1
|
Badawy SA, Hassan AR, Abu Bakr MS, Mohammed AESI. UPLC-qTOF-MS/MS profiling of phenolic compounds in Fagonia arabica L. and evaluation of their cholinesterase inhibition potential through in-vitro and in-silico approaches. Sci Rep 2025; 15:5244. [PMID: 39939326 PMCID: PMC11822067 DOI: 10.1038/s41598-025-86227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/09/2025] [Indexed: 02/14/2025] Open
Abstract
Fagonia arabica L. is a widely used traditional medicinal herb. This study explored the flavonoid and phenolic acid content in the aerial parts of F. arabica, leading to the tentative identification of 42 compounds using Ultra-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass/Mass Spectrometry and analyzed with the phytochemical-focused RIKEN tandem mass spectral database (ReSpect) for identification based on authentic standards. The total phenolic and flavonoid content was measured in the ethyl acetate and butanol fractions. The flavonoid content in the ethyl acetate fraction was 101 ± 1.43 µg Rutin/mg, compared to 6.48 ± 0.29 µg rutin/mg in the butanol fraction. Similarly, the ethyl acetate fraction contained 199.14 ± 1.58 µg gallic acid/mg, while the butanol fraction had 47.69 ± 0.54 µg gallic acid/mg. Also, the study demonstrated the effectiveness of the different fractions of Fagonia arabica L. in inhibiting the butyrylcholinesterase enzyme, which is a key contributor to the progression of Alzheimer's disease. At a concentration of 0.45 mg/mL, the ethyl acetate fraction showed the highest efficiency, inhibiting butyrylcholinesterase by 50% (IC50). Based on the in vitro results, a molecular docking study suggested the selectivity of the tentatively identified compounds towards butyrylcholinesterase over acetylcholinesterase, as kaempferol-3-O-glucoside achieved the highest selectivity. This insight could inform potential modifications to enhance selectivity, which may be applied in the synthesis, semi-synthesis, and development of novel treatments for Alzheimer's disease.
Collapse
Affiliation(s)
- Sarah A Badawy
- Medicinal and Aromatic Plants Department, Desert Research Center, El-Matariya 11753, Cairo, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy (for Girls), Al-Azhar University, Nasr City, Cairo, 11651, Egypt.
| | - Ahmed R Hassan
- Medicinal and Aromatic Plants Department, Desert Research Center, El-Matariya 11753, Cairo, Egypt
| | - Marwa S Abu Bakr
- Department of Pharmacognosy, Faculty of Pharmacy (for Girls), Al-Azhar University, Nasr City, Cairo, 11651, Egypt
| | - Abd El-Salam I Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy (for Boys), Al-Azhar University, Nasr City, Cairo, 13129, Egypt
| |
Collapse
|
2
|
Shankar G, Kumar P, Rai S, Ghosh A, Varma T, Wani MA, Kumar S, Mandloi U, Singh GK, Garg P, Kulkarni O, Srikrishna S, Kumar S, Modi G. Discovery of novel hybrid tryptamine-rivastigmine molecules as potent AChE and BChE inhibitors exhibiting multifunctional properties for the management of Alzheimer's disease. Eur J Med Chem 2025; 283:117066. [PMID: 39667052 DOI: 10.1016/j.ejmech.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Contemporary research evidence has corroborated a gradual loss of central cholinergic neurons in Alzheimer's Disease (AD). This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death in the disease. The approved drugs for AD treatment can only offer relief from symptoms without addressing the underlying pathological hallmarks of the disease. To address the limitations associated with rivastigmine (RIV), a marketed drug for AD, a series of tryptamine derivatives was designed, synthesized, and evaluated in various in-vitro and in-vivo AD models. Enzyme inhibition studies identified compounds 6d and 6e as the lead molecules with potent inhibitors against AChE (6d, IC50: 0.99 ± 0.009 nM and 6e IC50: 7.97 ± 0.016 nM and BChE (6d, IC50: 27.79 ± 0.21 nM and 6e, IC50: 0.79 ± 0.005 nM), compared to the marketed drug Riv (AChE, IC50: 6630 ± 0.76 nM, BChE IC50 = 91 ± 0.40 nM). The molecular docking and dynamics studies corroborated the enzyme inhibition studies. The PAMPA assay strongly suggested the BBB crossing ability of the lead molecules. Further, 6d and 6e demonstrated the capability to counteract oxidative stress and Aβ1-42 in various in-vitro studies. Compound 6e exhibited remarkable radical scavenging activity in the DPPH assay (IC50: 22.91 ± 1.73 μM) compared to rivastigmine (% radical scavenging activity: 3.71 ± 0.09 at 200 μM). Interestingly, 6d and 6e exhibited promising activity in the AD Drosophila model by protecting eye phenotypes from degeneration induced by Aβ1-42 toxicity and reduced mitochondrial and cellular oxidative stress in this model. Furthermore, upon oral administration, 6d and 6e could reverse scopolamine-induced amnesia by improving spatial and cognitive memory in mice at 0.3 and 0.5 mg/kg compared to rivastigmine at 3 mg/kg and were found to have potent ex-vivo anti-ChEs properties, which are correlated with the observed pro-cognitive effects in the Morris Water Maze, likely mediated through the inhibition of both cholinesterases. The expression of various neuroprotection markers, such as BDNF and TRKB, was significantly overexpressed compared to the disease control group.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India
| | - Prabhat Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, BHU, Varanasi, 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aparajita Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Tanmaykumar Varma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India
| | - Upesh Mandloi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, 824236, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Saripella Srikrishna
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, BHU, Varanasi, 221005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India.
| |
Collapse
|
3
|
Shiabiev I, Pysin D, Kharlamova A, Zueva I, Petrov K, Bukharov M, Babaeva O, Mostovaya O, Padnya P, Stoikov I. Design of reversible cholinesterase inhibitors: Fine-tuning of enzymatic activity by PAMAM-calix-dendrimers. Int J Biol Macromol 2025; 287:138503. [PMID: 39647751 DOI: 10.1016/j.ijbiomac.2024.138503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Reversible cholinesterase (ChE) inhibitors are widely used drugs for the therapy of various cognitive and neurodegenerative disorders. The development of a "universal drug" with easily tunable ChE inhibition activity is a relevant interdisciplinary problem. Here we propose for the first time the design of novel "fine-tuned" ChE inhibitors based on dendrimers with a thiacalix[4]arene core (PAMAM-calix-dendrimers). A series of first-generation PAMAM-calix-dendrimers with different terminal fragments were designed and synthesized. The human acetylcholinesterase and butyrylcholinesterase inhibition by PAMAM-calix-dendrimers was confirmed by molecular docking and in vitro studies. PAMAM-calix-dendrimers were found to have IC50 values for acetylcholinesterase and butyrylcholinesterase in the range of 0.076-5400 μM. Relationships between the structure of PAMAM-calix-dendrimers and the ChE inhibitory activity were established. The conformation of the macrocyclic core and the nature of the terminal groups were found to exert a direct impact on the inhibitory activity of dendrimers. We anticipate our study to be a starting point for creation of "universal drug" with tunable ChE inhibitory activity to specific therapeutic targets, and more sophisticated in vivo studies of such systems.
Collapse
Affiliation(s)
- Igor Shiabiev
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Dmitry Pysin
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Alexandra Kharlamova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Irina Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Mikhail Bukharov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Olga Babaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Olga Mostovaya
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Pavel Padnya
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation.
| | - Ivan Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation.
| |
Collapse
|
4
|
Shankar G, Praveen Kumar C, Yadav M, Ghosh A, Panda SR, Banerjee A, Tiwari A, Rai S, Kumar S, Garg P, Naidu VGM, Kulkarni O, Modi G. Discovery of novel substituted (Z)-N'-hydroxy-3-(3-phenylureido)benzimidamide derivatives as multifunctional molecules targeting pathological hallmarks of Alzheimer's disease. Eur J Med Chem 2024; 280:116959. [PMID: 39461036 DOI: 10.1016/j.ejmech.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder marked by significant loss of central cholinergic neurons. This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death at the later stages of the disease. The approved drugs for AD are limited to providing symptomatic relief for an initial period due to the multifaceted etiology of the disease. Several studies have demonstrated that rivastigmine (RIV) is a selectively potent inhibitor of butyrylcholinesterase and devoid of antioxidant, Aβ, and tau protein aggregation inhibition and anti-inflammatory properties. Therefore, to address these issues associated with RIV, novel rivastigmine-based molecules were rationally designed, synthesized, and evaluated in various in-vitro and in-vivo AD models. In in-vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition studies revealed that 3q & 6e as promising leads (AChE, IC50 1.72 ± 0.15, 0.91 ± 0.016 μM, BChE, IC50 6.69 ± 0.28 μM, 1.19 ± 0.026 μM, for 3q & 6e, respectively). The computational studies (molecular docking and dynamics) further corroborated the in-vitro studies. Further, 3q and 6e were found to be potent antioxidants in the DPPH assay (IC50 16.15 ± 1.05 & 15.17 ± 0.07 μM, for 3q & 6e, respectively). Interestingly, 3q, and 6e could effectively inhibit self-induced full-length tau and Aβ1-42 aggregation. Treatment with 3q & 6e inhibited microglial activation by attenuating ROS release and mitochondrial damage. Further, 3q & 6e also suppressed NLRP3 inflammasome and NF-κB expression levels in microglial cells and halted the release of pro-inflammatory cytokines in human microglial cells. Finally, 3q & 6e were found to be efficacious in reversing the scopolamine-induced memory impairment in the Morris water maze test. The expression of various neuroprotection markers, such as BDNF and TRKB, was significantly overexpressed compared to the disease control group.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - C Praveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Meenu Yadav
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Aparajita Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Aritra Banerjee
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Ankit Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India.
