1
|
Al-Shami AS, Abd Elkader HTAE, Moussa N, Essawy AE, Haroun M. Early-life bisphenol A exposure causes neuronal pyroptosis in juvenile and adult male rats through the NF-κB/IL-1β/NLRP3/caspase-1 signaling pathway: exploration of age and dose as effective covariates using an in vivo and in silico modeling approach. Mol Cell Biochem 2025; 480:2301-2330. [PMID: 38941031 PMCID: PMC11961519 DOI: 10.1007/s11010-024-05039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Bisphenol A (BPA), a common endocrine-disrupting chemical, is found in a wide range of home plastics. Early-life BPA exposure has been linked to neurodevelopmental disorders; however, the link between neuroinflammation, pyroptosis, and the development of psychiatric disorders is rarely studied. The current study attempted to investigate the toxic effect of BPA on inflammatory and microglial activation markers, as well as behavioral responses, in the brains of male rats in a dose- and age-dependent manner. Early BPA exposure began on postnatal day (PND) 18 at dosages of 50 and 125 mg/kg/day. We started with a battery of behavioral activities, including open field, elevated plus- and Y-maze tests, performed on young PND 60 rats and adult PND 95 rats. BPA causes anxiogenic-related behaviors, as well as cognitive and memory deficits. The in vivo and in silico analyses revealed for the first time that BPA is a substantial activator of nuclear factor kappa B (NF-κB), interleukin (IL)-1β, -2, -12, cyclooxygenase-2, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, with higher beclin-1 and LC3B levels in BPA rats' PFC and hippocampus. Furthermore, BPA increased the co-localization of caspase-1 immunoreactive neurons, as well as unique neurodegenerative histopathological hallmarks. In conclusion, our results support the hypothesis that neuroinflammation and microglial activation are involved with changes in the brain after postnatal BPA exposure and that these alterations may be linked to the development of psychiatric conditions later in life. Collectively, our findings indicate that BPA triggers anxiety-like behaviors and pyroptotic death of nerve cells via the NF-κB/IL-1β/NLRP3/Caspase-1 pathway.
Collapse
Affiliation(s)
- Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Nermine Moussa
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Gómez-Olarte S, Mailänder V, Castro-Neves J, Stojanovska V, Schumacher A, Meyer N, Zenclussen AC. The ENDOMIX perspective: how everyday chemical mixtures impact human health and reproduction by targeting the immune system†. Biol Reprod 2024; 111:1170-1187. [PMID: 39446589 DOI: 10.1093/biolre/ioae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals are natural and synthetic compounds found ubiquitously in the environment that interfere with the hormonal-immune axis, potentially impacting human health and reproduction. Exposure to endocrine-disrupting chemicals has been associated with numerous health risks, such as neurodevelopmental disorders, metabolic syndrome, thyroid dysfunction, infertility, and cancers. Nevertheless, the current approach to establishing causality between these substances and disease outcomes has limitations. Epidemiological and experimental research on endocrine-disrupting chemicals faces challenges in accurately assessing chemical exposure and interpreting non-monotonic dose response curves. In addition, most studies have focused on single chemicals or simple mixtures, overlooking complex real-life exposures and mechanistic insights, in particular regarding endocrine-disrupting chemicals' impact on the immune system. The ENDOMIX project, funded by the EU's Horizon Health Program, addresses these challenges by integrating epidemiological, risk assessment, and immunotoxicology methodologies. This systemic approach comprises the triangulation of human cohort, in vitro, and in vivo data to determine the combined effects of chemical mixtures. The present review presents and discusses current literature regarding human reproduction in the context of immunotolerance and chemical disruption mode of action. It further underscores the ENDOMIX perspective to elucidate the impact of endocrine-disrupting chemicals on immune-reproductive health.
Collapse
Affiliation(s)
- Sergio Gómez-Olarte
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Verena Mailänder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Júlia Castro-Neves
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Anne Schumacher
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
| | - Nicole Meyer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Oral exposure to bisphenol A exacerbates allergic inflammation in a mouse model of food allergy. Toxicology 2022; 472:153188. [DOI: 10.1016/j.tox.2022.153188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
|
4
|
Schjenken JE, Green ES, Overduin TS, Mah CY, Russell DL, Robertson SA. Endocrine Disruptor Compounds-A Cause of Impaired Immune Tolerance Driving Inflammatory Disorders of Pregnancy? Front Endocrinol (Lausanne) 2021; 12:607539. [PMID: 33912131 PMCID: PMC8072457 DOI: 10.3389/fendo.2021.607539] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Endocrine disrupting compounds (EDCs) are prevalent and ubiquitous in our environment and have substantial potential to compromise human and animal health. Amongst the chronic health conditions associated with EDC exposure, dysregulation of reproductive function in both females and males is prominent. Human epidemiological studies demonstrate links between EDC exposure and infertility, as well as gestational disorders including miscarriage, fetal growth restriction, preeclampsia, and preterm birth. Animal experiments show EDCs administered during gestation, or to either parent prior to conception, can interfere with gamete quality, embryo implantation, and placental and fetal development, with consequences for offspring viability and health. It has been presumed that EDCs operate principally through disrupting hormone-regulated events in reproduction and fetal development, but EDC effects on maternal immune receptivity to pregnancy are also implicated. EDCs can modulate both the innate and adaptive arms of the immune system, to alter inflammatory responses, and interfere with generation of regulatory T (Treg) cells that are critical for pregnancy tolerance. Effects of EDCs on immune cells are complex and likely exerted by both steroid hormone-dependent and hormone-independent pathways. Thus, to better understand how EDCs impact reproduction and pregnancy, it is imperative to consider how immune-mediated mechanisms are affected by EDCs. This review will describe evidence that several EDCs modify elements of the immune response relevant to pregnancy, and will discuss the potential for EDCs to disrupt immune tolerance required for robust placentation and optimal fetal development.
