DOI: 10.1002/adhm.202400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Indexed: 11/24/2024]
Abstract
This review highlights the promise of fiber-reinforced hydrogel composites (FRHCs) for augmenting tendon and ligament repair and regeneration. Composed of reinforcing fibers embedded in a hydrogel, these scaffolds provide both mechanical strength and a conducive microenvironment for biological processes required for connective tissue regeneration. Typical properties of FRHCs are discussed, highlighting their ability to simultaneously fulfill essential mechanical and biological design criteria for a regenerative scaffold. Furthermore, features of FRHCs are described that improve specific biological aspects of tendon healing including mesenchymal progenitor cell recruitment, early polarization to a pro-regenerative immune response, tenogenic differentiation of recruited progenitor cells, and subsequent production of a mature, aligned collagenous matrix. Finally, the review offers a perspective on clinical translation of tendon FRHCs and outlines key directions for future work.
Collapse
Affiliation(s)
- Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Ling SKK, Yung PSH. Endoscopic Application of a Collagen Scaffold for Treatment of Achilles Tendinopathy. Arthrosc Tech 2024; 13:103071. [PMID: 39479042 PMCID: PMC11519970 DOI: 10.1016/j.eats.2024.103071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 11/02/2024] Open
Abstract
This technical note explores Achilles tendinopathy treatment, focusing on the endoscopic application of a bioinductive collagen scaffold, a different approach to this prevalent condition. Indications include symptoms of midportion Achilles tendinopathy that have not responded to nonsurgical treatment. A co-axial 2-portal Achilles tendoscopy using a 30° 4-mm arthroscope is performed with the patient in a prone position. The procedure involves standard Achilles tendoscopic debridement and adhesiolysis, followed by the scaffold's introduction through the proximal portal in a rolled-up state; this bioinductive collagen scaffold is then unfolded arthroscopically and on-laid over the tendinopathy site under tendoscopic visualization. The bioinductive scaffold is then anchored with soft-tissue anchors, after which the portal incision can be closed and the patient rehabilitated according to standard protocol. This technique is notable, as it negated the need for an open incision and instead uses endoscopy for the application of this collagen scaffold which can be a stand-alone treatment option for Achilles tendinopathy; or used in conjunction with other minimally invasive Achilles tendon treatment procedures such as an endoscopic flexor hallucis longus transfer.
Collapse
Affiliation(s)
- Samuel Ka-Kin Ling
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Orthopaedic Learning Centre, The Chinese University of Hong Kong, Hong Kong SAR
| | - Patrick Shu-Hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Orthopaedic Learning Centre, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
5
|
Ramzan F, Salim A, Hussain A, Khan I. Unleashing the Healing Power of Mesenchymal Stem Cells for Osteochondral Abnormalities. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024. [DOI: 10.1007/s40883-024-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 08/31/2024] [Indexed: 01/11/2025]
|
6
|
Chen ZY, Chen SH, Chen SH, Chou PY, Kuan CY, Yang IH, Chang CT, Su YC, Lin FH. Bletilla striata Polysaccharide-Containing Carboxymethyl Cellulose Bilayer Structure Membrane for Prevention of Postoperative Adhesion and Achilles Tendon Repair. Biomacromolecules 2024; 25:5786-5797. [PMID: 38935055 PMCID: PMC11388445 DOI: 10.1021/acs.biomac.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Postoperative tissue adhesion and poor tendon healing are major clinical problems associated with tendon surgery. To avoid postoperative adhesion and promote tendon healing, we developed and synthesized a membrane to wrap the surgical site after tendon suturing. The bilayer-structured porous membrane comprised an outer layer [1,4-butanediol diglycidyl ether cross-linked with carboxymethyl cellulose (CX)] and an inner layer [1,4-butanediol diglycidyl ether cross-linked with Bletilla striata polysaccharides and carboxymethyl cellulose (CXB)]. The morphology, chemical functional groups, and membrane structure were determined. In vitro experiments revealed that the CX/CXB membrane demonstrated good biosafety and biodegradability, promoted tenocyte proliferation and migration, and exhibited low cell attachment and anti-inflammatory effects. Furthermore, in in vivo animal study, the CX/CXB membrane effectively reduced postoperative tendon-peripheral tissue adhesion and improved tendon repair, downregulating inflammatory cytokines in the tendon tissue at the surgical site, which ultimately increased tendon strength by 54% after 4 weeks.
Collapse
Affiliation(s)
- Zhi-Yu Chen
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Shih-Heng Chen
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Department
of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan, ROC
| | - Shih-Hsien Chen
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Department
of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan, ROC
| | - Pang-Yun Chou
- Department
of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan, ROC
| | - Che-Yung Kuan
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - I-Hsuan Yang
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Chia-Tien Chang
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Yi-Chun Su
- Institute
of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Feng-Huei Lin
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| |
Collapse
|
7
|
Augustin G, Jeong JH, Kim M, Hur SS, Lee JH, Hwang Y. Stem Cell‐Based Therapies and Tissue Engineering Innovations for Tendinopathy: A Comprehensive Review of Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 01/06/2025]
Abstract
AbstractTendon diseases commonly lead to physical disability, exerting a profound impact on the routine of affected patients. These conditions respond poorly to existing treatments, presenting a substantial challenge for orthopedic scientists. Research into clinical translational therapy has yet to yield highly versatile interventions capable of effectively addressing tendon diseases, including tendinopathy. Stem cell‐based therapies have emerged as a promising avenue for modifying the biological milieu through the secretion of regenerative and immunomodulatory factors. The current review provides an overview of the intricate tendon microenvironment, encompassing various tendon stem progenitor cells within distinct tendon sublocations, gene regulation, and pathways pertinent to tendon development, and the pathology of tendon diseases. Subsequently, the advantages of stem cell‐based therapies are discussed that utilize distinct types of autologous and allogeneic stem cells for tendon regeneration at the translational level. Moreover, this review outlines the challenges, gaps, and future innovations to propose a consolidated stem cell‐based therapy to treat tendinopathy. Finally, regenerative soluble therapies, insoluble bio‐active therapies, along with insoluble bio‐active therapies, and implantable 3D scaffolds for tendon tissue engineering are discussed, thereby presenting a pathway toward enhanced tissue regeneration and engineering.
Collapse
Affiliation(s)
- George Augustin
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Biochemistry and Biophysics Oregon State University Corvallis OR 92331 USA
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Integrated Biomedical Science Soonchunhyang University Asan‐si, Chungnam‐Do 31538 Republic of Korea
| | - Min‐Kyu Kim
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
| | - Joon Ho Lee
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Integrated Biomedical Science Soonchunhyang University Asan‐si, Chungnam‐Do 31538 Republic of Korea
| |
Collapse
|
8
|
Li J, Zhou X, Chen J, Eliasson P, Kingham PJ, Backman LJ. Secretome from myoblasts statically loaded at low intensity promotes tenocyte proliferation via the IGF-1 receptor pathway. FASEB J 2023; 37:e23203. [PMID: 37732638 DOI: 10.1096/fj.202301097r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Exercise is widely recognized as beneficial for tendon healing. Recently, it has been described that muscle-derived molecules secreted in response to static exercise influence tendon healing. In this study, the optimal static loading intensity for tendon healing and the composition of secretome released by myoblasts in response to different intensities of static strain were investigated. In an in vitro coculture model, myoblasts were mechanically loaded using a Flexcell Tension System. Tenocytes were seeded on transwell inserts that allowed communication between the tenocytes and myoblasts without direct contact. Proliferation and migration assays, together with RNA sequencing, were used to determine potential cellular signaling pathways. The secretome from myoblasts exposed to 2% static loading increased the proliferation and migration of the cocultured tenocytes. RNA-seq analysis revealed that this loading condition upregulated the expression of numerous genes encoding secretory proteins, including insulin-like growth factor-1 (IGF-1). Confirmation of IGF-1 expression and secretion was carried out using qPCR and enzyme-linked immunosorbt assay (ELISA), revealing a statistically significant upregulation in response to 2% static loading in comparison to both control conditions and higher loading intensities of 5% and 10%. Addition of an inhibitor of the IGF-1 receptor (PQ401) to the tenocytes significantly reduced myoblast secretome-induced tenocyte proliferation. In conclusion, IGF-1 may be an important molecule in the statically loaded myoblast secretome, which is responsible for influencing tenocytes during exercise-induced healing.