| |
Collapse
|
5
|
Şahin İ, Çeşme M, Güngör Ö, Özgeriş FB, Köse M, Tümer F. New sulfonamide derivatives based on 1,2,3-triazoles: synthesis, in vitro biological activities and in silico studies. J Biomol Struct Dyn 2024; 42:4782-4799. [PMID: 37317998 DOI: 10.1080/07391102.2023.2222833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Eight new hybrid constructs containing a series of sulfonamide and 1,2,3-triazole units were designed and synthesized. Anticancer, antioxidant and cholinesterase activities of these hybrid structures were investigated. In our design, the Cu(I)-catalyzed click reaction between N,4-dimethyl-N-(prop-2-yn-1-yl)benzenesulfonamide (6) and aryl azides 8a-h was used. Antioxidant activity values of 9f (IC50: 229.46 ± 0.001 μg/mL) and 9h (IC50: 254.32 ± 0.002 μg/mL) hybrid structures were higher than BHT (IC50: 286.04 ± 0.003 μg/mL) and lower than Ascorbic acid (IC50: 63.53 ± 0.001 μg/mL) and α-Tocopherol (IC50: 203.21 ± 0.002 μg/mL). We determined that the cytotoxic effects of hybrid constructs 9d (IC50: 3.81 ± 0.1084 µM) and 9g (IC50: 4.317 ± 0.0367 µM) against A549 and healthy cell line (HDF) are much better than standard cisplatin (IC50: 6.202 ± 0.0705 µM). It was determined that the AChE inhibitory activities of all synthesized compounds were much better than Galantamine used as a standard. In particular, 9c (IC50: 13.81 ± 0.0026 mM) had ten times better activity than the standard Galantamine (IC50: 136 ± 0.008 mM). The ADMET properties of the molecules have been thoroughly examined and met the criteria for drug-like substances. They also have a high oral absorption rate, as they can effectively cross the blood-brain barrier and are easily absorbed in the gastrointestinal tract. In vitro experiments were confirmed by in silico molecular docking studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- İrfan Şahin
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Özge Güngör
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | - Muhammet Köse
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
6
|
Zeki NM, Mustafa YF. Natural linear coumarin-heterocyclic conjugates: A review of their roles in phytotherapy. Fitoterapia 2024; 175:105929. [PMID: 38548026 DOI: 10.1016/j.fitote.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 05/26/2024]
Abstract
Heterocycle conjugates provide a fresh investigative scope to find novel molecules with enhanced phytotherapeutic characteristics. Coumarin-based products are widely used in the synthesis of several compounds with biological and medicinal properties since they are naturally occurring heterocycles with a broad dispersion. The investigation of coumarin-based phytochemicals with annulated heterocyclic rings is a promising approach to discovering novel conjugates with significant phytotherapeutic attributes. Due to the applicable coumarin extraction processes, a range of linear coumarin-heterocyclic conjugates were isolated from different natural resources and exhibited remarkable therapeutic efficacy. This review highlights the phytotherapeutic potential and origins of various natural linear coumarin-heterocyclic conjugates. We searched several databases, including Science Direct, Web of Science, Springer, Google Scholar, and PubMed. After sieving, we ultimately identified and included 118 pertinent studies published between 2000 and the middle of 2023. This will inspire medicinal chemists with extremely insightful ideas for designing and synthesizing therapeutically active lead compounds in the future that are built on the pharmacophores of coumarin-heterocyclic conjugates and have significant therapeutic attributes.
Collapse
Affiliation(s)
- Nameer Mazin Zeki
- Department of Pharmacology, College of Medicine, Ninevah University, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq.
| |
Collapse
|
7
|
Zeki NM, Mustafa YF. 6,7-Coumarin-heterocyclic hybrids: A comprehensive review of their natural sources, synthetic approaches, and bioactivity. J Mol Struct 2024; 1303:137601. [DOI: 10.1016/j.molstruc.2024.137601] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Mezeiova E, Prchal L, Hrabinova M, Muckova L, Pulkrabkova L, Soukup O, Misiachna A, Janousek J, Fibigar J, Kucera T, Horak M, Makhaeva GF, Korabecny J. Morphing cholinesterase inhibitor amiridine into multipotent drugs for the treatment of Alzheimer's disease. Biomed Pharmacother 2024; 173:116399. [PMID: 38492439 DOI: 10.1016/j.biopha.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
The search for novel drugs to address the medical needs of Alzheimer's disease (AD) is an ongoing process relying on the discovery of disease-modifying agents. Given the complexity of the disease, such an aim can be pursued by developing so-called multi-target directed ligands (MTDLs) that will impact the disease pathophysiology more comprehensively. Herewith, we contemplated the therapeutic efficacy of an amiridine drug acting as a cholinesterase inhibitor by converting it into a novel class of novel MTDLs. Applying the linking approach, we have paired amiridine as a core building block with memantine/adamantylamine, trolox, and substituted benzothiazole moieties to generate novel MTDLs endowed with additional properties like N-methyl-d-aspartate (NMDA) receptor affinity, antioxidant capacity, and anti-amyloid properties, respectively. The top-ranked amiridine-based compound 5d was also inspected by in silico to reveal the butyrylcholinesterase binding differences with its close structural analogue 5b. Our study provides insight into the discovery of novel amiridine-based drugs by broadening their target-engaged profile from cholinesterase inhibitors towards MTDLs with potential implications in AD therapy.
Collapse
Affiliation(s)
- Eva Mezeiova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Lukas Prchal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Martina Hrabinova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Lubica Muckova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Lenka Pulkrabkova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Ondrej Soukup
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Neurochemistry, Videnska 1083, Prague 14220, Czech Republic; Charles University in Prague, Department of Physiology, Faculty of Science, Albertov 6, Prague 2, Czech Republic
| | - Jiri Janousek
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jakub Fibigar
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Tomas Kucera
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Neurochemistry, Videnska 1083, Prague 14220, Czech Republic.
| | - Galina F Makhaeva
- Russian Academy of Sciences, Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Severny proezd 1, Chernogolovka 142432, Russia.
| | - Jan Korabecny
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic.
| |
Collapse
|
9
|
Dehghani H, Rashedinia M, Mohebbi G, Vazirizadeh A. Studies on Secondary Metabolites and In vitro and In silico Anticholinesterases
Activities of the Sea Urchin Echinometra mathaei Crude Venoms
from the Persian Gulf-Bushehr. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/2210315514666230622144244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 12/08/2023]
Abstract
Background:
Echinoderms are a unique source of amazing secondary metabolites with a wide
spectrum of biological activities. Several species of sea urchins contain various toxins and biologically
active metabolites. One of the most attractive approaches to treat Alzheimer's disease is searching for
effective marine natural products with cholinesterase inhibitory activities.
Objective:
The current study is designed to investigate the in vitro and in silico acetylcholinesterase and
butyrylcholinesterase inhibitory activities of the Persian Gulf echinoderm sea urchin Echinometra
mathaei venom and related chemical compounds.
Methods:
The experiments for LD50, total protein, protein bands, in vitro cholinesterase inhibitory activities,
the identity of secondary metabolites, and the in silico evaluations, respectively, were performed by
Spearman-Karber, Lowry, SDS-PAGE, Ellman's spectroscopic, GC-MS, and docking methods.
Results:
The LD50 (IV rat) of the spine, gonad, and coelomic fluid from sea urchin samples were 2.231 ±
0.09, 1.03 ± 0.05, and 1.12 ± 0.13 mg/ml, respectively. The SDS-PAGE and total protein studies showed
that at least a portion of the venom is protein in nature. GC-MS analysis of the identified samples revealed
12, 23, and 21 compounds with different chemical types, including alkaloids, terpenes, and steroids,
respectively. According to the results, all samples act as significant inhibitors of both enzymes. In
silico data for the identified compounds also confirmed the experimental results.
Conclusion:
The alkaloid compound 6H-Indolo[3,2,1-de] [1,5] naphthyridine-6-one,1,2,3a,4,5-
hexahydro-8-hydroxy-3-methyl (C7) had the highest affinity for both enzymes. Further research is needed
to determine whether C7 could be a therapeutic candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Hamideh Dehghani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz,
Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz,
Iran
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research
Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Vazirizadeh
- Department of Marine Biotechnology, The Persian
Gulf Research and Studies Center, The Persian Gulf University, Bushehr, Iran
| |
Collapse
|
10
|
Pathak C, Kabra UD. A comprehensive review of multi-target directed ligands in the treatment of Alzheimer's disease. Bioorg Chem 2024; 144:107152. [PMID: 38290187 DOI: 10.1016/j.bioorg.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting specifically older population. AD is an irreversible neurodegenerative CNS disorder associated with complex pathophysiology. Presently, the USFDA has approved only four drugs viz. Donepezil, Rivastigmine, Memantine, and Galantamine for the treatment of AD. These drugs exhibit their neuroprotective effects either by inhibiting cholinesterase enzyme (ChE) or N-methyl-d-aspartate (NMDA) receptor. However, the conventional therapy "one target, one molecule" has failed to provide promising therapeutic effects due to the multifactorial nature of AD. This triggered the development of a novel strategy called Multi-Target Directed Ligand (MTDL) which involved designing one molecule that acts on multiple targets simultaneously. The present review discusses the detailed pathology involved in AD and the various MTDL design strategies bearing different heterocycles, in vitro and in vivo activities of the compounds, and their corresponding structure-activity relationships. This knowledge will allow us to identify and design more effective MTDLs for the treatment of AD.