Collapse
Affiliation(s)
- John E. Schjenken
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Newcastle, NSW, Australia
| | - Ella S. Green
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Tenuis S. Overduin
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Chui Yan Mah
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Darryl L. Russell
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Sarah A. Robertson
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Sarah A. Robertson,
| |
Collapse
|
5
|
Malaisé Y, Lencina C, Cartier C, Olier M, Ménard S, Guzylack-Piriou L. Perinatal oral exposure to low doses of bisphenol A, S or F impairs immune functions at intestinal and systemic levels in female offspring mice. Environ Health 2020; 19:93. [PMID: 32867778 PMCID: PMC7457519 DOI: 10.1186/s12940-020-00614-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/21/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Bisphenol A (BPA), one of the highest-volume chemicals produced worldwide, has been identified as an endocrine disruptor. Many peer-reviewing studies have reported adverse effects of low dose BPA exposure, particularly during perinatal period (gestation and/or lactation). We previously demonstrated that perinatal oral exposure to BPA (via gavage of mothers during gestation and lactation) has long-term consequences on immune response and intestinal barrier functions. Due to its adverse effects on several developmental and physiological processes, BPA was removed from consumer products and replaced by chemical substitutes such as BPS or BPF, that are structurally similar and not well studied compare to BPA. Here, we aimed to compare perinatal oral exposure to these bisphenols (BPs) at two doses (5 and 50 μg/kg of body weight (BW)/day (d)) on immune response at intestinal and systemic levels in female offspring mice at adulthood (Post Natal Day PND70). METHODS Pregnant female mice were orally exposed to BPA, BPS or BPF at 5 or 50 μg/kg BW/d from 15th day of gravidity to weaning of pups at Post-Natal Day (PND) 21. Humoral and cellular immune responses of adult offspring (PND70) were analysed at intestinal and systemic levels. RESULTS In female offspring, perinatal oral BP exposure led to adverse effects on intestinal and systemic immune response that were dependant of the BP nature (A, S or F) and dose of exposure. Stronger impacts were observed with BPS at the dose of 5 μg/kg BW/d on inflammatory markers in feces associated with an increase of anti-E. coli IgG in plasma. BPA and BPF exposure induced prominent changes at low dose in offspring mice, in term of intestinal and systemic immune responses, provoking an intestinal and systemic Th1/Th17 inflammation. CONCLUSION These findings provide, for the first time, results of long-time consequences of BPA, S and F perinatal exposure by oral route on immune response in offspring mice. This work warns that it is mandatory to consider immune markers and dose exposure in risk assessment associated to new BPA's alternatives.
Collapse
Affiliation(s)
- Yann Malaisé
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Corinne Lencina
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Christel Cartier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Maïwenn Olier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Sandrine Ménard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laurence Guzylack-Piriou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| |
Collapse
|
6
|
Nguyen HTT, Jang SH, Park SJ, Cho DH, Han SK. Potentiation of the Glycine Response by Bisphenol A, an Endocrine Disrupter, on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice. Chem Res Toxicol 2020; 33:782-788. [PMID: 31997638 DOI: 10.1021/acs.chemrestox.9b00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lamina II, also called the substantia gelatinosa (SG) of the medullary dorsal horn (the trigeminal subnucleus caudalis, Vc), is thought to play an essential role in the control of orofacial nociception because it receives the nociceptive signals from primary afferents, including thin myelinated Aδ- and unmyelinated C-fibers. Glycine, the main inhibitory neurotransmitter in the central nervous system, plays an essential role in the transference of nociceptive messages from the periphery to higher brain regions. Bisphenol A (BPA) is reported to alter the morphological and functional characteristics of neuronal cells and to be an effector of a great number of ion channels in the central nervous system. However, the electrophysiological effects of BPA on the glycine receptors of SG neurons in the Vc have not been well studied. Therefore, in this study, we used the whole-cell patch-clamp technique to determine the effect of BPA on the glycine response in SG neurons of the Vc in male mice. We demonstrated that in early neonatal mice (0-3 postnatal day mice), BPA did not affect the glycine-induced inward current. However, in the juvenile and adult groups, BPA enhanced the glycine-mediated responses. Heteromeric glycine receptors were involved in the modulation by BPA. The interaction between BPA and glycine appears to have a significant role in regulating transmission in the nociceptive pathway.
Collapse
Affiliation(s)
- Hoang Thi Thanh Nguyen
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea.,Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Seon Hui Jang
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute and Institute for Medical Sciences, Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
7
|
Arita Y, Park HJ, Cantillon A, Getahun D, Menon R, Peltier MR. Effect of bisphenol-A (BPA) on placental biomarkers for inflammation, neurodevelopment and oxidative stress. J Perinat Med 2019; 47:741-749. [PMID: 31339859 DOI: 10.1515/jpm-2019-0045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
Background Bisphenol-A (BPA) is a widespread pollutant whose effects on pregnant women are poorly understood. Therefore, we investigated the effects of BPA on basal and bacteria-stimulated production of proinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and IL-6], anti-inflammatory mediators [soluble glycoprotein 130 (sgp) 130, heme oxidase-1 (HO-1) and IL-10] and biomarkers for neurodevelopment [brain-derived neurotrophic factor (BDNF)], and oxidative stress [8-isoprostane (8-IsoP)] by the placenta. Methods Placental explant cultures were treated with BPA (0-10,000 nM) in the presence or absence of 107 colony-forming unit (CFU)/mL heat-killed Escherichia coli for 24 h. Biomarker concentrations in conditioned medium were quantified by the enzyme-linked immunosorbent assay (ELISA). Results Under basal conditions, IL-1β and IL-6 production was enhanced by BPA in a dose-dependent manner. Sgp130, a soluble receptor that reduces IL-6 bioactivity, was suppressed by BPA at 1000-10,000 nM. BPA also enhanced BDNF production at 1000 and 10,000 nM, and 8-IsoP expression at 10 and 100 nM. For bacteria-treated cultures, BPA increased IL-6 production at 100 nM and reduced sgp130 at 1000 nM but had no effect on IL-1β, TNF-α, BDNF, HO-1, 8-IsoP or IL-10 production. Conclusion BPA may increase placental inflammation by promoting IL-1β and IL-6 but inhibiting sgp130. It may also disrupt oxidative balance and neurodevelopment by increasing 8-IsoP and BDNF production.
Collapse
Affiliation(s)
- Yuko Arita
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Hyeon Jeong Park
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Aisling Cantillon
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Darios Getahun
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, UTMB-Galveston, Galveston, TX, USA
| | - Morgan R Peltier
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA.,Department of Obstetrics and Gynecology; NYU-Long Island School of Medicine, Mineola, NY, USA.,Department of Obstetric and Gynecology, NYU-Winthrop Hospital, 101 Mineola Blvd Rm. 4-040, Mineola, NY, USA
| |
Collapse
|
8
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. Immunomodulatory effects of synthetic endocrine disrupting chemicals on the development and functions of human immune cells. ENVIRONMENT INTERNATIONAL 2019; 125:350-364. [PMID: 30743143 DOI: 10.1016/j.envint.2019.01.078] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 05/22/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are added to food, cosmetics, plastic packages, and children's toys and have thus become an integral part of the human environment. In the last decade, there has been increasing interest in the effect of EDCs on human health, including their impact on the immune system. So far, researchers have proved that EDCs (e.g. bisphenols, phthalates, triclosan, phenols, propanil, tetrachlorodibenzo-p-dioxin, diethylstilbestrol, tributyltin (TBT), and parabens) affect the development, functions, and lifespan of immune cells (e.g., monocytes, neutrophils, mast cells, eosinophils, lymphocytes, dendritic cells, and natural killers). In this review, we have summarized the current knowledge of the multivariable influence of EDCs on immune cells and underlined the novel approach to EDC studies, including dose-dependent effects and low-dose effects. We discuss critically the possible relationship between exposure to EDCs and immunity related diseases (e.g. allergy, asthma, diabetes, and lupus). Moreover, based on the literature, we construct a model of possible mechanisms of EDC action on immune cells at cellular, molecular, and epigenetic levels.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | | |
Collapse
|
9
|
Saleh-Ghadimi S, Jafari-Vayghan H, Kheirouri S, Alizadeh M. Inhibitory Effect of Hydroxymethylfurfural in Viability of BALB/C Mice Splenocytes. PHARMACEUTICAL SCIENCES 2019. [DOI: 10.15171/ps.2019.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: This study was designed to discover if hydroxymethylfurfural (HMF) exposure modifies cell proliferation and DNA damage in BALB/c mice splenocytes. Methods: Mitogenesis in T cells and B cells was induced by Concanavalin A (Con A) and lipopolysaccharide (LPS). The colorimetric tetrazolium assay was used to evaluate cell proliferation. DNA damaging consequences were evaluated via measurement of 8-hydroxy-2-deoxyguanosine (8-OHdG) level in BALB/c mice splenocytes. Results: Spleen cells proliferation elicited by ConA, was dramatically suppressed by 25, 50 and 100 mM of HMF. However, there was not any significant difference between various concentrations of HMF. The same result was observed following treatment with LPS and HMF in different concentrations. Eight-OHdG concentration was elevated significantly in HMF treated groups compared with untreated control and mitogens. Conclusion: HMF was found to have immunosuppressing and DNA damaging properties in mM concentrations in mice splenocytes.