Collapse
Affiliation(s)
- Junhong Li
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Xin Zhou
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, China
| | - Pernilla Eliasson
- Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Stem Cell Applications and Tenogenic Differentiation Strategies for Tendon Repair. Stem Cells Int 2023; 2023:3656498. [PMID: 36970597 PMCID: PMC10033217 DOI: 10.1155/2023/3656498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Tendons are associated with a high injury risk because of their overuse and age-related tissue degeneration. Thus, tendon injuries pose great clinical and economic challenges to the society. Unfortunately, the natural healing capacity of tendons is far from perfect, and they respond poorly to conventional treatments when injured. Consequently, tendons require a long period of healing and recovery, and the initial strength and function of a repaired tendon cannot be completely restored as it is prone to a high rate of rerupture. Nowadays, the application of various stem cell sources, including mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs), for tendon repair has shown great potential, because these cells can differentiate into a tendon lineage and promote functional tendon repair. However, the mechanism underlying tenogenic differentiation remains unclear. Moreover, no widely adopted protocol has been established for effective and reproducible tenogenic differentiation because of the lack of definitive biomarkers for identifying the tendon differentiation cascades. This work is aimed at reviewing the literature over the past decade and providing an overview of background information on the clinical relevance of tendons and the urgent need to improve tendon repair; the advantages and disadvantages of different stem cell types used for boosting tendon repair; and the unique advantages of reported strategies for tenogenic differentiation, including growth factors, gene modification, biomaterials, and mechanical stimulation.
Collapse
|
10
|
Ning C, Li P, Gao C, Fu L, Liao Z, Tian G, Yin H, Li M, Sui X, Yuan Z, Liu S, Guo Q. Recent advances in tendon tissue engineering strategy. Front Bioeng Biotechnol 2023; 11:1115312. [PMID: 36890920 PMCID: PMC9986339 DOI: 10.3389/fbioe.2023.1115312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.
Collapse
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Pinxue Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Cangjian Gao
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Liwei Fu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiyao Liao
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Han Yin
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Muzhe Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
12
|
Practical Considerations for Translating Mesenchymal Stromal Cell-Derived Extracellular Vesicles from Bench to Bed. Pharmaceutics 2022; 14:pharmaceutics14081684. [PMID: 36015310 PMCID: PMC9414392 DOI: 10.3390/pharmaceutics14081684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown potential for the treatment of tendon and ligament injuries. This approach can eliminate the need to transplant live cells to the human body, thereby reducing issues related to the maintenance of cell viability and stability and potential erroneous differentiation of transplanted cells to bone or tumor. Despite these advantages, there are practical issues that need to be considered for successful clinical application of MSC-EV-based products in the treatment of tendon and ligament injuries. This review aims to discuss the general and tissue-specific considerations for manufacturing MSC-EVs for clinical translation. Specifically, we will discuss Good Manufacturing Practice (GMP)-compliant manufacturing and quality control (parent cell source, culture conditions, concentration method, quantity, identity, purity and impurities, sterility, potency, reproducibility, storage and formulation), as well as safety and efficacy issues. Special considerations for applying MSC-EVs, such as their compatibility with arthroscopy for the treatment of tendon and ligament injuries, are also highlighted.
Collapse
|
13
|
Makuku R, Werthel JD, Zanjani LO, Nabian MH, Tantuoyir MM. New frontiers of tendon augmentation technology in tissue engineering and regenerative medicine: a concise literature review. J Int Med Res 2022; 50:3000605221117212. [PMID: 35983666 PMCID: PMC9393707 DOI: 10.1177/03000605221117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tissue banking programs fail to meet the demand for human organs and tissues for
transplantation into patients with congenital defects, injuries, chronic
diseases, and end-stage organ failure. Tendons and ligaments are among the most
frequently ruptured and/or worn-out body tissues owing to their frequent use,
especially in athletes and the elderly population. Surgical repair has remained
the mainstay management approach, regardless of scarring and adhesion formation
during healing, which then compromises the gliding motion of the joint and
reduces the quality of life for patients. Tissue engineering and regenerative
medicine approaches, such as tendon augmentation, are promising as they may
provide superior outcomes by inducing host-tissue ingrowth and tendon
regeneration during degradation, thereby decreasing failure rates and morbidity.
However, to date, tendon tissue engineering and regeneration research has been
limited and lacks the much-needed human clinical evidence to translate most
laboratory augmentation approaches to therapeutics. This narrative review
summarizes the current treatment options for various tendon pathologies, future
of tendon augmentation, cell therapy, gene therapy, 3D/4D bioprinting,
scaffolding, and cell signals.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Jean-David Werthel
- Department of Orthopedic and Trauma Surgery, Shariati Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Oryadi Zanjani
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Mohammad Hossein Nabian
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Marcarious M Tantuoyir
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France.,Biomedical Engineering Unit, University of Ghana Medical Centre, Accra, Ghana
| |
Collapse
|
14
|
Yu HB, Xiong J, Zhang HZ, Chen Q, Xie XY. TGFβ1-transfected tendon stem cells promote tendon fibrosis. J Orthop Surg Res 2022; 17:358. [PMID: 35864537 PMCID: PMC9306186 DOI: 10.1186/s13018-022-03241-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background In aged people, tendon injuries frequently occur during sporting and daily activities. In clinical practice, typical physiotherapeutic, pharmacotherapeutic, and surgical techniques do not result in the full recovery of injured tendons, which may lead to chronic degenerative disease. Methods We first isolated tendon stem cells (TSCs) from rats and transfected them with the TGFβ1 gene, resulting in TGFβ1-TSCs. The proliferation of TSCs was detected using the Cell Counting Kit 8, and TSCs were identified by immunofluorescence analysis and differentiation capacity analysis. Aggrecan, COL2A1, alpha smooth muscle actin (α-SMA), and p-Smad2 expression levels were detected using western blotting and quantitative reverse transcription polymerase chain reaction. Additionally, a tendon injury model was generated to explore the effect of TGFβ1 on the repair of the tendon by TSCs. Results Compared with fibrinogen treatment, TSC + fibrinogen or TGFβ1-TSC + fibrinogen treatment significantly promoted the fibrosis of injured tendons, as evidenced by histological analyses, with TGFβ1-TSC + fibrinogen having a greater effect than TSC + fibrinogen. In TGFβ1-TSCs, increased expression levels of aggrecan and COL2A1 indicated that TGFβ1 signaling induced chondrogenic differentiation. Meanwhile, the increased collagen and α-SMA protein levels indicated that TGFβ1 promoted fibrogenesis. Additionally, TGFβ1 stimulated the production of phosphorylated Smad2 in TSCs, which suggested that the chondrogenic and fibrogenic differentiation of TSCs, as well as tissue regeneration, may be associated with the TGFβ1/Smad2 pathway. Conclusion TGFβ1-TSC therapy may be a candidate for effective tendon fibrosis.
Collapse
Affiliation(s)
- Hong-Bin Yu
- Department of Sports & Rehabilitation Medicine, The First People's Hospital of Jiujiang City, No. 48 of Taling Street, Jiujiang District, Jiujiang, 332000, China.
