1
|
Hakim A, Connally NJ, Schnitzler GR, Cho MH, Jiang ZG, Sunyaev SR, Gupta RM. Missing Regulation Between Genetic Association and Transcriptional Abundance for Hypercholesterolemia Genes. Genes (Basel) 2025; 16:84. [PMID: 39858631 PMCID: PMC11764661 DOI: 10.3390/genes16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Low-density lipoprotein cholesterol (LDL-C) is a well-established risk factor for cardiovascular disease, and it plays a causal role in the development of atherosclerosis. Genome-wide association studies (GWASs) have successfully identified hundreds of genetic variants associated with LDL-C. Most of these risk loci fall in non-coding regions of the genome, and it is unclear how these non-coding variants affect circulating lipid levels. One hypothesis is that genetically mediated variation in transcript abundance, detected via the analysis of expressed quantitative trait loci (eQTLs), is key to the biologic function of causal variants. Here, we investigate the hypothesis that non-coding GWAS risk variants affect the homeostatic expression of a nearby putatively causal gene for serum LDL-C levels. Methods: We establish a set of twenty-one expert-curated and validated genes implicated in hypercholesterolemia via dose-dependent pharmacologic modulation in human adults, for which the relevant tissue type has been established. We show that the expression of these LDL-C genes is impacted by eQTLs in relevant tissues and that there are significant genomic-risk loci in LDL-GWAS near these causal genes. We evaluate, using statistical colocalization, whether a single variant or set of variants in each genetic locus is responsible for the GWAS and eQTL signals. Results: Genome-wide association study results for serum LDL-C levels demonstrate that the 402 identified genomic-risk loci for LDL-C are highly enriched for known causal genes for LDL-C (OR 527, 95% CI 126-5376, p < 2.2 × 10-16). However, we find limited evidence for colocalization between GWAS signals near validated hypercholesterolemia genes and eQTLs in relevant tissues (colocalization rate of 26% at a locus-level colocalization probability > 50%). Conclusions: Our results highlight the complexity of genetic regulatory effects for causal hypercholesterolemia genes; we suggest that context-responsive eQTLs may explain the effects of non-coding GWAS hits that do not overlap with standard eQTLs.
Collapse
Affiliation(s)
- Aaron Hakim
- Division of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.H.); (G.R.S.)
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA;
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (N.J.C.); (S.R.S.)
| | - Noah J. Connally
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (N.J.C.); (S.R.S.)
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02215, USA
| | - Gavin R. Schnitzler
- Division of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.H.); (G.R.S.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (N.J.C.); (S.R.S.)
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA;
| | - Z. Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| | - Shamil R. Sunyaev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (N.J.C.); (S.R.S.)
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02215, USA
| | - Rajat M. Gupta
- Division of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.H.); (G.R.S.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (N.J.C.); (S.R.S.)
| |
Collapse
|
2
|
Li HX, Sun MR, Zhang Y, Song LL, Zhang F, Song YQ, Hou XD, Ge GB. Human Carboxylesterase 1A Plays a Predominant Role in Hydrolysis of the Anti-Dyslipidemia Agent Fenofibrate in Humans. Drug Metab Dispos 2023; 51:1490-1498. [PMID: 37550069 DOI: 10.1124/dmd.123.001365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Fenofibrate, a marketed peroxisome proliferator-activated receptor-α (PPARα) agonist, has been widely used for treating severe hypertriglyceridemia and mixed dyslipidemia. As a canonical prodrug, fenofibrate can be rapidly hydrolyzed to release the active metabolite (fenofibric acid) in vivo, but the crucial enzyme(s) responsible for fenofibrate hydrolysis and the related hydrolytic kinetics have not been well-investigated. This study aimed to assign the key organs and crucial enzymes involved in fenofibrate hydrolysis in humans, as well as reveal the impact of fenofibrate hydrolysis on its non-PPAR-mediated biologic activities. Our results demonstrated that fenofibrate could be rapidly hydrolyzed in the preparations from both human liver and lung to release fenofibric acid. Reaction phenotyping assays coupling with chemical inhibition assays showed that human carboxylesterase 1A (hCES1A) played a predominant role in fenofibrate hydrolysis in human liver and lung, while human carboxylesterase 2A (hCES2A) and human monoacylglycerol esterase (hMAGL) contributed to a very lesser extent. Kinetic analyses showed that fenofibrate could be rapidly hydrolyzed by hCES1A in human liver preparations, while the inherent clearance of hCES1A-catalyzed fenofibrate hydrolysis is much higher (>200-fold) than than that of hCES2A or hMAGL. Biologic assays demonstrated that both fenofibrate and fenofibric acid showed very closed Nrf2 agonist effects, but fenofibrate hydrolysis strongly weakens its inhibitory effects against both hCES2A and hNtoum. Collectively, our findings reveal that the liver is the major organ and hCES1A is the predominant enzyme-catalyzing fenofibrate hydrolysis in humans, while fenofibrate hydrolysis significantly reduces inhibitory effects of fenofibrate against serine hydrolases. SIGNIFICANCE STATEMENT: Fenofibrate can be completely converted to fenofibric acid in humans and subsequently exert its pharmacological effects, but the hydrolytic pathways of fenofibrate in humans have not been well-investigated. This study reported that the liver was the predominant organ and human carboxylesterase 1A was the crucial enzyme involved in fenofibrate hydrolysis in humans.
Collapse
Affiliation(s)
- Hong-Xin Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Meng-Ru Sun
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Ya Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Li-Lin Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Feng Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Yun-Qing Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Xu-Dong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| |
Collapse
|
3
|
Lin Z, Zheng K, Azad MA, Davé RN. Preparation of Free-Flowing Spray-Dried Amorphous Composites Using Neusilin ®. AAPS PharmSciTech 2023; 24:51. [PMID: 36703032 DOI: 10.1208/s12249-023-02511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
A highly porous additive, Neusilin®, with high adsorption capability is investigated to improve bulk properties, hence processability of spray-dried amorphous solid dispersions (ASDs). Griseofulvin (GF) is applied as a model BCS class 2 drug in ASDs. Two grades of Neusilin®, US2 (coarser) and UFL2 (finer), were used as additives to produce spray-dried amorphous composite (AC) powders, and their performance was compared with the resulting ASDs without added Neusilin®. The resulting AC powders that included Neusilin® had greatly enhanced flowability (flow function coefficient (FFC) > 10) comparable to larger particles (100 μm) yet had finer particle size (< 50 μm), hence retaining the advantage of fast dissolution rate of finer sizes. Dissolution results demonstrated that achieved GF supersaturation for AC powders with Neusilin® was as high as 3 times that of crystalline GF concentration and was achieved within 30 min. In addition, 80% of drug was released within 4 min. The flowability improvement for AC powders with Neusilin® was more significant as compared to spray-dried ASDs without Neusilin®. Thus, the role of Neusilin® in flowability improvement was evident, considering that spray-dried AC with Neusilin® UFL2 has higher FFC than ASDs having a similar size. Lastly, the AC powders retained a fully amorphous state of GF after 3-month ambient storage. The overall results conveyed that the improved flowability and dissolution rate could outweigh the loss of drug loading resulted by addition of Neusilin®.
Collapse
Affiliation(s)
- Zhixing Lin
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kai Zheng
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Mohammad A Azad
- Chemical, Biological and Bioengineering Department, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
4
|
Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeutic drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Honda A, Kamata S, Akahane M, Machida Y, Uchii K, Shiiyama Y, Habu Y, Miyawaki S, Kaneko C, Oyama T, Ishii I. Functional and Structural Insights into Human PPARα/δ/γ Subtype Selectivity of Bezafibrate, Fenofibric Acid, and Pemafibrate. Int J Mol Sci 2022; 23:ijms23094726. [PMID: 35563117 PMCID: PMC9102038 DOI: 10.3390/ijms23094726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
Among the agonists against three peroxisome proliferator-activated receptor (PPAR) subtypes, those against PPARα (fibrates) and PPARγ (glitazones) are currently used to treat dyslipidemia and type 2 diabetes, respectively, whereas PPARδ agonists are expected to be the next-generation metabolic disease drug. In addition, some dual/pan PPAR agonists are currently being investigated via clinical trials as one of the first curative drugs against nonalcoholic fatty liver disease (NAFLD). Because PPARα/δ/γ share considerable amino acid identity and three-dimensional structures, especially in ligand-binding domains (LBDs), clinically approved fibrates, such as bezafibrate, fenofibric acid, and pemafibrate, could also act on PPARδ/γ when used as anti-NAFLD drugs. Therefore, this study examined their PPARα/δ/γ selectivity using three independent assays—a dual luciferase-based GAL4 transactivation assay for COS-7 cells, time-resolved fluorescence resonance energy transfer-based coactivator recruitment assay, and circular dichroism spectroscopy-based thermostability assay. Although the efficacy and efficiency highly varied between agonists, assay types, and PPAR subtypes, the three fibrates, except fenofibric acid that did not affect PPARδ-mediated transactivation and coactivator recruitment, activated all PPAR subtypes in those assays. Furthermore, we aimed to obtain cocrystal structures of PPARδ/γ-LBD and the three fibrates via X-ray diffraction and versatile crystallization methods, which we recently used to obtain 34 structures of PPARα-LBD cocrystallized with 17 ligands, including the fibrates. We herein reveal five novel high-resolution structures of PPARδ/γ–bezafibrate, PPARγ–fenofibric acid, and PPARδ/γ–pemafibrate, thereby providing the molecular basis for their application beyond dyslipidemia treatment.