Collapse
Affiliation(s)
- Sevda Saleh-Ghadimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sorayya Kheirouri
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Cetkovic-Cvrlje M, Thinamany S, Bruner KA. Bisphenol A (BPA) aggravates multiple low-dose streptozotocin-induced Type 1 diabetes in C57BL/6 mice. J Immunotoxicol 2017; 14:160-168. [DOI: 10.1080/1547691x.2017.1334722] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Marina Cetkovic-Cvrlje
- Department of Biological Sciences, St. Cloud State University, St. Cloud, MN, USA
- Laboratory for Immunology, St. Cloud State University, St. Cloud, MN, USA
| | - Sinduja Thinamany
- Department of Biological Sciences, St. Cloud State University, St. Cloud, MN, USA
- Laboratory for Immunology, St. Cloud State University, St. Cloud, MN, USA
| | - Kylie A. Bruner
- Department of Biological Sciences, St. Cloud State University, St. Cloud, MN, USA
| |
Collapse
|
11
|
Liu H, Wang J, Mou D, Che L, Fang Z, Feng B, Lin Y, Xu S, Li J, Wu D. Maternal Methyl Donor Supplementation during Gestation Counteracts the Bisphenol A-Induced Impairment of Intestinal Morphology, Disaccharidase Activity, and Nutrient Transporters Gene Expression in Newborn and Weaning Pigs. Nutrients 2017; 9:nu9050423. [PMID: 28445388 PMCID: PMC5452153 DOI: 10.3390/nu9050423] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023] Open
Abstract
This study was conducted to explore whether exposure to bisphenol A (BPA) during pregnancy could change intestinal digestion and absorption function in offspring using pigs as a model, and whether methyl donor (MET) could counteract the BPA-induced impacts. Fifty Landrace × Yorkshire sows were divided into four dietary groups throughout gestation: control diet (CON); control diet supplemented with BPA (50 mg/kg); control diet supplemented with MET (3 g/kg betaine, 400 mg/kg choline, 150 μg/kg vitamin B12, and 15 mg/kg folic acid); and control diet with BPA and MET supplementation (BPA + MET). Intestine samples were collected from pigs’ offspring at birth and weaning. Maternal BPA exposure during pregnancy significantly reduced the ratio of jejunum villus height to crypt depth, decreased the jejunum sucrase activity, down-regulated the mRNA expression of jejunum peptide transporter 1 (Pept1) and DNA methyl transferase 3a (DNMT3a), and decreased the DNA methylation level of jejunum Pept1 in offspring (p < 0.05). Maternal MET supplementation significantly raised the ratio of villus height to crypt depth in jejunum and ileum, improved the jejunum lactase activity, up-regulated the mRNA expression of jejunum Pept1, lactase (LCT), DNMT1, DNMT3a, and methylenetetrahydrofolate reductase (MTHFR), and increased the DNA methylation level of jejunum Pept1 in offspring (p < 0.05). However, the ratio of jejunum villus height to crypt depth was higher in BPA + MET treatment compared with CON and BPA treatment (p < 0.05). Meanwhile, there was no difference in the jejunum sucrase activity, the mRNA expression of jejunum Pept1 and DNMT3a, and the DNA methylation level of jejunum Pept1 between CON and BPA + MET treatment. These results indicated that maternal exposure to BPA during gestation might suppress offspring’s intestinal digestion and absorption function, whereas supplementation of MET could counteract these damages, which might be associated with DNA methylation.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - Jun Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - Daolin Mou
- Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - Lianqiang Che
- Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - Yan Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - Shengyu Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - Jian Li
- Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - De Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China.
| |
Collapse
|
12
|
Basini G, Bussolati S, Grolli S, Ramoni R, Grasselli F. Bisphenol A interferes with swine vascular endothelial cell functions. Can J Physiol Pharmacol 2017; 95:365-371. [DOI: 10.1139/cjpp-2016-0180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several studies have demonstrated that the endocrine disruptor bisphenol A (BPA) negatively affects animal and human health. An angiogenic process has been suggested among the events disrupted by this molecule, but the underlying mechanisms have not yet been clarified. The effect of BPA on angiogenesis was investigated by means of a bioassay previously validated in our laboratory. Using immortalized swine aortic endothelial cell line (AOC), the development of new blood vessels through a three-dimensional in vitro angiogenesis assay was evaluated. Subsequently, since vascular endothelial growth factor (VEGF) and nitric oxide (NO) are key players in the regulation of the angiogenic process, the effect of BPA on the production of these molecules by AOC was examined. BPA (10 μmol/L) stimulated AOC growth (p < 0.05) and VEGF production (p < 0.05), but did not modify NO levels. Our data suggest that the endocrine-disrupting effects of BPA could also be associated with the promotion of vascular growth, thus interfering with a physiologically finely tuned process resulting from a delicate balance of numerous molecular processes. The stimulatory effects of BPA on VEGF production may have negative implications, potentially switching the balance toward uncontrolled neovascularization. Moreover, since angiogenesis is involved in several pathologies, including cancer growth and progression, potential health risks of BPA exposure should be carefully monitored.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Stefano Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Roberto Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| |
Collapse
|
13
|
Xie MY, Ni H, Zhao DS, Wen LY, Li KS, Yang HH, Wang SS, Zhang H, Su H. Exposure to bisphenol A and the development of asthma: A systematic review of cohort studies. Reprod Toxicol 2016; 65:224-229. [PMID: 27542534 DOI: 10.1016/j.reprotox.2016.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 07/04/2016] [Accepted: 08/13/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND There is conflicting evidence about the association between bisphenol A (BPA) exposure and childhood asthma risk. We aimed to review the epidemiological literature on the relationship between prenatal or postnatal exposure to BPA and the risk of childhood asthma/wheeze. METHODS The PubMed database was systematically searched, and additional studies were found by searching reference lists of relevant articles. RESULTS Six studies fulfilled the eligibility criteria. Three studies found that prenatal BPA exposure is associated with an increased risk of childhood wheeze, while another study reported a reduced risk of wheeze. Regarding the postnatal BPA exposure, three studies demonstrated an increased risk of childhood asthma/wheeze. CONCLUSIONS The mean prenatal BPA was associated with the risk of childhood wheeze/asthma. Besides, the influence of BPA exposure during the second trimester of pregnancy on the prevalence of childhood wheeze was marked. Further studies are urgently needed to explore the underlying mechanism about adverse effect of BPA exposure on childhood wheeze/asthma.