| | - Jing Xiong
- Department of Sports & Rehabilitation Medicine, The First People's Hospital of Jiujiang City, No. 48 of Taling Street, Jiujiang District, Jiujiang, 332000, China
| | - Hui-Zhen Zhang
- Department of Sports & Rehabilitation Medicine, The First People's Hospital of Jiujiang City, No. 48 of Taling Street, Jiujiang District, Jiujiang, 332000, China
| | - Qin Chen
- Department of Sports & Rehabilitation Medicine, The First People's Hospital of Jiujiang City, No. 48 of Taling Street, Jiujiang District, Jiujiang, 332000, China
| | - Xu-Yong Xie
- Department of Sports & Rehabilitation Medicine, The First People's Hospital of Jiujiang City, No. 48 of Taling Street, Jiujiang District, Jiujiang, 332000, China
| |
Collapse
|
15
|
Wright AL, Righelli L, Broomhall TJ, Lamont HC, El Haj AJ. Magnetic Nanoparticle-Mediated Orientation of Collagen Hydrogels for Engineering of Tendon-Mimetic Constructs. Front Bioeng Biotechnol 2022; 10:797437. [PMID: 35372293 PMCID: PMC8968910 DOI: 10.3389/fbioe.2022.797437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
Despite the high incidence of tendon injuries worldwide, an optimal treatment strategy has yet to be defined. A key challenge for tendon repair is the alignment of the repaired matrix into orientations which provide maximal mechanical strength. Using oriented implants for tissue growth combined with either exogenous or endogenous stem cells may provide a solution. Previous research has shown how oriented fiber-like structures within 3D scaffolds can provide a framework for organized extracellular matrix deposition. In this article, we present our data on the remote magnetic alignment of collagen hydrogels which facilitates long-term collagen orientation. Magnetic nanoparticles (MNPs) at varying concentrations can be contained within collagen hydrogels. Our data show how, in response to the magnetic field lines, MNPs align and form string-like structures orientating at 90 degrees from the applied magnetic field from our device. This can be visualized by light and fluorescence microscopy, and it persists for 21 days post-application of the magnetic field. Confocal microscopy demonstrates the anisotropic macroscale structure of MNP-laden collagen gels subjected to a magnetic field, compared to gels without MNP dosing. Matrix fibrillation was compared between non- and biofunctionalized MNP hydrogels, and different gels dosed with varying MNP concentrations. Human adipose stem cells (hASCs) seeded within the magnetically aligned gels were observed to align in parallel to MNP and collagen orientation 7 days post-application of the magnetic field. hASCs seeded in isotropic gels were randomly organized. Tenocyte-likeness of the cells 7 days post-seeding in collagen I scaffolds was confirmed by the positive expression of tenomodulin and scleraxis proteins. To summarize, we have developed a convenient, non-invasive protocol to control the collagen I hydrogel architecture. Through the presence or absence of MNP dosing and a magnetic field, collagen can be remotely aligned or randomly organized, respectively, in situ. Tendon-like cells were observed to organize in parallel to unidirectionally aligned collagen fibers and polydirectionally in non-aligned collagen constructs. In this way, we were able to engineer the constructs emulating a physiologically and pathologically relevant tendon niche. This can be considered as an innovative approach particularly useful in tissue engineering or organ-on-a-chip applications for remotely controlling collagen matrix organization to recapitulate the native tendon.
Collapse
Affiliation(s)
| | | | | | | | - Alicia J. El Haj
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Regeneration of Chronic Rotator Cuff Tear in a Rabbit Model: Synergetic Benefits of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells, Polydeoxyribonucleotides, and Microcurrent Therapy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6496773. [PMID: 35342750 PMCID: PMC8941538 DOI: 10.1155/2022/6496773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Objective To investigate synergic therapeutic effects of combined injection of intralesional mesenchymal stem cells derived from human umbilical cord blood (UCB-MSCs) and polydeoxyribonucleotide (PDRN) combined with microcurrent therapy (MIC) on full thickness rotator cuff tendon tear (FTRCTT) in rabbit models. Methods Thirty-two rabbit models were assigned to 4 different groups. FTRCTT in the supraspinatus tendon was created. After 6 weeks, 4 types of procedures (0.2 mL normal saline injection, group 1 (G1-NS); 0.2 mL SC injection, group 2 (G2-MSC); 0.2 mL SC and weekly four injections of 0.2 mL PDRN with sham MIC, group 3 (G3-MSC+PDRN+sham MIC); and 0.2 mL SC and weekly four injections of 0.2 mL PDRN with MIC for four weeks, group 4 (G4-MSC+PDRN+MIC)) were performed in FTRCTT. Gross morphologic and histological changes of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule (PECAM-1) and motion analysis were performed. Results There was a significant difference in gross morphologic changes between baseline and week 4 posttreatment in group 4 compared to the other three groups (p = 0.01). In groups 3 and 4, all parameters of histochemical and motion analysis have been found to be significantly greater than the ones in groups 1 and 2 (p < 0.05). In group 4, PCNA-, VEGF-, and PECAM-1-stained cells, as well as walking distance, were significantly greater than the ones in group 3 (p < 0.05). Conclusion The treatment with UCB-MSCs and PDRN combined with MIC might be the most effective in rabbit models' traumatic FRTCTT.
Collapse
|
17
|
Russo V, El Khatib M, Prencipe G, Citeroni MR, Faydaver M, Mauro A, Berardinelli P, Cerveró-Varona A, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Stöckl J, Barboni B. Tendon Immune Regeneration: Insights on the Synergetic Role of Stem and Immune Cells during Tendon Regeneration. Cells 2022; 11:434. [PMID: 35159244 PMCID: PMC8834336 DOI: 10.3390/cells11030434] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Tendon disorders represent a very common pathology in today's population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understanding the underlying mechanisms during the inflammatory state have provided additional insights into its potential role in tendon disorders. Different cell compartments, in combination with secreted immune modulators, have shown to control and modulate the inflammatory response during tendinopathies. Stromal compartment represented by tenocytes has shown to display an important role in orchestrating the inflammatory response during tendon injuries due to the interplay they exhibit with the immune-sensing and infiltrating compartments, which belong to resident and recruited immune cells. The use of stem cells or their derived secretomes within the regenerative medicine field might represent synergic new therapeutical approaches that can be used to tune the reaction of immune cells within the damaged tissues. To this end, promising opportunities are headed to the stimulation of macrophages polarization towards anti-inflammatory phenotype together with the recruitment of stem cells, that possess immunomodulatory properties, able to infiltrate within the damaged tissues and improve tendinopathies resolution. Indeed, the comprehension of the interactions between tenocytes or stem cells with the immune cells might considerably modulate the immune reaction solving hence the inflammatory response and preventing fibrotic tissue formation. The purpose of this review is to compare the roles of distinct cell compartments during tendon homeostasis and injury. Furthermore, the role of immune cells in this field, as well as their interactions with stem cells and tenocytes during tendon regeneration, will be discussed to gain insights into new ways for dealing with tendinopathies.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
18
|
Autologous bone marrow-derived mesenchymal stem cells provide complete regeneration in a rabbit model of the Achilles tendon bundle rupture. INTERNATIONAL ORTHOPAEDICS 2021; 45:3263-3276. [PMID: 34510279 DOI: 10.1007/s00264-021-05168-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE To ascertain the role of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in the tendon regeneration. METHODS The study was conducted on 58 Achilles tendons from 29 laboratory Chinchilla adult rabbits. The central bundles of 48 tendons were partially removed and substituted with a tissue-engineered construct consisting of a collagen sponge either loaded with BM-MSCs (n = 24) or cell free (n = 24), placed inside a Vicryl mesh tube. The ends of the resected tendon were inserted in the construct to reach a direct contact with the sponge and sutured to the tube. The animals were sacrificed three and six months post-surgery. Ten intact tendons from five rabbits were used as an untreated control. The tissue samples (n = 30) were stained with haematoxylin and eosin, Picrosirius red, primary antibodies to collagen types I and III and studied by bright-field, phase-contrast, polarized light, and scanning electron microscopies followed by semi-quantitative morphometry. RESULTS Six months results of cell-loaded scaffolds demonstrated parallel collagen fibres, spindle-shaped tenocytes, and neoangiogenesis. In the control cell-free group, the injured areas were filled with a nonspecific fibrotic tissue with minor foci of incomplete regeneration. The biomechanical tests of 28 tendons taken from 14 rabbits showed that the stiffness of the cell-based reconstructed tendons increased to 98% of the value for the intact samples. CONCLUSION The obtained results support the hypothesis that the application of BM-MSCs in a tissue-engineered tendon construct leads to the restitution of the tendon tissue.
Collapse
|
19
|
Grafting of iPS cell-derived tenocytes promotes motor function recovery after Achilles tendon rupture. Nat Commun 2021; 12:5012. [PMID: 34408142 PMCID: PMC8373964 DOI: 10.1038/s41467-021-25328-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
Tendon self-renewal is a rare occurrence because of the poor vascularization of this tissue; therefore, reconstructive surgery using autologous tendon is often performed in severe injury cases. However, the post-surgery re-injury rate is relatively high, and the collection of autologous tendons leads to muscle weakness, resulting in prolonged rehabilitation. Here, we introduce an induced pluripotent stem cell (iPSC)-based technology to develop a therapeutic option for tendon injury. First, we derived tenocytes from human iPSCs by recapitulating the normal progression of step-wise narrowing fate decisions in vertebrate embryos. We used single-cell RNA sequencing to analyze the developmental trajectory of iPSC-derived tenocytes. We demonstrated that iPSC-tenocyte grafting contributed to motor function recovery after Achilles tendon injury in rats via engraftment and paracrine effects. The biomechanical strength of regenerated tendons was comparable to that of healthy tendons. We suggest that iPSC-tenocytes will provide a therapeutic option for tendon injury.