Collapse
Affiliation(s)
- Akihiro Honda
- Department of Health Chemistry, Showa Pharmaceutical University, Machida 194-8543, Tokyo, Japan; (A.H.); (S.K.); (M.A.); (Y.M.); (K.U.); (Y.S.); (Y.H.); (S.M.); (C.K.)
| | - Shotaro Kamata
- Department of Health Chemistry, Showa Pharmaceutical University, Machida 194-8543, Tokyo, Japan; (A.H.); (S.K.); (M.A.); (Y.M.); (K.U.); (Y.S.); (Y.H.); (S.M.); (C.K.)
| | - Makoto Akahane
- Department of Health Chemistry, Showa Pharmaceutical University, Machida 194-8543, Tokyo, Japan; (A.H.); (S.K.); (M.A.); (Y.M.); (K.U.); (Y.S.); (Y.H.); (S.M.); (C.K.)
| | - Yui Machida
- Department of Health Chemistry, Showa Pharmaceutical University, Machida 194-8543, Tokyo, Japan; (A.H.); (S.K.); (M.A.); (Y.M.); (K.U.); (Y.S.); (Y.H.); (S.M.); (C.K.)
| | - Kie Uchii
- Department of Health Chemistry, Showa Pharmaceutical University, Machida 194-8543, Tokyo, Japan; (A.H.); (S.K.); (M.A.); (Y.M.); (K.U.); (Y.S.); (Y.H.); (S.M.); (C.K.)
| | - Yui Shiiyama
- Department of Health Chemistry, Showa Pharmaceutical University, Machida 194-8543, Tokyo, Japan; (A.H.); (S.K.); (M.A.); (Y.M.); (K.U.); (Y.S.); (Y.H.); (S.M.); (C.K.)
| | - Yuki Habu
- Department of Health Chemistry, Showa Pharmaceutical University, Machida 194-8543, Tokyo, Japan; (A.H.); (S.K.); (M.A.); (Y.M.); (K.U.); (Y.S.); (Y.H.); (S.M.); (C.K.)
| | - Saeka Miyawaki
- Department of Health Chemistry, Showa Pharmaceutical University, Machida 194-8543, Tokyo, Japan; (A.H.); (S.K.); (M.A.); (Y.M.); (K.U.); (Y.S.); (Y.H.); (S.M.); (C.K.)
| | - Chihiro Kaneko
- Department of Health Chemistry, Showa Pharmaceutical University, Machida 194-8543, Tokyo, Japan; (A.H.); (S.K.); (M.A.); (Y.M.); (K.U.); (Y.S.); (Y.H.); (S.M.); (C.K.)
| | - Takuji Oyama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu 400-8510, Yamanashi, Japan;
| | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University, Machida 194-8543, Tokyo, Japan; (A.H.); (S.K.); (M.A.); (Y.M.); (K.U.); (Y.S.); (Y.H.); (S.M.); (C.K.)
- Correspondence:
| |
Collapse
|
6
|
Munro MJL, Hulsebosch SE, Marks SL, Gilor C. Efficacy of a micronized, nanocrystal fenofibrate formulation in treatment of hyperlipidemia in dogs. J Vet Intern Med 2021; 35:1733-1742. [PMID: 34096101 PMCID: PMC8295657 DOI: 10.1111/jvim.16190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Background Safe, effective, and readily available drug therapies are required for the management of hyperlipidemia and its associated complications in dogs. Objectives To investigate the efficacy of a micronized, nanocrystal formulation of fenofibrate (Tricor) in the treatment of hyperlipidemia in dogs. Animals Ten client‐owned dogs with primary (n = 7) and secondary (n = 3) hyperlipidemia. All dogs had hypertriglyceridemia at baseline; 3 dogs also had hypercholesterolemia. Methods Prospective dose‐escalation study. Dogs were treated with fenofibrate orally once daily in up to 3 cycles of 21 days each. Fenofibrate dose was increased at the end of each cycle if hypertriglyceridemia persisted and adverse effects were not documented. Complete blood count, biochemistry, and urine protein:creatinine ratio were collected serially. Baseline (T0) parameters were compared to time of maximal reduction in serum triglyceride concentrations (T1) and reported as median (range). Results Triglycerides normalized in all dogs (T0 = 662 mg/dL [189‐2391]; T1 = 113 mg/dL [81‐132]; P = .002). Fenofibrate dose at T1 = 6.4 mg/kg PO q24h (range, 2.2‐13.5). T1 was achieved at 3 (n = 4), 6 (n = 4), and 9 (n = 2) weeks. Serum cholesterol concentrations decreased in 9 of 10 dogs. Quiet demeanor and firm stools in 1 dog were the only reported adverse reactions. Fenofibrate administration resulted in a significant reduction in median alkaline phosphatase activity (P = .049). Conclusions and Clinical Importance Over 21 to 63 days, TriCor was effective in the management of primary and secondary hyperlipidemia in dogs.
Collapse
Affiliation(s)
- Matthew J L Munro
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, 1 Garrod Drive, Davis, California 95616, USA.,Department of Veterinary Clinical Sciences, The Melbourne Veterinary School, University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | - Sean E Hulsebosch
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, 1 Shields Ave., Davis, California 95616, USA
| | - Stanley L Marks
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, 1 Shields Ave., Davis, California 95616, USA
| | - Chen Gilor
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, 1 Shields Ave., Davis, California 95616, USA.,Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2560 SE 16th Ave., Gainesville, Florida 32610, USA
| |
Collapse
|
7
|
Das S, McCreary J, Shamim S, Kalayjian T. Reversal of severe hypertriglyceridemia with intermittent fasting and a very-low-carbohydrate ketogenic diet: a case series. Curr Opin Endocrinol Diabetes Obes 2020; 27:308-311. [PMID: 32740049 DOI: 10.1097/med.0000000000000566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To illustrate successful reversal of hypertriglyceridemia using a very-low-carbohydrate ketogenic diet in conjunction with intermittent fasting in two patients. RECENT FINDINGS Hypertriglyceridemia remains an important component of residual risk for atherosclerotic cardiovascular disease. Current guidelines from the AHA/ACC recommend the initiation of a very-low-fat diet to treat persistently elevated triglycerides, whereas the National Lipid Association argues that a very-low-carbohydrate, high-fat diet is contraindicated in severe hypertriglyceridemia. In contrast, we report resolution of two cases of severe hypertriglyceridemia with implementation of very-low-carbohydrate ketogenic diets and intermittent fasting. SUMMARY Here, we describe two patients who have demonstrated substantial reductions in serum triglycerides, effectively reversing severe hypertriglyceridemia using unconventional dietary methods. Although anecdotal, these cases point to a critical lack of flexibility in current dietary guidelines that hinder their application in clinical practice.
Collapse
Affiliation(s)
- Subrat Das
- Mount Sinai Morningside-West, Icahn School of Medicine at Mount Sinai
| | | | | | - Tro Kalayjian
- Yale New Haven Health System, Greenwich Hospital, Greenwich, Connecticut
- Dr Tro's Medical Weight Loss & Direct Primary Care, New York, USA
| |
Collapse
|
8
|
Sun R, Shen C, Shafique S, Mustapha O, Hussain T, Khan IU, Mehmood Y, Anwer K, Shahzad Y, Yousaf AM. Electrosprayed Polymeric Nanospheres for Enhanced Solubility, Dissolution Rate, Oral Bioavailability and Antihyperlipidemic Activity of Bezafibrate. Int J Nanomedicine 2020; 15:705-715. [PMID: 32099359 PMCID: PMC6999775 DOI: 10.2147/ijn.s235146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background Bezafibrate is a BCS class II drug as it presents very low solubility in water; therefore, its bioavailability after oral administration is very poor. The aim of this work was to enhance solubility and dissolution rate of bezafibrate in water in order to enhance its oral bioavailability. Methods Several formulations were prepared using PVP K30 and Cremophor ELP employing the solvent-evaporation method and the electrospraying technique. Solubility, release rate, bioavailability in male Sprague Dawley rats, and lipid profile attributes in Wistar rats were assessed in comparison with bezafibrate plain powder. Solid-state characterization was carried out using X-ray diffraction (XRD) analysis, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Results All the formulations exerted positive effect towards the desired goal. In particular, the optimized formulation furnished about 14-fold enhanced solubility and 85.48 ± 10.16% drug was released in 10 min as compared with bezafibrate alone (4.06 ± 2.59%). The drug existed in the amorphous state in the prepared sample as confirmed by XRD and DSC, whilst no drug-excipient interactions were observed through FTIR analysis. Moreover, SEM revealed smooth-surfaced spherical particles of the optimized formulation. A 5.5-fold higher oral bioavailability was achieved with the optimized formulation in comparison with bezafibrate plain powder. Also, TG, LDL and TC were decreased, and HDL was increased considerably in HFD-treated rats. Conclusion The optimized formulation consisting of bezafibrate, PVP K30 and cremophor ELP (1/12/1.5, w/w/w) might be a capable drug delivery system for orally administering poorly water-soluble bezafibrate with improved bioavailability and antihyperlipidemic effects.
