1
|
Salmanton-García J, Falci DR, Cornely OA, Pasqualotto AC. Elevating fungal care: bridging Brazil's healthcare practices to global standards. Microbiol Spectr 2025; 13:e0211224. [PMID: 40062762 DOI: 10.1128/spectrum.02112-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/16/2024] [Indexed: 04/03/2025] Open
Abstract
Brazil faces unique challenges in managing invasive fungal infections (IFIs) due to diverse ecosystems, a rural workforce, and prevalent health conditions. In Europe, IFIs are primarily associated with transplantation, intensive care, and chronic diseases. Inspired by initiatives in the Caribbean and Latin America in 2019, efforts to map global diagnostic and treatment resources expanded to Africa, Europe, and Asia/Pacific. This study conducts a comparative analysis, mainly drawing data from Brazil and Europe, to investigate IFI epidemiology and management. Data were collected through online surveys distributed to Brazilian and European institutions, with collaborations from scientific organizations. Surveys covered institutional profiles, IFI diagnoses, accessibility to diagnostic techniques, and antifungal drugs. A comparative survey involving 96 Brazilian and 388 European institutions revealed variations in the perception and practices related to fungal pathogens. Differences in ranking and prevalence were observed, along with variations in diagnostic procedures, fluorescence dye usage, culture practices, antifungal medication availability, and technological approaches. Europe exhibited higher utilization rates for molecular diagnostic approaches, including PCR tests, and therapeutic drug monitoring (TDM) was more widespread in Europe compared with Brazil, indicating substantial differences in understanding and managing fungal infections. Customized IFI management is crucial, considering regional differences and addressing technological gaps like underutilized PCR. The study advocates for increased international collaboration, targeted training, and enhanced resources to foster a unified global approach in preventing, diagnosing, and treating IFI. IMPORTANCE This work is significant as it highlights the unique challenges Brazil faces in managing invasive fungal infections (IFIs) due to its diverse ecosystems and public health landscape. By comparing Brazil's situation with Europe-where IFIs are mainly linked to transplantation and intensive care-this study identifies key disparities in diagnostic and treatment practices. The findings reveal substantial differences in the availability and use of molecular diagnostics, antifungal drugs, and therapeutic drug monitoring, with Europe demonstrating more advanced practices. By mapping these variations, the study underscores the importance of tailored approaches to IFI management that consider regional differences and technological gaps. Ultimately, it calls for enhanced international collaboration, targeted training, and resource allocation to improve IFI outcomes globally, particularly in regions with limited access to advanced diagnostic tools and treatments.
Collapse
Affiliation(s)
- Jon Salmanton-García
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Diego R Falci
- Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Infectious Diseases Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Oliver A Cornely
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Alessandro C Pasqualotto
- Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
2
|
Dos Reis TF, Delbaje E, Pinzan CF, Bastos R, Ackloo S, Fallah S, Laflamme B, Robbins N, Cowen LE, Goldman GH. The GPCR antagonist PPTN synergizes with caspofungin providing increased fungicidal activity against Aspergillus fumigatus. Microbiol Spectr 2025:e0331824. [PMID: 40090930 DOI: 10.1128/spectrum.03318-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/31/2025] [Indexed: 03/19/2025] Open
Abstract
Fungal pathogens pose a serious threat to human health, with Candida and Aspergillus spp. representing some of the most significant opportunistic invaders. Aspergillus fumigatus causes aspergillosis, one of the most prevalent fungal diseases of humans. There is a limited number of drugs available to combat these infections, and antifungal drug resistance is on the rise. In this manuscript, we show 4-[4-(4-Piperidinyl) phenyl]-7-[4-(-(trifluoromethyl) phenyl]-2-naphthalenecarboxylic acid (PPTN), a highly specific antagonist of the human P2Y14 receptor, is a promising antifungal adjuvant against diverse fungal pathogens. PPTN interacts with caspofungin (CAS), ibrexafungerp, voriconazole (VOR), and amphotericin against A. fumigatus CAS- and VOR-resistant clinical isolates, and also CAS against Candida spp and Cryptococcus neoformans. The combination of PPTN and CAS increases cell death in A. fumigatus. In the model yeast Saccharomyces cerevisiae, heterozygous deletion of genes involved in chromatin remodeling results in PPTN hypersensitivity, and in A. fumigatus, PPTN can have increased fungicidal activity when combined with the histone deacetylase inhibitor trichostatin A and the DNA methyltransferase inhibitor 5-azacytidine. Finally, PPTN has reduced toxicity to human immortalized cell lineages and partially clears A. fumigatus conidia infection in A549 pulmonary epithelial cells. Our results indicate that PPTN is a novel adjuvant antifungal drug against fungal diseases caused by A. fumigatus and Candida spp. IMPORTANCE Invasive fungal infections have a high mortality rate, causing more deaths annually than tuberculosis or malaria. Aspergillus fumigatus is the main etiological agent of aspergillosis, one of the most prevalent and deadly fungal diseases. There are few therapeutic options for treating this disease, and treatment commonly fails due to host complications or the emergence of antifungal resistance. Drug repurposing, where existing drugs are deployed for other clinical indications, has increasingly been used in the process of drug discovery. Here, we show that 4-[4-(4-Piperidinyl) phenyl]-7-[4-(-(trifluoromethyl) phenyl]-2-naphthalenecarboxylic acid (PPTN), a highly specific antagonist of the human P2Y14 receptor, when combined with caspofungin (CAS), ibrexafungerp, voriconazole (VOR), and amphotericin can increase the fungicidal activity against not only A. fumigatus CAS- and VOR-resistant clinical isolates but also CAS against Candida spp.
Collapse
Affiliation(s)
- Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Bastos
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
- Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bradley Laflamme
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
3
|
Colson JD, Kendall JA, Yamamoto T, Mizusawa M. A Diagnostic Stewardship Intervention to Improve Utilization of 1,3 β-D-Glucan Testing at a Single Academic Center: Five-Year Experience. Open Forum Infect Dis 2024; 11:ofae358. [PMID: 39035574 PMCID: PMC11259134 DOI: 10.1093/ofid/ofae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
Background (1,3)- β-D-glucan (BDG) testing is one of the noninvasive tests to aid diagnosis of invasive fungal infections (IFIs). The study results have been heterogenous, and diagnostic performance varies depending on the risks for IFI. Thus, it is important to select appropriate patients for BDG testing to prevent false-positive results. An algorithmic diagnostic stewardship intervention was instituted at a single academic medical center to improve BDG test utilization. Methods The BDG test order in the electronic health record was replaced with the BDG test request order, which required approval to process the actual test order. The approval criteria were (1) immunocompromised or intensive care unit patient and (2) on empiric antifungal therapy, or inability to undergo invasive diagnostic procedures. A retrospective observational study was conducted to evaluate the efficacy of the intervention by comparing the number of BDG tests performed between 1 year pre- and post-intervention. Safety was assessed by chart review of the patients for whom BDG test requests were deemed inappropriate and rejected. Results The number of BDG tests performed per year decreased by 85% from 156 in the pre-intervention period to 24 in the post-intervention period. The average monthly number of BDG tests performed was significantly lower between those periods (P = .002). There was no delay in IFI diagnosis or IFI-related deaths in the patients whose BDG test requests were rejected. The sustained effectiveness of the intervention was observed for 5 years. Conclusions Institution of the diagnostic stewardship intervention successfully and safely improved BDG test utilization.
Collapse
Affiliation(s)
- Jordan D Colson
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jonathan A Kendall
- Department of Internal Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Takeru Yamamoto
- Department of Infectious Diseases, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Masako Mizusawa
- Section of Infectious Diseases, Department of Internal Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
- Department of Pathology and Laboratory Medicine, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Pathology and Laboratory Medicine, Monmouth Medical Center, Long Branch, New Jersey, USA
| |
Collapse
|
4
|
Salmanton-García J, Simon M, Groll AH, Kurzai O, Lahmer T, Lehrnbecher T, Schroeder M, Cornely OA, Stemler J. Insights into invasive fungal infection diagnostic and treatment capacities in tertiary care centres of Germany. JAC Antimicrob Resist 2024; 6:dlae083. [PMID: 38812581 PMCID: PMC11135635 DOI: 10.1093/jacamr/dlae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction In Germany, the growing incidence of invasive fungal infections (IFIs) is a significant health concern, particularly impacting individuals with compromised immune systems due to factors like increasing transplant recipients, an ageing population, and heightened use of immunosuppressive medications. Diagnosing IFI remains challenging, and the integration of biomarker assays into clinical practice is difficult. Antifungal resistance, exemplified by pan-antifungal-resistant Candida auris cases, adds complexity to treatment. This study aims to provide a concise overview of the diagnostic and treatment landscape for IFI in Germany, identifying areas for improvement and paving the way for targeted interventions. Methods Data were collected using an online electronic case report form from October 2021 to February 2023. The survey included questions about institutional practices related to fungal infection diagnosis and treatment, with invitations extended to researchers nationwide. Results The study surveyed 58 hospitals across Germany. Notably, 77.6% managed high-risk patients for IFI. While 86% had onsite microbiology labs, a significant difference was noted for high-risk patients (93% in specialized hospitals versus 62% in others). Microscopy services had 96% coverage, while overall access to culture was 96%. Antigen tests had 96% coverage, and antibody access was reported at 98%. PCR testing was available at 98%. Imaging access showed no significant access differences. Variability existed in amphotericin B formulations based on patient profiles. Therapeutic drug monitoring was more common in high-risk patient institutions (89.5% versus 50.0%). All analysed institutions reported access to surgery (100%). Conclusions Addressing identified disparities in diagnostic and therapeutic resources for IFI is crucial to improving patient outcomes. The study calls for ongoing research and collaboration to optimize strategies for the prevention and treatment of IFI, emphasizing the importance of equitable access to resources, especially in high-risk patient populations.
Collapse
Affiliation(s)
- Jon Salmanton-García
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Institute of Translational Research, Herderstraße 52, 50931 Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Michaela Simon
- Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children’s University Hospital Münster, Münster, Germany
| | - Oliver Kurzai
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Tobias Lahmer
- TUM School of Medicine and Health, Department of Clinical Medicine—Clinical Department for Internal Medicine II, University Medical Centre, Technical University of Munich, Munich, Germany
| | - Thomas Lehrnbecher
- Department of Pediatrics, Division of Hematology, Oncology and Hemostaseology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria Schroeder
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Institute of Translational Research, Herderstraße 52, 50931 Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Jannik Stemler
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Institute of Translational Research, Herderstraße 52, 50931 Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
5
|
Sun Y, Kim S, Shin S, Takemura K, Matos GS, Lazzarini C, Haranahalli K, Zambito J, Garg A, Del Poeta M, Ojima I. SAR study of N'-(Salicylidene)heteroarenecarbohydrazides as promising antifungal agents. Bioorg Med Chem 2024; 100:117610. [PMID: 38306882 PMCID: PMC11984380 DOI: 10.1016/j.bmc.2024.117610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Clinically available antifungal drugs have therapeutic limitations due to toxicity, narrow spectrum of activity, and intrinsic or acquired drug resistance. Thus, there is an urgent need for new broad-spectrum antifungal agents with low toxicity and a novel mechanism of action. In this context, we have successfully identified several highly promising lead compounds, i.e., aromatic N'-(salicylidene)carbohydrazides, exhibiting excellent antifungal activities against Cryptococcus neoformans, Candida albicans, Aspergillus fumigatus and several other fungi both in vitro and in vivo. Building upon these highly promising results, 71 novel N'-(salicylidene)heteroarenecarbohydrazides 5 were designed, synthesized and their antifungal activities examined against fungi. Based on the SAR study, four highly promising lead compounds, i.e., 5.6a, 5.6b, 5.7b and 5.13a were identified, which exhibited excellent potency against C. neoformans, C. albicans and A. fumigatus, and displayed impressive time-kill profiles against C. neoformans with exceptionally high selectivity indices (SI ≥ 500). These four lead compounds also showed synergy with clinical antifungal drugs, fluconazole, caspofungin (CS) and amphotericin B against C. neoformans. For the SAR study, we also employed quantitative structure-activity relationship (QSAR) analysis by taking advantage of the accumulated data on a large number of aromatic and heteroaromatic N'-(salicylidene)carbohydrazides, which successfully led to rational design and selection of promising compounds for chemical synthesis and biological evaluation.