Collapse
Affiliation(s)
- Chandni Pathak
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Uma D Kabra
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
11
|
Dash UC, Swain SK, Jena AB, Dandapat J, Sahoo AK. The ameliorative effect of Piper trioicum in attenuating cognitive deficit in scopolamine induced neurotoxicity in experimental rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116911. [PMID: 37451488 DOI: 10.1016/j.jep.2023.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional system of medicine, Piper species, or its components are widely used to treat many diseases including memory improvement. One of the wild species Piper trioicum Roxb. (Piperaceae) is found in South Asian countries. The whole plant is used as folk medicine to improve memory. AIM OF THE STUDY To our knowledge, no previous research has investigated the neuroprotective activities of P. trioicum. So, we studied the ameliorative effect of P. trioicum in attenuating cognitive deficit in scopolamine induced neurotoxicity in experimental rats. MATERIALS AND METHODS Wistar rats were exposed to scopolamine (3 mg/kg, i. p.) for 14 consecutive days, and the effect of P. trioicum (HAPT; oral, 300, 400 mg/kg) on scopolamine-invoked neurotoxicity in brain were studied. During the experimental period, behaviour analyses of rats were observed 30 min post-drug administration. The role of antioxidants of HAPT in scavenging cellular oxygen/peroxyl radicals were studied. Acetylcholinesterase and butyrylcholinesterase inhibitions, and mode of inhibition kinetics of HAPT were studied. Pathogenic cellular oxidative (MDA, GSH, SOD, and CAT), DNA damage (8-oxodG), neurochemical (acetyl- and, butyryl-cholinesterase), β-secretase (BACE-1 and 2), MAPτ, and neuroinflammation (IL-6, TNF-α) biomarkers in extension to the histopathological observation of brain cortex were studied. GC-MS/MS analysis was carried out to investigate the presence of bioactive constituents in HAPT. RESULTS HAPT, a rich source of phenol and flavonoid type antioxidants were responsible in quenching oxygen/peroxyl radicals and protected the cellular membrane, and lipoproteins against ROS in DPPH, ORAC, and CAPe tests. HAPT inhibited acetylcholinesterase and butyrylcholinesterase activities, and showed competitive-inhibition (reversible) towards cholinesterase activities. HAPT-400 significantly improved the learning and memory-impairment by restoring oxidative MDA, GSH, SOD, CAT, and DNA damage (8-oxodG) markers of serum, and cortex. It also improved acetyl- and, butyryl-cholinesterase, β-secretase, and MAPτ level in brain by restoring proinflammatory cytokines IL-6, and TNF-α indicators in neurotoxic rats. GC-MS/MS reported therapeutic significance active compounds were molecular-docked towards target proteins, found that proscillaridin showed the highest affinity towards AChE, BuChE, BACE1, and BACE2 with binding energy of ΔGb -9.1, ΔGb -10.2, ΔGb -11.4 and ΔGb -11.5 Kcal/mol, respectively. Cymarin and morphine-3-glucuronide showed the second highest binding affinity towards AChE (ΔGb -8.8) and BuChE (ΔGb -10.0), respectively. In BACE-1, betulin showed the second highest binding affinity ΔGb -10.7 Kcal/mol and in BACE-2, morphine-3-glucuronide showed the second highest binding affinity ΔGb -9.8 Kcal/mol. CONCLUSIONS Synergistic impact of proscillaridin, Cymarin, morphine-3-glucuronide, betulin like compounds in HAPT improved memory impairment, healing of tissue architecture of cortex with the restoration of neurochemical, neuroinflammation, and oxidative indicators in neurotoxic rats.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Sandeep Kumar Swain
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Atala Bihari Jena
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Atish Kumar Sahoo
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| |
Collapse
|
12
|
Naseem S, Khan S, Hussain S, Mirza MU, Ashraf M, Shafiq Z, Trant JF. Synthesis, biological evaluation, and molecular docking study of xanthene-linked thiosemicarbazones as cholinesterase inhibitors. J Biomol Struct Dyn 2023; 42:13232-13246. [PMID: 37948312 DOI: 10.1080/07391102.2023.2274981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
This study delineates the design and synthesis of a series of xanthene-based thiosemicarbazones that show low μM inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), crucial enzymes associated with, among others, Alzheimer's Disease (AD) pathology. Despite FDA-approved AChE inhibitors being frontline treatments for AD, there remains a need for agents exhibiting improved efficacy and selectivity. Our synthesized series demonstrate meaningful inhibition against AChE (IC50 ranging from 4.2 to 62 μM). These compounds exhibit comparatively lower potency against BChE (IC50 values between 64 and 315 μM), showcasing a pronounced AChE selectivity compared to physostigmine. The selectivity index for the compounds between the two targets does vary between 0.02 and 0.75 highlighting that even minor structural differences can have drastic effects on protein interactions. Molecular docking insights further substantiated these observations, revealing the importance of the xanthene scaffold for AChE-binding and the aryl R2 moiety for BChE interactions. Notably, some compounds demonstrated dual enzyme targeting, emphasizing their interactions could be exploited for developing monotherapies against cholinesterase-associated neurodegenerative afflictions like AD. Collectively, these findings suggest that xanthene-based thiosemicarbazones are a promising and highly accessible scaffold that deserve further investigative exploration in the cholinesterase inhibitor therapeutic landscape.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saira Naseem
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Samra Khan
- Department of Chemistry and Biochemistry, University of Windsor, Canada
| | - Safdar Hussain
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Pharmaceutical & Medicinal Chemistry, Universitat Bonn, Bonn, Germany
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Canada
| |
Collapse
|
13
|
Singh A, Singh K, Kaur J, Kaur R, Sharma A, Kaur J, Kaur U, Chadha R, Bedi PMS. Pathogenesis of Alzheimer's Disease and Diversity of 1,2,3-Triazole Scaffold in Drug Development: Design Strategies, Structural Insights, and Therapeutic Potential. ACS Chem Neurosci 2023; 14:3291-3317. [PMID: 37683129 DOI: 10.1021/acschemneuro.3c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease is a most prevalent form of dementia all around the globe and currently poses a significant challenge to the healthcare system. Currently available drugs only slow the progression of this disease rather than provide proper containment. Identification of multiple targets responsible for this disease in the last three decades established it as a multifactorial neurodegenerative disorder that needs novel multifunctional agents for its management and the possible reason for the failure of currently available single target clinical drugs. 1,2,3-Triazole is a miraculous nucleus in medicinal chemistry and the first choice for development of multifunctional hybrid molecules. Apart from that, it is an integral component of various drugs in clinical trials as well as in clinical practice. This review is focused on the pathogenesis of Alzheimer's disease and 1,2,3-triazole containing derivatives developed in recent decades as potential anti-Alzheimer's agents. The review will provide (A) precise insight of various established targets of Alzheimer's disease including cholinergic, amyloid, tau, monoamine oxidases, glutamate, calcium, and reactive oxygen species hypothesis and (B) design hypothesis, structure-activity relationships, and pharmacological outcomes of 1,2,3-triazole containing multifunctional anti-Alzheimer's agents. This review will provide a baseline for various research groups working on Alzheimer's drug development in designing potent, safer, and effective multifunctional anti-Alzheimer's candidates of the future.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jashandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Ramanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jasleen Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Uttam Kaur
- University School of Business, Chandigarh University, Mohali, Punjab 140413, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
14
|
Gil-Rivas A, de Pascual-Teresa B, Ortín I, Ramos A. New Advances in the Exploration of Esterases with PET and Fluorescent Probes. Molecules 2023; 28:6265. [PMID: 37687094 PMCID: PMC10488407 DOI: 10.3390/molecules28176265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Esterases are hydrolases that catalyze the hydrolysis of esters into the corresponding acids and alcohols. The development of fluorescent probes for detecting esterases is of great importance due to their wide spectrum of biological and industrial applications. These probes can provide a rapid and sensitive method for detecting the presence and activity of esterases in various samples, including biological fluids, food products, and environmental samples. Fluorescent probes can also be used for monitoring the effects of drugs and environmental toxins on esterase activity, as well as to study the functions and mechanisms of these enzymes in several biological systems. Additionally, fluorescent probes can be designed to selectively target specific types of esterases, such as those found in pathogenic bacteria or cancer cells. In this review, we summarize the recent fluorescent probes described for the visualization of cell viability and some applications for in vivo imaging. On the other hand, positron emission tomography (PET) is a nuclear-based molecular imaging modality of great value for studying the activity of enzymes in vivo. We provide some examples of PET probes for imaging acetylcholinesterases and butyrylcholinesterases in the brain, which are valuable tools for diagnosing dementia and monitoring the effects of anticholinergic drugs on the central nervous system.
Collapse
Affiliation(s)
- Alba Gil-Rivas
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Irene Ortín
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Ana Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| |
Collapse
|
15
|
Panek D, Pasieka A, Latacz G, Zaręba P, Szczęch M, Godyń J, Chantegreil F, Nachon F, Brazzolotto X, Skrzypczak-Wiercioch A, Walczak M, Smolik M, Sałat K, Höfner G, Wanner K, Więckowska A, Malawska B. Discovery of new, highly potent and selective inhibitors of BuChE - design, synthesis, in vitro and in vivo evaluation and crystallography studies. Eur J Med Chem 2023; 249:115135. [PMID: 36696766 DOI: 10.1016/j.ejmech.2023.115135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The symptomatic and disease-modifying effects of butyrylcholinesterase (BuChE) inhibitors provide an encouraging premise for researching effective treatments for Alzheimer's disease. Here, we examined a series of compounds with a new chemical scaffold based on 3-(cyclohexylmethyl)amino-2-hydroxypropyl, and we identified a highly selective hBuChE inhibitor (29). Based on extensive in vitro and in vivo evaluations of the compound and its enantiomers, (R)-29 was identified as a promising candidate for further development. Compound (R)-29 is a potent hBuChE inhibitor (IC50 = 40 nM) with selectivity over AChE and relevant off-targets, including H1, M1, α1A and β1 receptors. The compound displays high metabolic stability on human liver microsomes (90% of the parent compound after 2 h of incubation), and its safety was confirmed through examining the cytotoxicity on the HepG2 cell line (LC50 = 2.85 μM) and hERG inhibition (less than 50% at 10 μM). While (rac)-29 lacked an effect in vivo and showed limited penetration to the CNS in pharmacokinetics studies, compound (R)-29 exhibited a procognitive effect at 15 mg/kg in the passive avoidance task in scopolamine-treated mice.
Collapse
Affiliation(s)
- Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland.
| | - Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| | - Michał Szczęch
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| | - Fabien Chantegreil
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Anna Skrzypczak-Wiercioch
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Kraków, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St. 9, 30-688, Krakow, Poland
| | - Magdalena Smolik
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St. 9, 30-688, Krakow, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Krakow, Poland
| | - Georg Höfner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Klaus Wanner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| |
Collapse
|
16
|
Kilic B, Bardakkaya M, Ilıkcı Sagkan R, Aksakal F, Shakila S, Dogruer DS. New thiourea and benzamide derivatives of 2-aminothiazole as multi-target agents against Alzheimer's disease: Design, synthesis, and biological evaluation. Bioorg Chem 2023; 131:106322. [PMID: 36565675 DOI: 10.1016/j.bioorg.2022.106322] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
In this study, two series of compounds were designed and synthesized, bearing thiourea and benzamide derivatives at position 2 of 4-subtituted-2-aminothiazole, respectively. Then, the inhibition potency of all final compounds for cholinesterase enzymes were evaluated. Among the thiourea derivatives, 3c (IC50 = 0.33 μM) was identified as the most potent and selective butyrylcholinesterase inhibitor. Additionally, benzamide derivative 10e (AChE IC50 = 1.47 and BChE IC50 = 11.40 μM) was found as a dual cholinesterase inhibitor. The type of inhibition for both compounds was determined by kinetic studies and the results showed that the compounds were mixed type inhibitors. Moreover, all title compounds were investigated in terms of their antioxidant (DPHH, ORAC) and metal chelator activities. In addition, the neuroprotective effects of selected compounds (3c, 3e, 6c, 6e and 10e) against H2O2-induced damage in the PC12 cell line were tested. The experimental findings demonstrated that thiourea-derived 6e (40.4 %) and benzamide-derived 10e (37.8 %) have a neuroprotective effect of about half as ferulic acid at 10 μM. Subsequently, the cytotoxicity of selected compounds was examined by the MTT assay, and the compounds were found not to have cytotoxic effect on the PC12 cell line in 24 h. Additionally, compounds 6e and 10e were also found to be more effective in inhibiting the release of IL-1β, IL-6, TNF-α and NO compared to other selected compounds in this study.
Collapse
Affiliation(s)
- Burcu Kilic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye
| | - Merve Bardakkaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkiye
| | - Rahsan Ilıkcı Sagkan
- Department of Medical Biology, Faculty of Medicine, Uşak University, Uşak, Turkiye
| | - Fatma Aksakal
- Department of Chemistry, Hacettepe University, Ankara, Turkiye; Department of Analytical Chemistry, Faculty of Pharmacy, Kocaeli Health and Technology University, Kocaeli, Turkiye
| | - Shakila Shakila
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye
| | - Deniz S Dogruer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye.
| |
Collapse
|
17
|
Durmaz Ş, Evren AE, Sağlık BN, Yurttaş L, Tay NF. Synthesis, anticholinesterase activity, molecular docking, and molecular dynamic simulation studies of 1,3,4-oxadiazole derivatives. Arch Pharm (Weinheim) 2022; 355:e2200294. [PMID: 35972839 DOI: 10.1002/ardp.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Two new series of 1,3,4-oxadiazoles bearing pyridine and thiazole heterocycles (4a-h and 5a-h) were synthesized (2,5-disubstituted-1,3,4-oxadiazoles). The structures of these newly synthesized compounds were confirmed by 1 H nuclear magnetic resonance (NMR), 13 C NMR, high-resolution mass spectrometric and Fourier transform infrared spectroscopic methods. All these compounds were evaluated for their enzyme inhibitory activities against two cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). From the studies, we identified compounds 4a, 4h, 5a, 5d, and 5e as selective AChE inhibitors, with IC50 values ranging from 0.023 to 0.037 μM. Furthermore, docking studies of these compounds were performed at the active sites of their target enzymes. The molecular docking study showed that 5e possessed an ideal docking pose with interactions inside AChE.