Collapse
Affiliation(s)
- Ru Sun
- Department of Pharmacy, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, People's Republic of China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, People's Republic of China
| | - Shumaila Shafique
- Faculty of Pharmaceutical Sciences, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Omer Mustapha
- Faculty of Pharmaceutical Sciences, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore 54000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Khaleeq Anwer
- Office of Chief Executive Officer, District Health Authority, Pakpattan 57400, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore 54000, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore 54000, Pakistan
| |
Collapse
|
9
|
Joshi R, Raje S, Akram W, Garud N. Particle engineering of fenofibrate for advanced drug delivery system. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2019. [DOI: 10.1186/s43094-019-0010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Cheung Y, O’Brien R, Ekinci EI. What is new in lipid‐lowering therapies in diabetes? Intern Med J 2019; 49:1472-1480. [DOI: 10.1111/imj.14291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/18/2019] [Accepted: 03/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Richard O’Brien
- Austin Health Endocrine Centre Melbourne Victoria Australia
- Department of MedicineAustin Health, The University of Melbourne Melbourne Victoria Australia
| | - Elif I. Ekinci
- Austin Health Endocrine Centre Melbourne Victoria Australia
- Department of MedicineAustin Health, The University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
11
|
Alshaikh RA, Essa EA, El Maghraby GM. Preparation of stabilized submicron fenofibrate crystals on niacin as a hydrophilic hydrotropic carrier. Pharm Dev Technol 2019; 25:168-177. [PMID: 31642728 DOI: 10.1080/10837450.2019.1682609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Fenofibrate is antihyperlipidemic which has low and variable oral bioavailability due to erratic dissolution characteristics. Niacin showed a potential atheroprotective effects suggesting possible co-administration with fenofibrate with a potential for development of fixed dose combination. The chemical structure of both drugs highlights the opportunity for interaction upon co-processing due to the existence of complementary hydrogen bonding sites. Accordingly, fenofibrate and niacin were co-processed by wet co-grinding and the resulting product was assessed using scanning electron microscopy, FTIR, thermal analysis and X-ray diffraction in addition to dissolution studies. The instrumental analysis indicated the development of submicron fenofibrate crystals stabilized over the surface of niacin crystals. The developed submicron crystals showed fast dissolution of fenofibrate depending on the relative proportions of fenofibrate to niacin. Co-processing of both drugs at dose ratio which contained higher proportion of niacin resulted in further enhancement in the dissolution rate. This further enhancement was attributed to the hydrotropic effect of niacin which was proved by solubility study in addition to size reduction. This supposition was confirmed from the inferior dissolution of fenofibrate from the physical mixture. The study introduces fenofibrate/niacin as potential fixed dose combination for augmented dissolution rate and pharmacological effects.
Collapse
Affiliation(s)
- Rasha A Alshaikh
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
12
|
Immediate-released pelletized solid dispersion containing fenofibrate: Formulation, in vitro characterization, and bioequivalence studies in experimental beagle dogs. Int J Pharm 2019; 570:118661. [DOI: 10.1016/j.ijpharm.2019.118661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
|
13
|
Ahn JB, Kim DH, Lee SE, Pyo YC, Park JS. Improvement of the dissolution rate and bioavailability of fenofibrate by the supercritical anti-solvent process. Int J Pharm 2019; 564:263-272. [DOI: 10.1016/j.ijpharm.2019.04.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 10/27/2022]
|
14
|
Jung JY, Choi Y, Suh CH, Yoon D, Kim HA. Effect of fenofibrate on uric acid level in patients with gout. Sci Rep 2018; 8:16767. [PMID: 30425304 PMCID: PMC6233215 DOI: 10.1038/s41598-018-35175-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Gout is a chronic disease associated with deposition of monosodium urate crystals and accompanied by diabetes, hypertension, and dyslipidemia. Hypertriglyceridemia is common among patients with gout, and fenofibrate is usually used to reduce triglyceride levels. The aim of this study is to determine the effect of uric acid reduction by fenofibrate in patients with gout administered uric acid lowering agents (viz., the xanthine oxidase inhibitors allopurinol and febuxostat). Data from 863 patients with gout were collected from electronic medical records comprising information on underlying diseases, laboratory findings, and drug histories. Among all the patients, 70 (8.11%) took fenofibrate with allopurinol or febuxostat. Male and young patients took fenofibrate more frequently, and hypertension was less frequent in patients administered xanthine oxidase inhibitors and fenofibrate than in those administered only xanthine oxidase inhibitors. After the treatment, serum uric acid levels more significantly decreased (−1.81 ± 2.41 vs. −2.40 ± 2.28 mg/dL, p = 0.043) in patients with fenofibrate cotreatment, than in those administered allopurinol or febuxostat alone. The effect of uric acid reduction was larger (b = −1.098, p < 0.001) in patients taking glucocorticoids than in those administered other treatments. There was no difference in the levels of creatinine, blood urea nitrogen, and aminotransferases between patients treated with and without fenofibrate. Fenofibrate additionally reduced uric acid levels without showing any change in the results of renal or liver function tests, suggesting that the addition of fenofibrate is a reasonable option for treating gout in patients having high triglyceride levels.
Collapse
Affiliation(s)
- Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Young Choi
- Department of Biomedical Informatics, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.,Department of Biomedical Science, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Dukyong Yoon
- Department of Biomedical Informatics, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea. .,Department of Biomedical Science, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.
| |
Collapse
|
15
|
Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating. Int J Pharm 2018; 543:288-299. [DOI: 10.1016/j.ijpharm.2018.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022]
|
16
|
Lian X, Wang G, Zhou H, Zheng Z, Fu Y, Cai L. Anticancer Properties of Fenofibrate: A Repurposing Use. J Cancer 2018; 9:1527-1537. [PMID: 29760790 PMCID: PMC5950581 DOI: 10.7150/jca.24488] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/25/2018] [Indexed: 12/22/2022] Open
Abstract
Cancer is a leading cause of death throughout the world, and cancer therapy remains a big medical challenge in terms of both its therapeutic efficacy and safety. Therefore, to find out a safe anticancer drug has been long goal for oncologist and medical scientists. Among clinically used medicines with no or little toxicity, fenofibrate is a drug of the fibrate class that plays an important role in lowering the levels of serum cholesterol and triglycerides while elevating the levels of high-density lipoproteins. Recently, several studies have implied that fenofibrate may exert anticancer effects via a variety of pathways involved in apoptosis, cell-cycle arrest, invasion, and migration. Given the great potential that fenofibrate may have anticancer effects, this review was to investigate all published works which directly or indirectly support the anticancer activity of fenofibrate. These studies provide evidence that fenofibrate exerted antitumor effects in several human cancer cell lines, such as breast, liver, glioma, prostate, pancreas, and lung cancer cell lines. Among these studies some have further confirmed the possibility and efficacy of fenofibrate anticancer in xenograft mouse models. In the last part of this review, we also discuss the potential mechanisms of action of fenofibrate based on the available information. Overall, we may repurpose fenofibrate as an anticancer drug in cancer treatment, which urgently need further and comprehensively investigated.
Collapse
Affiliation(s)
- Xin Lian
- Department of Urology, the First Hospital of Jilin University; 71 Xinmin Street, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Gang Wang
- Department of Urology, the First Hospital of Jilin University; 71 Xinmin Street, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, the First Hospital of Jilin University; 71 Xinmin Street, Changchun 130021, China
| | - Zongyu Zheng
- Department of Urology, the First Hospital of Jilin University; 71 Xinmin Street, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Yaowen Fu
- Department of Urology, the First Hospital of Jilin University; 71 Xinmin Street, Changchun 130021, China
| | - Lu Cai
- Department of Urology, the First Hospital of Jilin University; 71 Xinmin Street, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
17
|
Wang D, Wang Y. Fenofibrate monotherapy-induced rhabdomyolysis in a patient with hypothyroidism: A rare case report and literature review. Medicine (Baltimore) 2018; 97:e0318. [PMID: 29620657 PMCID: PMC5902300 DOI: 10.1097/md.0000000000010318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RATIONALE Fenofibrate is a fibric acid derivative indicated for use in hypertriglyceridemia and mixed dyslipidemia treatment among adults. Rhabdomyolysis is a syndrome characterized by muscle necrosis and the release of intracellular muscle contents into the systemic circulation, which is the most serious and fatal side effect of fenofibrate. The objective of this paper is to discuss fatal side effect of fenofibrate and keep safe medication. PATIENT CONCERNS A patient with hypothyroidism who presented with rhabdomyolysis during fenofibrate monotherapy for hypertriglyceridemia was reported. DIAGNOSES Fenofibrate Monotherapy Induced Rhabdomyolysis. INTERVENTIONS Fenofibrate was stopped. Adequate fluid resuscitation, mannitol diuresis, myocardium protection, hepatoprotection and urine alkalinization with sodium bicarbonate were performed. OUTCOMES Blood tests were normal and the patient was good and discharged 2 weeks later. LESSONS 13 cases associated with fenofibrate monotherapy-induced rhabdomyolysis were reviewed, which had been published in the English literature. The severity of fenofibrate muscle toxicity may be the result of the combination of two rhabdomyolysis enhancers, such as hypothyroidism and female gender. To avoid it, strict clinical and laboratory monitoring should be maintained, particularly hypothyroidism. Patients should be informed of possible potentially irreversible effects after taking fibrates.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Neurosurgery, the second affiliated hospital of Bengbu medical college, Bengbu
| | - Yanqiu Wang
- Department of Endocrinology, Benxi Central Hospital, Liaoning, People's Republic of China
| |
Collapse
|
18
|
Yoshino S, Awa R, Miyake Y, Fukuhara I, Sato H, Ashino T, Tomita S, Kuwahara H. Daily intake of Kaempferia parviflora extract decreases abdominal fat in overweight and preobese subjects: a randomized, double-blind, placebo-controlled clinical study. Diabetes Metab Syndr Obes 2018; 11:447-458. [PMID: 30214264 PMCID: PMC6120512 DOI: 10.2147/dmso.s169925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Obesity is a serious problem, which is now a worldwide health problem. Kaempferia parviflora extract (KPE) exhibits anti-obesity effects in animals. However, as no clinical trials have evaluated the anti-obesity effects of KPE in humans, we examined the effects of KPE in reducing abdominal fat in overweight and preobese Japanese subjects. MATERIALS AND METHODS A 12-week, single-center, randomized, double-blind, placebo-controlled clinical trial was conducted. Seventy-six subjects (males and females aged 20 to <65 years) with a body mass index ≥24 and <30 kg/m2 were randomly assigned into two groups. The subjects in each group ingested one capsule of placebo or active KPE (containing 150 mg of KPE) once daily for 12 weeks. The primary outcome was reduction in visceral fat area as determined by computed tomography scanning. The key secondary outcomes were reductions in subcutaneous fat area and total fat area. Subgroup analysis was also performed in healthy subjects without dyslipidemia, hypertension, or hyperglycemia. The safety of KPE ingestion was also evaluated. RESULTS Compared with the placebo group, the active KPE group exhibited significant reduction in abdominal fat area (visceral, subcutaneous, and total fat) and triglyceride levels after 12 weeks. Subgroup analyses demonstrated a significant reduction in abdominal fat area and triglyceride levels in healthy subjects compared with the placebo group after 12 weeks. Neither group exhibited adverse events related to the test foods or clinically relevant abnormal changes in physical, biochemical, or hematologic parameters, or in urinalysis results and medical interview. CONCLUSION Daily ingestion of KPE safely reduces body fat, particularly abdominal fat, in Japanese overweight and preobese subjects.