Collapse
|
20
|
Gonçalves AI, Vinhas A, Rodrigues MT, Gomes ME. The impact of cryopreservation in signature markers and immunomodulatory profile of tendon and ligament derived cells. J Cell Physiol 2021; 237:675-686. [PMID: 34368976 DOI: 10.1002/jcp.30540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/09/2021] [Accepted: 07/10/2021] [Indexed: 11/07/2022]
Abstract
Tendon and ligament (T/L) engineering strategies towards clinical practice have been challenged by a paucity of understanding in the identification and still poorly described characterization of cellular niches. Prospecting how resident cell populations behave in vitro, and how cryopreservation may influence T/ L-promoting factors, can provide insights into T/ L-cellular profiles for novel regenerative solutions. Therefore, we studied human T/ L-derived cells isolated from patellar tendons and cruciate ligaments as suitable cellular models to anticipate tendon and ligament niches responses for advanced strategies with predictive tenogenic and ligamentogenic value. Our results show that the crude populations isolated from tendon and ligament tissues hold a stem cell subset and share a similar behavior in terms of tenogenic/ligamentogenic commitment. Both T/ L-derived cells successfully undergo cryopreservation/thawing maintaining the tenogenic/ligamentogenic profiles. The major differences between cryopreserved and fresh populations were observed at the gene expression of MKX, SCX, and TNMD as well as at the protein levels of collagen type I and III, in which cells from tendon origin (hTDCs) evidence increased values in comparison to the ones from ligament (hLDCs, p < 0.05). In addition, low-temperature storage was shown to potentiate an immunomodulatory profile of cells, especially in hTDCs leading to an increase in the gene expression of the anti-inflammatory factors IL-4 and IL-10 (p < 0.05), as well as in the protein secretion of IL-10 (p < 0.01) and IL-4 (p < 0.001). Overall, the outcomes highlight the relevance of the cryopreserved T/ L-derived cells and their promising immunomodulatory cues as in vitro models for investigating cell-mediated mechanisms driving tissue healing and regeneration.
Collapse
Affiliation(s)
- Ana I Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adriana Vinhas
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
21
|
Park W, Gao G, Cho DW. Tissue-Specific Decellularized Extracellular Matrix Bioinks for Musculoskeletal Tissue Regeneration and Modeling Using 3D Bioprinting Technology. Int J Mol Sci 2021; 22:7837. [PMID: 34360604 PMCID: PMC8346156 DOI: 10.3390/ijms22157837] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The musculoskeletal system is a vital body system that protects internal organs, supports locomotion, and maintains homeostatic function. Unfortunately, musculoskeletal disorders are the leading cause of disability worldwide. Although implant surgeries using autografts, allografts, and xenografts have been conducted, several adverse effects, including donor site morbidity and immunoreaction, exist. To overcome these limitations, various biomedical engineering approaches have been proposed based on an understanding of the complexity of human musculoskeletal tissue. In this review, the leading edge of musculoskeletal tissue engineering using 3D bioprinting technology and musculoskeletal tissue-derived decellularized extracellular matrix bioink is described. In particular, studies on in vivo regeneration and in vitro modeling of musculoskeletal tissue have been focused on. Lastly, the current breakthroughs, limitations, and future perspectives are described.
Collapse
Affiliation(s)
- Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China;
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
22
|
Kaji DA, Montero AM, Patel R, Huang AH. Transcriptional profiling of mESC-derived tendon and fibrocartilage cell fate switch. Nat Commun 2021; 12:4208. [PMID: 34244516 PMCID: PMC8270956 DOI: 10.1038/s41467-021-24535-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The transcriptional regulators underlying induction and differentiation of dense connective tissues such as tendon and related fibrocartilaginous tissues (meniscus and annulus fibrosus) remain largely unknown. Using an iterative approach informed by developmental cues and single cell RNA sequencing (scRNA-seq), we establish directed differentiation models to generate tendon and fibrocartilage cells from mouse embryonic stem cells (mESCs) by activation of TGFβ and hedgehog pathways, achieving 90% induction efficiency. Transcriptional signatures of the mESC-derived cells recapitulate embryonic tendon and fibrocartilage signatures from the mouse tail. scRNA-seq further identify retinoic acid signaling as a critical regulator of cell fate switch between TGFβ-induced tendon and fibrocartilage lineages. Trajectory analysis by RNA sequencing define transcriptional modules underlying tendon and fibrocartilage fate induction and identify molecules associated with lineage-specific differentiation. Finally, we successfully generate 3-dimensional engineered tissues using these differentiation protocols and show activation of mechanotransduction markers with dynamic tensile loading. These findings provide a serum-free approach to generate tendon and fibrocartilage cells and tissues at high efficiency for modeling development and disease.
Collapse
Affiliation(s)
- Deepak A Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angela M Montero
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roosheel Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Rinoldi C, Kijeńska-Gawrońska E, Khademhosseini A, Tamayol A, Swieszkowski W. Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration. Adv Healthc Mater 2021; 10:e2001305. [PMID: 33576158 PMCID: PMC8048718 DOI: 10.1002/adhm.202001305] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Tendon and ligament injuries caused by trauma and degenerative diseases are frequent and affect diverse groups of the population. Such injuries reduce musculoskeletal performance, limit joint mobility, and lower people's comfort. Currently, various treatment strategies and surgical procedures are used to heal, repair, and restore the native tissue function. However, these strategies are inadequate and, in some cases, fail to re-establish the lost functionality. Tissue engineering and regenerative medicine approaches aim to overcome these disadvantages by stimulating the regeneration and formation of neotissues. Design and fabrication of artificial scaffolds with tailored mechanical properties are crucial for restoring the mechanical function of tendons. In this review, the tendon and ligament structure, their physiology, and performance are presented. On the other hand, the requirements are focused for the development of an effective reconstruction device. The most common fiber-based scaffolding systems are also described for tendon and ligament tissue regeneration like strand fibers, woven, knitted, braided, and braid-twisted fibrous structures, as well as electrospun and wet-spun constructs, discussing critically the advantages and limitations of their utilization. Finally, the potential of multilayered systems as the most effective candidates for tendon and ligaments tissue engineering is pointed out.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Ewa Kijeńska-Gawrońska
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, 02-822, Poland
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Department of Radiology, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| |
Collapse
|
24
|
Abstract
Three-dimensional (3D) cell cultures combining multipotent mesenchymal stromal cells (MSC), tendon extracellular matrix scaffolds, and mechanical stimulation by a bioreactor have been used to induce tenogenic differentiation in vitro. Yet, these conditions alone do not mimic the environment of acute inflammatory tendon disease adequately, thus the results of such studies are not representatives for tendon regeneration after acute injury. In this chapter, we describe two different approaches to introduce inflammatory stimuli, comprising co-culture with leukocytes and supplementation with the cytokines IL-1 β and TNF-α. The presented in vitro model of inflammatory tendon disease could be used to study musculoskeletal pathophysiology and regeneration in more depth.
Collapse
|
25
|
Capella-Monsonís H, Zeugolis DI. Decellularized xenografts in regenerative medicine: From processing to clinical application. Xenotransplantation 2021; 28:e12683. [PMID: 33709410 DOI: 10.1111/xen.12683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Decellularized xenografts are an inherent component of regenerative medicine. Their preserved structure, mechanical integrity and biofunctional composition have well established them in reparative medicine for a diverse range of clinical indications. Nonetheless, their performance is highly influenced by their source (ie species, age, tissue) and processing (ie decellularization, crosslinking, sterilization and preservation), which govern their final characteristics and determine their success or failure for a specific clinical target. In this review, we provide an overview of the different sources and processing methods used in decellularized xenografts fabrication and discuss their effect on the clinical performance of commercially available decellularized xenografts.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
26
|
Tsai SL, Noedl MT, Galloway JL. Bringing tendon biology to heel: Leveraging mechanisms of tendon development, healing, and regeneration to advance therapeutic strategies. Dev Dyn 2021; 250:393-413. [PMID: 33169466 PMCID: PMC8486356 DOI: 10.1002/dvdy.269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Tendons are specialized matrix-rich connective tissues that transmit forces from muscle to bone and are essential for movement. As tissues that frequently transfer large mechanical loads, tendons are commonly injured in patients of all ages. Following injury, mammalian tendons heal poorly through a slow process that forms disorganized fibrotic scar tissue with inferior biomechanical function. Current treatments are limited and patients can be left with a weaker tendon that is likely to rerupture and an increased chance of developing degenerative conditions. More effective, alternative treatments are needed. However, our current understanding of tendon biology remains limited. Here, we emphasize why expanding our knowledge of tendon development, healing, and regeneration is imperative for advancing tendon regenerative medicine. We provide a comprehensive review of the current mechanisms governing tendon development and healing and further highlight recent work in regenerative tendon models including the neonatal mouse and zebrafish. Importantly, we discuss how present and future discoveries can be applied to both augment current treatments and design novel strategies to treat tendon injuries.