Collapse
Affiliation(s)
- Yi Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Saerom Kim
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - SeungYoun Shin
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Kathryn Takemura
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Gabriel S Matos
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, United States
| | - Cristina Lazzarini
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, United States; Veterans Administration Medical Center, Northport, NY 11768, United States
| | - Krupanandan Haranahalli
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Julia Zambito
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Ashna Garg
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Maurizio Del Poeta
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, United States; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, United States; Veterans Administration Medical Center, Northport, NY 11768, United States; Division of Infectious Diseases, School of Medicine, Stony Brook University, New York 11794-8434, United States
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, United States.
| |
Collapse
|
6
|
Vena A, Bassetti M, Mezzogori L, Marchesi F, Hoenigl M, Giacobbe DR, Corcione S, Bartoletti M, Stemler J, Pagano L, Cornely OA, Salmanton-García J. Laboratory and clinical management capacity for invasive fungal infections: the Italian landscape. Infection 2024; 52:197-208. [PMID: 37656348 PMCID: PMC10811091 DOI: 10.1007/s15010-023-02084-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND We assessed the laboratory diagnosis and treatment of invasive fungal disease (IFD) in Italy to detect limitations and potential for improvement. METHODS The survey was available online at www.clinicalsurveys.net/uc/IFI management capacity/, and collected variables such as (a) institution profile, (b) perceptions of IFD in the respective institution, (c) microscopy, (d) culture and fungal identification, (e) serology, (f) antigen detection, (g) molecular tests, (h) susceptibility testing and (i) therapeutic drug monitoring (TDM). RESULTS The laboratory capacity study received responses from 49 Italian centres, with an equitable geographical distribution of locations. The majority of respondents (n = 36, 73%) assessed the occurrence of IFD as moderate-high, with Aspergillus spp. being the pathogen of highest concern, followed by Candida spp. and Mucorales. Although 46 (94%) of the institutions had access to microscopy, less than half of them performed direct microscopy on clinical specimens always when IFD was suspected. Cultures were available in all assessed laboratories, while molecular testing and serology were available in 41 (83%), each. Antigen detection tests and antifungal drugs were also generally accessible (> 90%) among the participating institutions. Nevertheless, access to TDM was limited (n = 31, 63%), with a significant association established between therapeutic drug monitoring availability and higher gross domestic product per capita. CONCLUSIONS Apart from TDM, Italy is adequately prepared for the diagnosis and treatment of IFD, with no significant disparities depending on gross domestic product. Future efforts may need to focus on enhancing the availability and application of direct microscopic methods, as well as TDM, to promote optimal treatment and better patient outcomes.
Collapse
Affiliation(s)
- Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Laura Mezzogori
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases, ECMM Center of Excellence for Medical Mycology, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
- Tufts University School of Medicine, Boston, MA, USA
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Jannik Stemler
- Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Herderstraße 52-54, 50931, Cologne, Germany
- Partner Site Bonn-Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
| | - Livio Pagano
- Hematology Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Hematology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Oliver A Cornely
- Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Herderstraße 52-54, 50931, Cologne, Germany
- Partner Site Bonn-Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
- Faculty of Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, University Hospital Cologne, Cologne, Germany
- Faculty of Medicine, University of Cologne, University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Jon Salmanton-García
- Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany.
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Herderstraße 52-54, 50931, Cologne, Germany.
- Partner Site Bonn-Cologne, German Centre for Infection Research (DZIF), Cologne, Germany.
| |
Collapse
|
7
|
Álvarez Duarte E, Cepeda N, Miranda J. Azole resistance in a clinical isolate of Aspergillus fumigatus from Chile. Rev Iberoam Micol 2024; 41:7-12. [PMID: 39304433 DOI: 10.1016/j.riam.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 04/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Aspergillus fumigatus is a ubiquitous opportunistic pathogen. This fungus can acquire resistance to azole antifungals due to different mutations in the cyp51A gene. Azole resistance has been observed in several continents and appears to be a globally distributed phenomenon. Specific mutations in cyp51A that lead to azole resistance, such as the TR34/L98H modification, have been reported. AIMS To evaluate the azole resistance in clinically isolated A. fumigatus strains. METHODS As a result of our passive surveillance strategy, a total of 23 A. fumigatus isolates from clinical origins were identified through a phylogenetic analysis using the ITS region and β-tubulin gene fragments, and typed with the CSP microsatellite. Azole susceptibility profiles were performed by disk diffusion and microdilution broth methodologies according to CLSI guidelines. RESULTS Here we describe, for the first time, the detection of azole-resistant A. fumigatus isolates from clinical origins in Chile with mutations in the cyp51A gene. In addition to the TR34/L98H mutation, one isolate exhibited an F46Y/M172V/E427K-type mutation. Furthermore, microsatellite typing based on cell surface protein (CSP) was performed, showing the t02 (TR34/L98H), t15 (F46Y/M172V/E427K) and t01 (susceptible clinical isolates) genotypes. CONCLUSIONS Our study demonstrates the presence of mutations related to azole resistance in A. fumigatus strains isolated from clinical samples in Chile. In order to obtain information that may help to tackle the spread of antifungal resistance among A. fumigatus populations, and to ensure the efficacy of future treatments against aspergillosis, a further research is necessary.
Collapse
Affiliation(s)
| | - Nicolás Cepeda
- Clinical Chemistry and Hematology, Hospital del Salvador, Chile
| | - Jean Miranda
- Laboratorio Micología, ICBM - F. de Medicina, Universidad de Chile, Chile
| |
Collapse
|
8
|
Nguyen MH, Ostrosky-Zeichner L, Pappas PG, Walsh TJ, Bubalo J, Alexander BD, Miceli MH, Jiang J, Song Y, Thompson GR. Real-world Use of Mold-Active Triazole Prophylaxis in the Prevention of Invasive Fungal Diseases: Results From a Subgroup Analysis of a Multicenter National Registry. Open Forum Infect Dis 2023; 10:ofad424. [PMID: 37674634 PMCID: PMC10478153 DOI: 10.1093/ofid/ofad424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Background Antifungal prophylaxis can prevent invasive fungal diseases (IFDs) in high-risk, immunocompromised patients. This study assessed the real-world use of mold-active triazoles (MATs) for the prevention of IFDs. Methods This subgroup analysis of a multicenter, observational, prospective registry in the United States from March 2017 to April 2020 included patients who received MATs for prophylaxis (isavuconazole, posaconazole, and voriconazole) at study index/enrollment. The primary objective was to describe patient characteristics and patterns of MAT use. Exploratory assessments included the frequency of breakthrough IFDs and MAT-related adverse drug reactions (ADRs). Results A total of 1177 patients (256 isavuconazole, 397 posaconazole, 272 voriconazole, and 252 multiple/sequenced MATs at/after index/enrollment) were included in the prophylaxis subgroup analysis. Patient characteristics were similar across MAT groups, but risk factors varied. Hematological malignancy predominated (76.5%) across all groups. Breakthrough IFDs occurred in 7.1% (73/1030) of patients with an investigator's assessment (5.0% [11/221] isavuconazole; 5.3% [20/374] posaconazole; 4.0% [9/226] voriconazole; and 15.8% [33/209] multiple/sequenced MATs). Aspergillus (29.5% [18/61]) and Candida (36.1% [22/61]) species were the most common breakthrough pathogens recovered. ADRs were reported in 14.1% of patients, and discontinuation of MATs due to ADRs was reported in 11.1% of patients (2.0% [5/245] isavuconazole; 8.2% [30/368] posaconazole; and 10.1% [27/267] voriconazole). Conclusions Breakthrough IFDs were uncommon in patients who received MATs for prophylaxis. Candida and Aspergillus species were the most commonly reported breakthrough pathogens. The discontinuation of MATs due to ADRs was infrequent. These findings support prophylactic strategies with isavuconazole, posaconazole, and voriconazole in high-risk patients.
Collapse
Affiliation(s)
- M Hong Nguyen
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Peter G Pappas
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas J Walsh
- Weill Cornell Medicine, Cornell University, New York, New York, USA
- Institute for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
| | - Joseph Bubalo
- Oregon Health and Science University Hospital and Clinics, Portland, Oregon, USA
| | | | | | - Jeanette Jiang
- Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | - Yi Song
- Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | | |
Collapse
|
9
|
Sprute R, Nacov JA, Neofytos D, Oliverio M, Prattes J, Reinhold I, Cornely OA, Stemler J. Antifungal prophylaxis and pre-emptive therapy: When and how? Mol Aspects Med 2023; 92:101190. [PMID: 37207579 DOI: 10.1016/j.mam.2023.101190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The growing pool of critically ill or immunocompromised patients leads to a constant increase of life-threatening invasive infections by fungi such as Aspergillus spp., Candida spp. and Pneumocystis jirovecii. In response to this, prophylactic and pre-emptive antifungal treatment strategies have been developed and implemented for high-risk patient populations. The benefit by risk reduction needs to be carefully weighed against potential harm caused by prolonged exposure against antifungal agents. This includes adverse effects and development of resistance as well as costs for the healthcare system. In this review, we summarise evidence and discuss advantages and downsides of antifungal prophylaxis and pre-emptive treatment in the setting of malignancies such as acute leukaemia, haematopoietic stem cell transplantation, CAR-T cell therapy, and solid organ transplant. We also address preventive strategies in patients after abdominal surgery and with viral pneumonia as well as individuals with inherited immunodeficiencies. Notable progress has been made in haematology research, where strong recommendations regarding antifungal prophylaxis and pre-emptive treatment are backed by data from randomized controlled trials, whereas other critical areas still lack high-quality evidence. In these areas, paucity of definitive data translates into centre-specific strategies that are based on interpretation of available data, local expertise, and epidemiology. The development of novel immunomodulating anticancer drugs, high-end intensive care treatment and the development of new antifungals with new modes of action, adverse effects and routes of administration will have implications on future prophylactic and pre-emptive approaches.
Collapse
Affiliation(s)
- Rosanne Sprute
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Julia A Nacov
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Dionysios Neofytos
- Division of Infectious Diseases, Transplant Infectious Disease Service, University Hospital of Geneva, Geneva, Switzerland
| | - Matteo Oliverio
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Juergen Prattes
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Medical University of Graz, Department of Internal Medicine, Division of Infectious Disease, Excellence Center for Medical Mycology (ECMM), Graz, Austria
| | - Ilana Reinhold
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Al-Sulami AI, Basha MT, AlGhamdi HA, S. Albalawi S, M. Al-Zaydi K, Said MA. Synthesis of Silver(I) Complexes Containing 3-Oxo-3-phenyl-2-(2-phenylhydrazono)propanal-Based Ligands as a Multifunction Platform for Antimicrobial and Optoelectronic Applications. ACS OMEGA 2023; 8:23633-23642. [PMID: 37426249 PMCID: PMC10324052 DOI: 10.1021/acsomega.3c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023]
Abstract
Toward multifunctionality, including antimicrobial and optoelectronic applications, herein, we reported the synthesis of a novel Ag(I) complex with 3-oxo-3-phenyl-2-(2-phenylhydrazono)propanal-based ligands including 3-(4-chlorophenyl)-2-[2-(4-nitrophenyl)hydrazono]-3-oxopropanal (named as "4A"), 3-(4-chlorophenyl)-2-[2-(4-methylphenyl)hydrazono]-3-oxopropanal (named as "6A"), and 3-(4-chlorophenyl)-3-oxo-2-(2-phenylhydrazono)propanal (named as "9A"). The synthesized compounds were characterized through FTIR, 1H NMR, and density functional theory (DFT). The morphological features and thermal stability were evaluated through transmission electron microscopy (TEM) and TG/DTA analysis. The antimicrobial activity of the synthesized Ag complexes was tested against various pathogens, including Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia), Gram-positive bacteria (Staphylococcus aureus and Streptococcus mutans), and fungi (Candida albicans and Aspergillus niger). Results show that the synthesized complexes (Ag(4A), Ag(6A), and Ag(9A)) possess promising antimicrobial efficacy against various pathogens and are in good competition with several standard drugs as well. On the other hand, the optoelectronic features such as absorbance, band gap, and Urbach energy were examined by measuring the absorbance using a UV-vis spectrophotometer. The values of the band gap reflected the semiconducting nature of these complexes. The complexation with Ag resulted in a lowering band gap to match the apex of the solar spectrum. Such low band gap values are preferable for optoelectronic applications like dye-sensitized solar cells, photodiodes, and photocatalysis.