Collapse
Affiliation(s)
- Susumu Yoshino
- Research and Development Division, Research Center, Maruzen Pharmaceuticals Co., Ltd., Hiroshima, Japan,
| | - Riyo Awa
- Research and Development Division, Research Center, Maruzen Pharmaceuticals Co., Ltd., Hiroshima, Japan,
| | - Yasuo Miyake
- Research and Development Division, Research Center, Maruzen Pharmaceuticals Co., Ltd., Hiroshima, Japan,
| | | | - Hisao Sato
- Clinical Research Department, New Drug Research Center, Inc., Hokkaido, Japan
| | - Toyotada Ashino
- Clinical Research Department, New Drug Research Center, Inc., Hokkaido, Japan
| | - Shinpei Tomita
- Clinical Research Department, New Drug Research Center, Inc., Hokkaido, Japan
| | - Hiroshige Kuwahara
- Research and Development Division, Research Center, Maruzen Pharmaceuticals Co., Ltd., Hiroshima, Japan,
| |
Collapse
|
19
|
Backes JM, Moriarty PM, Gibson CA. The Effect of Micronized Fenofibrate on Lipid Profiles of Patients Converted from Gemfibrozil. Hosp Pharm 2017. [DOI: 10.1177/001857870203700915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although numerous studies have established the efficacy of micronized fenofibrate (MF) and gemfibrozil in improving lipid profiles, there are limited comparative data on the lipid-lowering effects of these two agents. The objective of this study was to evaluate the mean changes in lipid values of hypertriglyceridemic patients crossed over from gemfibrozil to MF. The Medical charts of 21 patients were analyzed retrospectively. Patients were maintained on gemfibrozil 600 mg twice daily for a minimum of 3 months. The patient's last fasting lipid profile on gemfibrozil was compared to the first lipid profile after crossover to MF 200 to 201 mg/day. Patients were excluded if there were alterations in other lipid-lowering therapy during the cross-over or documented non-adherence. The lipid profiles after the crossover showed a significant reduction in triglycerides (56%; P < 0.05) and TC/HDL ratio (38%; P < 0.05) and a significant increase in HDL (22%; P < 0.05). There were nonsignificant changes in other lipid values: TC (-22%; P = 0.058), LDL (+5%; P = 0.866) and LDL/HDL ratio (+6; P = 1.0). The results show that MF had additional favorable effects on triglycerides, HDL, and TC/HDL ratio compared with gemfibrozil. A larger, randomized trial to confirm these effects is warranted.
Collapse
Affiliation(s)
| | - Patrick M. Moriarty
- Lipid, Atheroschlerosis, Metabolic, and LDL Apheresis Center, University of Kansas Medical Center
| | - Cheryl A. Gibson
- University of Kansas School of Medicine. 50th Annual Scientific Session of the American College of Cardiology, March 18-21, 2001, Orlando, FL
| |
Collapse
|
20
|
Sahebkar A, Simental-Mendía LE, Watts GF, Serban MC, Banach M. Comparison of the effects of fibrates versus statins on plasma lipoprotein(a) concentrations: a systematic review and meta-analysis of head-to-head randomized controlled trials. BMC Med 2017; 15:22. [PMID: 28153024 PMCID: PMC5290642 DOI: 10.1186/s12916-017-0787-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/07/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Raised plasma lipoprotein(a) (Lp(a)) concentration is an independent and causal risk factor for atherosclerotic cardiovascular disease. Several types of pharmacological approaches are under evaluation for their potential to reduce plasma Lp(a) levels. There is suggestive evidence that statins and fibrates, two frequently employed lipid-lowering drugs, can lower plasma Lp(a). The present study aims to compare the efficacy of fibrates and statins in reducing plasma concentrations of Lp(a) using a meta-analysis of randomized head-to-head trials. METHODS Medline and Scopus databases were searched to identify randomized head-to-head comparative trials investigating the efficacy of fibrates versus statins in reducing plasma Lp(a) levels. Meta-analysis was performed using a random-effects model, with inverse variance weighted mean differences (WMDs) and 95% confidence intervals (CIs) as summary statistics. The impact of putative confounders on the estimated effect size was explored using random effects meta-regression. RESULTS Sixteen head-to-head comparative trials with a total of 1388 subjects met the eligibility criteria and were selected for this meta-analysis. Meta-analysis revealed a significantly greater effect of fibrates versus statins in reducing plasma Lp(a) concentrations (WMD, -2.70 mg/dL; 95% CI, -4.56 to -0.84; P = 0.004). Combination therapy with fibrates and statins had a significantly greater effect compared with statin monotherapy (WMD, -1.60 mg/dL; 95% CI, -2.93 to -0.26; P = 0.019) but not fibrate monotherapy (WMD, -1.76 mg/dL; 95% CI, -5.44 to +1.92; P = 0.349) in reducing plasma Lp(a) concentrations. The impact of fibrates versus statins in reducing plasma Lp(a) concentrations was not found to be significantly associated with treatment duration (P = 0.788). CONCLUSIONS Fibrates have a significantly greater effect in reducing plasma Lp(a) concentrations than statins. Addition of fibrates to statins can enhance the Lp(a)-lowering effect of statins.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, University of Western Australia, Perth, Australia.
| | | | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - Maria-Corina Serban
- Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Szklarz G, Adrjanowicz K, Dulski M, Knapik J, Paluch M. Dielectric Relaxation Study at Ambient and Elevated Pressure of the Modeled Lipophilic Drug Fenofibrate. J Phys Chem B 2016; 120:11298-11306. [DOI: 10.1021/acs.jpcb.6b08511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Grzegorz Szklarz
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Mateusz Dulski
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
- Institute of Material
Science, Univeristy of Silesia, ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Justyna Knapik
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
22
|
Grigorov PI, Glasser BJ, Muzzio FJ. Improving dissolution kinetics of pharmaceuticals by fluidized bed impregnation of active pharmaceutical ingredients. AIChE J 2016. [DOI: 10.1002/aic.15312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Plamen I. Grigorov
- Dept. of Chemical and Biochemical Engineering; Rutgers, The State University of New Jersey; Piscataway NJ 08854
| | - Benjamin J. Glasser
- Dept. of Chemical and Biochemical Engineering; Rutgers, The State University of New Jersey; Piscataway NJ 08854
| | - Fernando J. Muzzio
- Dept. of Chemical and Biochemical Engineering; Rutgers, The State University of New Jersey; Piscataway NJ 08854
| |
Collapse
|
23
|
Rotondi S, Modarelli A, Oliva MA, Rostomyan L, Sanita P, Ventura L, Daly AF, Esposito V, Angelucci A, Arcella A, Giangaspero F, Beckers A, Jaffrain-Rea ML. Expression of Peroxisome Proliferator-Activated Receptor alpha (PPARα) in somatotropinomas: Relationship with Aryl hydrocarbon receptor Interacting Protein (AIP) and in vitro effects of fenofibrate in GH3 cells. Mol Cell Endocrinol 2016; 426:61-72. [PMID: 26872613 DOI: 10.1016/j.mce.2016.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/29/2016] [Accepted: 02/07/2016] [Indexed: 11/18/2022]
Abstract
PURPOSE To search for a possible role of Peroxisome Proliferator-Activated Receptor α (PPARα), a molecular partner of the Aryl hydrocarbon receptor Interacting Protein (AIP), in somatotropinomas. METHODS Tumours from 51 acromegalic patients were characterized for PPARα and AIP expression by immunohistochemistry (IHC) and/or Real Time RT-PCR. Data were analysed according to tumour characteristics and pre-operative treatment with somatostatin analogues (SSA). The effects of fenofibrate were studied in GH3 cells in vitro. RESULTS PPARα was expressed in most somatotropinomas. A modest relationship was found between PPARα and AIP expression, both being significantly higher in the presence of pre-operative SSA. However, only AIP expression was influenced by the response to treatment. Dual effects of fenofibrate were observed in GH3 cells, consisting of cell growth inhibition and an increase in GH secretion inhibited by octreotide. CONCLUSIONS PPARα is a new player in somatotropinomas. Potential interactions between PPARα agonists and SSA may deserve further investigation.