Collapse
Affiliation(s)
- Şeyma Durmaz
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Asaf E Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Begüm N Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Naime F Tay
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
18
|
Waiwut P, Kengkoom K, Pannangrong W, Musigavong N, Chheng C, Plekratoke K, Taklomthong P, Nillert N, Pitiporn S, Kwankhao P, Daodee S, Chulikhit Y, Montakantirat O, Boonyarat C. Toxicity Profiles of Kleeb Bua Daeng Formula, a Traditional Thai Medicine, and Its Protective Effects on Memory Impairment in Animals. Pharmaceuticals (Basel) 2022; 15:ph15080988. [PMID: 36015135 PMCID: PMC9414439 DOI: 10.3390/ph15080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/02/2022] Open
Abstract
Kleeb Bua Daeng (KBD) formula has long been used in Thailand as a traditional herbal medicine for promoting brain health. Our recent reports illustrated that KBD demonstrates multiple modes of action against several targets in the pathological cascade of Alzheimer’s disease (AD). The main purpose of the present study was to determine the protective effect and mechanism of KBD in amyloid beta (Aβ)-induced AD rats and its toxicity profiles. Pretreatment with the KBD formula for 14 days significantly improved the short- and long-term memory performance of Aβ-induced AD rats as assessed by the Morris Water Maze (MWM) and object-recognition tests. KBD treatment increased the activities of the antioxidant enzymes catalase, superoxide dismutase, and glutathione peroxidase; reduced the malondialdehyde content, and; decreased the acetylcholinesterase activity in the rat brain. An acute toxicity test revealed that the maximum dose of 2000 mg/kg did not cause any mortality or symptoms of toxicity. An oral, subchronic toxicity assessment of KBD at doses of 125, 250, and 500 mg/kg body weight/day for 90 days showed no adverse effects on behavior, mortality, hematology, or serum biochemistry. Our investigations indicate that KBD is a nontoxic traditional medicine with good potential for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Kanchana Kengkoom
- National Laboratory Animal Centre, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natdanai Musigavong
- Center of Evidence-Based Thai Traditional and Herbal Medicine, Chao Phya Abhaibhubejhr Hospital, Mueang Prachinburi 25000, Thailand
| | - Chantha Chheng
- Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand
| | - Kusawadee Plekratoke
- Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand
| | | | - Nutchareeporn Nillert
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supaporn Pitiporn
- Center of Evidence-Based Thai Traditional and Herbal Medicine, Chao Phya Abhaibhubejhr Hospital, Mueang Prachinburi 25000, Thailand
| | - Pakakrong Kwankhao
- Center of Evidence-Based Thai Traditional and Herbal Medicine, Chao Phya Abhaibhubejhr Hospital, Mueang Prachinburi 25000, Thailand
| | - Supawadee Daodee
- Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand
| | - Yaowared Chulikhit
- Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand
| | - Orawan Montakantirat
- Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kean University, Khon Kean 40002, Thailand
- Correspondence: ; Tel.: +66-81-3073313 or +66-43-202305
| |
Collapse
|
19
|
Dash UC, Swain SK, Kanhar S, Banjare P, Roy PP, Dandapat J, Sahoo AK. The modulatory role of prime identified compounds in Geophila repens in mitigating scopolamine-induced neurotoxicity in experimental rats of Alzheimer's disease via attenuation of cholinesterase, β-secretase, MAPt levels and inhibition of oxidative stress imparts inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114637. [PMID: 34534598 DOI: 10.1016/j.jep.2021.114637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geophila repens (L.) I.M. Johnst (Rubiaceae) is a small perennial creeper native to India, China, and other countries in Southeast Asia. The hot decoction of leaves is used orally for memory enhancing by the local folk of Andhra Pradesh, India. The ethnomedicinal claim of G. repens as memory enhancer was initially studied by the authors. Results demonstrated the important antioxidant and anticholinesterase activities of isolated molecule Pentylcurcumene and bioactive hydroalcohol extract of leaves of G. repens (GRHA). AIM OF THE STUDY Based on the previous findings, additional research is needed to examine the efficacy of GRHA for memory enhancing properties. We therefore investigated the modulatory role of prime identified compounds in GRHA in mitigating scopolamine-induced neurotoxicity in experimental rats of Alzheimer's disease (AD) via attenuation of cholinesterase, β-secretase, MAPt levels and inhibition of oxidative stress imparts inflammation. METHODS Scopolamine (3 mg/kg) induced experimental rats of AD were treated with GRHA (300, 400 mg/kg) for 14 days. During the experimental period, elevated T-maze and locomotion-activity were performed to assess learning and memory efficacy of GRHA. At the end of the experiment, biochemical, neurochemical, neuroinflammation and histopathological observation of brain cortex were examined. GC-MS/MS analysis reported 31 compounds, among them 8 bioactive compounds possess antioxidant, neuroinflammation, neuroprotective activities, and were considered for docking analysis towards cholinesterase, β-secretase activities in AD. RESULTS GRHA 400 significantly improved learning and memory impairment with the improvement of oxidative stress (MDA, SOD, GSH, CAT), DNA damage (8-OHdG), neurochemical (AChE, BuChE, BACE1, BACE2, MAPt), neuroinflammation (IL-6, TNF-α) markers in neurotoxic rats. Docking studies of 8 compounds demonstrated negative binding energies for cholinesterase and β-secretase indicating high affinity for target enzymes in AD. Test results were corroborated by the improvement of cellular tissue architecture of brain cortex in AD rats. CONCLUSION Synergistic action of genistin, quercetin-3-D-galactoside, 9,12,15-octadecatrienoic-acid methyl-ester, phytol, retinal, stigmasterol, n-hexadecanoic acid, β-sitosterol in GRHA restores memory-deficits via attenuation of cholinesterase, β-secretase, MAPt level and inhibition of oxidative-stress imparts inflammation in AD.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Sandeep Kumar Swain
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Satish Kanhar
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Purusottam Banjare
- Division of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Guru Ghasidas University, Bilaspur, 495009, Chhattisgarh, India
| | - Partha Pratim Roy
- Division of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Guru Ghasidas University, Bilaspur, 495009, Chhattisgarh, India
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Atish Kumar Sahoo
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| |
Collapse
|
20
|
Amat-ur-Rasool H, Ahmed M, Hasnain S, Ahmed A, Carter WG. In Silico Design of Dual-Binding Site Anti-Cholinesterase Phytochemical Heterodimers as Treatment Options for Alzheimer's Disease. Curr Issues Mol Biol 2021; 44:152-175. [PMID: 35723391 PMCID: PMC8929005 DOI: 10.3390/cimb44010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
The number of patients with neurodegenerative diseases, particularly Alzheimer's disease (AD), continues to grow yearly. Cholinesterase inhibitors (ChEIs) represent the first-line symptomatic drug treatment for mild-to-moderate AD; however, there is an unmet need to produce ChEIs with improved efficacy and reduced side effects. Herein, phytochemicals with reported anti-acetylcholinesterase (AChE) activity were ranked in silico for their anti-AChE potential. Ligands with a similar or higher binding affinity to AChE than galantamine were then selected for the design of novel dual-binding site heterodimeric drugs. In silico molecular docking of heterodimers with the target enzymes, AChE and butyrylcholinesterase (BuChE), were performed, and anti-cholinesterase binding affinities were compared with donepezil. Drug-likeliness properties and toxicity of the heterodimers were assessed using the SwissADME and ProTox-II webservers. Nine phytochemicals displayed similar or higher binding affinities to AChE than galantamine: sanguinarine > huperzine A > chelerythrine > yohimbine > berberine > berberastine > naringenin > akuammicine > carvone. Eleven heterodimeric ligands were designed with phytochemicals separated by four- or five-carbon alkyl-linkers. All heterodimers were theoretically potent AChE and BuChE dual-binding site inhibitors, with the highest affinity achieved with huperzine-4C-naringenin, which displayed 34% and 26% improved affinity to AChE and BuChE, respectively, then the potent ChEI drug, donepezil. Computational pharmacokinetic and pharmacodynamic screening suggested that phytochemical heterodimers would display useful gastrointestinal absorption and with relatively low predicted toxicity. Collectively, the present study suggests that phytochemicals could be garnered for the provision of novel ChEIs with enhanced drug efficacy and low toxicity.
Collapse
Affiliation(s)
- Hafsa Amat-ur-Rasool
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK;
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan; (M.A.); (S.H.)
| | - Mehboob Ahmed
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan; (M.A.); (S.H.)
| | - Shahida Hasnain
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan; (M.A.); (S.H.)
| | - Abrar Ahmed
- Faculty of Pharmacy, Punjab University College of Pharmacy, University of the Punjab, Lahore 54590, Pakistan;
| | - Wayne Grant Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK;
| |
Collapse
|
21
|
Shahidul Islam M, Al‐Majid AM, Azam M, Prakash Verma V, Barakat A, Haukka M, Domingo LR, Elgazar AA, Mira A, Badria FA. Synthesis of Spirooxindole Analogs Tethered Pyrazole Scaffold as Acetylcholinesterase Inhibitors. ChemistrySelect 2021; 6:14039-14053. [DOI: 10.1002/slct.202103255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023]
Abstract
AbstractA new series of spirooxindole analogs tethered pyrazole scaffold constructed via [3+2] cycloaddition (32CA) reaction starting from the new chalcone named (E)‐3‐(5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐1‐(5‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)prop‐2‐en‐1‐one which confirmed by single crystal X‐ray diffraction analysis. Synthesized spirooxindole analogs were evaluated for their neuroprotection through the inhibition of acetylcholine esterase enzyme using Ellman's method. Compounds 9 w, 9 e and 9 x showed the strongest acetylcholine esterase inhibition (AChEI) with IC50 values of 5.7, 7.8 and 8.3 μM, respectively. Obviously, the incorporation of NO2 group into isatin 5th position and N‐methylglycine (sarcosine) play a crucial role for the activity which lead to compound 9 w had the most potent inhibitory activity with IC50 value of 5.7 μM. Molecular docking was used to study their interaction with the active site of hAChE. These 32CA reactions takes place via a one‐step mechanism with a high polar character as a consequence of the supernucleophilic character of azomethine yildes and the strong electrophilic character of ethylenes.
Collapse
Affiliation(s)
- Mohammad Shahidul Islam
- Department of Chemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
- Department of Chemistry Banasthali Vidyapith Banasthali- 304022 Rajasthan India
| | | | - Mohammad Azam
- Department of Chemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Ved Prakash Verma
- Department of Chemistry Banasthali Vidyapith Banasthali- 304022 Rajasthan India
| | - Assem Barakat
- Department of Chemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
- Department of Chemistry, Faculty of Science Alexandria University, P.O. Box 426, Ibrahimia Alexandria 21321 Egypt
| | - Matti Haukka
- Department of Chemistry University of Jyväskylä, P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Luis R. Domingo
- Department of Organic Chemistry University of Valencia, Dr. Moliner 50 46100 Burjassot, Valencia Spain
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | - Amira Mira
- Department of Pharmacognosy, Faculty of Pharmacy Mansoura University Mansoura 35516 Egypt
| | - Farid A. Badria
- Department of Pharmacognosy, Faculty of Pharmacy Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
22
|
Li S, Li AJ, Travers J, Xu T, Sakamuru S, Klumpp-Thomas C, Huang R, Xia M. Identification of Compounds for Butyrylcholinesterase Inhibition. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:1355-1364. [PMID: 34269114 PMCID: PMC8637366 DOI: 10.1177/24725552211030897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022]
Abstract
Butyrylcholinesterase (BChE) is a nonspecific cholinesterase enzyme that hydrolyzes choline-based esters. BChE plays a critical role in maintaining normal cholinergic function like acetylcholinesterase (AChE) through hydrolyzing acetylcholine (ACh). Selective BChE inhibition has been regarded as a viable therapeutic approach in Alzheimer's disease. As of now, a limited number of selective BChE inhibitors are available. To identify BChE inhibitors rapidly and efficiently, we have screened 8998 compounds from several annotated libraries against an enzyme-based BChE inhibition assay in a quantitative high-throughput screening (qHTS) format. From the primary screening, we identified a group of 125 compounds that were further confirmed to inhibit BChE activity, including previously reported BChE inhibitors (e.g., bambuterol and rivastigmine) and potential novel BChE inhibitors (e.g., pancuronium bromide and NNC 756), representing diverse structural classes. These BChE inhibitors were also tested for their selectivity by comparing their IC50 values in BChE and AChE inhibition assays. The binding modes of these compounds were further studied using molecular docking analyses to identify the differences between the interactions of these BChE inhibitors within the active sites of AChE and BChE. Our qHTS approach allowed us to establish a robust and reliable process to screen large compound collections for potential BChE inhibitors.