Collapse
Affiliation(s)
- Ahlam I. Al-Sulami
- College
of Science, Department of Chemistry, University
of Jeddah, Jeddah 21589, Saudi Arabia
| | - Maram T. Basha
- College
of Science, Department of Chemistry, University
of Jeddah, Jeddah 21589, Saudi Arabia
| | - Huda A. AlGhamdi
- College
of Science, Department of Chemistry, University
of Jeddah, Jeddah 21589, Saudi Arabia
| | - Sarah S. Albalawi
- College
of Science, Department of Chemistry, University
of Jeddah, Jeddah 21589, Saudi Arabia
| | - Khadijah M. Al-Zaydi
- College
of Science, Department of Chemistry, University
of Jeddah, Jeddah 21589, Saudi Arabia
| | - Musa A. Said
- Chemistry
Department, College of Science, Taibah University, PO Box 30002, Al-Madinah Al Munawara 1417, Saudi Arabia
| |
Collapse
|
11
|
Baugh SDP, Chaly A, Weaver DG, Whitman DB, Pelletier JC, Bian H, Freeman KB, Reitz AB, Scott RW. Amide- and bis-amide-linked highly potent and broadly active antifungal agents for the treatment of invasive fungal infections- towards the discovery of pre-clinical development candidate FC12406. Med Chem Res 2023:1-17. [PMID: 37362318 PMCID: PMC10227796 DOI: 10.1007/s00044-023-03083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/13/2023] [Indexed: 06/28/2023]
Abstract
Most fungal infections are common, localized to skin or mucosal surfaces and can be treated effectively with topical antifungal agents. However, while invasive fungal infections (IFIs) are uncommon, they are very difficult to control medically, and are associated with high mortality rates. We have previously described highly potent bis-guanidine-containing heteroaryl-linked antifungal agents, and were interested in expanding the range of agents to novel series so as to reduce the degree of aromaticity (with a view to making the compounds more drug-like), and provide broadly active high potency derivatives. We have investigated the replacement of the central aryl ring from our original series by both amide and a bis-amide moieties, and have found particular structure-activity relationships (SAR) for both series', resulting in highly active antifungal agents against both mold and yeast pathogens. In particular, we describe the in vitro antifungal activity, absorption, distribution, metabolism and elimination (ADME) properties, and off-target properties of FC12406 (34), which was selected as a pre-clinical development candidate.
Collapse
Affiliation(s)
- Simon D. P. Baugh
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Anna Chaly
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Damian G. Weaver
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - David B. Whitman
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Jeffrey C. Pelletier
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Haiyan Bian
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Katie B. Freeman
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Allen B. Reitz
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Richard W. Scott
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| |
Collapse
|
12
|
Tchinang FTK, Ndoyé Foé FMC, Keumoe R, Zeuko'o EM, Fekam FB, Etoa FX. In vitro anti-yeast activity, kinetics and mechanism of action of essential oils from two cameroonian medicinal plants. BMC Complement Med Ther 2023; 23:115. [PMID: 37046251 PMCID: PMC10091556 DOI: 10.1186/s12906-022-03827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/23/2022] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Treatment of Candida infections have become increasingly difficult due to antifungal drug resistance, which has drawn attention toward the search for innovative and effective drugs. This study aimed to assess the activity of essential oils (EOs) from Pentadiplandra brazzeana Baillon (PB) root and Drypetes gossweileri S. Moore (DG) stem bark against Candida albicans and Candida parapsilopsis strains, and determine their antifungal mechanism when tested alone or combined. METHODS The anticandidal activity of the EOs using the checkerboard format was assessed using the broth micro-dilution technique. The checkerboard microtiter test was performed to evaluate the interaction of the EOs. The in vitro pharmacodynamics of the EOs alone or combined, using time-kill assays, following the chequerboard technique were evaluated. The anticandidal mode of action of these EOs, combined or not, was investigated using the sorbitol protection assay, and the ergosterol binding assay. Differences (p < 0.05) between the experimental and the control groups were evaluated using one way analysis of variance (ANOVA) followed by Tukey's test for multiple comparisons. RESULTS Essential oils (EOs) from Drypetes gossweileri (DG) stem bark showed activity with MIC value of 62.5 µg/mL against Candida albicans and Candida parapsilopsis, whereas EOs from Pentadiplandra brazzeana (PB) root exhibited MICs of 125 µg/mL and 250 µg/mL against the respective yeasts. The EOs were fungicidal with synergism on C. parapsilopsis and additivity on C. albicans, with 2 to 64-fold drop in MIC values. The MIC combination of 31.25/7.81 µg/mL and 1.95/31.25 µg/mL (DG/PB EOs) required 20 and 18 h of exposure, respectively to effectively kill 99.9% of the inoculum. This fungicidal effect was accompanied by alteration of the cell walls and membranes of yeasts. CONCLUSION The potency of the EOs combinations indicates further directions in their investigation as potential anticandidal agents.
Collapse
Affiliation(s)
- Flore Tatiana Kemegni Tchinang
- Department of Biochemistry, Laboratory of Phyto-Biochemistry and Medicinal Plant Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
- Department of Microbiology, Laboratory of Microbiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
- Laboratory of Phyto-Biochemistry and Medicinal Plant Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Florentine Marie-Chantal Ndoyé Foé
- Department of Biochemistry, Laboratory of Phyto-Biochemistry and Medicinal Plant Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Rodrigue Keumoe
- Laboratory of Phyto-Biochemistry and Medicinal Plant Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Elisabeth Menkem Zeuko'o
- Laboratory of Phyto-Biochemistry and Medicinal Plant Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Fabrice Boyom Fekam
- Laboratory of Phyto-Biochemistry and Medicinal Plant Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - François-Xavier Etoa
- Department of Microbiology, Laboratory of Microbiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
13
|
Dos Reis TF, de Castro PA, Bastos RW, Pinzan CF, Souza PFN, Ackloo S, Hossain MA, Drewry DH, Alkhazraji S, Ibrahim AS, Jo H, Lightfoot JD, Adams EM, Fuller KK, deGrado WF, Goldman GH. A host defense peptide mimetic, brilacidin, potentiates caspofungin antifungal activity against human pathogenic fungi. Nat Commun 2023; 14:2052. [PMID: 37045836 PMCID: PMC10090755 DOI: 10.1038/s41467-023-37573-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Fungal infections cause more than 1.5 million deaths a year. Due to emerging antifungal drug resistance, novel strategies are urgently needed to combat life-threatening fungal diseases. Here, we identify the host defense peptide mimetic, brilacidin (BRI) as a synergizer with caspofungin (CAS) against CAS-sensitive and CAS-resistant isolates of Aspergillus fumigatus, Candida albicans, C. auris, and CAS-intrinsically resistant Cryptococcus neoformans. BRI also potentiates azoles against A. fumigatus and several Mucorales fungi. BRI acts in A. fumigatus by affecting cell wall integrity pathway and cell membrane potential. BRI combined with CAS significantly clears A. fumigatus lung infection in an immunosuppressed murine model of invasive pulmonary aspergillosis. BRI alone also decreases A. fumigatus fungal burden and ablates disease development in a murine model of fungal keratitis. Our results indicate that combinations of BRI and antifungal drugs in clinical use are likely to improve the treatment outcome of aspergillosis and other fungal infections.
Collapse
Affiliation(s)
- Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rafael Wesley Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Pedro F N Souza
- Visiting professor at Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, Suite 700, Toronto, ON, M5G 1L7, Canada
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David Harold Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sondus Alkhazraji
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, 90502, USA
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, 90502, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jorge D Lightfoot
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Emily M Adams
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kevin K Fuller
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - William F deGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
14
|
Zhao X, Sun D, Zhang A, Huang H, Li Y, Xu D. Candida albicans-induced activation of the TGF-β/Smad pathway and upregulation of IL-6 may contribute to intrauterine adhesion. Sci Rep 2023; 13:579. [PMID: 36631456 PMCID: PMC9834405 DOI: 10.1038/s41598-022-25471-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/30/2022] [Indexed: 01/13/2023] Open
Abstract
Iatrogenic injury to endometrial tissue is the main cause of intrauterine adhesions (IUA) and infection can also damage the endometrium. The microbiota plays an important role in the health of the female reproductive tract. However, the mechanism is still unclear. In total, 908 patients with IUA and 11,389 healthy individuals were retrospectively selected for this clinical study. Participant information including vaginal microecological results and human papillomavirus (HPV) status were collected. Univariate and multivariate logistic regression analyses were used to identify the factors related to IUA. Next, animal experiments were performed in a curettage-induced IUA rat model. After the procedure, rats in the experimental group received a vaginal infusion of a Candida albicans (C. albicans) fungal solution. On days 3, 7, and 14 after curettage and infusion, the expression levels of IL-6, fibrotic pathway-related factors (TGF-β1, Smad 2, and COL1), and estrogen receptor (ER) and progesterone receptor (PR) in rat endometrial tissues were assessed. Fungal infection of the reproductive tract was found to be an independent risk factor for IUA (P < 0.05). The inflammatory response and degree of fibrosis were greater in rats infected with C. albicans than in the controls. The levels of IL-6, TGF-β1, Smad 2, and COL1 expression in endometrial tissues were significantly higher in the experimental group than in the control group (P < 0.05). However, the ER and PR levels were lower in the IUA group than in the non-IUA group (P < 0.05). C. albicans infection may be related to IUA. C. albicans elicits a strong inflammatory response that can lead to more severe endometrial fibrosis.
Collapse
Affiliation(s)
- Xingping Zhao
- grid.431010.7Department of Gynecology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013 Hunan China
| | - Dan Sun
- grid.431010.7Department of Gynecology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013 Hunan China ,grid.412594.f0000 0004 1757 2961The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 China
| | - Aiqian Zhang
- grid.431010.7Department of Gynecology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013 Hunan China
| | - Huan Huang
- grid.431010.7Department of Gynecology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yueran Li
- Department of Gynecology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
15
|
Macleod T, Bridgewood C, McGonagle D. Role of neutrophil interleukin-23 in spondyloarthropathy spectrum disorders. THE LANCET. RHEUMATOLOGY 2023; 5:e47-e57. [PMID: 38251507 DOI: 10.1016/s2665-9913(22)00334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Neutrophilic inflammation is a pervasive characteristic common to spondyloarthropathies and related disorders. This inflammation manifests as Munro's microabscesses of the skin and osteoarticular neutrophilic inflammation in patients with psoriatic arthritis, intestinal crypt abscesses in patients with inflammatory bowel disease, ocular hypopyon in anterior uveitis, and neutrophilic macroscopic and microscopic inflammation in patients with Behçet's disease. Strong MHC class I associations are seen in these diseases, which represent so-called MHC-I-opathies, and these associations indicate an involvement of CD8 T-cell immunopathology that is not yet well understood. In this Personal View, we highlight emerging data suggesting that the T-cell-neutrophil axis involves both a T-cell-mediated and interleukin (IL)-17-mediated (type 17) recruitment and activation of neutrophils, and also a sequestration of activated neutrophils at disease sites that might directly amplify type 17 T-cell responses. This amplification likely involves neutrophilic production of IL-23 and proteases as well as other feedback mechanisms that could be regulated by local microbiota, pathogens, or tissue damage. This crosstalk between innate and adaptive immunity offers a novel explanation for how bacterial and fungal microbes at barrier sites could innately control type 17 T-cell development, with the aim of restoring tissue homoeostasis, and could potentially explain features of clinical disease and treatment response, such as the fast-onset action of the IL-23 pathway blockade in certain patients. This axis could be crucial to understanding non-response to IL-23 inhibitors among patients with ankylosing spondylitis, as the axial skeleton is a site rich in neutrophils and a site of haematopoiesis with myelopoiesis in adults.