Collapse
Affiliation(s)
- Sandra Rotondi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, AQ, Italy; Neuromed Institute, IRCCS, Pozzilli, IS, Italy
| | - Alessio Modarelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, AQ, Italy
| | | | | | - Patrizia Sanita
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, AQ, Italy
| | - Luca Ventura
- Division of Pathology, "San Salvatore" Hospital, L'Aquila, AQ, Italy
| | - Adrian F Daly
- Endocrinology, CHU of Liège, University of Liège, Belgium
| | - Vincenzo Esposito
- Neuromed Institute, IRCCS, Pozzilli, IS, Italy; Neurosurgery, Department of Neurology and Psychiatry, University "La Sapienza", Rome, RM, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, AQ, Italy
| | | | - Felice Giangaspero
- Neuromed Institute, IRCCS, Pozzilli, IS, Italy; Neuropathology, Department of Radiological, Oncological and Anatomopathological Sciences, University "La Sapienza", Rome, RM, Italy
| | - Albert Beckers
- Endocrinology, CHU of Liège, University of Liège, Belgium
| | - Marie-Lise Jaffrain-Rea
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, AQ, Italy; Neuromed Institute, IRCCS, Pozzilli, IS, Italy.
| |
Collapse
|
24
|
Patel P, Barkate H. Comparison of efficacy and safety of choline fenofibrate (fenofibric acid) to micronized fenofibrate in patients of mixed dyslipidemia: A randomized, open-label, multicenter clinical trial in Indian population. Indian J Endocrinol Metab 2016; 20:67-71. [PMID: 26904471 PMCID: PMC4743387 DOI: 10.4103/2230-8210.172243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Choline fenofibrate is a newly developed choline salt of fenofibric acid, which is more hydrophilic than fenofibrate. This study was initiated to evaluate the safety and efficacy of choline fenofibrate in comparison to micronized fenofibrate among Indian patients of mixed dyslipidemia. METHODS A multicenter, open-label, randomized, active controlled, comparative, parallel group study was conducted at around 10 centers spread all across the country. Mixed dyslipidemia patients (serum triglycerides [TG] levels between 150 and 500 mg/dl), aged 18-70 years and taking stable statin dose for 8 weeks were randomized to choline fenofibrate 135 mg delayed release tablets and micronized fenofibrate 160 mg tablets once daily for 12 weeks. The primary endpoint of the study was percentage change in serum TG level at the end of 12 weeks. RESULTS A total of 226 patients were enrolled in this study, of which 116 patients were administered choline fenofibrate and 110 patients were administered micronized fenofibrate. At the end of 12 weeks, there was a significant reduction in TG level (34.24% in choline fenofibrate group and 38.13% reduction in micronized fenofibrate group). However, the difference between group was not statistically different (P = 0.471). Similarly, there was a significant increase in high-density lipoprotein cholesterol at the end of 12 weeks (10% increase in choline fenofibrate group and 9% increase in micronized fenofibrate group); but the difference between the group was not statistically significant (P = 0.598). Both the treatment was safe and well tolerated. CONCLUSION Choline fenofibrate delayed release 135 mg is as safe and effective as 160 mg of micronized fenofibrate in Indian patients with mixed dyslipidemia.
Collapse
Affiliation(s)
- Piyush Patel
- Department of Medical Services, Intas Pharmaceuticals Limited, Ahmedabad, Gujarat, India
| | - Hanmant Barkate
- Department of Medical Services, Intas Pharmaceuticals Limited, Ahmedabad, Gujarat, India
| |
Collapse
|
25
|
Pallebage-Gamarallage M, Takechi R, Lam V, Elahy M, Mamo J. Pharmacological modulation of dietary lipid-induced cerebral capillary dysfunction: Considerations for reducing risk for Alzheimer's disease. Crit Rev Clin Lab Sci 2015; 53:166-83. [PMID: 26678521 DOI: 10.3109/10408363.2015.1115820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing body of evidence suggests that cerebrovascular dysfunction and microvessel disease precede the evolution of hallmark pathological features that characterise Alzheimer's disease (AD), consistent with a causal association for onset or progression. Recent studies, principally in genetically unmanipulated animal models, suggest that chronic ingestion of diets enriched in saturated fats and cholesterol may compromise blood-brain barrier (BBB) integrity resulting in inappropriate blood-to-brain extravasation of plasma proteins, including lipid macromolecules that may be enriched in amyloid-β (Aβ). Brain parenchymal retention of blood proteins and lipoprotein bound Aβ is associated with heightened neurovascular inflammation, altered redox homeostasis and nitric oxide (NO) metabolism. Therefore, it is a reasonable proposition that lipid-lowering agents may positively modulate BBB integrity and by extension attenuate risk or progression of AD. In addition to their robust lipid lowering properties, reported beneficial effects of lipid-lowering agents were attributed to their pleiotropic properties via modulation of inflammation, oxidative stress, NO and Aβ metabolism. The review is a contemporary consideration of a complex body of literature intended to synthesise focussed consideration of mechanisms central to regulation of BBB function and integrity. Emphasis is given to dietary fat driven significant epidemiological evidence consistent with heightened risk amongst populations consuming greater amounts of saturated fats and cholesterol. In addition, potential neurovascular benefits associated with the use of hypolipidemic statins, probucol and fenofibrate are also presented in the context of lipid-lowering and pleiotropic properties.
Collapse
Affiliation(s)
- Menuka Pallebage-Gamarallage
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - Ryusuke Takechi
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - Virginie Lam
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - Mina Elahy
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - John Mamo
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| |
Collapse
|
26
|
Yousaf AM, Kim DW, Kim JK, Kim JO, Yong CS, Choi HG. Novel fenofibrate-loaded gelatin microcapsules with enhanced solubility and excellent flowability: Preparation and physicochemical characterization. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Yan F, Wang Q, Xu C, Cao M, Zhou X, Wang T, Yu C, Jing F, Chen W, Gao L, Zhao J. Peroxisome proliferator-activated receptor α activation induces hepatic steatosis, suggesting an adverse effect. PLoS One 2014; 9:e99245. [PMID: 24926685 PMCID: PMC4057124 DOI: 10.1371/journal.pone.0099245] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/13/2014] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic triglyceride accumulation, ranging from steatosis to steatohepatitis and cirrhosis. NAFLD is a risk factor for cardiovascular diseases and is associated with metabolic syndrome. Antihyperlipidemic drugs are recommended as part of the treatment for NAFLD patients. Although fibrates activate peroxisome proliferator-activated receptor α (PPARα), leading to the reduction of serum triglyceride levels, the effects of these drugs on NAFLD remain controversial. Clinical studies have reported that PPARα activation does not improve hepatic steatosis. In the present study, we focused on exploring the effect and mechanism of PPARα activation on hepatic triglyceride accumulation and hepatic steatosis. Male C57BL/6J mice, Pparα-null mice and HepG2 cells were treated with fenofibrate, one of the most commonly used fibrate drugs. Both low and high doses of fenofibrate were administered. Hepatic steatosis was detected through oil red O staining and electron microscopy. Notably, in fenofibrate-treated mice, the serum triglyceride levels were reduced and the hepatic triglyceride content was increased in a dose-dependent manner. Oil red O staining of liver sections demonstrated that fenofibrate-fed mice accumulated abundant neutral lipids. Fenofibrate also increased the intracellular triglyceride content in HepG2 cells. The expression of sterol regulatory element-binding protein 1c (SREBP-1c) and the key genes associated with lipogenesis were increased in fenofibrate-treated mouse livers and HepG2 cells in a dose-dependent manner. However, the effect was strongly impaired in Pparα-null mice treated with fenofibrate. Fenofibrate treatment induced mature SREBP-1c expression via the direct binding of PPARα to the DR1 motif of the SREBP-1c gene. Taken together, these findings indicate the molecular mechanism by which PPARα activation increases liver triglyceride accumulation and suggest an adverse effect of fibrates on the pathogenesis of hepatic steatosis.
Collapse
Affiliation(s)
- Fang Yan
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Qi Wang
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Pharmacology, Shandong University, Jinan, Shandong, China
| | - Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Mingfeng Cao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaoming Zhou
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Tingting Wang
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Chunxiao Yu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Fei Jing
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- * E-mail: (LG); (JJZ)
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- * E-mail: (LG); (JJZ)
| |
Collapse
|
28
|
Chen M, Deng D, Fang Z, Xu M, Hu H, Luo L, Wang Y. Fenofibrate increases serum vaspin by upregulating its expression in adipose tissue. Endocrine 2014; 45:409-21. [PMID: 23918212 DOI: 10.1007/s12020-013-0023-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
Fenofibrate is a peroxisome proliferator-activated receptor-α that has been clinically used to treat dyslipidemia and insulin resistance. To better understand the molecular mechanisms underlying fenofibrate action, we investigated whether fenofibrate affects serum levels of vaspin, an adipocytokine that has recently been shown to link obesity and insulin resistance. Fenofibrate treatment significantly increased serum vaspin levels of dyslipidemic patients, which correlated with reduced body weight and increased insulin sensitivity. To elucidate the biochemical mechanisms of fenofibrate action, we investigated the effect of fenofibrate on vaspin mRNA and protein expressions in obese rats. Fenofibrate greatly increased vaspin mRNA and protein levels in visceral adipose tissue consisting of retroperitoneal, mesenteric, and periepididymal adipose tissue but not in the subcutaneous adipose tissue, which correlated with increased serum vaspin levels and increased insulin sensitivity in obese rats. Consistent with a direct effect on vaspin expression, fenofibrate treatment significantly increased the mRNA and protein expression levels of vaspin in 3T3-L1 adipocytes. Together, our results demonstrate for the first time that fenofibrate upregulates vaspin expression in dyslipidemic human subjects and suggest that upregulation of vaspin expression in adipocytes may provide a mechanism by which fenofibrate improves insulin sensitivity in dyslipidemic patients.