Collapse
Affiliation(s)
- Ming-Yu Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hong Ni
- Anhui Province Children's hospital, Hefei, Anhui 230051, China
| | - De-Sheng Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Li-Ying Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Ke-Sheng Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hui-Hui Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shu-Si Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Heng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
14
|
Camarca A, Gianfrani C, Ariemma F, Cimmino I, Bruzzese D, Scerbo R, Picascia S, D’Esposito V, Beguinot F, Formisano P, Valentino R. Human Peripheral Blood Mononuclear Cell Function and Dendritic Cell Differentiation Are Affected by Bisphenol-A Exposure. PLoS One 2016; 11:e0161122. [PMID: 27509021 PMCID: PMC4980038 DOI: 10.1371/journal.pone.0161122] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/29/2016] [Indexed: 01/08/2023] Open
Abstract
Environmental pollutants, including endocrine disruptor chemicals (EDCs), interfere on human health, leading to hormonal, immune and metabolic perturbations. Bisphenol-A (BPA), a main component of polycarbonate plastics, has been receiving increased attention due to its worldwide distribution with a large exposure. In humans, BPA, for its estrogenic activity, may have a role in autoimmunity, inflammatory and allergic diseases. To this aim, we assessed the effect of low BPA doses on functionality of human peripheral blood mononuclear cells (PBMCs), and on in vitro differentiation of dendritic cells from monocytes (mDCs). Fresh peripheral blood samples were obtained from 12 healthy adult volunteers. PBMCs were left unstimulated or were activated with the mitogen phytohemagglutinin (PHA) or the anti-CD3 and anti-CD28 antibodies and incubated in presence or absence of BPA at 0.1 and 1nM concentrations. The immune-modulatory effect of BPA was assessed by evaluating the cell proliferation and the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-10 (IL-10) and interleukin-13 (IL-13) secreted by PBMCs. mDCs were differentiated with IL-4 and GC-CSF with or without BPA and the expression of differentiation/maturation markers (CD11c, CD1a, CD86, HLA-DR) was evaluated by flow cytometry; furthermore, a panel of 27 different cytokines, growth factors and chemokines were assayed in the mDC culture supernatants. PBMCs proliferation significantly increased upon BPA exposure compared to BPA untreated cells. In addition, a significant decrease in IL-10 secretion was observed in PBMCs incubated with BPA, either in unstimulated or mitogen-stimulated cells, and at both 0.1 and 1nM BPA concentrations. Similarly, IL-13 was reduced, mainly in cells activated by antiCD3/CD28. By contrast, no significant changes in IFN-γ and IL-4 production were found in any condition assayed. Finally, BPA at 1nM increased the density of dendritic cells expressing CD1a and concomitantly decreased the expression of HLA-DR and CD86 activation markers. In conclusion, in humans the exposure to BPA causes on PBMCs a significant modulation of proliferative capacity and cytokine production, and on mDCs alteration in differentiation and phenotype. These immune cell alterations suggest that low dose chronic exposure to BPA could be involved in immune deregulation and possibly in the increased susceptibility to develop inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Alessandra Camarca
- Institute of Food Science (ISA), National Council of Research (CNR), via Roma 64–83100, Avellino, Italy
| | - Carmen Gianfrani
- Institute of Protein Biochemistry (IBP), CNR, via P. Castellino 11–80131, Naples, Italy
| | - Fabiana Ariemma
- Department of Translational Medical Sciences, Federico II University of Naples, via S. Pansini 5–80131, Naples, Italy
| | - Ilaria Cimmino
- Department of Translational Medical Sciences, Federico II University of Naples, via S. Pansini 5–80131, Naples, Italy
| | - Dario Bruzzese
- Department of Public Health, Federico II University of Naples, via S. Pansini 5–80131, Naples, Italy
| | - Roberta Scerbo
- Institute of Food Science (ISA), National Council of Research (CNR), via Roma 64–83100, Avellino, Italy
| | - Stefania Picascia
- Institute of Protein Biochemistry (IBP), CNR, via P. Castellino 11–80131, Naples, Italy
| | - Vittoria D’Esposito
- Department of Translational Medical Sciences, Federico II University of Naples, via S. Pansini 5–80131, Naples, Italy
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology (IEOS), CNR, via S. Pansini 5–80131, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, Federico II University of Naples, via S. Pansini 5–80131, Naples, Italy
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology (IEOS), CNR, via S. Pansini 5–80131, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, Federico II University of Naples, via S. Pansini 5–80131, Naples, Italy
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology (IEOS), CNR, via S. Pansini 5–80131, Naples, Italy
| | - Rossella Valentino
- Department of Translational Medical Sciences, Federico II University of Naples, via S. Pansini 5–80131, Naples, Italy
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology (IEOS), CNR, via S. Pansini 5–80131, Naples, Italy
- * E-mail:
| |
Collapse
|
15
|
Bisphenol A and its analogs exhibit different apoptotic potential in peripheral blood mononuclear cells (in vitro study). Food Chem Toxicol 2015; 84:79-88. [DOI: 10.1016/j.fct.2015.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/08/2015] [Accepted: 08/04/2015] [Indexed: 12/27/2022]
|
16
|
Nygaard UC, Vinje NE, Samuelsen M, Andreassen M, Groeng EC, Bølling AK, Becher R, Lovik M, Bodin J. Early life exposure to bisphenol A investigated in mouse models of airway allergy, food allergy and oral tolerance. Food Chem Toxicol 2015; 83:17-25. [DOI: 10.1016/j.fct.2015.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/04/2015] [Accepted: 05/10/2015] [Indexed: 12/25/2022]
|
17
|
Possible immunosuppressive effects of drug exposure and environmental and nutritional effects on infection and vaccination. Mediators Inflamm 2015; 2015:349176. [PMID: 25944981 PMCID: PMC4402171 DOI: 10.1155/2015/349176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022] Open
Abstract
A variety of drugs which are not primarily considered to be immunosuppressive agents have been
described to modulate the humoral and cellular immune response in humans or animals. Thereby
they may have an influence on the effectiveness and possible side effects of vaccines.