Collapse
Affiliation(s)
- Tom Macleod
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Charles Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, UK.
| |
Collapse
|
16
|
Salmanton-García J, Hoenigl M, Gangneux JP, Segal E, Alastruey-Izquierdo A, Arikan Akdagli S, Lagrou K, Özenci V, Vena A, Cornely OA. The current state of laboratory mycology and access to antifungal treatment in Europe: a European Confederation of Medical Mycology survey. THE LANCET. MICROBE 2023; 4:e47-e56. [PMID: 36463916 DOI: 10.1016/s2666-5247(22)00261-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022]
Abstract
Access to the appropriate tools is crucial for early diagnosis and clinical management of invasive fungal infections. This Review aims to describe the invasive fungal infection diagnostic capacity of Europe to better understand the status and the most pressing aspects that need improvement. To our knowledge, this is the first time that the mycological diagnostic capability and access to antifungal treatments of institutions has been evaluated at a pan-European level. Between Nov 1, 2021, and Jan 31, 2022, 388 institutions in Europe self-assessed their invasive fungal infection management capability. Of the 388 participating institutions from 45 countries, 383 (99%) had access to cultures, 375 (97%) to microscopy, 363 (94%) to antigen-detection assays, 329 (85%) to molecular tests (mostly PCR), and 324 (84%) to antibody tests for diagnosis and management. With the exception of microscopy, there were considerable differences in access to techniques among countries according to their gross domestic product. At least one triazole was available in 363 (94%) of the institutions, one echinocandin in 346 (89%), and liposomal amphotericin B in 301 (78%), with country gross domestic product-based differences. Differences were also observed in the access to therapeutic drug monitoring. Although Europe is well prepared to manage invasive fungal infections, some institutions do not have access to certain diagnostic tools and antifungal drugs, despite most being considered essential by WHO. These limitations need to be overcome to ensure that all patients receive the best diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Jon Salmanton-García
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany; Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Center of Excellence for Medical Mycology, Medical University of Graz, Graz, Austria; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Pierre Gangneux
- CHU de Rennes, INSERM, Institut de Recherche en Santé, Environnement et Travail, (UMR_S 1085), University of Rennes, Rennes, France
| | - Esther Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, Spanish National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sevtap Arikan Akdagli
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Türkiye
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, Center of Excellence for Medical Mycology, and National Reference Center for Mycosis, UZ Leuven, Leuven, Belgium
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Vena
- Department of Health Sciences, University of Genoa, Genoa, Italy; Infectious Diseases Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Clinical Trials Centre Cologne, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Multicenter Registry of Patients Receiving Systemic Mold-Active Triazoles for the Management of Invasive Fungal Infections. Infect Dis Ther 2022; 11:1609-1629. [PMID: 35716251 PMCID: PMC9334502 DOI: 10.1007/s40121-022-00661-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction ‘Real-world’ data for mold-active triazoles (MATs) in the treatment of invasive fungal infections (IFIs) are lacking. This study evaluated usage of MATs in a disease registry for the management of IFIs. Methods Data were collected for this multicenter, observational, prospective study from 55 US centers, between March 2017 and April 2020. Eligible patients received isavuconazole, posaconazole, or voriconazole as MAT monotherapy (one MAT) or multiple/sequenced MAT therapy (more than one MAT) for prophylaxis or treatment. Patients were enrolled within 60 days of MAT initiation. The primary objective was to characterize patients receiving a MAT and their patterns of therapy. The full analysis set (FAS) included eligible patients for the relevant enrollment protocol, and the safety analysis set (SAF) included patients who received ≥ 1 MAT dose. Results Overall, 2009 patients were enrolled in the SAF. The FAS comprised 1993 patients (510 isavuconazole; 540 posaconazole; 491 voriconazole; 452 multiple/sequenced MAT therapies); 816 and 1177 received treatment and prophylaxis at study index/enrollment, respectively. Around half (57.8%) of patients were male, and median age was 59 years. Among patients with IFIs during the study, the most common pathogens were Aspergillus fumigatus in the isavuconazole (18.2% [10/55]) and voriconazole (25.5% [12/47]) groups and Candida glabrata in the posaconazole group (20.9% [9/43]); the lungs were the most common infection site (58.2% [166/285]). Most patients were maintained on MAT monotherapy (77.3% [1541/1993]), and 79.4% (1520/1915) completed their MAT therapies. A complete/partial clinical response was reported in 59.1% (591/1001) of patients with a clinical response assessment. Breakthrough IFIs were reported in 7.1% (73/1030) of prophylaxis patients. Adverse drug reactions (ADRs) were reported in 14.7% (296/2009) of patients (3.9% [20/514] isavuconazole; 11.3% [62/547] posaconazole; 14.2% [70/494] voriconazole). Conclusions In this ‘real-world’ study, most patients remained on their initial therapy and completed their MAT therapy. Over half of patients receiving MATs for IFIs had a successful response, and most receiving prophylaxis did not develop breakthrough IFIs. ADRs were uncommon. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-022-00661-5.
Collapse
|
18
|
Gao Y, Tang M, Li Y, Niu X, Li J, Fu C, Wang Z, Liu J, Song B, Chen H, Gao X, Guan X. Machine-learning based prediction and analysis of prognostic risk factors in patients with candidemia and bacteraemia: a 5-year analysis. PeerJ 2022; 10:e13594. [PMID: 35726257 PMCID: PMC9206432 DOI: 10.7717/peerj.13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/25/2022] [Indexed: 01/17/2023] Open
Abstract
Bacteraemia has attracted great attention owing to its serious outcomes, including deterioration of the primary disease, infection, severe sepsis, overwhelming septic shock or even death. Candidemia, secondary to bacteraemia, is frequently seen in hospitalised patients, especially in those with weak immune systems, and may lead to lethal outcomes and a poor prognosis. Moreover, higher morbidity and mortality associated with candidemia. Owing to the complexity of patient conditions, the occurrence of candidemia is increasing. Candidemia-related studies are relatively challenging. Because candidemia is associated with increasing mortality related to invasive infection of organs, its pathogenesis warrants further investigation. We collected the relevant clinical data of 367 patients with concomitant candidemia and bacteraemia in the first hospital of China Medical University from January 2013 to January 2018. We analysed the available information and attempted to obtain the undisclosed information. Subsequently, we used machine learning to screen for regulators such as prognostic factors related to death. Of the 367 patients, 231 (62.9%) were men, and the median age of all patients was 61 years old (range, 52-71 years), with 133 (36.2%) patients aged >65 years. In addition, 249 patients had hypoproteinaemia, and 169 patients were admitted to the intensive care unit (ICU) during hospitalisation. The most common fungi and bacteria associated with tumour development and Candida infection were Candida parapsilosis and Acinetobacter baumannii, respectively. We used machine learning to screen for death-related prognostic factors in patients with candidemia and bacteraemia mainly based on integrated information. The results showed that serum creatinine level, endotoxic shock, length of stay in ICU, age, leukocyte count, total parenteral nutrition, total bilirubin level, length of stay in the hospital, PCT level and lymphocyte count were identified as the main prognostic factors. These findings will greatly help clinicians treat patients with candidemia and bacteraemia.
Collapse
Affiliation(s)
- Yali Gao
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingsui Tang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaling Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xueli Niu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingyi Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chang Fu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zihan Wang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiayi Liu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bing Song
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China,School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Hongduo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiuhao Guan
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Dowdy H, Kumar RS, Almansour AI, Arumugam N, IbrahimAlaqeel S, Thangamani S. Discovery of spirooxindole-pyrrolidine heterocyclic hybrids with potent antifungal activity against fungal pathogens. Pathog Dis 2022; 80:6581313. [PMID: 35512603 DOI: 10.1093/femspd/ftac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 11/14/2022] Open
Abstract
Fungal pathogens mainly Candida and Cryptococcus species causes serious life-threating infections to humans, especially in individuals who are immunocompromised. Increasing frequency of antifungal drug resistance along with paucity of FDA-approved drugs suggest a dire need for new antifungal drugs. Our screening of newly synthesized spirooxindole heterocyclic hybrid compounds revealed that the novel small molecule, DPA-3, has potent antifungal activity without inducing mammalian cell cytotoxicity. Furthermore, DPA-3 significantly reduced hyphal and biofilm formation of Candida albicans ATCC 10231 strain, out-competing two FDA approved antifungal drugs. The results of our study conclude that DPA-3 is a compelling candidate for further development as an antifungal drug.
Collapse
Affiliation(s)
- Hannah Dowdy
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shatha IbrahimAlaqeel
- Department of Chemistry, College of Science, King Saud University (034), Riyadh, 11495, Saudi Arabia
| | - Shankar Thangamani
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA.,Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), IN 47906, USA
| |
Collapse
|
20
|
Combined Use of Presepsin and (1,3)-β-D-glucan as Biomarkers for Diagnosing Candida Sepsis and Monitoring the Effectiveness of Treatment in Critically Ill Patients. J Fungi (Basel) 2022; 8:jof8030308. [PMID: 35330311 PMCID: PMC8954802 DOI: 10.3390/jof8030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
New biomarker panel was developed and validated on 165 critically ill adult patients to enable a more accurate invasive candidiasis (IC) diagnosis. Serum levels of the panfungal biomarker (1,3)-β-D-glucan (BDG) and the inflammatory biomarkers C-reactive protein, presepsin (PSEP), and procalcitonin (PCT) were correlated with culture-confirmed candidemia or bacteremia in 58 and 107 patients, respectively. The diagnostic utility was evaluated in sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). BDG was the best marker for IC, achieving 96.6% sensitivity, 97.2% specificity, 94.9% PPV, and 98.1% NPV at a cut-off of 200 pg/mL (p ≤ 0.001). PSEP exhibited 100% sensitivity and 100% NPV at a cut-off of 700 pg/mL but had a lower PPV (36.5%) and low specificity (5.6%). Combined use of PSEP and BDG, thus, seems to be the most powerful laboratory approach for diagnosing IC. Furthermore, PSEP was more accurate for 28-day mortality prediction the area under the receiver operating characteristic curve (AUC = 0.74) than PCT (AUC = 0.31; PCT cut-off = 0.5 ng/mL). Finally, serum PSEP levels decreased significantly after only 14 days of echinocandin therapy (p = 0.0012). The probability of IC is almost 100% in critically ill adults with serum BDG and PSEP concentrations > 200 pg/mL and >700 pg/mL, respectively, defining a borderline between non-invasive superficial Candida colonization and IC.