Collapse
Affiliation(s)
- Mingwei Chen
- Institute of Endocrinology & Metabolism, Anhui Medical University, Hefei, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Lee DW, Marasini N, Poudel BK, Kim JH, Cho HJ, Moon BK, Choi HG, Yong CS, Kim JO. Application of Box–Behnken design in the preparation and optimization of fenofibrate-loaded self-microemulsifying drug delivery system (SMEDDS). J Microencapsul 2013; 31:31-40. [DOI: 10.3109/02652048.2013.805837] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Xu Y, Wang Y, Li XM, Huang Q, Chen W, Liu R, Chen B, Wei P. Study on the release of fenofibrate nanosuspensionin vitroand its correlation within situintestinal andin vivoabsorption kinetics in rats. Drug Dev Ind Pharm 2013; 40:972-9. [DOI: 10.3109/03639045.2013.794828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Ling H, Luoma JT, Hilleman D. A Review of Currently Available Fenofibrate and Fenofibric Acid Formulations. Cardiol Res 2013; 4:47-55. [PMID: 28352420 PMCID: PMC5358213 DOI: 10.4021/cr270w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 12/13/2022] Open
Abstract
Fenofibrate is a third-generation fibric acid derivative indicated as a monotherapy to reduce elevated low-density lipoprotein cholesterol, total cholesterol, triglycerides, and apolipoprotein B; to increase high-density lipoprotein cholesterol in patients with primary hyperlipidemia or mixed dyslipidemia; and to reduce triglycerides in patients with severe hypertriglyceridemia. In this review, the key characteristics of available fenofibrate formulations are examined. A literature search was conducted, focusing on comparative studies examining bioavailability, food effects, absorption, and lipid efficacy. Fenofibrate is highly lipophilic, virtually insoluble in water, and poorly absorbed. Coadministration with meals was necessary to maximize bioavailability of early formulations. Micronized and nanoparticle formulations of fenofibrate with reduced particle sizes were developed, resulting in greater solubility, improved bioavailability, and in some cases, the ability to be given irrespective of food. A recently introduced hydrophilic choline salt of fenofibric acid also can be taken without regard to meals, is absorbed throughout the gastrointestinal tract, has the highest bioavailability among marketed formulations, and is approved for coadministration with a statin. Differences in bioavailability of fenofibrate formulations have resulted in low-dose (40 - 67) mg and standard-dose (120 - 200 mg) formulations. Different formulations are not equivalent on a milligram-to-milligram basis. In order to prevent medication errors, resulting in underdosing or overdosing with attendant consequences, it is important for healthcare providers to recognize that the formulations of fenofibrate and fenofibric acid that are currently available vary substantially in relation to food effect, equivalency on a milligram-to-milligram basis, and indication to be coadministered with a statin.
Collapse
Affiliation(s)
- Hua Ling
- School of Medicine, Cardiac Center of Creighton University, Omaha, NE, USA
| | - John T. Luoma
- Department of Cardiovascular Science, AbbVie (formerly Abbott Laboratories), North Chicago, IL, USA
| | - Daniel Hilleman
- School of Pharmacy and Health Professions, Cardiac Center of Creighton University, Omaha, NE, USA
| |
Collapse
|
32
|
Cha KH, Cho KJ, Kim MS, Kim JS, Park HJ, Park J, Cho W, Park JS, Hwang SJ. Enhancement of the dissolution rate and bioavailability of fenofibrate by a melt-adsorption method using supercritical carbon dioxide. Int J Nanomedicine 2012; 7:5565-75. [PMID: 23118538 PMCID: PMC3484728 DOI: 10.2147/ijn.s36939] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Indexed: 11/23/2022] Open
Abstract
Background: The aim of this study was to enhance the bioavailability of fenofibrate, a poorly water-soluble drug, using a melt-adsorption method with supercritical CO2. Methods: Fenofibrate was loaded onto Neusilin® UFL2 at different weight ratios of fenofibrate to Neusilin UFL2 by melt-adsorption using supercritical CO2. For comparison, fenofibrate-loaded Neusilin UFL2 was prepared by solvent evaporation and hot melt-adsorption methods. The fenofibrate formulations prepared were characterized by differential scanning calorimetry, powder x-ray diffractometry, specific surface area, pore size distribution, scanning electron microscopy, and energy-dispersive x-ray spectrometry. In vitro dissolution and in vivo bioavailability were also investigated. Results: Fenofibrate was distributed into the pores of Neusilin UFL2 and showed reduced crystal formation following adsorption. Supercritical CO2 facilitated the introduction of fenofibrate into the pores of Neusilin UFL2. Compared with raw fenofibrate, fenofibrate from the prepared powders showed a significantly increased dissolution rate and better bioavailability. In particular, the area under the drug concentration-time curve and maximal serum concentration of the powders prepared using supercritical CO2 were 4.62-fold and 4.52-fold greater than the corresponding values for raw fenofibrate. Conclusion: The results of this study highlight the usefulness of the melt-adsorption method using supercritical CO2 for improving the bioavailability of fenofibrate.
Collapse
Affiliation(s)
- Kwang-Ho Cha
- Yonsei Institute of Pharmaceutical Sciences, Incheon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim GG, Poudel BK, Marasini N, Lee DW, Hiep TT, Yang KY, Kim JO, Yong CS, Choi HG. Enhancement of oral bioavailability of fenofibrate by solid self-microemulsifying drug delivery systems. Drug Dev Ind Pharm 2012; 39:1431-8. [DOI: 10.3109/03639045.2012.719903] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Lee CY, Huang KH, Lin CC, Tsai TH, Shih HC. A neutral risk on the development of new-onset diabetes mellitus (NODM) in Taiwanese patients with dyslipidaemia treated with fibrates. ScientificWorldJournal 2012; 2012:392734. [PMID: 22919315 PMCID: PMC3417190 DOI: 10.1100/2012/392734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/02/2012] [Indexed: 11/17/2022] Open
Abstract
There are no data on the incidence of new-onset diabetes mellitus (NODM ) in nondiabetic dyslipidaemia patients treated with fibrates. The aim of our study was to clarify these issues, to investigate the relationship between NODM and fibrate and whether the fibrates lead to increased risk for developing NODM. A retrospective cohort study was conducted by analyzing the Longitudinal Health Insurance Database (LHID 2005) of the National Health Insurance Research Database (NHIRD) from 2005 to 2010 to investigate all fibrate prescriptions for patients with dyslipidaemia. We estimated the hazard ratios (HRs) of NODM associated with fibrate use. We identified 145 NODM patients among 3,815 dyslipidaemic patients in the database for the study period. The risk estimates for NODM for users of fenofibrate (HR 1.30; 95% CI 0.82, 2.05) and gemfibrozil (HR 0.771; 95% CI 0.49, 1.22) were not associated with an increased risk of developing NODM (P > 0.05). Our results revealed that patients with dyslipidaemia who took fenofibrate and gemfibrozil had a neutral risk of NODM. The reasons may be associated with the fibrates have the properties that activate PPARα and in some cases also activated PPARγ, leading to showing a neutral risk of NODM.
Collapse
Affiliation(s)
- Chien-Ying Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Radioiodinated dechloro-4-iodofenofibrate: A hydrophobic model drug for molecular imaging studies. Int J Pharm 2012; 431:78-83. [DOI: 10.1016/j.ijpharm.2012.04.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 11/16/2022]
|
36
|
Design of fenofibrate microemulsion for improved bioavailability. Int J Pharm 2011; 420:251-5. [PMID: 21907776 DOI: 10.1016/j.ijpharm.2011.08.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/04/2011] [Accepted: 08/28/2011] [Indexed: 11/21/2022]
Abstract
The objective of the present study was to formulate a microemulsion system for oral administration to improve the solubility and bioavailability of fenofibrate. Various formulations were prepared using different ratios of oils, surfactants and co-surfactants (S&CoS). Pseudo-ternary phase diagrams were constructed to evaluate the microemulsification existence area. The formulations were characterized by solubility of the drug in the vehicles, mean droplet size, and drug content. The stability was also investigated by store for 3 months under 4°C, 25°C and 40°C and diluted 100 times for 3 days. The optimal formulation consists of 25% Capryol 90, 27.75% Cremophore EL, 9.25% Transcutol P and 38% water (w/w), with a maximum solubility of fenofibrate up to ∼40.96 mg/mL. The microemulsion was physicochemical stable and mean droplet size was about 32.5-41.7 nm. The pharmacokinetic study was performed in dogs and compared with Lipanthy capsule. The result showed that microemulsion has significantly increased the C(max) and AUC compared to that of Lipanthy capsule (p<0.05). The oral bioavailability of fenofibrate microemulsions (FEN-MEs) in ME-3 and ME-4 were 1.63 and 1.30-fold higher than that of the capsule. Our results indicated that the microemulsions could be used as an effective formulation for enhancing the oral bioavailability of fenofibrate.
Collapse
|
37
|
Bandgar BP, Sarangdhar RJ, Khan F, Mookkan J, Shetty P, Singh G. Synthesis and biological evaluation of orally active hypolipidemic agents. J Med Chem 2011; 54:5915-26. [PMID: 21770455 DOI: 10.1021/jm200704f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of novel fenofibric acid ester prodrugs 1c-1h were synthesized and evaluated with the aim of obtaining potent hypolipidemic agents. Prodrugs 1c and 1d exhibited potent hypochlolesterolemic activity, lowering the mice plasma triglyceride level up to 47% in Swiss albino mice after oral administration of 50 mg/kg/day for 8 days. Fenofibric acid ester prodrugs 1c-1h were found lipophilic like fenofibrate (1b), indicated by partition coefficients measured in octanol-buffer system at pH 7.4. On the basis of in vivo studies, prodrugs 1c and 1d emerged as potent hypolipidemic agents.