Collapse
Affiliation(s)
- Shuaizhang Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Andrew J. Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jameson Travers
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Tuan Xu
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Srilatha Sakamuru
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Carleen Klumpp-Thomas
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ruili Huang
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
23
|
Islam M, Al-Majid AM, Azam M, Verma VP, Barakat A, Haukka M, Elgazar AA, Mira A, Badria FA. Construction of Spirooxindole Analogues Engrafted with Indole and Pyrazole Scaffolds as Acetylcholinesterase Inhibitors. ACS OMEGA 2021; 6:31539-31556. [PMID: 34869980 PMCID: PMC8637602 DOI: 10.1021/acsomega.1c03978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/01/2021] [Indexed: 05/12/2023]
Abstract
Twenty-five new hits of spirooxindole analogs 8a-y engrafted with indole and pyrazole scaffolds were designed and constructed via a [3+2]cycloaddition (32CA) reaction starting from three components: new chalcone-based indole and pyrazole scaffolds 5a-d, substituted isatins 6a-c, and secondary amines 7a-d. The potency of the compounds were assessed in modulating cholinesterase (AChE) activity using Ellman's method. Compounds 8i and 8y showed the strongest acetylcholine esterase inhibition (AChEI) with IC50 values of 24.1 and 27.8 μM, respectively. Molecular docking was used to study their interaction with the active site of hAChE.
Collapse
Affiliation(s)
- Mohammad
Shahidul Islam
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Abdullah Mohammed Al-Majid
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Azam
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ved Prakash Verma
- Department
of Chemistry, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Assem Barakat
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Abdullah A. Elgazar
- Department
of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh
University, Kafrelsheikh 33516, Egypt
| | - Amira Mira
- Department
of Pharmacognosy, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| | - Farid A. Badria
- Department
of Pharmacognosy, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
24
|
Boy S, Aras A, Türkan F, Akyıldırım O, Beytur M, Sedef Karaman H, Manap S, Yüksek H. Synthesis, Spectroscopic Analysis, and in Vitro/in Silico Biological Studies of Novel Piperidine Derivatives Heterocyclic Schiff-Mannich Base Compounds. Chem Biodivers 2021; 18:e2100433. [PMID: 34596972 DOI: 10.1002/cbdv.202100433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
In the present study, 3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (S1-8) were synthesized by treating 4-hydroxybenzaldehyde (B) with eight different 3-substitued-4-amino-4,5-dihydro-1H-1,2,4-triazole-5-ones (T1-8) in acetic acid medium, separately. The synthesized Schiff bases (S) were reacted with formaldehyde and secondary amine such as 4-piperidinecarboxyamide to afford novel heterocyclic bases. 3-Substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (T) were treated with 4-piperidinecarboxyamide in the presence of formaldehyde to synthesize eight new 1-(4-piperidinecarboxyamide-1-yl-methyl)-3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (M1-8). The structure characterization of compounds was carried out using 1 H-NMR, IR, HR-MS, and 13 C-NMR spectroscopic methods. The inhibitory properties of the newly synthesized compounds were calculated against the acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and glutathione S-transferase (GST) enzymes. Ki values were calculated in the range of 20.06±3.11-36.86±6.17 μM for GST, 17.87±2.91-30.53±4.25 μM for AChE, 9.08±0.69-20.02±2.88 μM for BChE, respectively, Besides, IC50 values were also calculated. Best binding scores of -inhibitors against used enzymes were calculated as -12.095 kcal/mol, -12.775 kcal/mol, and -9.336 kcal/mol, respectively. While 5-oxo-triazole piperidine-4-carboxamide moieties have a critical role in the inhibition of AChE and GST enzymes, hydroxy benzyl moiety is important for BChE enzyme inhibition.
Collapse
Affiliation(s)
- Songül Boy
- Atatürk Vocational College of Health Service, Kafkas University, Kars, 36100, Turkey
| | - Abdülmelik Aras
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, 76100, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Iğdır University, Iğdır, 76000, Turkey
| | - Onur Akyıldırım
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, 36100, Turkey
| | - Murat Beytur
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey
| | - Halide Sedef Karaman
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey
| | - Sevda Manap
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey
| | - Haydar Yüksek
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey
| |
Collapse
|
25
|
Ruangritchankul S, Chantharit P, Srisuma S, Gray LC. Adverse Drug Reactions of Acetylcholinesterase Inhibitors in Older People Living with Dementia: A Comprehensive Literature Review. Ther Clin Risk Manag 2021; 17:927-949. [PMID: 34511919 PMCID: PMC8427072 DOI: 10.2147/tcrm.s323387] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
The rising of global geriatric population has contributed to increased prevalence of dementia. Dementia is a neurodegenerative disease, which is characterized by progressive deterioration of cognitive functions, such as judgment, language, memory, attention and visuospatial ability. Dementia not only has profoundly devastating physical and psychological health outcomes, but it also poses a considerable healthcare expenditure and burdens. Acetylcholinesterase inhibitors (AChEIs), or so-called anti-dementia medications, have been developed to delay the progression of neurocognitive disorders and to decrease healthcare needs. AChEIs have been widely prescribed in clinical practice for the treatment of Alzheimer's disease, which account for 70% of dementia. The rising use of AChEIs results in increased adverse drug reactions (ADRs) such as cardiovascular and gastrointestinal adverse effects, resulting from overstimulation of peripheral cholinergic activity and muscarinic receptor activation. Changes in pharmacokinetics (PK), pharmacodynamics (PD) and pharmacogenetics (PGx), and occurrence of drug interactions are said to be major risk factors of ADRs of AChEIs in this population. To date, comprehensive reviews in ADRs of AChEIs have so far been scarcely studied. Therefore, we aimed to recapitulate and update the diverse aspects of AChEIs, including the mechanisms of action, characteristics and risk factors of ADRs, and preventive strategies of their ADRs. The collation of this knowledge is essential to facilitate efforts to reduce ADRs of AChEIs.
Collapse
Affiliation(s)
- Sirasa Ruangritchankul
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prawat Chantharit
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sahaphume Srisuma
- Ramathibodi Poison Center and Division of Clinical Pharmacology and Toxicology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Leonard C Gray
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Mezeiova E, Hrabinova M, Hepnarova V, Jun D, Janockova J, Muckova L, Prchal L, Kristofikova Z, Kucera T, Gorecki L, Chalupova K, Kunes J, Hroudova J, Soukup O, Korabecny J. Huprine Y - Tryptophan heterodimers with potential implication to Alzheimer's disease treatment. Bioorg Med Chem Lett 2021; 43:128100. [PMID: 33984470 DOI: 10.1016/j.bmcl.2021.128100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022]
Abstract
The search for novel and effective therapeutics for Alzheimer's disease (AD) is the main quest that remains to be resolved. The goal is to find a disease-modifying agent able to confront the multifactorial nature of the disease positively. Herewith, a family of huprineY-tryptophan heterodimers was prepared, resulting in inhibition of cholinesterase and neuronal nitric oxide synthase enzymes, with effect against amyloid-beta (Aβ) and potential ability to cross the blood-brain barrier. Their cholinesterase pattern of behavior was inspected using kinetic analysis in tandem with docking studies. These heterodimers exhibited a promising pharmacological profile with strong implication in AD.
Collapse
Affiliation(s)
- Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Zdena Kristofikova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Katarina Chalupova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Chemistry, University of Hradec Kralove, Rokytanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jiri Kunes
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jana Hroudova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic; Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| |
Collapse
|
27
|
Chromone derivatives bearing pyridinium moiety as multi-target-directed ligands against Alzheimer's disease. Bioorg Chem 2021; 110:104750. [PMID: 33691251 DOI: 10.1016/j.bioorg.2021.104750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/16/2021] [Accepted: 02/13/2021] [Indexed: 01/04/2023]
Abstract
A new serise of 7-hydroxy-chromone derivatives bearing pyridine moiety were synthesized, and evaluated as multifunctional agents against Alzheimer's disease (AD). Most of the compounds were good AChE inhibitors (IC50 = 9.8-0.71 µM) and showed remarkable BuChE inhibition activity (IC50 = 1.9-0.006 µM) compared with donepezil as the standard drug (IC50 = 0.023 and 3.4 µM). Compounds 14 and 10 showed the best inhibitory activity toward AChE (IC50 = 0.71 µM) and BuChE (IC50 = 0.006 µM), respectively. The ligand-protein docking simulations and kinetic studies revealed that compound 14 and 10 could bind effectively to the peripheral anionic binding site (PAS) of the AChE and BuChE through mixed-type inhibition. In addition, the most potent compounds showed acceptable neuroprotective activity on H2O2- and Aβ-induced .neurotoxicity in PC12 cells, more than standard drugs. The compounds could block effectively self- and AChE-induced Aβ aggregation. All the results suggest that compounds 14 and 10 could be considered as promising multi-target-directed ligands against AD.
Collapse
|
28
|
Vignaux PA, Minerali E, Lane TR, Foil DH, Madrid PB, Puhl AC, Ekins S. The Antiviral Drug Tilorone Is a Potent and Selective Inhibitor of Acetylcholinesterase. Chem Res Toxicol 2021; 34:1296-1307. [PMID: 33400519 DOI: 10.1021/acs.chemrestox.0c00466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acetylcholinesterase (AChE) is an important drug target in neurological disorders like Alzheimer's disease, Lewy body dementia, and Parkinson's disease dementia as well as for other conditions like myasthenia gravis and anticholinergic poisoning. In this study, we have used a combination of high-throughput screening, machine learning, and docking to identify new inhibitors of this enzyme. Bayesian machine learning models were generated with literature data from ChEMBL for eel and human AChE inhibitors as well as butyrylcholinesterase inhibitors (BuChE) and compared with other machine learning methods. High-throughput screens for the eel AChE inhibitor model identified several molecules including tilorone, an antiviral drug that is well-established outside of the United States, as a newly identified nanomolar AChE inhibitor. We have described how tilorone inhibits both eel and human AChE with IC50's of 14.4 nM and 64.4 nM, respectively, but does not inhibit the closely related BuChE IC50 > 50 μM. We have docked tilorone into the human AChE crystal structure and shown that this selectivity is likely due to the reliance on a specific interaction with a hydrophobic residue in the peripheral anionic site of AChE that is absent in BuChE. We also conducted a pharmacological safety profile (SafetyScreen44) and kinase selectivity screen (SelectScreen) that showed tilorone (1 μM) only inhibited AChE out of 44 toxicology target proteins evaluated and did not appreciably inhibit any of the 485 kinases tested. This study suggests there may be a potential role for repurposing tilorone or its derivatives in conditions that benefit from AChE inhibition.