This mini review lists some of the different substance classes and also some of endogeneous, infectious,
nutritional, and environmental influences with suspected capability to interfere with immunizations.
Studies in most cases focused on substances with known immunosuppressive functions, but there is
growing evidence for immunomodulatory effects also of commonly used drugs with wide
distribution. In particular combinations of those antiproliferative and antiphlogistic side effects of
different substance classes have not been studied in detail but may substantially interfere with the
development of a functional humoral and cellular immune response. The drugs of importance
include antipyretics, anticoagulants, tranquilizers, and substances influencing lipid metabolism but
also commonly used drugs of abuse like alcohol or cannabinoids. Additional substances of environmental, nutritional, or microbiological origin may also play a role but their
combinatory/synergistic effects have been disregarded so far due to the lack of systematic data and
the complex study designs necessary to elucidate those complex epidemiologic questions.
Collapse
|
18
|
Lifetime-dependent effects of bisphenol A on asthma development in an experimental mouse model. PLoS One 2014; 9:e100468. [PMID: 24950052 PMCID: PMC4065062 DOI: 10.1371/journal.pone.0100468] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/26/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Environmental factors are thought to contribute significantly to the increase of asthma prevalence in the last two decades. Bisphenol A (BPA) is a xenoestrogen commonly used in consumer products and the plastic industry. There is evidence and an ongoing discussion that endocrine disruptors like BPA may affect human health and also exert alterations on in the immune system. The aim of this study was to investigate age-dependent effects of BPA on the asthma risk using a murine model to explain the controversial results reported till date. METHODS BALB/c mice were exposed to BPA via the drinking water for different time periods including pregnancy and breastfeeding. To induce an asthma phenotype, mice were sensitized to ovalbumin (OVA), followed by an intrapulmonary allergen challenge. RESULTS BPA exposure during pregnancy and breastfeeding had no significant effect on asthma development in the offspring. In contrast, lifelong exposure from birth until the last antigen challenge clearly increased eosinophilic inflammation in the lung, airway hyperreactivity and antigen-specific serum IgE levels in OVA-sensitized adult mice compared to mice without BPA exposure. Surprisingly, BPA intake during the sensitization period significantly reduced the development of allergic asthma. This effect was reversed in the presence of a glucocorticoid receptor antagonist. CONCLUSIONS Our results demonstrate that the impact of BPA on asthma risk is strongly age-dependent and ranges from asthma-promoting to asthma-reducing effects. This could explain the diversity of results from previous studies regarding the observed health impact of BPA.
Collapse
|
19
|
Goto M, Takano-Ishikawa Y, Ono H, Yoshida M, Yamaki K, Shinmoto H. Orally Administered Bisphenol A Disturbed Antigen Specific Immunoresponses in the Naïve Condition. Biosci Biotechnol Biochem 2014; 71:2136-43. [PMID: 17827700 DOI: 10.1271/bbb.70004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bisphenol A [2,2-bis(4-hydoxyphenyl)propane; BPA] is an endocrine disrupter widely used in polycarbonate plastics and epoxy resins. We investigated the effects of orally administered BPA on antigen-specific responses of the naïve immune system.BPA was orally administered to T cell receptor transgenic mice, and the antigen-specific responses of immune cells were investigated. Administered BPA moderately reduced interleukin (IL)-2, 4, and interferon (IFN)-gamma secretion and increases in IgA and IgG2a production.Additionally, it was found that orally administered BPA increased antigen-specific IFN-gamma production of T cells and modified whole antigen presenting cells (APCs) to suppress antigen-specific cytokine production from T cells. These findings suggest that BPA can augment the Th1-type responses of naïve immune systems, though the bioavailability of orally administered BPA was low in our experiments.
Collapse
Affiliation(s)
- Masao Goto
- National Agriculture and Food Research Organization National Food Research Institute, 2-1-12 Kan-nondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | |
Collapse
|
20
|
The Potential Roles of Bisphenol A (BPA) Pathogenesis in Autoimmunity. Autoimmune Dis 2014; 2014:743616. [PMID: 24804084 PMCID: PMC3997912 DOI: 10.1155/2014/743616] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/20/2014] [Accepted: 02/12/2014] [Indexed: 01/29/2023] Open
Abstract
Bisphenol A (BPA) is a monomer found in commonly used consumer plastic goods. Although much attention in recent years has been placed on BPA's impact as an endocrine disruptor, it also appears to activate many immune pathways involved in both autoimmune disease development and autoimmune reactivity provocation. The current scientific literature is void of research papers linking BPA directly to human or animal onset of autoimmunity. This paper explores the impact of BPA on immune reactivity and the potential roles these mechanisms may have on the development or provocation of autoimmune diseases. Potential mechanisms by which BPA may be a contributing risk factor to autoimmune disease development and progression include its impact on hyperprolactinemia, estrogenic immune signaling, cytochrome P450 enzyme disruption, immune signal transduction pathway alteration, cytokine polarization, aryl hydrocarbon activation of Th-17 receptors, molecular mimicry, macrophage activation, lipopolysaccharide activation, and immunoglobulin pathophysiology. In this paper a review of these known autoimmune triggering mechanisms will be correlated with BPA exposure, thereby suggesting that BPA has a role in the pathogenesis of autoimmunity.
Collapse
|
21
|
Krementsov DN, Katchy A, Case LK, Carr FE, Davis B, Williams C, Teuscher C. Studies in experimental autoimmune encephalomyelitis do not support developmental bisphenol a exposure as an environmental factor in increasing multiple sclerosis risk. Toxicol Sci 2013; 135:91-102. [PMID: 23798566 DOI: 10.1093/toxsci/kft141] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS), a demyelinating immune-mediated central nervous system disease characterized by increasing female penetrance, is the leading cause of disability in young adults in the developed world. Epidemiological data strongly implicate an environmental factor, acting at the population level during gestation, in the increasing incidence of female MS observed over the last 50 years, yet the identity of this factor remains unknown. Gestational exposure to bisphenol A (BPA), an endocrine disruptor used in the manufacture of polycarbonate plastics since the 1950s, has been reported to alter a variety of physiological processes in adulthood. BPA has estrogenic activity, and we hypothesized that increased gestational exposure to environmental BPA may therefore contribute to the increasing female MS risk. To test this hypothesis, we utilized two different mouse models of MS, experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice (chronic progressive) and in SJL/J mice (relapsing-remitting). Dams were exposed to physiologically relevant levels of BPA in drinking water starting 2 weeks prior to mating and continuing until weaning of offspring. EAE was induced in adult offspring. No significant changes in EAE incidence, progression, or severity were observed with BPA exposure, despite changes in cytokine production by autoreactive T cells. However, endocrine disruption was evidenced by changes in testes development, and transcriptomic profiling revealed that BPA exposure altered the expression of several genes important for testes development, including Pdgfa, which was downregulated. Overall, our results do not support gestational BPA exposure as a significant contributor to the increasing female MS risk.