Collapse
|
21
|
Dhabaan G, Kus J, Kumar D, Humar A, Husain S, Mazzulli T. Molecular identification of Aspergillus fumigatus complex from lung transplant recipients using multilocus sequencing analysis (MLSA). JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2022; 7:54-63. [PMID: 36340850 PMCID: PMC9603012 DOI: 10.3138/jammi-2021-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND Aspergillus infection causes significant morbidity and mortality among lung transplant recipients (LTRs). It is primarily caused by Aspergillus fumigatus. Other closely related species belonging to the section Fumigati have also been found. These cryptic species are often misidentified as A. fumigatus. Thus, we used multilocus sequencing analysis (MLSA) of the calmodulin, β-tubulin, and hydrophobin gene sequences to identify these species and to determine the frequency with which they occur among LTRs. METHODS A total of 81 A. fumigatus isolates were initially isolated from bronchoalveolar lavage fluid or sputum specimens collected from lung transplant patients. These isolates were then sub-cultured and genotyped using MLSA. Of these isolates, 53, 17, and 11 were isolated from double LTRs, single LTRs, and pre-LTRs, respectively. RESULTS All isolates (100%) carried DNA sequences identical to those of A. fumigatus reference strains and thus clustered in the same clade with A. fumigatus. Analysis of the MLSA data revealed that A. fumigatus species were the only species recovered in this population of LTRs. The MLSA results were consistent with those routinely obtained by conventional mycological procedures in the microbiology laboratory. CONCLUSIONS A. fumigatus appears to be the primary causative agent of colonization or invasive aspergillosis among LTRs. No cryptic species were identified.
Collapse
Affiliation(s)
- Ghulam Dhabaan
- Department of Microbiology, Sinai Health System/University Health Network, Toronto, Ontario, Canada
- Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Public Health of Ontario Laboratory, Toronto, Ontario, Canada
| | - Julianne Kus
- Public Health of Ontario Laboratory, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Deepali Kumar
- Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Atul Humar
- Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shahid Husain
- Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tony Mazzulli
- Department of Microbiology, Sinai Health System/University Health Network, Toronto, Ontario, Canada
- Public Health of Ontario Laboratory, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Salehi M, Ghaderkhani S, Sharifian RA, Dehghan Manshadi SA, Samiee Fard E, Khodavaisy S, Pourahmad R, Foroushani AR, Rodini K, Kamali Sarvestani H. The Value of Nasal and Oral Clinical Examination in Febrile Neutropenic Patients for Initiating Antifungal Therapy as a Preemptive Method. Front Med (Lausanne) 2022; 8:803600. [PMID: 35155481 PMCID: PMC8835583 DOI: 10.3389/fmed.2021.803600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Invasive fungal infections (IFIs) are complications that lead to mortality and morbidity in hematologic malignancies. The time of starting antifungal therapy is vital. Preemptive antifungal therapy has appeared recently as a new policy for the management of IFIs based on noninvasive ways in neutropenic patients. METHODS We enrolled leukemia patients with neutropenia after chemotherapy in Imam Khomeini Hospital Complex, Tehran, Iran. Patients who entered the neutropenic phase were divided into two categories (empirical and preemptive) for receiving antifungal agents. The patients were clinically examined in the preemptive group every day to find IFIs. As soon as clinical evidence of IFIs was observed, antifungal was prescribed. The empirical group patients received antifungals based on the ward protocol. Based on the data in each group, the diagnostic and therapeutic results of cases are followed-up to 3 months. To compare percentages between the two groups, the chi-squared test was used. And to compare two means between the two groups, the independent t-test was used. All the statistical analyses were done in the Statistical Package for the Social Sciences (SPSS) version 24 software (IBM Corporation, Armonk, New York, USA). RESULTS We assessed 132 leukemic patients with inclusion and exclusion criteria. Eventually, 80 patients were enrolled. The mean age was 35.52 years. Demographics data and distribution of leukemia type show no significant differences between the two groups. Despite a higher percentage of IFIs discovered in the preemptive group than the empirical group (25 vs. 18.75%, respectively), but data show no significant differences. The average days of IFIs diagnosis since the beginning of neutropenia in the empirical group were 9.5 days while in the preemptive group, the average days were 5.4 days (p < 0.05). Totally, there were 15 patients with a proven IFI in each group (40% in the empirical group and 60% in the preemptive group). Results significantly show an increase in surgical sinus debridement in the empirical groups (83.3%) vs. the preemptive groups (55.5%), (p < 0.05). The mortality rate differed significantly among the two groups; it was 7.5% in the preemptive group and 25% in the empirical group (p < 0.05). CONCLUSION Daily oral and nasal cavities examination to find the symptoms of IFIs and then start preemptive antifungal agents may be able to lead to accurate diagnosis, earlier treatment, and decreasing sinus surgery debridement in leukemia patients with neutropenia.
Collapse
Affiliation(s)
- Mohammadreza Salehi
- Department of Infectious Disease, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ghaderkhani
- Department of Infectious Disease, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Sharifian
- Department of Internal Medicine, Imam Khomeini Hospital Complex, Hematology and Oncology Ward, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Dehghan Manshadi
- Department of Infectious Disease, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Samiee Fard
- Department of Infectious Disease, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Pourahmad
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Rodini
- Department of Internal Medicine, Imam Khomeini Hospital Complex, Hematology and Oncology Ward, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasti Kamali Sarvestani
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Segala FV, Bavaro DF, Di Gennaro F, Salvati F, Marotta C, Saracino A, Murri R, Fantoni M. Impact of SARS-CoV-2 Epidemic on Antimicrobial Resistance: A Literature Review. Viruses 2021; 13:2110. [PMID: 34834917 PMCID: PMC8624326 DOI: 10.3390/v13112110] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial resistance is an urgent threat to public health and global development; in this scenario, the SARS-CoV2 pandemic has caused a major disruption of healthcare systems and practices. A narrative review was conducted on articles focusing on the impact of COVID-19 on multidrug-resistant gram-negative, gram-positive bacteria, and fungi. We found that, worldwide, multiple studies reported an unexpected high incidence of infections due to methicillin-resistant S. aureus, carbapenem-resistant A. baumannii, carbapenem-resistant Enterobacteriaceae, and C. auris among COVID-19 patients admitted to the intensive care unit. In this setting, inappropriate antimicrobial exposure, environmental contamination, and discontinuation of infection control measures may have driven selection and diffusion of drug-resistant pathogens.
Collapse
Affiliation(s)
- Francesco Vladimiro Segala
- Clinic of Infectious Diseases, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.S.); (R.M.); (M.F.)
| | - Davide Fiore Bavaro
- Clinic of Infectious Diseases, University of Bari, 70121 Bari, Italy; (D.F.B.); (F.D.G.); (A.S.)
| | - Francesco Di Gennaro
- Clinic of Infectious Diseases, University of Bari, 70121 Bari, Italy; (D.F.B.); (F.D.G.); (A.S.)
| | - Federica Salvati
- Clinic of Infectious Diseases, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.S.); (R.M.); (M.F.)
| | - Claudia Marotta
- General Directorate of Health Prevention, Ministry of Health, 00144 Rome, Italy;
| | - Annalisa Saracino
- Clinic of Infectious Diseases, University of Bari, 70121 Bari, Italy; (D.F.B.); (F.D.G.); (A.S.)
| | - Rita Murri
- Clinic of Infectious Diseases, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.S.); (R.M.); (M.F.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Massimo Fantoni
- Clinic of Infectious Diseases, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.S.); (R.M.); (M.F.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
24
|
Vitale RG. Role of Antifungal Combinations in Difficult to Treat Candida Infections. J Fungi (Basel) 2021; 7:731. [PMID: 34575770 PMCID: PMC8468556 DOI: 10.3390/jof7090731] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 01/23/2023] Open
Abstract
Candida infections are varied and, depending on the immune status of the patient, a life-threatening form may develop. C. albicans is the most prevalent species isolated, however, a significant shift towards other Candida species has been noted. Monotherapy is frequently indicated, but the patient's evolution is not always favorable. Drug combinations are a suitable option in specific situations. The aim of this review is to address this problem and to discuss the role of drug combinations in difficult to treat Candida infections. A search for eligible studies in PubMed and Google Scholar databases was performed. An analysis of the data was carried out to define in which cases a combination therapy is the most appropriate. Combination therapy may be used for refractory candidiasis, endocarditis, meningitis, eye infections and osteomyelitis, among others. The role of the drug combination would be to increase efficacy, reduce toxicity and improve the prognosis of the patient in infections that are difficult to treat. More clinical studies and reporting of cases in which drug combinations are used are needed in order to have more data that support the use of this therapeutic strategy.
Collapse
Affiliation(s)
- Roxana G. Vitale
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina;
- Unidad de Parasitología, Sector Micología, Hospital J. M. Ramos Mejía, Buenos Aires, Argentina
| |
Collapse
|
25
|
dos Reis TF, Horta MAC, Colabardini AC, Fernandes CM, Silva LP, Bastos RW, Fonseca MVDL, Wang F, Martins C, Rodrigues ML, Silva Pereira C, Del Poeta M, Wong KH, Goldman GH. Screening of Chemical Libraries for New Antifungal Drugs against Aspergillus fumigatus Reveals Sphingolipids Are Involved in the Mechanism of Action of Miltefosine. mBio 2021; 12:e0145821. [PMID: 34372704 PMCID: PMC8406317 DOI: 10.1128/mbio.01458-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Aspergillus fumigatus is an important fungal pathogen and the main etiological agent of aspergillosis, a disease characterized by a noninvasive process that can evolve to a more severe clinical manifestation, called invasive pulmonary aspergillosis (IPA), in immunocompromised patients. The antifungal arsenal to threat aspergillosis is very restricted. Azoles are the main therapeutic approach to control IPA, but the emergence of azole-resistant A. fumigatus isolates has significantly increased over recent decades. Therefore, new strategies are necessary to combat aspergillosis, and drug repurposing has emerged as an efficient and alternative approach for identifying new antifungal drugs. Here, we used a screening approach to analyze A. fumigatus in vitro susceptibility to 1,127 compounds. A. fumigatus was susceptible to 10 compounds, including miltefosine, a drug that displayed fungicidal activity against A. fumigatus. By screening an A. fumigatus transcription factor null library, we identified a single mutant, which has the smiA (sensitive to miltefosine) gene deleted, conferring a phenotype of susceptibility to miltefosine. The transcriptional profiling (RNA-seq) of the wild-type and ΔsmiA strains and chromatin immunoprecipitation coupled to next-generation sequencing (ChIP-Seq) of an SmiA-tagged strain exposed to miltefosine revealed genes of the sphingolipid pathway that are directly or indirectly regulated by SmiA. Sphingolipid analysis demonstrated that the mutant has overall decreased levels of sphingolipids when growing in the presence of miltefosine. The identification of SmiA represents the first genetic element described and characterized that plays a direct role in miltefosine response in fungi. IMPORTANCE The filamentous fungus Aspergillus fumigatus causes a group of diseases named aspergillosis, and their development occurs after the inhalation of conidia dispersed in the environment. Very few classes of antifungal drugs are available for aspergillosis treatment, e.g., azoles, but the emergence of global resistance to azoles in A. fumigatus clinical isolates has increased over recent decades. Repositioning or repurposing drugs already available on the market is an interesting and faster opportunity for the identification of novel antifungal agents. By using a repurposing strategy, we identified 10 different compounds that impact A. fumigatus survival. One of these compounds, miltefosine, demonstrated fungicidal activity against A. fumigatus. The mechanism of action of miltefosine is unknown, and, aiming to get more insights about it, we identified a transcription factor, SmiA (sensitive to miltefosine), important for miltefosine resistance. Our results suggest that miltefosine displays antifungal activity against A. fumigatus, interfering in sphingolipid biosynthesis.