Collapse
Affiliation(s)
- Stephanie L. Tsai
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Marie-Therese Noedl
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Jenna L. Galloway
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
27
|
The Role of Scaffolds in Tendon Tissue Engineering. J Funct Biomater 2020; 11:jfb11040078. [PMID: 33139620 PMCID: PMC7712651 DOI: 10.3390/jfb11040078] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Tendons are unique forms of connective tissue aiming to transmit the mechanical force of muscle contraction to the bones. Tendon injury may be due to direct trauma or might be secondary to overuse injury and age-related degeneration, leading to inflammation, weakening and subsequent rupture. Current traditional treatment strategies focus on pain relief, reduction of the inflammation and functional restoration. Tendon repair surgery can be performed in people with tendon injuries to restore the tendon's function, with re-rupture being the main potential complication. Novel therapeutic approaches that address the underlying pathology of the disease is warranted. Scaffolds represent a promising solution to the challenges associated with tendon tissue engineering. The ideal scaffold for tendon tissue engineering needs to exhibit physiologically relevant mechanical properties and to facilitate functional graft integration by promoting the regeneration of the native tissue.
Collapse
|
28
|
Hypoxia-Induced Mesenchymal Stem Cells Exhibit Stronger Tenogenic Differentiation Capacities and Promote Patellar Tendon Repair in Rabbits. Stem Cells Int 2020; 2020:8822609. [PMID: 33133195 PMCID: PMC7591963 DOI: 10.1155/2020/8822609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Tendon injury is a common but tough medical problem. Unsatisfactory clinical results have been reported in tendon repair using mesenchymal stem cell (MSC) therapy, creating a need for a better strategy to induce MSCs to tenogenic differentiation. This study was designed to examine the effect of hypoxia on the tenogenic differentiation of different MSCs and their tenogenic differentiation capacities under hypoxia condition in vitro and to investigate the in vivo inductility of hypoxia in tenogenesis. Adipose tissue-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) were isolated and characterized. The expression of hypoxia-induced factor-1 alpha (Hif-1α) was examined to confirm the establishment of hypoxia condition. qRT-PCR, western blot, and immunofluorescence staining were used to evaluate the expression of tendon-associated marker Col-1a1, Col-3a1, Dcn, and Tnmd in AMSCs and BMSCs under hypoxia condition, compared with Tgf-β1 induction. In vivo, a patellar tendon injury model was established. Normoxic and hypoxic BMSCs were cultured and implanted. Histological, biomechanical, and transmission electron microscopy analyses were performed to assess the improved healing effect of hypoxic BMSCs on tendon injury. Our in vitro results showed that hypoxia remarkably increased the expression of Hif-1α and that hypoxia not only promoted a significant increase in tenogenic markers in both AMSCs and BMSCs compared with the normoxia group but also showed higher inductility compared with Tgf-β1. In addition, hypoxic BMSCs exhibited higher potential of tenogenic differentiation than hypoxic AMSCs. Our in vivo results demonstrated that hypoxic BMSCs possessed better histological and biomechanical properties than normoxic BMSCs, as evidenced by histological scores, patellar tendon biomechanical parameters, and the range and average of collagen fibril diameters. These findings suggested that hypoxia may be a practical and reliable strategy to induce tenogenic differentiation of BMSCs for tendon repair and could enhance the effectiveness of MSCs therapy in treating tendon injury.
Collapse
|
29
|
Freitag J, Shah K, Wickham J, Tenen A. Effect of autologous adipose-derived mesenchymal stem cell therapy in combination with autologous platelet-rich plasma in the treatment of elbow tendinopathy. BMJ Case Rep 2020; 13:13/6/e234592. [PMID: 32606116 PMCID: PMC7328806 DOI: 10.1136/bcr-2020-234592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tendinopathy is a common condition of both the athletic and general population and can be associated with significant pain and disability. The ability of mesenchymal stem cells (MSCs) to differentiate along a mesodermal cell lineage, including tenocytes, and secrete various bioactive regenerative and anti-inflammatory molecules has seen them considered as a future reparative therapy for tendinopathy. Preclinical trials with MSCs have shown promising positive functional and structural outcomes in several connective tissue related conditions. A 52-year-old male professional masters golfer presents with a clinical history of common extensor origin tendinopathy of the elbow. Subsequent formal ultrasound showed evidence of a large intrasubstance tear. The patient underwent intratendinous autologous adipose-derived MSC therapy in combination with autologous platelet-rich plasma. Following treatment, the patient reported progressive improvement as measured by the validated Numeric Pain Rating Scale and Patient-Rated Tennis Elbow Evaluation score. Repeat imaging showed successful regeneration of tendon-like tissue.
Collapse
Affiliation(s)
- Julien Freitag
- School of Biomedical Sciences, Charles Sturt University, Orange Campus, Orange, New South Wales, Australia .,Melbourne Stem Cell Centre, Box Hill North, Victoria, Australia.,Magellan Stem Cells, Box Hill North, Victoria, Australia
| | - Kiran Shah
- Magellan Stem Cells, Box Hill North, Victoria, Australia
| | - James Wickham
- School of Biomedical Sciences, Charles Sturt University, Orange Campus, Orange, New South Wales, Australia
| | - Abi Tenen
- Melbourne Stem Cell Centre, Box Hill North, Victoria, Australia.,Magellan Stem Cells, Box Hill North, Victoria, Australia.,School of Primary Health Care, Monash University, Notting Hill, Victoria, Australia
| |
Collapse
|
30
|
Ciardulli MC, Marino L, Lovecchio J, Giordano E, Forsyth NR, Selleri C, Maffulli N, Porta GD. Tendon and Cytokine Marker Expression by Human Bone Marrow Mesenchymal Stem Cells in a Hyaluronate/Poly-Lactic-Co-Glycolic Acid (PLGA)/Fibrin Three-Dimensional (3D) Scaffold. Cells 2020; 9:E1268. [PMID: 32443833 PMCID: PMC7291129 DOI: 10.3390/cells9051268] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023] Open
Abstract
We developed a (three-dimensional) 3D scaffold, we named HY-FIB, incorporating a force-transmission band of braided hyaluronate embedded in a cell localizing fibrin hydrogel and poly-lactic-co-glycolic acid (PLGA) nanocarriers as transient components for growth factor controlled delivery. The tenogenic supporting capacity of HY-FIB on human-Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) was explored under static conditions and under bioreactor-induced cyclic strain conditions. HY-FIB elasticity enabled to deliver a mean shear stress of 0.09 Pa for 4 h/day. Tendon and cytokine marker expression by hBM-MSCs were studied. Results: hBM-MSCs embedded in HY-FIB and subjected to mechanical stimulation, resulted in a typical tenogenic phenotype, as indicated by type 1 Collagen fiber immunofluorescence. RT-qPCR showed an increase of type 1 Collagen, scleraxis, and decorin gene expression (3-fold, 1600-fold, and 3-fold, respectively, at day 11) in dynamic conditions. Cells also showed pro-inflammatory (IL-6, TNF, IL-12A, IL-1β) and anti-inflammatory (IL-10, TGF-β1) cytokine gene expressions, with a significant increase of anti-inflammatory cytokines in dynamic conditions (IL-10 and TGF-β1 300-fold and 4-fold, respectively, at day 11). Mechanical signaling, conveyed by HY-FIB to hBM-MSCs, promoted tenogenic gene markers expression and a pro-repair cytokine balance. The results provide strong evidence in support of the HY-FIB system and its interaction with cells and its potential for use as a predictive in vitro model.
Collapse
Affiliation(s)
- Maria C. Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
| | - Luigi Marino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
| | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena (FC), Italy; (J.L.); (E.G.)