Collapse
Affiliation(s)
- Dimitry N Krementsov
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Kuzbari O, Peterson CM, Franklin MR, Hathaway LB, Johnstone EB, Hammoud AO, Lamb JG. Comparative analysis of human CYP3A4 and rat CYP3A1 induction and relevant gene expression by bisphenol A and diethylstilbestrol: implications for toxicity testing paradigms. Reprod Toxicol 2013; 37:24-30. [PMID: 23384967 DOI: 10.1016/j.reprotox.2013.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/07/2013] [Accepted: 01/26/2013] [Indexed: 11/19/2022]
Abstract
Bisphenol A (BPA) and diethylstilbestrol (DES) are endocrine-disrupting chemicals that interact with the human pregnane X receptor (PXR). CYP3A4 enzyme is essential in the hydroxylation of steroid hormones and is regulated by PXR. In the present study, human and rat hepatoma cell lines were exposed to BPA and DES. Both BPA and DES (10-50μM) caused a significant activation of the CYP3A4 promoter via the PXR in the DPX2 human hepatoma cell line. No activation of rat PXR was seen. BPA and DES treated DPX2 cells demonstrated increased expression of CYP3A4 mRNA, and increased enzyme activity. In summary, BPA, in concentrations relevant to current safety levels of human exposure, activates the human PXR and demonstrates an increase in CYP3A4 mRNA expression and enzyme activity. BPA actions in this model system occur to a greater extent than DES. This study raises concerns regarding our current toxicity testing paradigms and species utilization.
Collapse
Affiliation(s)
- Oumar Kuzbari
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah, 30 North 1900 East, Suite 2B200, Salt Lake City, UT 84112, United States.
| | | | | | | | | | | | | |
Collapse
|
23
|
Shindo T, Kanazawa Y, Saito Y, Kojima K, Ohsawa M, Teshima R. Effective induction of oral anaphylaxis to ovalbumin in mice sensitized by feeding of the antigen with aid of oil emulsion and salicylate. J Toxicol Sci 2012; 37:307-15. [PMID: 22467021 DOI: 10.2131/jts.37.307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is important to evaluate the ability of novel proteins in food crops and products to elicit potentially harmful immunologic responses, including allergic hypersensitivity. We developed a novel mouse model of food allergy involving an oral challenge of a protein antigen after feeding of the antigen in combination with modulating factors often ingested in daily life, namely, dietary oil emulsion and salicylate. In the model, BALB/c mice were sensitized orally for three weeks with ovalbumin (OVA) in linoleic acid/lecithin emulsion, followed immediately by intraperitoneal injection of sodium salicylate. At the end of the sensitization, the incidence of mice positive for serum OVA-specific IgG1 but not IgE had significantly increased in the combined-sensitization group. After the 3-week sensitization, a single or double oral challenge with OVA effectively and significantly caused severe anaphylaxis, as compared with the groups sensitized with OVA in the emulsion or the vehicle alone. Moderate increase of plasma histamine and intestinal abnormality in histology was found only in the combined-sensitization group. Anaphylaxis symptoms in the sensitized mice were induced more by oral challenge than by intravenous challenge, suggesting a critical role for the mucosal system. This is the first model for successful induction of oral anaphylaxis in mice sensitized by feeding of food protein without adjuvant. It will be useful to elucidate the mechanism of food allergy and to detect modulating factors of oral allergy at sensitization using this model, which simulates real life conditions.
Collapse
Affiliation(s)
- Tomoko Shindo
- Hatano Research Institute, Food and Drug Safety Center, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Kubo I, Yokota N, Fuchiwaki Y, Nakane Y. Characteristics of Molecularly Imprinted Polymer Thin Layer for Bisphenol A and Response of the MIP-Modified Sensor. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/861643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We examine the characteristics of molecularly imprinted polymer (MIP) layers for bisphenol A (BPA) to investigate the effect of their thickness on the performance of the BPA sensor. MIP thin layers for bisphenol A were polymerized on a sputtered gold electrode by UV light irradiation for 2 to 30 min. Their thickness, as determined by a QCM analyzer, was 3.6 ± 0.3 nm after 5 min of irradiation and increased as the irradiation time increased to 30 min. AFM images of the MIP-modified surface suggested that the gold electrode was covered with a smooth MIP layer. The anodic peaks of BPA and ascorbic acid caused by gold electrode and the MIP-modified electrode were compared, and the electrode with MIP polymerized for 5 min showed more selectivity to BPA than that polymerized for 2 min. The MIP thin layer thus has potential as a sensing element of a chemical sensor.
Collapse
Affiliation(s)
- Izumi Kubo
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi, Hachioji, Tokyo 192-8577, Japan
| | - Nobuyuki Yokota
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi, Hachioji, Tokyo 192-8577, Japan
| | - Yusuke Fuchiwaki
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yuko Nakane
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi, Hachioji, Tokyo 192-8577, Japan
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|
25
|
Kundakovic M, Champagne FA. Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun 2011; 25:1084-93. [PMID: 21333735 PMCID: PMC3703316 DOI: 10.1016/j.bbi.2011.02.005] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/26/2011] [Accepted: 02/10/2011] [Indexed: 11/26/2022] Open
Abstract
Bisphenol A (BPA) is an estrogenic environmental toxin widely used in the production of plastics and ubiquitous human exposure to this chemical has been proposed to be a potential risk to public health. Animal studies suggest that in utero and early postnatal exposure to this compound may produce a broad range of adverse effects, including impaired brain development, sexual differentiation, behavior, and immune function, which could extend to future generations. Molecular mechanisms that underlie the long-lasting effects of BPA continue to be elucidated, and likely involve disruption of epigenetic programming of gene expression during development. Several studies have provided evidence that maternal exposure to BPA results in postnatal changes in DNA methylation status and altered expression of specific genes in offspring. However, further studies are needed to extend these initial findings to other genes in different tissues, and to examine the correlations between BPA-induced epigenetic alterations, changes in gene expression, and various phenotypic outcomes. It will be also important to explore whether the epigenetic effects of BPA are related to its estrogenic activity, and to determine which downstream effector proteins could mediate changes in DNA methylation. In this review, we will highlight research indicating a consequence of prenatal BPA exposure for brain, behavior, and immune outcomes and discuss evidence for the role of epigenetic pathways in shaping these developmental effects. Based on this evidence, we will suggest future directions in the study of BPA-induced epigenetic effects and discuss the transgenerational implications of exposure to endocrine disrupting chemicals.