Collapse
Affiliation(s)
- Babasaheb P. Bandgar
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur-413 255, India
| | - Rajendra J. Sarangdhar
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur-413 255, India
| | - Fruthous Khan
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur-413 255, India
| | - Jeyamurugan Mookkan
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur-413 255, India
| | - Pranesha Shetty
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur-413 255, India
| | - Gajendra Singh
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur-413 255, India
| |
Collapse
|
38
|
Fukami T, Takahashi S, Nakagawa N, Maruichi T, Nakajima M, Yokoi T. In vitro evaluation of inhibitory effects of antidiabetic and antihyperlipidemic drugs on human carboxylesterase activities. Drug Metab Dispos 2010; 38:2173-8. [PMID: 20810539 DOI: 10.1124/dmd.110.034454] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Human carboxylesterase (CES) 1A is responsible for the biotransformation of angiotensin-converting enzyme (ACE) inhibitors such as imidapril and temocapril. Because antidiabetic or antihyperlipidemic drugs are often coadministered with ACE inhibitors in clinical pharmacotherapy, the inhibitory effect of these drugs on CES1A1 enzyme activity was investigated. In addition, the inhibitory effect on CES2 enzyme activity was evaluated to compare it with that on CES1A1. The inhibitory effects were evaluated with 11 antidiabetic and 12 antihyperlipidemic drugs. The imidapril hydrolase activity by recombinant CES1A1 was substantially inhibited by lactone ring-containing statins such as simvastatin and lovastatin and thiazolidinediones such as troglitazone and rosiglitazone. The activity in human liver microsomes was also strongly inhibited by simvastatin and troglitazone (K(i) = 0.8 ± 0.1 and 5.6 ± 0.2 μM, respectively). However, statins containing no lactone ring such as pravastatin and fluvastatin did not show strong inhibition. 7-Ethyl-10-[4-(1-piperidono)-1-piperidono]carbonyloxycamptothecin hydrolase activity by recombinant human CES2 was substantially inhibited by fenofibrate (K(i) = 0.04 ± 0.01 μM) as well as by simvastatin (0.67 ± 0.09 μM). Other fibrates such as clinofibrate and bezafibrate did not show strong inhibition. Thus, the inhibitory effects of the thiazolidinediones and fenofibrate on CES1A1 and CES2 were different. Some statins such as simvastatin and lovastatin, thiazolidinediones, and fenofibrate might attenuate the drug efficacy of prodrugs biotransformed by CES1A and CES2.
Collapse
Affiliation(s)
- Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Munjal V, Paliwal N, Varshney B, Chaursia BK, Paliwal J. LC-MS Estimation of Fenofibric Acid in Microvolumes of Human Plasma and Its Application to Bioequivalence Study. Chromatographia 2010. [DOI: 10.1365/s10337-010-1691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Moutzouri E, Kei A, Elisaf MS, Milionis HJ. Management of dyslipidemias with fibrates, alone and in combination with statins: role of delayed-release fenofibric acid. Vasc Health Risk Manag 2010; 6:525-39. [PMID: 20730069 PMCID: PMC2922314 DOI: 10.2147/vhrm.s5593] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of mortality worldwide. Lifestyle modifications, along with low-density lipoprotein cholesterol (LDL-C) reduction, remain the highest priorities in CVD risk management. Among lipid-lowering agents, statins are most effective in LDL-C reduction and have demonstrated incremental benefits in CVD risk reduction. However, in light of the residual CVD risk, even after LDL-C targets are achieved, there is an unmet clinical need for additional measures. Fibrates are well known for their beneficial effects in triglycerides, high-density lipoprotein cholesterol (HDL-C), and LDL-C subspecies modulation. Fenofibrate is the most commonly used fibric acid derivative, exerts beneficial effects in several lipid and nonlipid parameters, and is considered the most suitable fibrate to combine with a statin. However, in clinical practice this combination raises concerns about safety. ABT-335 (fenofibric acid, Trilipix®) is the newest formulation designed to overcome the drawbacks of older fibrates, particularly in terms of pharmacokinetic properties. It has been extensively evaluated both as monotherapy and in combination with atorvastatin, rosuvastatin, and simvastatin in a large number of patients with mixed dyslipidemia for up to 2 years and appears to be a safe and effective option in the management of dyslipidemia.
Collapse
Affiliation(s)
- Elisavet Moutzouri
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | | | | | | |
Collapse
|
41
|
Tahmaz M, Kumbasar B, Ergen K, Ure U, Karatemiz G, Kazancioglu R. Acute Renal Failure Secondary to Fenofibrate Monotherapy-Induced Rhabdomyolysis. Ren Fail 2009; 29:927-30. [DOI: 10.1080/08860220701573640] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Differentiated CaCo-2 cells as an in-vitro model to evaluate de-novo apolipoprotein A-I production in the small intestine. Eur J Gastroenterol Hepatol 2009; 21:642-9. [PMID: 19445040 DOI: 10.1097/meg.0b013e328321b0c8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Increasing HDL cholesterol concentrations by stimulating de-novo apolipoprotein A-I (apoA-I) production in the liver and/or in the small intestine is a potential strategy to reduce coronary heart disease risk. Although there is quite some knowledge concerning regulatory effects in the liver, less is known concerning potential agents that could elevate de-novo apoA-I production in the small intestine. METHODS Therefore, we compared side-by-side effects of various peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma, retinoid-X-receptor alpha, and farnesoid-X-receptor agonists on de-novo apoA-I production in differentiated CaCo-2 and HepG2 cells. RESULTS For PPARa agonists, we showed that GW7647 elevated apoA-I concentrations in the medium of both cell models, whereas WY14643 elevated only de-novo apoA-I concentrations in differentiated CaCo-2 cells. Unexpectedly, fenofibric acid lowered apoA-I medium concentrations in both cell lines, which could not be explained by a lack of PPAR transactivation or a lack of retinoid-X-receptor a activation. For farnesoid-X-receptor agonists, chenodeoxycholic acid strongly reduced apoA-I concentrations both in differentiated CaCo-2 and HepG2 cells, whereas GW4064 and taurocholate only lowered apoA-I in CaCo-2 cells (GW4064) or in HepG2 cells (taurocholate). However, overall effects of all individual components on apoA-I production in differentiated CaCo-2 and HepG2 cells were highly correlated (r = 0.68; P = 0.037; N=9). CONCLUSION We conclude that differentiated CaCo-2 cells are suitable models to study de-novo small intestinal apoA-I production in vitro enabling the possibility to screen for potential bioactive dietary components. This cell model may also determine small-intestinal-specific effects, as some discrepancy was found between both cell models.
Collapse
|
43
|
Farnier M. Update on the clinical utility of fenofibrate in mixed dyslipidemias: mechanisms of action and rational prescribing. Vasc Health Risk Manag 2009; 4:991-1000. [PMID: 19183747 PMCID: PMC2605343 DOI: 10.2147/vhrm.s3390] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mixed dyslipidemia is a common lipid disorder characterized by the presence of an atherogenic lipoprotein phenotype due to abnormalities in various atherogenic and anti-atherogenic lipoproteins. Despite the link between the decrease of LDL-cholesterol by statin treatment and the prevention of cardiovascular disease, a high residual risk is observed in statin trials. This residual risk is partly explained by lipoprotein abnormalities other than LDL. Fenofibrate exerts a favorable effect on the atherogenic lipid profile of mixed dyslipidemia and can effectively reduce cardiovascular disease in patients with mixed dyslipidemia. Fenofibrate may offer important treatment alternatives as a second-line therapy in several circumstances: in combination with a statin for patients with mixed dyslipidemias not at goals on statin mono-therapy; in monotherapy for patients intolerant or with contraindication to statin therapy; and in combination with other drugs (ezetimibe, colesevelam) for patients with mixed dyslipidemias, known intolerance, or contraindication to statin and not at goals on fenofibrate monotherapy. However, the role of fenofibrate-statin therapy and of other therapies involving fenofibrate in cardiovascular risk reduction strategies remains to be established.
Collapse
|
44
|
Davidson MH, Jones PH. Retrospective comparison of the effectiveness of a fenofibrate 145 mg formulation compared with the standard 160 mg tablet. Clin Drug Investig 2009; 28:615-23. [PMID: 18783300 DOI: 10.2165/00044011-200828100-00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To compare changes in lipid levels (total cholesterol [total-C], low-density lipoprotein cholesterol [LDL-C], triglycerides [TG], and high-density lipoprotein cholesterol [HDL-C]) for patients who switched from standard fenofibrate 160 mg (requiring dosing with food) to fenofibrate 145 mg with no food effect (NFE). METHODS The analyses were performed using an electronic medical records dataset from 1 January 2003 to 31 July 2005. Patients were eligible for the analysis if they had a diagnosis of hypertension, dyslipidaemia or diabetes mellitus, were written a prescription for standard fenofibrate 160 mg during the period 1 May 2004 to 30 April 2005, and were written a subsequent prescription for fenofibrate 145 mg NFE at least 60 days after first receiving the 160 mg dose. The outcomes measured were lipid levels: total-C, LDL-C, HDL-C and TG. RESULTS 491 patients who switched from standard fenofibrate 160 mg to fenofibrate 145 mg NFE met all of the inclusion criteria. Patients who changed therapy to fenofibrate 145 mg NFE from standard fenofibrate 160 mg showed a beneficial response in lipid levels. Statistically significant patient-specific changes in lipid levels were observed for the change from baseline to standard fenofibrate 160 mg for three lipid levels (total-C, HDL-C and TG). Statistically significant changes were observed for the switch to fenofibrate 145 mg NFE for three lipid levels (total-C, LDL-C and TG). CONCLUSIONS More patients treated in an outpatient clinical practice had better lipid results when prescribed fenofibrate 145 mg NFE than those prescribed standard fenofibrate 160 mg, suggesting that a less restrictive dosing regimen improves lipid outcomes.