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena (FC), Italy; (J.L.); (E.G.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK;
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK;
- Centre for Sport and Exercise Medicine, Queen Mary University of London, Barts and The London School of Medicine, London E1 4NL, UK
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
| |
Collapse
|
31
|
Qi F, Deng Z, Ma Y, Wang S, Liu C, Lyu F, Wang T, Zheng Q. From the perspective of embryonic tendon development: various cells applied to tendon tissue engineering. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:131. [PMID: 32175424 DOI: 10.21037/atm.2019.12.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a high risk of injury from damage to the force-bearing tissue of the tendon. Due to its poor self-healing ability, clinical interventions for tendon injuries are limited and yield unsatisfying results. Tissue engineering might supply an alternative to this obstacle. As one of the key elements of tissue engineering, various cell sources have been used for tendon engineering, but there is no consensue concerning a single optimal source. In this review, we summarized the development of tendon tissue from the embryonic stage and categorized the used cell sources in tendon engineering. By comparing various cell sources as the candidates for tendon regeneration, each cell type was found to have its advantages and limitations; therefore, it is difficult to define the best cell source for tendon engineering. The microenvironment cells located is also crucial for cell growth and differentiation; so, the optimal cells are unlikely to be the same for each patient. In the future, the clinical application of tendon engineering might be more precise and customized in contrast to the current use of a standardized/generic one-size-fits-all procedure. The best cell source for tendon engineering will require a case-based assessment.
Collapse
Affiliation(s)
- Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Chang Liu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengjuan Lyu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Tao Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
32
|
de Girolamo L, Morlin Ambra LF, Perucca Orfei C, McQuilling JP, Kimmerling KA, Mowry KC, Johnson KA, Phan AT, Whited JL, Gomoll AH. Treatment with Human Amniotic Suspension Allograft Improves Tendon Healing in a Rat Model of Collagenase-Induced Tendinopathy. Cells 2019; 8:E1411. [PMID: 31717431 PMCID: PMC6912389 DOI: 10.3390/cells8111411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Treatment of tendon injuries is challenging, with neither conservative nor surgical approaches providing full recovery. Placental-derived tissues represent a promising tool for the treatment of tendon injuries. In this study, human amniotic suspension allograft (ASA) was investigated in a pre-clinical model of Achilles tendinopathy. Collagenase type I was injected in the right hind limb of Sprague Dawley rats to induce disease. Contralateral tendons were either left untreated or injected with saline as controls. Seven days following induction, tendons were injected with saline, ASA, or left untreated. Rats were sacrificed 14 and 28 days post-treatment. Histological and biomechanical analysis of tendons was completed. Fourteen days after ASA injection, improved fiber alignment and reduced cell density demonstrated improvement in degenerated tendons. Twenty-eight days post-treatment, tendons in all treatment groups showed fewer signs of degeneration, which is consistent with normal tendon healing. No statistically significant differences in histological or biomechanical analyses were observed between treatment groups at 28 days independent of the treatment they received. In this study, ASA treatment was safe, well-tolerated, and resulted in a widespread improvement of the tissue. The results of this study provide preliminary insights regarding the potential use of ASA for the treatment of Achilles tendinopathy.
Collapse
Affiliation(s)
- Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Luiz Felipe Morlin Ambra
- University Hospital São Paulo, Av. Prof. Lineu Prestes, 2565-Butantã, São Paulo, SP 05508-000, Brazil;
| | | | - John P. McQuilling
- Organogenesis, 2641 Rocky Ridge Lane, Birmingham, AL 35216, USA; (J.P.M.); (K.A.K.); (K.C.M.)
| | - Kelly A. Kimmerling
- Organogenesis, 2641 Rocky Ridge Lane, Birmingham, AL 35216, USA; (J.P.M.); (K.A.K.); (K.C.M.)
| | - Katie C. Mowry
- Organogenesis, 2641 Rocky Ridge Lane, Birmingham, AL 35216, USA; (J.P.M.); (K.A.K.); (K.C.M.)
| | - Kimberly A. Johnson
- Harvard Medical School, the Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham and Women’s Hospital, 7 Divinity Avenue, Cambridge, MA 02138, USA; (K.A.J.); (A.T.P.); (J.L.W.)
| | - Amy T. Phan
- Harvard Medical School, the Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham and Women’s Hospital, 7 Divinity Avenue, Cambridge, MA 02138, USA; (K.A.J.); (A.T.P.); (J.L.W.)
| | - Jessica L. Whited
- Harvard Medical School, the Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham and Women’s Hospital, 7 Divinity Avenue, Cambridge, MA 02138, USA; (K.A.J.); (A.T.P.); (J.L.W.)
| | - Andreas H. Gomoll
- Harvard Medical School, the Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham and Women’s Hospital, 7 Divinity Avenue, Cambridge, MA 02138, USA; (K.A.J.); (A.T.P.); (J.L.W.)
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| |
Collapse
|
33
|
Costa-Almeida R, Calejo I, Gomes ME. Mesenchymal Stem Cells Empowering Tendon Regenerative Therapies. Int J Mol Sci 2019; 20:E3002. [PMID: 31248196 PMCID: PMC6627139 DOI: 10.3390/ijms20123002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/19/2022] Open
Abstract
Tendon tissues have limited healing capacity. The incidence of tendon injuries and the unsatisfactory functional outcomes of tendon repair are driving the search for alternative therapeutic approaches envisioning tendon regeneration. Cellular therapies aim at delivering adequate, regeneration-competent cell types to the injured tendon and toward ultimately promoting its reconstruction and recovery of functionality. Mesenchymal stem cells (MSCs) either obtained from tendons or from non-tendon sources, like bone marrow (BM-MSCs) or adipose tissue (ASCs), have been receiving increasing attention over the years toward enhancing tendon healing. Evidences from in vitro and in vivo studies suggest MSCs can contribute to accelerate and improve the quality of tendon healing. Nonetheless, the exact mechanisms underlying these repair events are yet to be fully elucidated. This review provides an overview of the main challenges in the field of cell-based regenerative therapies, discussing the role of MSCs in boosting tendon regeneration, particularly through their capacity to enhance the tenogenic properties of tendon resident cells.
Collapse
Affiliation(s)
- Raquel Costa-Almeida
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Barco, Guimarães, Portugal.
| | - Isabel Calejo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Barco, Guimarães, Portugal.
| | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Barco, Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
34
|
Rinoldi C, Fallahi A, Yazdi IK, Campos Paras J, Kijeńska-Gawrońska E, Trujillo-de Santiago G, Tuoheti A, Demarchi D, Annabi N, Khademhosseini A, Swieszkowski W, Tamayol A. Mechanical and Biochemical Stimulation of 3D Multilayered Scaffolds for Tendon Tissue Engineering. ACS Biomater Sci Eng 2019; 5:2953-2964. [DOI: 10.1021/acsbiomaterials.8b01647] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chiara Rinoldi
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, Warsaw 02-507, Poland
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Afsoon Fallahi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Iman K. Yazdi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Jessica Campos Paras
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnologico, Monterrey, Nuevo Leon CP 64849, Mexico
| | - Ewa Kijeńska-Gawrońska
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, Warsaw 02-507, Poland
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnologico, Monterrey, Nuevo Leon CP 64849, Mexico
| | - Abuduwaili Tuoheti
- Department of Electronics and Telecommunications, Politecnico di Torino, 24 Corso Duca degli Abruzzi, Turin 10129, Italy
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 24 Corso Duca degli Abruzzi, Turin 10129, Italy
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, and Department of Radiology, California NanoSystems Institute (CNSI), University of California, 405 Hilgard Avenue, Los Angeles, California 90095, United States
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, Warsaw 02-507, Poland
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
- Department of Mechanical and Materials Engineering, University of Nebraska, 900 N. 16th Street, Lincoln, Nebraska 68588, United States
| |
Collapse
|
35
|
Glenn NO, Henry CA. How muscle contraction strengthens tendons. eLife 2019; 8:44149. [PMID: 30676317 PMCID: PMC6345562 DOI: 10.7554/elife.44149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
The force generated by muscles leads to signaling that helps to shape nearby tendon precursor cells.