Collapse
Affiliation(s)
- Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- MicroControl Innovation Ltd., Ribeirão Preto, São Paulo, Brazil
| | | | - Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rafael Wesley Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Fang Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China
| | - Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Márcio L. Rodrigues
- Instituto Carlos Chagas (ICC), Fundação Oswaldo Cruz–Fiocruz, Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Veteran Administration Medical Center, Northport, New York, USA
- MicroRid Technologies Inc., Dix Hills, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, New York, USA
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, SAR, China
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
26
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
27
|
Wahyuningsih R, Adawiyah R, Sjam R, Prihartono J, Ayu Tri Wulandari E, Rozaliyani A, Ronny R, Imran D, Tugiran M, Siagian FE, Denning DW. Serious fungal disease incidence and prevalence in Indonesia. Mycoses 2021; 64:1203-1212. [PMID: 33971053 DOI: 10.1111/myc.13304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Indonesia is a tropical country, warm and humid, with numerous environmental fungi. Data on fungal disease burden help policymakers and clinicians. OBJECTIVES We have estimated the incidence and prevalence of serious fungal diseases. METHODS We found all published and unpublished data and estimated the incidence and prevalence of fungal diseases based on populations at risk. HIV data were derived from UNAIDS (2017), pulmonary tuberculosis (PTB) data from 2013-2019, data on chronic pulmonary aspergillosis (CPA) were used to estimate CPA prevalence and likely deaths, COPD data from Hammond (2020), lung cancer incidence was from Globocan 2018, and fungal rhinosinusitis was estimated using community data from India. RESULTS Overall ~7.7 million Indonesians (2.89%) have a serious fungal infection each year. The annual incidence of cryptococcosis in AIDS was 7,540. Pneumocystis pneumonia incidence was estimated at 15,400 in HIV and an equal number in non-HIV patients. An estimated 1% and 0.2% of new AIDS patients have disseminated histoplasmosis or Talaromyces marneffei infection. The incidence of candidaemia is 26,710. The annual incidence of invasive aspergillosis was estimated at 49,500 and the prevalence of CPA is at 378,700 cases. Allergic bronchopulmonary aspergillosis prevalence in adults is estimated at 336,200, severe asthma with fungal sensitisation at 443,800, and fungal rhinosinusitis at 294,000. Recurrent vulvovaginal candidiasis is estimated at 5 million/year (15-50 years old). The incidence of fungal keratitis around 40,050. Tinea capitis prevalence in schoolchildren about 729,000. CONCLUSIONS Indonesia has a high burden of fungal infections.
Collapse
Affiliation(s)
- Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Parasitology, Universitas Kristen Indonesia, School of Medicine, Jakarta, Indonesia
| | - Robiatul Adawiyah
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ridhawati Sjam
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Joedo Prihartono
- Department of Community Medicine Universitas Indonesia, Faculty of Medicine, Jakarta, Indonesia
| | | | - Anna Rozaliyani
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Robertus Ronny
- Department of Parasitology, Universitas Kristen Indonesia, School of Medicine, Jakarta, Indonesia
| | - Darma Imran
- Department of Neurology, Universitas Indonesia, Faculty of Medicine/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Mulyati Tugiran
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Forman E Siagian
- Department of Parasitology, Universitas Kristen Indonesia, School of Medicine, Jakarta, Indonesia
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
28
|
Chu S, McCormick TS, Lazarus HM, Leal LO, Ghannoum MA. Invasive fungal disease and the immunocompromised host including allogeneic hematopoietic cell transplant recipients: Improved understanding and new strategic approach with sargramostim. Clin Immunol 2021; 228:108731. [PMID: 33892201 DOI: 10.1016/j.clim.2021.108731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022]
Abstract
In hosts with damaged or impaired immune systems such as those undergoing hematopoietic cell transplant (HCT) or intensive chemotherapy, breakthrough fungal infections can be fatal. Risk factors for breakthrough infections include severe neutropenia, use of corticosteroids, extended use of broad-spectrum antibiotics, and intensive care unit admission. An individual's cumulative state of immunosuppression directly contributes to the likelihood of experiencing increased infection risk. Incidence of invasive fungal infection (IFI) after HCT may be up to 5-8%. Early intervention may improve IFI outcomes, although many infections are resistant to standard therapies (voriconazole, caspofungin, micafungin, amphotericin B, posaconazole or itraconazole, as single agents or in combination). We review herein several contributing factors that may contribute to the net state of immunosuppression in recipients of HCT. We also review a new approach for IFI utilizing adjunctive therapy with sargramostim, a yeast-derived recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF).
Collapse
Affiliation(s)
- Sherman Chu
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA; College of Osteopathic Medicine of the Pacific, Northwest (COMP), Lebanon, OR, USA.
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA.
| | - Hillard M Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA.
| | - Luis O Leal
- Partner Therapeutics, Inc., 19 Muzzey St, Lexington, MA, USA.
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA; Center for Medical Mycology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
29
|
Zeng H, Wu Z, Yu B, Wang B, Wu C, Wu J, Lai J, Gao X, Chen J. Network meta-analysis of triazole, polyene, and echinocandin antifungal agents in invasive fungal infection prophylaxis in patients with hematological malignancies. BMC Cancer 2021; 21:404. [PMID: 33853560 PMCID: PMC8048157 DOI: 10.1186/s12885-021-07973-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND AIM Triazole, polyene, and echinocandin antifungal agents are extensively used to treat invasive fungal infections (IFIs); however, the optimal prophylaxis option is not clear. This study aimed to determine the optimal agent against IFIs for patients with hematological malignancies. METHODS Randomized controlled trials (RCTs) comparing the effectiveness of triazole, polyene, and echinocandin antifungal agents with each other or placebo for IFIs in patients with hematological malignancies were searched. This Bayesian network meta-analysis was performed for all agents. RESULTS The network meta-analyses showed that all triazoles, amphotericin B, and caspofungin, but not micafungin, reduced IFIs. Posaconazole was superior to fluconazole [odds ratio (OR), 0.30; 95% credible interval (CrI), 0.12-0.60], itraconazole (OR, 0.40; 95% CrI, 0.15-0.85), and amphotericin B (OR, 4.97; 95% CrI, 1.73-11.35). It also reduced all-cause mortality compared with fluconazole (OR, 0.35; 95% CrI, 0.08-0.96) and itraconazole (OR, 0.33; 95% CrI, 0.07-0.94), and reduced the risk of adverse events compared with fluconazole (OR, 0.02; 95% CrI, 0.00-0.03), itraconazole (OR, 0.01; 95% CrI, 0.00-0.02), posaconazole (OR, 0.02; 95% CrI, 0.00-0.03), voriconazole (OR, 0.005; 95% CrI, 0.00 to 0.01), amphotericin B (OR, 0.004; 95% CrI, 0.00-0.01), and caspofungin (OR, 0.05; 95% CrI, 0.00-0.42) despite no significant difference in the need for empirical treatment and the proportion of successful treatment. CONCLUSIONS Posaconazole might be an optimal prophylaxis agent because it reduced IFIs, all-cause mortality, and adverse events, despite no difference in the need for empirical treatment and the proportion of successful treatment.
Collapse
Affiliation(s)
- Huilan Zeng
- Department of Hematology, the First Affiliated Hospital of Jinan University, No.613 West Huangpu street, Guangzhou, 510630, P. R. China
| | - Zhuman Wu
- Emergency Department, the First Affiliated Hospital of Jinan University, No.613 West Huangpu street, Guangzhou, 510630, P. R. China
| | - Bing Yu
- Department of Hematology, the First Affiliated Hospital of Jinan University, No.613 West Huangpu street, Guangzhou, 510630, P. R. China
| | - Bo Wang
- Department of Hematology, the First Affiliated Hospital of Jinan University, No.613 West Huangpu street, Guangzhou, 510630, P. R. China
| | - Chengnian Wu
- Department of Hematology, the First Affiliated Hospital of Jinan University, No.613 West Huangpu street, Guangzhou, 510630, P. R. China
| | - Jie Wu
- Department of Hematology, the First Affiliated Hospital of Jinan University, No.613 West Huangpu street, Guangzhou, 510630, P. R. China
| | - Jing Lai
- Department of Hematology, the First Affiliated Hospital of Jinan University, No.613 West Huangpu street, Guangzhou, 510630, P. R. China
| | - Xiaoyan Gao
- Department of Hematology, the First Affiliated Hospital of Jinan University, No.613 West Huangpu street, Guangzhou, 510630, P. R. China
| | - Jie Chen
- Department of Urology Surgery, the First Affiliated Hospital of Jinan University, No.613 West Huangpu street, Guangzhou, 510630, P. R. China.
| |
Collapse
|
30
|
Matos T, Lejko Zupanc T, Skofljanec A, Jazbec A, Matos E, Maver Vodičar P, Germ J, Ciglar T, Tomazin R, Kofol R, Mueller Premru M, Pirs M. Candidaemia in Central Slovenia: A 12-year retrospective survey. Mycoses 2021; 64:753-762. [PMID: 33786895 DOI: 10.1111/myc.13278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Candida bloodstream infections (BSI) became an important invasive disease in the late 20th century, in particular among immunocompromised patients. Although considerable progress has been made in the management of patients with invasive mycoses, Candida BSI are still widespread among hospitalised patients and are associated with relatively high mortality. OBJECTIVES We conducted a retrospective study to evaluate patient characteristics, incidence, species distribution and antifungal susceptibility of BSI isolates of Candida spp. as well as outcomes of Candida BSI from 2001 to 2012, before the widespread use of echinocandins. This is the first epidemiological study of Candida BSI in Slovenia so far. METHODS All documented candidaemia cases from 2001 to 2012 in two major hospitals-University Medical Centre and Institute of Oncology in Ljubljana, Slovenia-were taken into consideration. Candida BSI were identified in 422 patients (250 male, 172 female). Laboratory and clinical data of these patients were retrospectively analysed. Mann-Whitney U test was used to compare continuous variables and Fisher's exact test or chi-squared test for categorical variables. RESULTS AND CONCLUSIONS The average incidence of Candida BSI was 0.524/10.000 patient-days (0,317/1000 admissions); 16/422 were younger than 1 year and 251/422 patients were over 60 years old. The most commonly isolated species were Candida albicans and Candida glabrata, followed by Candida parapsilosis. Majority of the patients had a single episode of Candida BSI, multiple episodes of Candida BSI occurred in 18/434 patients (4.1%); in 25/434 patients (5.8%) mixed Candida BSI were observed. Crude 30-day case-fatality rate was 55.4%.
Collapse
Affiliation(s)
- Tadeja Matos
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Lejko Zupanc
- Department for Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | | | - Anja Jazbec
- University Medical Centre Ljubljana Division of Internal Medicine, Ljubljana, Slovenia
| | - Erika Matos
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Polona Maver Vodičar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Julija Germ
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadeja Ciglar
- Department for Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Rok Tomazin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Romina Kofol
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Manica Mueller Premru
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Pirs
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
31
|
Van Bang BN, Thanh Xuan N, Xuan Quang D, Ba Loi C, Thai Ngoc Minh N, Nhu Lam N, Ngoc Anh D, Thi Thu Hien T, Xuan Su H, Tran-Anh L. Prevalence, species distribution, and risk factors of fungal colonization and infection in patients at a burn intensive care unit in Vietnam. Curr Med Mycol 2021; 6:42-49. [PMID: 33834142 PMCID: PMC8018815 DOI: 10.18502/cmm.6.3.4664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose : Burn patients are at a higher risk of infections caused by different organisms. This study aimed to address the prevalence, causative species, and factors related to fungal colonization or infection in patients with acute severe injuries admitted to the intensive care unit (ICU) of a burn hospital in northern Vietnam. Materials and Methods: This prospective study was conducted on 400 patients in a burn ICU between 2017 and 2019. Clinical samples were weekly collected and screened for fungi, and relevant clinical information was obtained from medical records. Results: According to the results, 90% of the patients were colonized with fungi. Out of this group, 12.75% of the cases had
invasive fungal infection (IFI). Eleven yeasts and six mold species were isolated from the patients, with the most
common species being Candida tropicalis (45.56%) and C. albicans (41.94%). Among the eleven species causing
fungal wound infection (FWI), the most common agents were Candida (66.7% of FWI patients) and Aspergillus (38.5%) species.