Collapse
Affiliation(s)
- Patricia A Vignaux
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Eni Minerali
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Daniel H Foil
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Peter B Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
29
|
Amat-ur-Rasool H, Symes F, Tooth D, Schaffert LN, Elmorsy E, Ahmed M, Hasnain S, Carter WG. Potential Nutraceutical Properties of Leaves from Several Commonly Cultivated Plants. Biomolecules 2020; 10:1556. [PMID: 33203123 PMCID: PMC7698063 DOI: 10.3390/biom10111556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic dietary ingestion of suitable phytochemicals may assist with limiting or negating neurodegenerative decline. Current therapeutics used to treat Alzheimer disease elicit broad adverse drug reactions, and alternative sources of cholinesterase inhibitors (ChEIs) are required. Herein, we screened methanolic extracts from seven commonly cultivated plants for their nutraceutical potential; ability to inhibit acetylcholinesterase (AChE) and butyryl-cholinesterase (BuChE), and provision of antioxidant activity through their 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging capabilities. Potential neurotoxicity of plant extracts was examined via application to SHSY-5Y neuroblastoma cells and quantitation of cell viability. Methanolic extracts of Citrus limon (Lemon), Bombax ceiba (Red silk-cotton), Lawsonia inermis (Henna), Eucalyptus globulus (Eucalyptus), Ocimum basilicum (Basil), Citrus reticulata (Mandarin orange), and Mentha spicata (Spearmint) all displayed concentration-dependent inhibition of AChE and BuChE. The majority of extracts inhibited AChE and BuChE to near equipotency, with Henna and Eucalyptus extracts the two most potent ChEIs. All plant extracts were able to scavenge free radicals in a concentration-dependent manner, with Eucalyptus the most potent antioxidant. Toxicity of plant extracts to neuronal cells was concentration dependent, with Eucalyptus also the most toxic extract. Fractionation of plant extracts and analysis by mass spectrometry identified a number of plant polyphenols that might have contributed to the cholinesterase inhibition: 3-caffeoylquinic acid, methyl 4-caffeoylquinate, kaempferol-acetyl-glycoside, quercetin 3-rutinoside, quercetin-acetyl-glycoside, kaempferol 3-O-glucoside, and quercetin 3-O-glucoside. In silico molecular modeling of these polyphenols demonstrated their improved AChE and BuChE binding affinities compared to the current FDA-approved dual ChEI, galantamine. Collectively, all the plant extracts contained nutraceutical agents as antioxidants and ChEIs and, therefore, their chronic consumption may prove beneficial to combat the pathological deficits that accrue in Alzheimer disease.
Collapse
Affiliation(s)
- Hafsa Amat-ur-Rasool
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (H.A.-u.-R.); (L.-N.S.); (E.E.)
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan; (M.A.); (S.H.)
| | - Fenella Symes
- School of Pharmacy, University of Nottingham, Nottingham NG7 2UH, UK;
| | - David Tooth
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Larissa-Nele Schaffert
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (H.A.-u.-R.); (L.-N.S.); (E.E.)
| | - Ekramy Elmorsy
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (H.A.-u.-R.); (L.-N.S.); (E.E.)
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mehboob Ahmed
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan; (M.A.); (S.H.)
| | - Shahida Hasnain
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan; (M.A.); (S.H.)
| | - Wayne G. Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (H.A.-u.-R.); (L.-N.S.); (E.E.)
| |
Collapse
|
30
|
Majid H, Silva FV. Improvement of butyrylcholinesterase enzyme inhibition and medicinal properties of extracts of Aristotelia serrata leaves by ultrasound extraction. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Barakat A, Alshahrani S, Al-Majid AM, Ali M, Altowyan MS, Islam MS, Alamary AS, Ashraf S, Ul-Haq Z. Synthesis of a New Class of Spirooxindole-Benzo[ b]Thiophene-Based Molecules as Acetylcholinesterase Inhibitors. Molecules 2020; 25:4671. [PMID: 33066293 PMCID: PMC7594047 DOI: 10.3390/molecules25204671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022] Open
Abstract
A series of new oxindole-based spiro-heterocycles bearing the benzo[b]thiophene motif were synthesized via a 1,3-dipolar cycloaddition reaction and their acetylcholinesterase (AChE) inhibitory activity was evaluated. All the synthesized compounds exhibited moderate inhibitory activities against AChE, while IIc was found to be the most active analog with an IC50 value of 20,840 µM·L-1. Its molecular structure was a 5-chloro-substituted oxindole bearing benzo[b]thiophene and octahydroindole moieties. Based on molecular docking studies, IIc was strongly bound to the catalytic and peripheral anionic sites of the protein through hydrophilic, hydrophobic, and π-stacking interactions with Asp74, Trp86, Tyr124, Ser125, Glu202, Ser203, Trp236, Trp286, Phe297, Tyr337, and Tyr341. These interactions also indicated that the multiplicity of the IIc aromatic core significantly favored its activity.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - M. Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - Abdullah Saleh Alamary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.A.); (Z.U.-H.)
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.A.); (Z.U.-H.)
| |
Collapse
|
32
|
Kumar V, De P, Ojha PK, Saha A, Roy K. A Multi-layered Variable Selection Strategy for QSAR Modeling of Butyrylcholinesterase Inhibitors. Curr Top Med Chem 2020; 20:1601-1627. [DOI: 10.2174/1568026620666200616142753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023]
Abstract
Background:
Alzheimer’s disease (AD), a neurological disorder, is the most common cause
of senile dementia. Butyrylcholinesterase (BuChE) enzyme plays a vital role in regulating the brain acetylcholine
(ACh) neurotransmitter, but in the case of Alzheimer’s disease (AD), BuChE activity gradually
increases in patients with a decrease in the acetylcholine (ACh) concentration via hydrolysis. ACh
plays an essential role in regulating learning and memory as the cortex originates from the basal forebrain,
and thus, is involved in memory consolidation in these sites.
Methods:
In this work, we have developed a partial least squares (PLS)-regression based two dimensional
quantitative structure-activity relationship (2D-QSAR) model using 1130 diverse chemical classes
of compounds with defined activity against the BuChE enzyme. Keeping in mind the strict Organization
for Economic Co-operation and Development (OECD) guidelines, we have tried to select significant
descriptors from the large initial pool of descriptors using multi-layered variable selection strategy using
stepwise regression followed by genetic algorithm (GA) followed by again stepwise regression technique
and at the end best subset selection prior to development of final model thus reducing noise in the
input. Partial least squares (PLS) regression technique was employed for the development of the final
model while model validation was performed using various stringent validation criteria.
Results:
The results obtained from the QSAR model suggested that the quality of the model is acceptable
in terms of both internal (R2= 0.664, Q2= 0.650) and external (R2
Pred= 0.657) validation parameters.
The QSAR studies were analyzed, and the structural features (hydrophobic, ring aromatic and hydrogen
bond acceptor/donor) responsible for enhancement of the activity were identified. The developed model
further suggests that the presence of hydrophobic features like long carbon chain would increase the
BuChE inhibitory activity and presence of amino group and hydrazine fragment promoting the hydrogen
bond interactions would be important for increasing the inhibitory activity against BuChE enzyme.
Conclusion:
Furthermore, molecular docking studies have been carried out to understand the molecular
interactions between the ligand and receptor, and the results are then correlated with the structural features
obtained from the QSAR models. The information obtained from the QSAR models are well corroborated
with the results of the docking study.
Collapse
Affiliation(s)
- Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Priyanka De
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92 APC Road, Kolkata 700 032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
33
|
Krátký M, Jaklová K, Štěpánková Š, Svrčková K, Pflégr V, Vinšová J. N-[3,5-Bis(trifluoromethyl)phenyl]-5-bromo-2-hydroxybenzamide Analogues: Novel Acetyl- and Butyrylcholinesterase Inhibitors. Curr Top Med Chem 2020; 20:2094-2105. [PMID: 32814530 DOI: 10.2174/1568026620666200819154722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Development of acetyl- (AChE) and butyrylcholinesterase (BuChE) inhibitors belongs to viable strategies for the treatment of dementia and other diseases related to decrease in cholinergic neurotransmission. OBJECTIVE That is why we designed twenty-two analogues of a dual AChEBuChE salicylanilide inhibitor, N-[3,5-bis(trifluoromethyl)phenyl]-5-bromo-2-hydroxybenzamide 1, to improve its potency. METHODS We prepared N,N-disubstituted (thio)carbamates via direct acylation with (thio)carbamoyl chloride, N-n-alkyl monosubstituted carbamates using isocyanates as well as its salicylanilide core analogues. The derivatives were evaluated in vitro against AChE from electric eel and BuChE from equine serum using spectrophotometric Ellman's method. RESULTS The compounds showed moderate inhibition of both AChE and BuChE with IC50 from 18.2 to 196.6 μmol.L-1 and 9.2 to 196.2 μmol.L-1, respectively. Importantly, based on the substitution pattern, it is possible to modulate selectivity against AChE or BuChE and some derivatives also produced a balanced inhibition. In general, the most promising analogues were N-alkyl (C2-C6) carbamates and isomers with a changed position of phenolic hydroxyl. N-[3,5-Bis(trifluoromethyl)phenyl]-3-bromo-5- hydroxybenzamide 4a was the best inhibitor of both cholinesterases. CONCLUSION A wide range of the derivatives improved the activity of the hit 1, they were superior to carbamate drug rivastigmine against AChE and some of them also against BuChE. The most promising derivatives also fit physicochemical space and structural features for CNS drugs together with an escalated lipophilicity.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Karolína Jaklová
- Department of Chemistry, Faculty of Science, J. E. Purkinje University, Ceske mladeze 8, 400 96 Ústi nad Labem, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Katarína Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Václav Pflégr
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
34
|
Sobolova K, Hrabinova M, Hepnarova V, Kucera T, Kobrlova T, Benkova M, Janockova J, Dolezal R, Prchal L, Benek O, Mezeiova E, Jun D, Soukup O, Korabecny J. Discovery of novel berberine derivatives with balanced cholinesterase and prolyl oligopeptidase inhibition profile. Eur J Med Chem 2020; 203:112593. [PMID: 32688201 DOI: 10.1016/j.ejmech.2020.112593] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Berberine, a naturally occurring compound, possesses an interesting multipotent pharmacological profile potentially applicable for Alzheimer's disease (AD) treatment. In this study, a series of novel 22 berberine derivatives was developed and tested in vitro. Berberine core was substituted at position 9-O of its aromatic ring region. All the hybrids under the study revealed multi-targeted profile inhibiting prolyl oligopeptidase, acetylcholinesterase and butyrylcholinesterase highlighting 4a, 4g, 4j, 4l and 4s possessing balanced activities in the micromolar range. The top-ranked candidates in terms of the most pronounced potency against POP, AChE and BChE can be classified as 4d, 4u and 4v, bearing 4-methylbenzyl, (naphthalen-2-yl)methylene and 1-phenoxyethyl moieties, respectively. In vitro data were corroborated by detailed kinetic analysis of the selected lead molecules. 4d, 4u and 4v were also inspected for their potential to inhibit aggregation of two abberant proteins in AD, namely amyloid beta and tau, indicating their potential disease-modifying properties. To explain the results of our study, we carried out docking simulation to the active sites of the respective enzyme with the best berberine derivatives, along with QSAR study. We also investigated compounds' potential permeability through blood-brain barrier by applying parallel artificial membrane permeation assay and addressed their cytotoxicity profile.