Collapse
Affiliation(s)
- Nicole O Glenn
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, United States
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, United States.,Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, United States
| |
Collapse
|
36
|
Ho TC, Tsai SH, Yeh SI, Chen SL, Tung KY, Chien HY, Lu YC, Huang CH, Tsao YP. PEDF-derived peptide promotes tendon regeneration through its mitogenic effect on tendon stem/progenitor cells. Stem Cell Res Ther 2019; 10:2. [PMID: 30606221 PMCID: PMC6318926 DOI: 10.1186/s13287-018-1110-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023] Open
Abstract
Background Tendon stem/progenitor cells (TSPC) exhibit a low proliferative response to heal tendon injury, leading to limited regeneration outcomes. Exogenous growth factors that activate TSPC proliferation have emerged as a promising approach for treatment. Here, we evaluated the pigment epithelial-derived factor (PEDF)-derived short peptide (PSP; 29-mer) for treating acute tendon injury and to determine the timing and anatomical features of CD146- and necleostemin-positive TSPC in the tendon healing process. Methods Tendon cells were isolated from rabbit Achilles tendons, stimulated by the 29-mer and analyzed for colony-forming capacity. The expression of the TSPC markers CD146, Oct4, and nestin, induced by the 29-mer, was examined by immunostaining and western blotting. Tendo-Achilles injury was induced in rats by full-thickness insertion of an 18-G needle and immediately treated topically with an alginate gel, loaded with 29-mer. The distribution of TSPC in the injured tendon and their proliferation were monitored using immunohistochemistry with antibodies to CD146 and nucleostemin and by BrdU labeling. Results TSPC markers were enriched among the primary tendon cells when stimulated by the 29-mer. The 29-mer also induced the clonogenicity of CD146+ TSPC, implying TSPC stemness was retained during TSPC expansion in culture. Correspondingly, the expanded TSPC differentiated readily into tenocyte-like cells after removal of the 29-mer from culture. 29-mer/alginate gel treatment caused extensive expansion of CD146+ TSPC in their niche on postoperative day 2, followed by infiltration of CD146+/BrdU− TSPC into the injured tendon on day 7. The nucleostemin+ TSPC were located predominantly in the healing region of the injured tendon in the later phase (day 7) and exhibited proliferative capacity. By 3 weeks, 29-mer-treated tendons showed more organized collagen fiber regeneration and higher tensile strength than control tendons. In culture, the mitogenic effect of the 29-mer was found to be mediated by the phosphorylation of ERK2 and STAT3 in nucleostemin+ TSPC. Conclusions The anatomical analysis of TSPC populations in the wound healing process supports the hypothesis that substantial expansion of resident TSPC by exogenous growth factor is beneficial for tendon healing. The study suggests that synthetic 29-mer peptide may be an innovative therapy for acute tendon rupture.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan
| | - Shawn H Tsai
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan.,Department of Optometry, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Shu-I Yeh
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan
| | - Show-Li Chen
- Department of Microbiology, School of Medicine, National Taiwan University, No. 1 Jen Ai road, section 1, Taipei, 100, Taiwan
| | - Kwang-Yi Tung
- Department of Plastic Surgery, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei, 10449, Taiwan
| | - Hsin-Yu Chien
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan
| | - Yung-Chang Lu
- Departments of Biomechanics Laboratory, and Orthopaedic Surgery, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan
| | - Chang-Hung Huang
- Departments of Biomechanics Laboratory, and Orthopaedic Surgery, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan. .,Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan.
| |
Collapse
|
37
|
Delgado Caceres M, Pfeifer CG, Docheva D. Understanding Tendons: Lessons from Transgenic Mouse Models. Stem Cells Dev 2018; 27:1161-1174. [PMID: 29978741 PMCID: PMC6121181 DOI: 10.1089/scd.2018.0121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022] Open
Abstract
Tendons and ligaments are connective tissues that have been comparatively less studied than muscle and cartilage/bone, even though they are crucial for proper function of the musculoskeletal system. In tendon biology, considerable progress has been made in identifying tendon-specific genes (Scleraxis, Mohawk, and Tenomodulin) in the past decade. However, besides tendon function and the knowledge of a small number of important players in tendon biology, neither the ontogeny of the tenogenic lineage nor signaling cascades have been fully understood. This results in major drawbacks in treatment and repair options following tendon degeneration. In this review, we have systematically evaluated publications describing tendon-related genes, which were studied in depth and characterized by using knockout technologies and the subsequently generated transgenic mouse models (Tg) (knockout mice, KO). We report in a tabular manner, that from a total of 24 tendon-related genes, in 22 of the respective knockout mouse models, phenotypic changes were detected. Additionally, in some of the models it was described at which developmental stages these changes appeared and progressed. To summarize, only loss of Scleraxis and TGFβ signaling led to severe tendon developmental phenotypes, while mice deficient for various proteoglycans, Mohawk, EGR1 and 2, and Tenomodulin presented mild phenotypes. These data suggest that the tendon developmental system is well organized, orchestrated, and backed up; this is even more evident among the members of the proteoglycan family, where the compensatory effects are much clearer. In future, it will be of great importance to discover additional master tendon transcription factors and the genes that play crucial roles in tendon development. This would improve our understanding of the genetic makeup of tendons, and will increase the chances of generating tendon-specific drugs to advance overall treatment strategies.
Collapse
Affiliation(s)
- Manuel Delgado Caceres
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Christian G. Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
38
|
Tenogenic Properties of Mesenchymal Progenitor Cells Are Compromised in an Inflammatory Environment. Int J Mol Sci 2018; 19:ijms19092549. [PMID: 30154348 PMCID: PMC6163784 DOI: 10.3390/ijms19092549] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/26/2023] Open
Abstract
Transplantation of multipotent mesenchymal progenitor cells is a valuable option for treating tendon disease. Tenogenic differentiation leading to cell replacement and subsequent matrix modulation may contribute to the regenerative effects of these cells, but it is unclear whether this occurs in the inflammatory environment of acute tendon disease. Equine adipose-derived stromal cells (ASC) were cultured as monolayers or on decellularized tendon scaffolds in static or dynamic conditions, the latter represented by cyclic stretching. The impact of different inflammatory conditions, as represented by supplementation with interleukin-1β and/or tumor necrosis factor-α or by co-culture with allogeneic peripheral blood leukocytes, on ASC functional properties was investigated. High cytokine concentrations increased ASC proliferation and osteogenic differentiation, but decreased chondrogenic differentiation and ASC viability in scaffold culture, as well as tendon scaffold repopulation, and strongly influenced musculoskeletal gene expression. Effects regarding the latter differed between the monolayer and scaffold cultures. Leukocytes rather decreased ASC proliferation, but had similar effects on viability and musculoskeletal gene expression. This included decreased expression of the tenogenic transcription factor scleraxis by an inflammatory environment throughout culture conditions. The data demonstrate that ASC tenogenic properties are compromised in an inflammatory environment, with relevance to their possible mechanisms of action in acute tendon disease.
Collapse
|
39
|
Han SH, Kim HK, Ahn JH, Lee DH, Baek M, Ye G, Lee JM, Min K, Oh C, Lee S. A Protocol to Acquire the Degenerative Tenocyte from Humans. J Vis Exp 2018. [PMID: 29939181 DOI: 10.3791/57634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tendinopathy, a painful condition that develops in response to tendon degeneration, is on the rise in the developed world due to increasing physical activity and longer life expectancy. Despite its increasing prevalence, the underlying pathogenesis still remains unclear, and treatment is generally symptomatic. Recently, numerous therapeutic options, including growth factors, stem cells, and gene therapy, were investigated in hopes of enhancing the healing potency of the degenerative tendon. However, the majority of these research studies were conducted only on animal models or healthy human tenocytes. Despite some studies using pathological tenocytes, to the best of our knowledge there is currently no protocol describing how to obtain human degenerative tenocytes. The aim of this study is to describe a standard protocol for acquiring human degenerative tenocytes. Initially, the tendon tissue was harvested from a patient with lateral epicondylitis during surgery. Then biopsy samples were taken from the extensor carpi radialis brevis tendon corresponding to structural changes observed at the time of surgery. All of the harvested tendons appeared to be dull, gray, friable, and edematous, which made them visually distinct from the healthy ones. Tenocytes were cultured and used for experiments. Meanwhile, half of the harvested tissues were analyzed histologically, and it was shown that they shared the same key features of tendinopathy (angiofibroblastic dysplasia or hyperplasia). A secondary analysis by immunocytochemistry confirmed that the cultured cells were tenocytes with the majority of the cells having positive stains for mohawk and tenomodulin proteins. The qualities of the degenerative nature of tenocytes were then determined by comparing the cells with the healthy control using a proliferation assay or qRT-PCR. The degenerative tenocyte displayed a higher proliferation rate and similar gene expression patterns of tendinopathy that matched previous reports. Overall, this new protocol might provide a useful tool for future studies of tendinopathy.