Three Candida species isolated from blood were C. tropicalis (66.7%), C. albicans (20.0%),
and C. parapsilosis (14.3%). No factors were found to expose the patients to a higher risk of fungal colonization.
However, hyperglycemia, prolonged ICU stay, and heavy Candida species colonization were found to be independently predictive of IFI. Conclusion: Burn patients are at the risk of fungal infection with Candida species (especially C. tropicalis)
and Aspergillus as the most frequently responsible agents. Continuous surveillance of fungi and appropriate management
of pathophysiological consequences are essential to prevent fungal infection in burn patients.
Collapse
Affiliation(s)
- Be Nguyen Van Bang
- Department of Hamatology, Toxicology, Radiation, and Occupational Diseases, Military Hospital 103, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Nguyen Thanh Xuan
- Department of Medical Education, Military Hospital 103, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Dinh Xuan Quang
- Department of Scientific and Training Management, National Institute of Malaria, Parasitology, and Entomology, Nam Tu Liem, Ha Noi, Vietnam
| | - Cao Ba Loi
- Department of Scientific and Training Management, National Institute of Malaria, Parasitology, and Entomology, Nam Tu Liem, Ha Noi, Vietnam
| | - Nguyen Thai Ngoc Minh
- Intensive Care Unit, National Hospital of Burn, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Nguyen Nhu Lam
- Intensive Care Unit, National Hospital of Burn, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Do Ngoc Anh
- Department of Parasitology, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Truong Thi Thu Hien
- Department of Microbiology, National Hospital of Burn, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Hoang Xuan Su
- Department of Microbiology and Pathogens, Institute of Biomedicine and Pharmacy, National Hospital of Burn, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam These authors contributed equally to this work and acted as joint first authors
| | - Le Tran-Anh
- Department of Parasitology, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| |
Collapse
|
32
|
A Second-Generation Fungerp Analog, SCY-247, Shows Potent In Vivo Activity in a Murine Model of Hematogenously Disseminated Candida albicans. Antimicrob Agents Chemother 2021; 65:AAC.01989-20. [PMID: 33318003 DOI: 10.1128/aac.01989-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/05/2020] [Indexed: 11/20/2022] Open
Abstract
Echinocandins are a first-line therapy for Candida infections through their ability to inhibit the synthesis of polymer β-(1,3)-d-glucan. However, there has been an emergence of multidrug-resistant fungal species necessitating the development of novel antifungal agents to combat invasive fungal infections. SCY-247, a second-generation glucan synthase inhibitor of the triterpenoid class (fungerps), is currently being developed as a potential therapy option. We determined the pharmacokinetics (PKs) of SCY-247 following oral (gavage) administration in mice and evaluated the efficacy of SCY-247 in a murine model of hematogenously disseminated candidiasis caused by Candida albicans Plasma concentrations of SCY-247 were measurable through the last collected time point in all dose groups. Mean concentrations of SCY-247 increased with dose levels, with concentrations of SCY-247 higher after multiple doses than after a single dose. Treatment with SCY-247 resulted in decreased fungal burden and improvement in survival rates against C. albicans disseminated infection. Treatment with 10 mg/kg of body weight of SCY-247 showed a significant reduction in CFU compared with the untreated control (3-log decrease on average) (P = 0.008). Similarly, 40 mg/kg SCY-247 demonstrated a statistically significant reduction in kidney CFU compared with untreated mice (average log CFU ± SD of 2.38 ± 2.58 versus 6.26 ± 0.51; P = 0.001). Mice treated with SCY-247 at 40 mg/kg exhibited a 100% survival rate at the end of the study, contrasted with 62.5% (5 of 8) survival rate in untreated mice. The results of this investigation indicate that SCY-247 is a promising novel anti-fungal agent with activity against Candida infections.
Collapse
|
33
|
Clinical feature, image findings and outcome of hepatosplenic candidiasis in patients with acute myeloid leukemia. Biomed J 2020; 44:S252-S257. [PMID: 35292266 PMCID: PMC9068564 DOI: 10.1016/j.bj.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 11/26/2022] Open
Abstract
Background Patients with acute myeloid leukemia (AML) are at risk of hepatosplenic candidiasis (HSC). HSC is often associated with prolonged fever and difficulty in definitive clinical diagnosis. We aimed to explore the incidence, clinical features, image findings and outcomes of HSC among patients with AML in a tertiary hospital, Taiwan. Methods We did a chart review of patient data in our institute from 2009 to 2012. The diagnosis of HSC was based on risk factors, febrile symptoms and image findings. Results Two hundred and ninety-two patients with AML were analyzed. In total, 1051 chemotherapy sessions were administered. Eleven patients (4 males and 7 females) experienced HSC (incidence 3.8%, 95% conference interval 2.11–6.72%). Among those with HSC, the median age was 62. Eight patients developed HSC following induction or re-induction chemotherapies. Three developed HSC following consolidation chemotherapies. The median duration of severe neutropenia was 25 days (range 10–142). In all patients with HSC, multiple hypodense lesions were found in the involved organs by computed tomography scans. Lesions consistent with HSC could be identified by ultrasound in 5 out of 6 patients. Other than liver and spleen, lung was frequently (7 cases) and kidney occasionally (3 cases) involved. Four patients died within 90 days. Prolonged neutropenia was associated with mortality. Conclusion HSC occurred more often during induction or re-induction periods. Lungs are commonly involved and pleural effusion was frequently seen in CT scans. Pleural effusion may suggest more serious infections but its clinical relevance should be investigated in large-scale studies. Prolonged neutropenia is the only prognostic factor. Prophylaxis should be considered. In the absence of prophylaxis, we advise early image studies and prompt antifungal treatment in patients at risk for HSC.
Collapse
|
34
|
Pandian J, Raghavan V, Manuprasad A, Shenoy PK, Nair CK. Infection at diagnosis-a unique challenge in acute myeloid leukemia treatment in developing world. Support Care Cancer 2020; 28:5449-5454. [PMID: 32166380 DOI: 10.1007/s00520-020-05379-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE A large number of AML patients present with infection at the time of initial presentation in Indian settings. There is lack of published data on the proportion of patients with infection at initial presentation and its impact on induction mortality. METHODS A retrospective audit of patients with newly diagnosed AML more than 14 years of age, who underwent standard induction chemotherapy between the periods of January 2011 to December 2018, was done. Infection at presentation if any was documented. Induction mortality was defined as death happening within 28 days of starting induction chemotherapy. RESULTS Among a total of 315 cases of AML, 96 (30%) patients underwent induction chemotherapy with 7 + 3 regimen. Documented infection at baseline was present in 30 (31%) of patients. Another 10 patients had fever at the time of presentation but without any documented infection focus. Fifteen patients died within 4 weeks of induction amounting to induction mortality of 15.6%. Induction mortality was 28% among patients with infection at baseline compared with 7% without baseline infections (P = 0.01). CONCLUSION Around 40% of patients had fever at the time of presentation, and 31% had documented infections. Baseline infections led to increase in induction mortality. We would like to propose that infection at baseline is to be considered as one of the potential variables in the predictive scoring system for induction mortality in developing countries.
Collapse
Affiliation(s)
- Jesu Pandian
- Department of Clinical Hematology & Medical Oncology, Malabar Cancer Centre, Thalassery, Kannur, Kerala, India
| | - Vineetha Raghavan
- Department of Clinical Hematology & Medical Oncology, Malabar Cancer Centre, Thalassery, Kannur, Kerala, India
| | - A Manuprasad
- Department of Clinical Hematology & Medical Oncology, Malabar Cancer Centre, Thalassery, Kannur, Kerala, India
| | - Praveen Kumar Shenoy
- Department of Clinical Hematology & Medical Oncology, Malabar Cancer Centre, Thalassery, Kannur, Kerala, India
| | - Chandran K Nair
- Department of Clinical Hematology & Medical Oncology, Malabar Cancer Centre, Thalassery, Kannur, Kerala, India.
| |
Collapse
|
35
|
Chien SH, Liu YC, Liu CJ, Ko PS, Wang HY, Hsiao LT, Chiou TJ, Liu JH, Gau JP. Invasive mold infections in acute leukemia patients undergoing allogeneic hematopoietic stem cell transplantation. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:973-982. [DOI: 10.1016/j.jmii.2018.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
|
36
|
Maffei R, Maccaferri M, Arletti L, Fiorcari S, Benatti S, Potenza L, Luppi M, Marasca R. Immunomodulatory effect of ibrutinib: Reducing the barrier against fungal infections. Blood Rev 2019; 40:100635. [PMID: 31699465 DOI: 10.1016/j.blre.2019.100635] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/29/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
The Bruton tyrosine kinase (BTK) inhibitor ibrutinib is increasingly used in the treatment of chronic lymphocytic leukemia (CLL). Moreover, very promising results have been reported in other B-cell malignancies, including primary central nervous system lymphoma (PCNSL). Although well-tolerated in the majority of patients, ibrutinib demonstrates in some cases troublesome toxicities, including invasive fungal infections (IFIs). In the present review, we summarize clinical manifestations of IFIs in patients treated with ibrutinib, generally characterized by an early onset, mild clinical manifestations, asymptomatic/low symptomatic pulmonary localization and high incidence of central nervous system (CNS) involvement. IFI risk appears particularly increased in patients receiving ibrutinib associated with other immune modulator agents, especially with steroids or immune-chemotherapy. Moreover, the immunomodulatory effect of ibrutinib is described, pointing the attention on the involvement of specific molecules targeted by ibrutinib in innate and adaptive response to fungal infection. Overall, the findings indicate the ibrutinib may rapidly impair innate immune cell functions, while concomitantly restoring an effective protective potential of adaptive immune compartment. A correct awareness, especially when other predisposing factors are present, is warranted about the potential risk of IFIs in ibrutinib-treated patients.
Collapse
Affiliation(s)
- Rossana Maffei
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy; Hematology Unit, Department of Oncology, Hematology and Respiratory Diseases, A.O.U of Modena Policlinico, Italy.
| | - Monica Maccaferri
- Hematology Unit, Department of Oncology, Hematology and Respiratory Diseases, A.O.U of Modena Policlinico, Italy
| | - Laura Arletti
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Fiorcari
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Benatti
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Leonardo Potenza
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mario Luppi
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Marasca
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
37
|
Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin Microbiol Infect 2019; 25:1200-1212. [DOI: 10.1016/j.cmi.2019.04.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 01/30/2023]
|
38
|
Salah H, Lackner M, Houbraken J, Theelen B, Lass-Flörl C, Boekhout T, Almaslamani M, Taj-Aldeen SJ. The Emergence of Rare Clinical Aspergillus Species in Qatar: Molecular Characterization and Antifungal Susceptibility Profiles. Front Microbiol 2019; 10:1677. [PMID: 31447794 PMCID: PMC6697061 DOI: 10.3389/fmicb.2019.01677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
Aspergillus are ubiquitous mold species that infect immunocompetent and immunocompromised patients. The symptoms are diverse and range from allergic reactions, bronchopulmonary infection, and bronchitis, to invasive aspergillosis. The aim of this study was to characterize 70 Aspergillus isolates recovered from clinical specimens of patients with various clinical conditions presented at Hamad general hospital in Doha, Qatar, by using molecular methods and to determine their in vitro antifungal susceptibility patterns using the Clinical and Laboratory Standards Institute (CLSI) M38-A2 reference method. Fourteen Aspergillus species were identified by sequencing β-tubulin and calmodulin genes, including 10 rare and cryptic species not commonly recovered from human clinical specimens. Aspergillus welwitschiae is reported in this study for the first time in patients with fungal rhinosinusitis (n = 6) and one patient with a lower respiratory infection. Moreover, Aspergillus pseudonomius is reported in a patient with fungal rhinosinusitis which is considered as the first report ever from clinical specimens. In addition, Aspergillus sublatus is reported for the first time in a patient with cystic fibrosis. In general, our Aspergillus strains exhibited low MIC values for most of the antifungal drugs tested. One strain of Aspergillus fumigatus showed high MECs for echinocandins and low MICs for the rest of the drugs tested. Another strain of A. fumigatus exhibited high MIC for itraconazole and categorized as non-wild type. These findings require further analysis of their molecular basis of resistance. In conclusion, reliable identification of Aspergillus species is achieved by using molecular sequencing, especially for the emerging rare and cryptic species. They are mostly indistinguishable by conventional methods and might exhibit variable antifungal susceptibility profiles. Moreover, investigation of the antifungal susceptibility patterns is necessary for improved antifungal therapy against aspergillosis.