Collapse
|
26
|
Winans B, Humble MC, Lawrence BP. Environmental toxicants and the developing immune system: a missing link in the global battle against infectious disease? Reprod Toxicol 2011; 31:327-36. [PMID: 20851760 PMCID: PMC3033466 DOI: 10.1016/j.reprotox.2010.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/19/2010] [Accepted: 09/03/2010] [Indexed: 11/23/2022]
Abstract
There is now compelling evidence that developmental exposure to chemicals from our environment contributes to disease later in life, with animal models supporting this concept in reproductive, metabolic, and neurodegenerative diseases. In contrast, data regarding how developmental exposures impact the susceptibility of the immune system to functional alterations later in life are surprisingly scant. Given that the immune system forms an integrated network that detects and destroys invading pathogens and cancer cells, it provides the body's first line of defense. Thus, the consequences of early life exposures that reduce immune function are profound. This review summarizes available data for pollutants such as cigarette smoke and dioxin-like compounds, which consistently support the idea that developmental exposures critically impact the immune system. These findings suggest that exposure to common chemicals from our daily environment represent overlooked contributors to the fact that infectious diseases remain among the top five causes of death worldwide.
Collapse
Affiliation(s)
- Bethany Winans
- Department of Environmental Medicine and Toxicology Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Michael C. Humble
- Cellular, Organs and Systems Pathobiology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27560
| | - B. Paige Lawrence
- Department of Environmental Medicine and Toxicology Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
27
|
Inhibition of voltage-gated sodium channels by bisphenol A in mouse dorsal root ganglion neurons. Brain Res 2011; 1378:1-8. [PMID: 21241682 DOI: 10.1016/j.brainres.2011.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/14/2010] [Accepted: 01/08/2011] [Indexed: 11/22/2022]
Abstract
Bisphenol A (BPA), an estrogenic compound, is contained in cans, polycarbonate bottles, and some dental sealants. Exposure to BPA might have potential toxicological effects on the nervous system. Previous studies have demonstrated that BPA may affect ion channel function, but the effects of BPA on voltage-gated sodium channels are unknown. Herein, we report the effects of BPA on TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) Na+ currents, using a conventional whole-cell patch clamp technique from acutely isolated mouse dorsal root ganglion neurons. BPA inhibited TTX-S Na+ currents and TTX-R Na+ currents, the effects of BPA were rapid, reversible and in a concentration-dependent manner. Moreover, BPA could shift the voltage-gated activation curve for TTX-S Na+ channel in the hyperpolarizing direction without changing that for TTX-R Na+ channel; shift the steady-state inactivation curve for TTX-S Na+ channel in the depolarizing direction without changing that for TTX-R Na+ channel; and lengthen the time course of recovery from inactivation for both TTX-S Na+ current and TTX-R Na+ current. We also found that PKC inhibitor GÖ-6983 and PKA inhibitor H-89 blocked the BPA-induced inhibition of Na+ currents. Considering its complex modulatory effects on voltage-gated sodium channels, BPA might have potential toxicological effects on the nervous system and lead to a change in excitability of nociceptive afferent fibers.
Collapse
|
28
|
Lee J, Lim KT. Plant-originated glycoprotein (36 kDa) suppresses interleukin-4 and -10 in bisphenol A-stimulated primary cultured mouse lymphocytes. Drug Chem Toxicol 2011; 33:421-9. [PMID: 20553123 DOI: 10.3109/01480541003739229] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bisphenol A (BPA) is one of the estrogen mimic environmental hormones and a chemical used for the wrapping foods, toy products for children, biomedical equipment, and machines. It can exert toxic effects, such as occurring allergy-related diseases. This study demonstrates that glycoprotein isolated from Rhus verniciflua Stokes (RVS glycoprotein) has an inhibitory activity of T-helper type 2 (Th2) cytokines [Interleukin (IL)-4 and -10]. First, it was shown that RVS glycoprotein inhibits the proliferation of lymphocytes and scavenges intracellular reactive oxygen species (ROS). Then, the activities of mitogen-activated protein kinase (MAPK), GATA-binding protein-3 (GATA-3), t-box expressed in T-cells (T-bet), and Th2 cell-related cytokine (IL-4 and -10) were evaluated in BPA (50 microM)-stimulated primary cultured mouse lymphocytes, using immunoblot analysis and reverse-transcription polymerase chain reaction (RT-PCR). The results showed that the RVS glycoprotein (50 microg/mL) inhibited the proliferation of lymphocytes, intracellular ROS, and activity of p38 MAPK dose dependently. In the transcriptional factors for the oriented differentiation of T-helper cells, the RVS glycoprotein (50 microg/mL) significantly suppressed the GATA-3, whereas it enhanced T-bet. Also, the RVS glycoprotein (100 microg/mL) significantly attenuated Th2-related cytokines (IL-4 and -10). Taken together, the results obtained from this study suggest that the RVS glycoprotein may help in preventing allergy-related immune dysfunction, such as that produced by BPA.
Collapse
Affiliation(s)
- Jin Lee
- Molecular Biochemistry Laboratory, Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotechnology (BK21), Chonnam National University, Gwang-ju, South Korea
| | | |
Collapse
|
29
|
Nakamura K, Kariyazono H. Influence of Endocrine-disrupting Chemicals on the Immune System. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazuo Nakamura
- Department of Biopharmaceutics, Nihon Pharmaceutical University
| | | |
Collapse
|
30
|
Brown JS. Effects of bisphenol-A and other endocrine disruptors compared with abnormalities of schizophrenia: an endocrine-disruption theory of schizophrenia. Schizophr Bull 2009; 35:256-78. [PMID: 18245062 PMCID: PMC2643957 DOI: 10.1093/schbul/sbm147] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, numerous substances have been identified as so-called "endocrine disruptors" because exposure to them results in disruption of normal endocrine function with possible adverse health outcomes. The pathologic and behavioral abnormalities attributed to exposure to endocrine disruptors like bisphenol-A (BPA) have been studied in animals. Mental conditions ranging from cognitive impairment to autism have been linked to BPA exposure by more than one investigation. Concurrent with these developments in BPA research, schizophrenia research has continued to find evidence of possible endocrine or neuroendocrine involvement in the disease. Sufficient information now exists for a comparison of the neurotoxicological and behavioral pathology associated with exposure to BPA and other endocrine disruptors to the abnormalities observed in schizophrenia. This review summarizes these findings and proposes a theory of endocrine disruption, like that observed from BPA exposure, as a pathway of schizophrenia pathogenesis. The review shows similarities exist between the effects of exposure to BPA and other related chemicals with schizophrenia. These similarities can be observed in 11 broad categories of abnormality: physical development, brain anatomy, cellular anatomy, hormone function, neurotransmitters and receptors, proteins and factors, processes and substances, immunology, sexual development, social behaviors or physiological responses, and other behaviors. Some of these similarities are sexually dimorphic and support theories that sexual dimorphisms may be important to schizophrenia pathogenesis. Research recommendations for further elaboration of the theory are proposed.