Collapse
Affiliation(s)
- Soo-Hong Han
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine
| | - Hyung Kyung Kim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine
| | - Jong-Ho Ahn
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine
| | - Dong Hyeon Lee
- Department of Physiology, CHA University School of Medicine
| | - Minjung Baek
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine
| | - Geunhee Ye
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine
| | - Joong-Myung Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine
| | - Kyunghoon Min
- Department of Rehabilitation, CHA Bundang Medical Center, CHA University School of Medicine
| | - Chihoon Oh
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine;
| |
Collapse
|
40
|
Čamernik K, Barlič A, Drobnič M, Marc J, Jeras M, Zupan J. Mesenchymal Stem Cells in the Musculoskeletal System: From Animal Models to Human Tissue Regeneration? Stem Cell Rev Rep 2018; 14:346-369. [DOI: 10.1007/s12015-018-9800-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Tarpada SP, Morris MT, Lian J, Rashidi S. Current advances in the treatment of medial and lateral epicondylitis. J Orthop 2018; 15:107-110. [PMID: 29657450 DOI: 10.1016/j.jor.2018.01.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 01/14/2018] [Indexed: 12/11/2022] Open
Abstract
Despite advances elucidating the causes of lateral and medial epicondylitis, the standard of care remains conservative management with NSAIDs, physical therapy, bracing, and rest. Scar tissue formation provoked by conservative management creates a tendon lacking the biomechanical properties and mechanical strength of normal tendon. The following review analyzes novel therapies to regenerate tendon and regain function in patients with epicondylitis. These treatments include PRP injection, BMAC, collagen-producing cell injection, and stem cell treatments. While these treatments are in early stages of investigation, they may warrant further consideration based on prospects of pain alleviation, function enhancement, and improved healing.
Collapse
Affiliation(s)
| | | | - Jayson Lian
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sina Rashidi
- Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
42
|
Exploring Stem Cells and Inflammation in Tendon Repair and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:37-46. [PMID: 30088259 DOI: 10.1007/5584_2018_258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tendon injuries are frequent and are responsible for substantial morbidity both in sports and in the workplace. Despite the endogenous mechanisms of tendon repair and regeneration, tendon healing upon injury is slow and often insufficient to restore complete biomechanics functionality.Inflammation has a pivotal role in tendon healing and failed healing responses contribute to the progression of tendinopathies. However, the molecular and cellular mechanisms involved are poorly understood requiring further insights.During inflammation, bioactive molecules such as cytokines secreted locally at the injury site, influence resident stem cells that contribute as modulatory agents over the niche towards homeostasis, holding great promise as therapeutic agents for tendon pathological conditions associated to unresolved inflammation and failed healing.This review overviews the role of cytokines and resident cells, focusing on the participation of tendon stem cell population in inflammation and tendon healing upon injury and their potential action in resolution of pathological conditions.
Collapse
|
43
|
Liu L, Hindieh J, Leong DJ, Sun HB. Advances of stem cell based-therapeutic approaches for tendon repair. J Orthop Translat 2017; 9:69-75. [PMID: 29662801 PMCID: PMC5822968 DOI: 10.1016/j.jot.2017.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/24/2022] Open
Abstract
Tendon injuries are significant clinical problems. Current treatments often result in incomplete repair or healing, which may lead to reduced function and rupture. Stem cell-based therapy is a promising intervention for tendon repair. In this article, we attempt to provide a brief overview on the recent progress in the field, current understanding of the underlying mechanisms of the approach, and the potential of stem cell-based therapies beyond cell implantation. We conclude the review by sharing our viewpoints on the challenges, opportunities, and future directions of this approach. The translational potential of this article: This paper reviews recent progress on stem cell-based therapeutic approaches for tendon repair, which highlights its translational potential and challenges.
Collapse
Affiliation(s)
- Lidi Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jennifer Hindieh
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hui B Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
44
|
Wu JH, Thoreson AR, Gingery A, An KN, Moran SL, Amadio PC, Zhao C. The revitalisation of flexor tendon allografts with bone marrow stromal cells and mechanical stimulation: An ex vivo model revitalising flexor tendon allografts. Bone Joint Res 2017; 6:179-185. [PMID: 28360084 PMCID: PMC5376656 DOI: 10.1302/2046-3758.63.bjr-2016-0207.r1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/08/2016] [Indexed: 01/30/2023] Open
Abstract
Objectives The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an ex vivo canine model. Methods Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young’s modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey’s post hoc multiple-comparison test. Results We observed no significant difference in cross-sectional area or in Young’s modulus among the four study groups. In addition, histological sections showed that the BMSCs were aligned well and viable on the tendon slices after two-week culture in groups three and four. Expression levels of several extracellular matrix tendon growth factors, including collagen type I, collagen type III, and matrix metalloproteinase were significantly higher in group four than in group three (p < 0.05). Conclusion Lateral slits introduced into de-cellularised tendon is a promising method of delivery of BMSCs without compromising cell viability and tendon mechanical properties. In addition, mechanical stimulation of a cell-seeded tendon can promote cell proliferation and enhance expression of collagen types I and III in vitro. Cite this article: J. H. Wu, A. R. Thoreson, A. Gingery, K. N. An, S. L. Moran, P. C. Amadio, C. Zhao. The revitalisation of flexor tendon allografts with bone marrow stromal cells and mechanical stimulation: An ex vivo model revitalising flexor tendon allografts. Bone Joint Res 2017;6:179–185. DOI: 10.1302/2046-3758.63.BJR-2016-0207.R1.
Collapse
Affiliation(s)
- J H Wu
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - A R Thoreson
- Division of Orthopedic Research, Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - A Gingery
- Division of Orthopedic Research, Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - K N An
- Division of Orthopedic Research, Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - S L Moran
- Division of Orthopedic Research, Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - P C Amadio
- Division of Orthopedic Research, Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - C Zhao
- Division of Orthopedic Research, Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| |
Collapse
|
45
|
Chal J, Al Tanoury Z, Hestin M, Gobert B, Aivio S, Hick A, Cherrier T, Nesmith AP, Parker KK, Pourquié O. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat Protoc 2016; 11:1833-50. [PMID: 27583644 DOI: 10.1038/nprot.2016.110] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progress toward finding a cure for muscle diseases has been slow because of the absence of relevant cellular models and the lack of a reliable source of muscle progenitors for biomedical investigation. Here we report an optimized serum-free differentiation protocol to efficiently produce striated, millimeter-long muscle fibers together with satellite-like cells from human pluripotent stem cells (hPSCs) in vitro. By mimicking key signaling events leading to muscle formation in the embryo, in particular the dual modulation of Wnt and bone morphogenetic protein (BMP) pathway signaling, this directed differentiation protocol avoids the requirement for genetic modifications or cell sorting. Robust myogenesis can be achieved in vitro within 1 month by personnel experienced in hPSC culture. The differentiating culture can be subcultured to produce large amounts of myogenic progenitors amenable to numerous downstream applications. Beyond the study of myogenesis, this differentiation method offers an attractive platform for the development of relevant in vitro models of muscle dystrophies and drug screening strategies, as well as providing a source of cells for tissue engineering and cell therapy approaches.
Collapse
Affiliation(s)
- Jérome Chal
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Marie Hestin
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Suvi Aivio
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Aurore Hick
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch-Graffenstaden, France
| | - Thomas Cherrier
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Alexander P Nesmith
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Kevin K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Parchi PD, Vittorio O, Andreani L, Battistini P, Piolanti N, Marchetti S, Poggetti A, Lisanti M. Nanoparticles for Tendon Healing and Regeneration: Literature Review. Front Aging Neurosci 2016; 8:202. [PMID: 27597828 PMCID: PMC4992689 DOI: 10.3389/fnagi.2016.00202] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
Abstract
Tendon injuries are commonly met in the emergency department. Unfortunately, tendon tissue has limited regeneration potential and usually the consequent formation of scar tissue causes inferior mechanical properties. Nanoparticles could be used in different way to improve tendon healing and regeneration, ranging from scaffolds manufacturing (increasing the strength and endurance or anti-adhesions, anti-microbial, and anti-inflammatory properties) to gene therapy. This paper aims to summarize the most relevant studies showing the potential application of nanoparticles for tendon tissue regeneration.
Collapse
Affiliation(s)
- Paolo D Parchi
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW AustraliaSydney, NSW, Australia; Australian Centre for NanoMedicine, UNSW AustraliaSydney, NSW, Australia
| | - Lorenzo Andreani
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Pietro Battistini
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Nicola Piolanti
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Stefano Marchetti
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Andrea Poggetti
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Michele Lisanti
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| |
Collapse
|