Collapse
Affiliation(s)
- Katerina Sobolova
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Marketa Benkova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
35
|
Sepehri N, Mohammadi‐Khanaposhtani M, Asemanipoor N, Hosseini S, Biglar M, Larijani B, Mahdavi M, Hamedifar H, Taslimi P, Sadeghian N, Gulcin I. Synthesis, characterization, molecular docking, and biological activities of coumarin–1,2,3‐triazole‐acetamide hybrid derivatives. Arch Pharm (Weinheim) 2020; 353:e2000109. [DOI: 10.1002/ardp.202000109] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Nima Sepehri
- Nano Alvand Company, Avicenna Tech Park Tehran University of Medical Sciences Tehran Iran
| | - Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Nafise Asemanipoor
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center Alborz University of Medical Sciences Karaj Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - Nastaran Sadeghian
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
| |
Collapse
|
36
|
Topçu G, Akdemir A, Kolak U, Öztürk M, Boğa M, Bahadori F, Çakmar SDH. Anticholinesterase and Antioxidant Activities of Natural Abietane Diterpenoids with Molecular Docking Studies. Curr Alzheimer Res 2020; 17:269-284. [DOI: 10.2174/1567205017666200424133534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/13/2020] [Accepted: 03/30/2020] [Indexed: 01/20/2023]
Abstract
Background:
Alzheimer’s Disease (AD) is one of the most prevalent causes of dementia in
the world, and no drugs available that can provide a complete cure. Cholinergic neurons of the cerebral
cortex of AD patients are lost due to increased activity of cholinesterase enzymes.
Objectives:
Acetylcholinesterase (AChE) and Butyrylcholinesterase (BuChE) are the two major classes
of cholinesterases in the mammalian brain. The involvement of oxidative stress in the progression of
AD is known. Thus, the objective of this study is to determine strong ChE inhibitors with anti-oxidant
activity.
Methods:
In this study, 41 abietane diterpenoids have been assayed for antioxidant and anticholinesterase
(both for AChE and BuChE) properties in vitro, which were previously isolated from Salvia
species, and structurally determined by spectroscopic methods, particularly intensive 1D- and 2DNMR
and mass experiments. Molecular modeling studies were performed to rationalize the in vitro
ChE inhibitory activity of several abietane diterpenoids compared with galantamine.
Results:
Thirteen out of the tested 41 abietane diterpenoids exhibited at least 50% inhibition on either
AChE or BuChE. The strongest inhibitory activity was obtained for Bractealine against BuChE
(3.43 μM) and AChE (33.21 μM) while the most selective ligand was found to be Hypargenin E
against BuChE enzyme (6.93 μM). A full correlation was not found between anticholinesterase and
antioxidant activities. The results obtained from molecular modelling studies of Hypargenin E and
Bractealine on AChE and BuChE were found to be in accordance with the in vitro anti-cholinesterase
activity tests.
Conclusion:
Abietane diterpenoids are promising molecules for the treatment of mild-moderate AD.
Collapse
Affiliation(s)
- Gülaçtı Topçu
- Department of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Atilla Akdemir
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Ufuk Kolak
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| | - Mehmet Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| | - Mehmet Boğa
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| | - Fatemeh Bahadori
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Seda Damla Hatipoğlu Çakmar
- Department of Chemistry, Faculty of Science & Letters, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
37
|
Wu H, Fang F, Zheng L, Ji W, Qi M, Hong M, Ren G. Ionic liquid form of donepezil: Preparation, characterization and formulation development. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112308] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
Design, synthesis and cholinesterase inhibitory activity of novel spiropyrrolidine tethered imidazole heterocyclic hybrids. Bioorg Med Chem Lett 2020; 30:126789. [DOI: 10.1016/j.bmcl.2019.126789] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 02/03/2023]
|
39
|
Williams A, Zhou S, Zhan CG. Discovery of potent and selective butyrylcholinesterase inhibitors through the use of pharmacophore-based screening. Bioorg Med Chem Lett 2019; 29:126754. [PMID: 31708262 PMCID: PMC6953623 DOI: 10.1016/j.bmcl.2019.126754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/19/2023]
Abstract
Cholinesterase inhibitors have long been used in the treatment of Alzheimer's Disease (AD) via the protection of acetylcholine levels. However, recent research has shown that the specific inhibition of butyrylcholinesterase (BChE) could better ameliorate symptoms within patients. In addition, it has recently been shown that selective inhibition of BChE can also significantly attenuate the toxicity and physiological effects of heroin. Currently, there are no specific and potent inhibitors of BChE approved for use in AD or heroin abuse. Through a combined use of in silico and in vitro screening, we have found three compounds with sub-50 nM IC50 values that specifically target BChE. These newly discovered BChE inhibitors can act as the lead scaffolds for future development of the desirably potent and selective BChE inhibitors.
Collapse
Affiliation(s)
- Alexander Williams
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536, United States
| | - Shuo Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536, United States
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536, United States.
| |
Collapse
|
40
|
Korabecny J, Spilovska K, Mezeiova E, Benek O, Juza R, Kaping D, Soukup O. A Systematic Review on Donepezil-based Derivatives as Potential Cholinesterase Inhibitors for Alzheimer’s Disease. Curr Med Chem 2019; 26:5625-5648. [DOI: 10.2174/0929867325666180517094023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/02/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023]
Abstract
:
Alzheimer’s Disease (AD) is a multifactorial progressive neurodegenerative disorder
characterized by memory loss, disorientation, and gradual deterioration of intellectual capacity.
Its etiology has not been elucidated yet. To date, only one therapeutic approach has
been approved for the treatment of AD. The pharmacotherapy of AD has relied on noncompetitive
N-methyl-D-aspartate (NMDA) receptor antagonist - memantine, and acetylcholinesterase
(AChE) inhibitors (AChEIs) - tacrine, donepezil, rivastigmine and galantamine.
Donepezil was able to ameliorate the symptoms related to AD mainly via AChE, but also
through reduction of β-amyloid burden. This review presents the overview of donepezilrelated
compounds as potential anti-AD drugs developed on the basis of cholinergic hypothesis
to act as solely AChE and butyrylcholinesterase (BChE) inhibitors.
Collapse
Affiliation(s)
- Jan Korabecny
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Katarina Spilovska
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Eva Mezeiova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ondrej Benek
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Radomir Juza
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Daniel Kaping
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ondrej Soukup
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
41
|
Tzvetkov NT, Stammler HG, Georgieva MG, Russo D, Faraone I, Balacheva AA, Hristova S, Atanasov AG, Milella L, Antonov L, Gastreich M. Carboxamides vs. methanimines: Crystal structures, binding interactions, photophysical studies, and biological evaluation of (indazole-5-yl)methanimines as monoamine oxidase B and acetylcholinesterase inhibitors. Eur J Med Chem 2019; 179:404-422. [DOI: 10.1016/j.ejmech.2019.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/29/2022]
|
42
|
Multi-target design strategies for the improved treatment of Alzheimer's disease. Eur J Med Chem 2019; 176:228-247. [DOI: 10.1016/j.ejmech.2019.05.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
43
|
Structural aspects of 4-aminoquinolines as reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase. Chem Biol Interact 2019; 308:101-109. [PMID: 31100281 DOI: 10.1016/j.cbi.2019.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
Abstract
Eight derivatives of 4-aminoquinolines differing in the substituents attached to the C(4)-amino group and C(7) were synthesised and tested as inhibitors of human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Both enzymes were inhibited by all of the compounds with inhibition constants (Ki) ranging from 0.50 to 50 μM exhibiting slight selectivity toward AChE over BChE. The most potent inhibitors of AChE were compounds with an n-octylamino chain or adamantyl group. The shortening of the chain length resulted in a decrease in AChE inhibition by 5-20 times. Docking studies revealed that the quinoline group within the AChE active site was positioned in the choline binding site, while the C(4)-amino group substituents, depending on their lipophilicity, could establish hydrogen bonds or π-interactions with residues of the peripheral anionic site. The most potent inhibitors of BChE were compounds with the most voluminous substituent on C(4)-amino group (adamantyl) or those with a stronger electron withdrawing substituent on C(7) (trifluormethyl group). Based on AChE inhibition, compounds with an n-octylamino chain or adamantyl substituent were shown to possess the capacity for further development as potential drugs for treatment of neurodegenerative diseases.
Collapse
|
44
|
Franjesevic AJ, Sillart SB, Beck JM, Vyas S, Callam CS, Hadad CM. Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase. Chemistry 2019; 25:5337-5371. [PMID: 30444932 PMCID: PMC6508893 DOI: 10.1002/chem.201805075] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/15/2018] [Indexed: 01/10/2023]
Abstract
Organophosphorus (OP) nerve agents and pesticides present significant threats to civilian and military populations. OP compounds include the nefarious G and V chemical nerve agents, but more commonly, civilians are exposed to less toxic OP pesticides, resulting in the same negative toxicological effects and thousands of deaths on an annual basis. After decades of research, no new therapeutics have been realized since the mid-1900s. Upon phosphylation of the catalytic serine residue, a process known as inhibition, there is an accumulation of acetylcholine (ACh) in the brain synapses and neuromuscular junctions, leading to a cholinergic crisis and eventually death. Oxime nucleophiles can reactivate select OP-inhibited acetylcholinesterase (AChE). Yet, the fields of reactivation of AChE and butyrylcholinesterase encounter additional challenges as broad-spectrum reactivation of either enzyme is difficult. Additional problems include the ability to cross the blood brain barrier (BBB) and to provide therapy in the central nervous system. Yet another complication arises in a competitive reaction, known as aging, whereby OP-inhibited AChE is converted to an inactive form, which until very recently, had been impossible to reverse to an active, functional form. Evaluations of uncharged oximes and other neutral nucleophiles have been made. Non-oxime reactivators, such as aromatic general bases and Mannich bases, have been developed. The issue of aging, which generates an anionic phosphylated serine residue, has been historically recalcitrant to recovery by any therapeutic approach-that is, until earlier this year. Mannich bases not only serve as reactivators of OP-inhibited AChE, but this class of compounds can also recover activity from the aged form of AChE, a process referred to as resurrection. This review covers the modern efforts to address all of these issues and notes the complexities of therapeutic development along these different lines of research.