Collapse
Affiliation(s)
- Michael H Davidson
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA.
| | | |
Collapse
|
45
|
Filippatos T, Milionis HJ. Treatment of hyperlipidaemia with fenofibrate and related fibrates. Expert Opin Investig Drugs 2008; 17:1599-614. [PMID: 18808320 DOI: 10.1517/13543784.17.10.1599] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fenofibrate is the most widely used fibrate. Its efficacy and tolerability in the treatment of hypertriglyceridaemia and combined hyperlipidaemia have been demonstrated in several clinical trials. OBJECTIVE To review the pharmacology, lipid-lowering and extra-lipid effects of fenofibrate and to preview ABT-335, an investigational new fenofibric acid molecule. RESULTS The effects of fenofibrate are mediated through the active metabolite fenofibric acid, and are described in detail in the paper. ABT-335 is a salt of fenofibric acid and, unlike fenofibrate, does not require first pass metabolism to the active moiety. ABT-335 is being developed for combination use with statins, and has recently completed three large Phase III randomised controlled trials in which the efficacy and safety of ABT-335 in combination with the three most commonly prescribed statins, atorvastatin, simvastatin and rosuvastatin, was evaluated in patients with mixed dyslipidaemia. CONCLUSION ABT-335 in combination with statins may provide a safe and efficacious treatment modality that enables achievement of several therapeutic goals in patients with mixed dyslipidaemia who have high cardiovascular risk.
Collapse
Affiliation(s)
- Theodosios Filippatos
- University of Ioannina, School of Medicine, Department of Internal Medicine, 451 10 Ioannina, Greece
| | | |
Collapse
|
46
|
Granero GE, Ramachandran C, Amidon GL. Dissolution and Solubility Behavior of Fenofibrate in Sodium Lauryl Sulfate Solutions. Drug Dev Ind Pharm 2008; 31:917-22. [PMID: 16306004 DOI: 10.1080/03639040500272108] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The solubility of fenofibrate in pH 6.8 McIlvaine buffers containing varying concentrations of sodium lauryl sulfate was determined. The dissolution behavior of fenofibrate was also examined in the same solutions with rotating disk experiments. It was observed that the enhancement in intrinsic dissolution rate was approximately 500-fold and the enhancement in solubility was approximately 2000-fold in a pH 6.8 buffer containing 2% (w/v) sodium lauryl sulfate compared to that in buffer alone. The micellar solubilization equilibrium coefficient (k*) was estimated from the solubility data and found to be 30884+/-213 L/mol. The diffusivity for the free solute, 7.15x10(-6) cm2/s, was calculated using Schroeder's additive molal volume estimates and Hayduk-Laurie correlation. The diffusivity of the drug-loaded micelle, estimated from the experimental solubility and dissolution data and the calculated value for free solute diffusivity, was 0.86x10(-6) cm2/s. Thus, the much lower enhancement in dissolution of fenofibrate compared to its enhancement in solubility in surfactant solutions appears to be consistent with the contribution to the total transport due to enhanced micellar solubilization as well as a large decrease (approximately 8-fold) in the diffusivity of the drug-loaded micelle.
Collapse
Affiliation(s)
- Gladys E Granero
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
47
|
Vogt M, Kunath K, Dressman JB. Dissolution improvement of four poorly water soluble drugs by cogrinding with commonly used excipients. Eur J Pharm Biopharm 2008; 68:330-7. [PMID: 17574401 DOI: 10.1016/j.ejpb.2007.05.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 05/14/2007] [Accepted: 05/15/2007] [Indexed: 11/18/2022]
Abstract
The rate of the dissolution of four poorly soluble drugs (EMD 57033, albendazole, danazol and felodipine) was improved by cogrinding them with various excipients (lactose monohydrate, corn starch, polyvinylpyrrolidone, hydroxypropylmethyl cellulose and sodium lauryl sulphate) using a jet-milling technique. Solid state characterization studies by X-ray diffraction and differential scanning calorimetry verified the maintenance of the crystalline state of the active substances after milling. In vitro dissolution of the coground mixtures in biorelevant media was much faster than from micronised drug in the corresponding physical mixtures for all four compounds. Supersaturated solutions were generated in some cases (EMD 50733 and felodipine), but this phenomenon appeared to be drug- and excipient-specific. Cogrinding with lactose monohydrate resulted in fast dissolution with unstable supersaturation for EMD 57033. Cogrinding the same drug with PVP or HPMC produced a more sustained supersaturation. SLS accelerated the dissolution of EMD 50733 but inhibited supersaturation. The results suggest that the cogrinding with selected excipients is a powerful tool to accelerate the dissolution of poorly soluble drugs without converting the drug to the amorphous form or changing the particle size.
Collapse
Affiliation(s)
- Markus Vogt
- Department of Pharmaceutical Technology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
48
|
Zanetti M, Stocca A, Dapas B, Farra R, Uxa L, Bosutti A, Barazzoni R, Bossi F, Giansante C, Tedesco F, Cattin L, Guarnieri G, Grassi G. Inhibitory effects of fenofibrate on apoptosis and cell proliferation in human endothelial cells in high glucose. J Mol Med (Berl) 2008; 86:185-195. [PMID: 17876565 DOI: 10.1007/s00109-007-0257-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 08/08/2007] [Accepted: 08/09/2007] [Indexed: 10/22/2022]
Abstract
Fenofibrate has beneficial effects on the progression and clinical emergence of atherosclerosis in normoglycemic and in diabetic patients. Given the involvement of endothelium in these processes, we speculated that fenofibrate may influence endothelial cell apoptosis and proliferation, regulators of endothelium integrity. Fenofibrate effects on apoptosis and proliferation were studied in human umbilical vein endothelial cells under normal (5.5 mmol/l, NG) and high (22 mmol/l, HG) glucose with or without fenofibrate (50 micromol/l). Apoptosis was evaluated by annexin V, by poly(ADP-ribose) polymerase protein cleavage, and cyclooxygenase-2 (COX-2), Bax/Bcl-2, and p53 protein levels; proliferation was assessed by determining cell cycle phase distribution and the amounts of the cell cycle regulators E2F1, cyclin D1, E1, and A and the levels of the hyper-phosphorylated form of the retinoblastoma protein (ppRb). HG resulted in increased (p<0.05) apoptosis rate associated with COX-2 protein overexpression, without modification of Bax/Bcl2 ratio and p53 levels. Fenofibrate decreased apoptosis and normalized increased COX-2 expression in HG (p<0.05). Both in HG and NG, fenofibrate dramatically reduced cell proliferation (p<0.05) through a G1/G0 block mediated by the reduction in ppRb and the decrease in E2F1, cyclin E1, A, and D1 protein expression, with a mechanism that, for cyclin E1, occurred at the posttranscriptional level. In conclusion, our data show that fenofibrate reduces apoptosis caused by HG but severely interferes with endothelial cell proliferation both in NG and HG. The resulting effect may influence endothelium integrity in vivo and may impact the outcome of acute complications of atherosclerosis in diabetes.
Collapse
Affiliation(s)
- Michela Zanetti
- UCO Clinica Medica-DSCMT, Ospedale di Cattinara, Strada di Fiume 447, 34100, Trieste, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vogt M, Kunath K, Dressman JB. Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: Comparison with commercial preparations. Eur J Pharm Biopharm 2008; 68:283-8. [PMID: 17574403 DOI: 10.1016/j.ejpb.2007.05.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 05/14/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
Several techniques were compared for improving the dissolution of fenofibrate, a poorly soluble drug. Particle size reduction was realized by jet milling (micronization; cogrinding with lactose, polyvinylpyrrolidone or sodium lauryl sulphate) and by media milling using a bead mill (nanosizing) with subsequent spray-drying. Solid state characterization by X-ray diffraction and Differential Scanning Calorimetry verified the maintenance of the crystalline state of the drug after dry milling and its conversion to the amorphous state during spray-drying. Micronization of fenofibrate enhanced its dissolution rate in biorelevant media (8.2% in 30min) compared to crude material (1.3% in 30min). Coground mixtures of the drug increased the dissolution rate further (up to 20% in 30min). Supersaturated solutions were generated by nanosizing combined with spray-drying, this process converted fenofibrate to the amorphous state. Fenofibrate drug products commercially available on the German and French markets dissolved similarly to crude or micronized fenofibrate, but significantly slower than the coground or spray-dried fenofibrate mixtures. The results suggest that cogrinding and spray-drying are powerful techniques for the preparation of rapidly dissolving formulations of fenofibrate, and could potentially lead to improvements in the bioavailability of oral fenofibrate products.
Collapse
Affiliation(s)
- Markus Vogt
- Department of Pharmaceutical Technology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
50
|
Ren J, Yu X, Ren T, Hong H. Preparation and characterization of fenofibrate-loaded PLA-PEG microspheres. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:1481-7. [PMID: 17387589 DOI: 10.1007/s10856-007-0132-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 03/03/2006] [Indexed: 05/14/2023]
Abstract
A series of biodegradable block copolymer of poly(lactide)(PLA)/poly(ethylene glycol) (PEG) were prepared by Ring-Opening polymerization of D, L-lactide, using stannous octoate as a catalyst. By nanoprecipitation method, the PLA-PEG can be made into microspheres containing fenofibrate, which is a kind of important cholesterol-lowering drugs. The purpose of this study is to investigate the effect of the copolymer composition on the size, the entrapment and the release behavior of the fenofibrate loaded microspheres. The microspheres can be achieved with small size below 100 nm, better encapsulation efficiencies of more than 55.3% and slower release rates. The release of fenofibrate from microsphere would reach the balance first, when the microsphere prepared by high proportion of hydrophilic PEG block. And the release property of fenofibrate/PLA-PEG microsphere was better than Lipanthyl (a commercial capsule of fenofibrate). It was observed that the composition of PLA-PEG copolymer played a major role in encapsulation efficiency of microspheres and release rates.
Collapse
Affiliation(s)
- Jie Ren
- Institute of Nano and Bio-Polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | | | | | | |
Collapse
|