Collapse
Affiliation(s)
- James S Brown
- Department of Psychiatry, VCU School of Medicine, Richmond, VA, USA.
| |
Collapse
|
31
|
Yan H, Takamoto M, Sugane K. Exposure to Bisphenol A prenatally or in adulthood promotes T(H)2 cytokine production associated with reduction of CD4CD25 regulatory T cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:514-9. [PMID: 18414636 PMCID: PMC2290985 DOI: 10.1289/ehp.10829] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/25/2008] [Indexed: 05/25/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a widespread endocrine-disrupting chemical that can affect humans and animals. OBJECTIVES We investigated the effects of adult or prenatal exposure to BPA on T-helper (T(H))1/T(H)2 immune responses and the mechanisms underlying these effects. METHODS To evaluate the effects of exposure to BPA in adulthood, male Leishmania major-susceptible BALB/c and -resistant C57BL/6 mice were subcutaneously injected with 0.625, 1.25, 2.5, and 5 micromol BPA 1 week before being infected with L. major. To evaluate prenatal exposure, female mice were given BPA-containing drinking water at concentrations of 1, 10, and 100 nM for 2 weeks, then mated, and given BPA for another week. Male 10-week-old offspring were infected with L. major. Footpad swelling was assessed as a measure of the course of infection. RESULTS Mice exposed to BPA prenatally or in adulthood showed a dose-dependent increase in footpad swelling after being infected with L. major. Exposure to BPA in adulthood significantly promoted antigen-stimulated production of interleukin (IL)-4, IL-10, and IL-13 but not interferon-gamma (IFN-gamma). However, mice prenatally exposed to BPA showed increased production of not only IL-4 but also IFN-gamma. The percentages of CD4(+)CD25(+) cells were decreased in mice exposed to BPA either prenatally or in adulthood. Effects of prenatal BPA exposure were far more pronounced than effects of exposure in adulthood. CONCLUSION BPA promotes the development of T(H)2 cells in adulthood and both T(H)1 and T(H)2 cells in prenatal stages by reducing the number of regulatory T cells.
Collapse
Affiliation(s)
| | - Masaya Takamoto
- Address correspondence to M. Takamoto, Department of Infection and Host Defense, Division of Immunology and Infectious Diseases, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan. Telephone: 81-263-37-2625. Fax: 81-263-37-3092. E-mail:
| | | |
Collapse
|
32
|
Willhite CC, Ball GL, McLellan CJ. Derivation of a bisphenol A oral reference dose (RfD) and drinking-water equivalent concentration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:69-146. [PMID: 18188738 DOI: 10.1080/10937400701724303] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Human exposure to bisphenol A (BPA) is due to that found in the diet, and BPA and its metabolites were detected at parts per billion (or less) concentrations in human urine, milk, saliva, serum, plasma, ovarian follicular fluid, and amniotic fluid. Adverse health effects in mice and rats may be induced after parenteral injection or after massive oral doses. Controlled ingestion trials in healthy adult volunteers with 5 mg d16-BPA were unable to detect parent BPA in plasma despite exquisitely sensitive (limit of detection = 6 nM) methods, but by 96 h 100% of the administered dose was recovered in urine as the glucuronide. The extensive BPA glucuronidation following ingestion is not seen after parenteral injection; only the parent BPA binds plasma proteins and estrogen receptors (ER). The hypothesis that BPA dose-response may be described by a J- or U-shape curve was not supported by toxicogenomic data collected in fetal rat testes and epididymes (after repeated parenteral exposure at 2-400,000 microg/kg-d), where a clear monotonic dose-response both in the numbers of genes and magnitude of individual gene expression was evident. There is no clear indication from available data that the BPA doses normally consumed by humans pose an increased risk for immunologic or neurologic disease. There is no evidence that BPA poses a genotoxic or carcinogenic risk and clinical evaluations of 205 men and women with high-performance liquid chromatography (HPLC)-verified serum or urinary BPA conjugates showed (1) no objective signs, (2) no changes in reproductive hormones or clinical chemistry parameters, and (3) no alterations in the number of children or sons:daughters ratio. Results of benchmark dose (BMD10 and BMDL10) calculations and no-observed-adverse-effect level (NOAEL) inspections of all available and reproducible rodent studies with oral BPA found BMD and NOAEL values all greater than the 5 mg/kg-d NOAELs from mouse and rat multigeneration reproduction toxicity studies. While allometric and physiologically based pharmacokinetic (PBPK) models were constructed for interspecies scaling of BPA and its interaction with ER, multigeneration feeding studies with BPA at doses spanning 5 orders of magnitude failed to identify signs of developmental toxicity or adverse changes in reproductive tract tissues; the 5-mg/kg-d NOAELs identified for systemic toxicity in rats and mice were less than the oral NOAELs for reproductive toxicity. Thus, it is the generalized systemic toxicity of ingested BPA rather than reproductive, immunologic, neurobehavioral, or genotoxic hazard that represents the point of departure. Using U.S. Environmental Protection Agency (EPA) uncertainty factor guidance and application of a threefold database uncertainty factor (to account for the fact that the carcinogenic potential of transplacental BPA exposure has yet to be fully defined and comprehensive neurobehavioral and immunotoxicologic evaluations of BPA by relevant routes and at relevant doses have yet to be completed) to the administered dose NOAEL results in an oral RfD of 0.016 mg/kg-d. Assuming the 70-kg adult consumes 2 L of water each day and adopting the default 20% U.S. EPA drinking water relative source contribution yields a 100 microg/L BPA total allowable concentration (TAC).
Collapse
Affiliation(s)
- Calvin C Willhite
- Department of Toxic Substances Control, State of California, Berkeley, California, USA
| | | | | |
Collapse
|
33
|
Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM. In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 2007; 24:178-98. [PMID: 17628395 DOI: 10.1016/j.reprotox.2007.05.010] [Citation(s) in RCA: 648] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 05/18/2007] [Indexed: 11/29/2022]
Abstract
Bisphenol A (BPA, 2,2-bis (4-hydroxyphenyl) propane; CAS# 80-05-7) is a chemical used primarily in the manufacture of polycarbonate plastic, epoxy resins and as a non-polymer additive to other plastics. Recent evidence has demonstrated that human and wildlife populations are exposed to levels of BPA which cause adverse reproductive and developmental effects in a number of different wildlife species and laboratory animal models. However, there are major uncertainties surrounding the spectrum of BPA's mechanisms of action, the tissue-specific impacts of exposures, and the critical windows of susceptibility during which target tissues are sensitive to BPA exposures. As a foundation to address some of those uncertainties, this review was prepared by the "In vitro" expert sub-panel assembled during the "Bisphenol A: An Examination of the Relevance of Ecological, In vitro and Laboratory Animal Studies for Assessing Risks to Human Health" workshop held in Chapel Hill, NC, Nov 28-29, 2006. The specific charge of this expert panel was to review and assess the strength of the published literature pertaining to the mechanisms of BPA action. The resulting document is a detailed review of published studies that have focused on the mechanistic basis of BPA action in diverse experimental models and an assessment of the strength of the evidence regarding the published BPA research.
Collapse
Affiliation(s)
- Yelena B Wetherill
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|