Collapse
Affiliation(s)
- Andrew J Franjesevic
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA
| | - Sydney B Sillart
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA
| | - Jeremy M Beck
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA
| | - Shubham Vyas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA
- Current Address: Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO, 80401, USA
| | - Christopher S Callam
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA
| |
Collapse
|
45
|
Alvarado W, Bremer PL, Choy A, Dinh HN, Eung A, Gonzalez J, Ly P, Tran T, Nakayama K, Schwans JP, Sorin EJ. Understanding the enzyme-ligand complex: insights from all-atom simulations of butyrylcholinesterase inhibition. J Biomol Struct Dyn 2019; 38:1028-1041. [PMID: 30909811 DOI: 10.1080/07391102.2019.1596836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
All-atom molecular dynamics simulations of butyrylcholinesterase (BChE) sans inhibitor and in complex with each of 15 dialkyl phenyl phosphate derivatives were conducted to characterize inhibitor binding modes and strengths. Each system was sampled on the 250 ns timescale in explicit ionic solvent, for a total of over 4 μs of simulation time. A K-means algorithm was used to cluster the resulting structures into distinct binding modes, which were further characterized based on atomic-level contacts between inhibitor chemical groups and active site residues. Comparison of experimentally observed inhibition constants (KI) with the resulting contact tables provides structural explanations for relative binding coefficients and highlights several notable interaction motifs. These include ubiquitous contact between glycines in the oxyanion hole and the inhibitor phosphate group; a sterically driven binding preference for positional isomers that extend aromaticity; a stereochemical binding preference for choline-containing inhibitors, which mimic natural BChE substrates; and the mechanically induced opening of the omega loop region to fully expose the active site gorge in the presence of choline-containing inhibitors. Taken together, these observations can greatly inform future design of BChE inhibitors, and the approach reported herein is generalizable to other enzyme-inhibitor systems and similar complexes that depend on non-covalent molecular recognition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Walter Alvarado
- Department of Physics & Astronomy, California State University Long Beach, Long Beach, CA, USA
| | - Parker Ladd Bremer
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Angela Choy
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA, USA
| | - Helen N Dinh
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Aingty Eung
- Department of Computer Engineering & Computer Science, California State University Long Beach, Long Beach, CA, USA
| | - Jeannette Gonzalez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Phillippe Ly
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Trina Tran
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Kensaku Nakayama
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Jason P Schwans
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Eric J Sorin
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| |
Collapse
|
46
|
Highly potent and selective aryl-1,2,3-triazolyl benzylpiperidine inhibitors toward butyrylcholinesterase in Alzheimer's disease. Bioorg Med Chem 2019; 27:931-943. [DOI: 10.1016/j.bmc.2018.12.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022]
|
47
|
Hostalkova A, Marikova J, Opletal L, Korabecny J, Hulcova D, Kunes J, Novakova L, Perez DI, Jun D, Kucera T, Andrisano V, Siatka T, Cahlikova L. Isoquinoline Alkaloids from Berberis vulgaris as Potential Lead Compounds for the Treatment of Alzheimer's Disease. JOURNAL OF NATURAL PRODUCTS 2019; 82:239-248. [PMID: 30701972 DOI: 10.1021/acs.jnatprod.8b00592] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three new alkaloids, bersavine (3), muraricine (4), and berbostrejdine (8), together with seven known isoquinoline alkaloids (1-2, 5-7, 9, and 10) were isolated from an alkaloidal extract of the root bark of Berberis vulgaris. The structures of the isolated compounds were determined by spectroscopic methods, including 1D and 2D NMR techniques, HRMS, and optical rotation, and by comparison of the obtained data with those in the literature. The NMR data of berbamine (5), aromoline (6), and obamegine (7) were completely assigned employing 2D NMR experiments. Alkaloids isolated in sufficient amounts were evaluated for their in vitro acetylcholinesterase, butyrylcholinesterase (BuChE), prolyl oligopeptidase, and glycogen synthase kinase-3β inhibitory activities. Selected compounds were studied for their ability to permeate through the blood-brain barrier. Significant human BuChE ( hBuChE) inhibitory activity was demonstrated by 6 (IC50 = 0.82 ± 0.10 μM). The in vitro data were further supported by computational analysis that showed the accommodation of 6 in the active site of hBuChE.
Collapse
Affiliation(s)
- Anna Hostalkova
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy , Charles University , Heyrovskeho 1203 , 500 05 Hradec Kralove , Czech Republic
| | - Jana Marikova
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy , Charles University , Heyrovskeho 1203 , 500 05 Hradec Kralove , Czech Republic
| | - Lubomir Opletal
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy , Charles University , Heyrovskeho 1203 , 500 05 Hradec Kralove , Czech Republic
| | - Jan Korabecny
- Department of Toxicoloxy and Military Pharmacy , Trebesska 1575 , 500 05 Hradec Kralove , Czech Republic
- Biomedical Research Centre , University Hospital Hradec Kralove , Sokolska 581 , 500 05 Hradec Kralove , Czech Republic
| | - Daniela Hulcova
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy , Charles University , Heyrovskeho 1203 , 500 05 Hradec Kralove , Czech Republic
- Department of Pharmacognosy, Faculty of Pharmacy , Charles University , Heyrovskeho 1203 , 500 05 Hradec Kralove , Czech Republic
| | - Jiri Kunes
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy , Charles University , Heyrovskeho 1203 , 500 05 Hradec Kralove , Czech Republic
| | - Lucie Novakova
- Department of Analytical Chemistry, Faculty of Pharmacy , Charles University , Heyrovskeho 1203 , 500 05 Hradec Kralove , Czech Republic
| | - Daniel I Perez
- Centro de Investigaciones Biologicas-CSIC , Avenida Ramiro de Maeztu 9 , 28040 Madrid , Spain
| | - Daniel Jun
- Department of Toxicoloxy and Military Pharmacy , Trebesska 1575 , 500 05 Hradec Kralove , Czech Republic
- Biomedical Research Centre , University Hospital Hradec Kralove , Sokolska 581 , 500 05 Hradec Kralove , Czech Republic
| | - Tomas Kucera
- Department of Toxicoloxy and Military Pharmacy , Trebesska 1575 , 500 05 Hradec Kralove , Czech Republic
| | - Vincenza Andrisano
- Department for Life Quality Studies , University of Bologna , Corso D'Augusto 237 , 47921 Rimini , Italy
| | - Tomas Siatka
- Department of Pharmacognosy, Faculty of Pharmacy , Charles University , Heyrovskeho 1203 , 500 05 Hradec Kralove , Czech Republic
| | - Lucie Cahlikova
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy , Charles University , Heyrovskeho 1203 , 500 05 Hradec Kralove , Czech Republic
| |
Collapse
|
48
|
Kilic B, Erdogan M, Gulcan HO, Aksakal F, Oruklu N, Bagriacik EU, Dogruer DS. Design, Synthesis and Investigation of New Diphenyl Substituted Pyridazinone Derivatives as Both Cholinesterase and Aβ-Aggregation Inhibitors. Med Chem 2019; 15:59-76. [DOI: 10.2174/1573406414666180524073241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 11/22/2022]
Abstract
Background:
With respect to the increase in the average life expectancy, Alzheimer
Disease (AD), the most common form of age-related dementia, has become a major threat to the
population over the age of 65 during the past several decades. The majority of AD treatments are
focused on cholinergic and amyloid hypotheses.
Objective:
In this study, three series of diphenyl-2-(2-(4-substitutedpiperazin-1-yl)ethyl)pyridazin-
3(2H)-one derivatives were designed, synthesized and investigated for their ability to inhibit both
cholinesterase enzymes and amyloid-β aggregation.
Method:
The inhibitory activities of the synthesized compounds on AChE (from electric eel) and
BChE (from equine serum) were determined by the modified Ellman’s method. The reported
thioflavin T-based fluorometric assay was performed to investigate the effect of the selected compounds
on the aggregation of Aβ1-42. The cytotoxic effect of the compounds (4g, 11g and 18g) was
monitored in 3T3 cell lines to gain insight into therapeutic potential of the compounds by using
MTT assay. The crystal structures of the AChE (1EVE) and BChE (1P0I) enzymes were retrieved
from the RCSB Protein Data Bank and Molecular Operating Environment (MOE) software was
used for molecular docking of the ligands.
Results:
Among the tested compounds, 5,6-diphenyl derivative 18g was identified as the most potent
and selective AChE inhibitor (IC50 = 1.75 µM, Selectivity Index for AChE > 22.857). 4,6-
Diphenyl derivative 11g showed the highest and the most selectivity for BChE (IC50= 4.97 µM, SI
for AChE < 0.124). Interestingly, 4,5-diphenyl derivative 4g presented dual cholinesterase inhibition
(AChE IC50= 5.11 µM; BChE IC50= 14.16 µM, SI for AChE = 2.771).
Conclusion:
Based on biological activity results and low toxicity of the compounds, it can be said
that diphenyl substituted pyridazinone core is a valuable scaffold. Especially, dual inhibitory potencies
of 4,5-diphenylpyridazin-3(2H)-one core for the cholinesterase enzymes and Aβ-
aggregation makes this core a promising disease-modifying agent.
Collapse
Affiliation(s)
- Burcu Kilic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Merve Erdogan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Hayrettin O. Gulcan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Gazimagosa, North Cyprus, Cyprus
| | - Fatma Aksakal
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nihan Oruklu
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Emin U. Bagriacik
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Deniz S. Dogruer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
49
|
Guler GO, Zengin G, Karadag F, Mollica A, Picot CMN, Mahomoodally MF. HPLC-DAD profiles and pharmacological insights of Onobrychis argyrea subsp isaurica extracts. Comput Biol Chem 2018; 76:256-263. [DOI: 10.1016/j.compbiolchem.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022]
|
50
|
Shah MS, Najam-Ul-Haq M, Shah HS, Farooq Rizvi SU, Iqbal J. Quinoline containing chalcone derivatives as cholinesterase inhibitors and their in silico modeling studies. Comput Biol Chem 2018; 76:310-317. [PMID: 30142564 DOI: 10.1016/j.compbiolchem.2018.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/15/2018] [Accepted: 08/10/2018] [Indexed: 11/18/2022]
Abstract
Cholinesterases (ChEs) play a vital role in regulating cholinergic transmission. Inhibition of ChEs is thought to be an emerging and useful therapeutic target for neurodegenerative disorders through restoration of acetylcholine (ACh) levels in the brain (e.g. Alzheimer's disease). To increase the chemical diversity of cholinesterase inhibitors, a series of quinoline chalcones derivatives were tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) isoenzymes. All tested compounds (4a-1; 5a-s) exhibited inhibitory activities against AChE and BChE to a considerable extent. Molecular docking studies were performed by using homology models on both AChE and BChE isoenzymes with the aim of exploring probable binding modes of the most potent inhibitor. In order to evaluate drug likeness of newly tested molecules, we carried out in-silico ADME evaluation. All compounds displayed favourable ADME findings which predict good oral bioavailability of these derivatives. Due to an excellent ADME profile the tested compounds were predicted to be safer which can be considered as novel cholinesterase inhibitors.
Collapse
Affiliation(s)
- Muhammad Shakil Shah
- Centre for Advanced Drug Research, COMSATS University, Islambad, Abbottabad Campus, Abbottabad, 22060, Pakistan; Division of Analytical Chemistry, Institute of Chemical Science, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Najam-Ul-Haq
- Division of Analytical Chemistry, Institute of Chemical Science, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Hamid Saeed Shah
- Centre for Advanced Drug Research, COMSATS University, Islambad, Abbottabad Campus, Abbottabad, 22060, Pakistan; College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University, Islambad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|