Collapse
Affiliation(s)
- Husam Salah
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar.,Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jos Houbraken
- Applied and Industrial Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Bart Theelen
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Teun Boekhout
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Netherlands
| | - Muna Almaslamani
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Netherlands
| | - Saad J Taj-Aldeen
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
39
|
Solano C, Vázquez L. [Invasive aspergillosis in the patient with oncohematologic disease]. Rev Iberoam Micol 2019; 35:198-205. [PMID: 30554673 DOI: 10.1016/j.riam.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/08/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Invasive aspergillosis is the most common invasive fungal infection in patients with acute hematological malignancies or treated with hematopoietic stem cell transplantation due to the marked alteration of the physiological mechanisms of antifungal immunity that takes place in these situations. For this reason, antifungal prophylaxis has a relevant role in these patients. The introduction of new antifungal agents has motivated the updating of recommendations for prophylaxis and treatment in different guidelines. The objectives of this chapter are a brief review of the mechanisms of immunity against fungi, the definition of risk for developing an invasive fungal infection and an update of the prophylaxis recommendations and treatment of invasive aspergillosis in the group of patients with hematological diseases.
Collapse
Affiliation(s)
- Carlos Solano
- Servicio de Hematología y Hemoterapia, Hospital Clínico Universitario, Universidad de Valencia, Valencia, España.
| | - Lourdes Vázquez
- Servicio de Hematología y Hemoterapia, Hospital Clínico Universitario, Universidad de Salamanca, Salamanca, España
| |
Collapse
|
40
|
Emergence of Invasive Fungal Infection: Diagnosis and Treatment in Humans. Fungal Biol 2019. [DOI: 10.1007/978-3-030-18586-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
|
42
|
Polymorphisms in Receptors Involved in Opsonic and Nonopsonic Phagocytosis, and Correlation with Risk of Infection in Oncohematology Patients. Infect Immun 2018; 86:IAI.00709-18. [PMID: 30275011 DOI: 10.1128/iai.00709-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 01/27/2023] Open
Abstract
High-risk hematological malignancies are a privileged setting for infection by opportunistic microbes, with invasive mycosis being one of the most serious complications. Recently, genetic background has emerged as an unanticipated risk factor. For this reason, polymorphisms for genes encoding archetypal receptors involved in the opsonic and nonopsonic clearance of microbes, pentraxin-3 (PTX3) and Dectin-1, respectively, were studied and correlated with the risk of infection. Fungal, bacterial, and viral infections were registered for a group of 198 patients with high-risk hematological malignancies. Polymorphisms for the pentraxin-3 gene (PTX3) showed a significant association with the risk of fungal infection by Candida spp. and, especially, by Aspergillus spp. This link remained even for patients undergoing antifungal prophylaxis, thus demonstrating the clinical relevance of PTX3 in the defense against fungi. CLEC7A polymorphisms did not show any definite correlation with the risk of invasive mycosis, nor did they influence the expression of Dectin-1 isoforms generated by alternative splicing. The PTX3 mRNA expression level was significantly lower in samples from healthy volunteers who showed these polymorphisms, although no differences were observed in the extents of induction elicited by bacterial lipopolysaccharide and heat-killed Candida albicans, thus suggesting that the expression of PTX3 at the start of infection may influence the clinical outcome. PTX3 mRNA expression can be a good biomarker to establish proper antifungal prophylaxis in immunodepressed patients.
Collapse
|
43
|
Fu R, Gundrum J, Sung AH. Health-care utilization and outcomes of patients at high risk of invasive fungal infection. CLINICOECONOMICS AND OUTCOMES RESEARCH 2018; 10:371-387. [PMID: 30034245 PMCID: PMC6047618 DOI: 10.2147/ceor.s162964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose The objectives of this study were to present trends in posaconazole use over time and describe selected outcomes among patients at high risk of invasive fungal infections (IFIs) by use and type of antifungal medicine. Methods A retrospective observational study using data from the Premier Healthcare Database between January 2007 and March 2016 was conducted. Inpatient use of posaconazole by formulation and year is described. Separately, four cohorts of patients at high risk of IFI - those with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), hematopoietic stem-cell transplantation (HSCT), and graft-vs-host disease (GVHD) - but without a diagnosis code for IFI during the index encounter were identified as potential candidates for antifungal prophylaxis. Use of antifungal medication(s) in these patients was categorized. Index length of stay (LOS), index hospital costs, and subsequent inpatient and outpatient encounters with IFI at 30, 60, and 90 days post-index encounter are presented by antifungal group for each cohort. The percentage of patients with inpatient and outpatient encounters with IFI at 90 days post-index encounter was determined for each cohort by year. Results Use of posaconazole oral suspension increased through 2012, then declined as the tablet formulation became available in 2013. A total of 19,872 AML patients, 12,125 MDS patients, 14,220 HSCT patients, and 5,431 GVHD patients were considered potential candidates for antifungal prophylaxis; however, a large proportion of patients within each cohort (33%-94%) did not receive any antifungal drug during the index hospitalization. Index LOS, hospital costs, and subsequent encounters for IFI varied among cohorts and by antifungal group. Within each cohort, subsequent encounters for IFI at 90 days post-index encounter fluctuated but remained rare across different years. Conclusion Over time and as new posaconazole formulations became available, the frequency of use of each formulation changed. In addition, this study suggested a low rate of potential antifungal prophylaxis in high-risk patients. This is one of the first reports attempting to describe antifungal prophylaxis in a contemporary, large, all-payer, geographically representative hospital database.
Collapse
Affiliation(s)
- Rao Fu
- Premier Applied Sciences, Premier Inc., Charlotte, NC, USA
| | - Jake Gundrum
- Premier Applied Sciences, Premier Inc., Charlotte, NC, USA
| | | |
Collapse
|
44
|
Lien MY, Chou CH, Lin CC, Bai LY, Chiu CF, Yeh SP, Ho MW. Epidemiology and risk factors for invasive fungal infections during induction chemotherapy for newly diagnosed acute myeloid leukemia: A retrospective cohort study. PLoS One 2018; 13:e0197851. [PMID: 29883443 PMCID: PMC5993235 DOI: 10.1371/journal.pone.0197851] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 05/09/2018] [Indexed: 11/19/2022] Open
Abstract
This study investigated the epidemiology and risk factors associated with invasive fungal infections (IFIs) during induction chemotherapy in a cohort of Taiwanese patients with newly-diagnosed acute myeloid leukemia (AML). IFIs are a significant complication in the management of immunocompromised cancer patients; such infections are associated with a high incidence of morbidity and mortality, particularly in many South-Asian countries, where IFI rates are increasing. We retrospectively analyzed IFI incidence data from 105 patients with newly diagnosed AML at a single center undergoing their first course of induction chemotherapy without primary antifungal prophylaxis between November 2008 and December 2014. Of 21 cases documented as proven/provable IFIs 16 (76%) were invasive aspergillosis, 2 (10%) were mucormycosis infections, and 3 (14%) were proven yeast infections. The lung was the most commonly affected site (n = 16; 76%); 2 patients (10%) developed fungal sinusitis. IFI cases were more often males (P = 0.020). In multivariate analysis, patients with neutropenia lasting>30 days were more than twice as likely to develop IFI (OR, 2.24 [95% CI, 2.81-31.11], P<0.001). We also confirmed patients with smoker and receiving parenteral nutrition during chemotherapy were significant associated with IFIs. Our findings suggest that antifungal prophylaxis should be considered for patients with AML during induction chemotherapy, particularly in patients from Southeastern Asia, an area of potentially high IFI rates. We recommend that clinicians determine which patients receiving induction chemotherapy for AML are at high risk of developing IFI, to allow for targeted therapeutic prophylaxis.
Collapse
Affiliation(s)
- Ming-Yu Lien
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan, R.O.C
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan, R.O.C
| | - Chia-Hui Chou
- Division of Infection Disease, Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan, R.O.C
| | - Ching-Chan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan, R.O.C
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan, R.O.C
- Clinic of Hematology and Oncology, Department of Internal Medicine, Graduate Institute of Clinical Medicine, China Medical University, Taichung City, Taiwan, R.O.C
| | - Chang-Fang Chiu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan, R.O.C
- Clinic of Hematology and Oncology, Department of Internal Medicine, Graduate Institute of Clinical Medicine, China Medical University, Taichung City, Taiwan, R.O.C
| | - Su-Peng Yeh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan, R.O.C
- Clinic of Hematology and Oncology, Department of Internal Medicine, Graduate Institute of Clinical Medicine, China Medical University, Taichung City, Taiwan, R.O.C
- * E-mail: (MWH); (SPY)
| | - Mao-Wang Ho
- Division of Infection Disease, Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan, R.O.C
- * E-mail: (MWH); (SPY)
| |
Collapse
|
45
|
Acylhydrazones as Antifungal Agents Targeting the Synthesis of Fungal Sphingolipids. Antimicrob Agents Chemother 2018; 62:AAC.00156-18. [PMID: 29507066 PMCID: PMC5923120 DOI: 10.1128/aac.00156-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 01/19/2023] Open
Abstract
The incidence of invasive fungal infections has risen dramatically in recent decades. Current antifungal drugs are either toxic, likely to interact with other drugs, have a narrow spectrum of activity, or induce fungal resistance. Hence, there is a great need for new antifungals, possibly with novel mechanisms of action. Previously our group reported an acylhydrazone called BHBM that targeted the sphingolipid pathway and showed strong antifungal activity against several fungi. In this study, we screened 19 derivatives of BHBM. Three out of 19 derivatives were highly active against Cryptococcus neoformansin vitro and had low toxicity in mammalian cells. In particular, one of them, called D13, had a high selectivity index and showed better activity in an animal model of cryptococcosis, candidiasis, and pulmonary aspergillosis. D13 also displayed suitable pharmacokinetic properties and was able to pass through the blood-brain barrier. These results suggest that acylhydrazones are promising molecules for the research and development of new antifungal agents.
Collapse
|
46
|
Cornely OA, Leguay T, Maertens J, Vehreschild MJGT, Anagnostopoulos A, Castagnola C, Verga L, Rieger C, Kondakci M, Härter G, Duarte RF, Allione B, Cordonnier C, Heussel CP, Morrissey CO, Agrawal SG, Donnelly JP, Bresnik M, Hawkins MJ, Garner W, Gökbuget N. Randomized comparison of liposomal amphotericin B versus placebo to prevent invasive mycoses in acute lymphoblastic leukaemia. J Antimicrob Chemother 2018; 72:2359-2367. [PMID: 28575414 DOI: 10.1093/jac/dkx133] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/07/2017] [Indexed: 02/07/2023] Open
Abstract
Objectives To prevent invasive fungal disease (IFD) in adult patients undergoing remission-induction chemotherapy for newly diagnosed acute lymphoblastic leukaemia (ALL). Patients and methods In a double-blind multicentre Phase 3 study, patients received prophylactic liposomal amphotericin B (L-AMB) at 5 mg/kg intravenously or placebo twice weekly in a 2:1 random allocation during remission-induction treatment. The primary endpoint was the development of proven or probable IFD. Secondary endpoints included those focused on the safety and tolerability of prophylactic L-AMB. Results Three hundred and fifty-five patients from 86 centres in Europe and South America received at least one dose of L-AMB ( n = 237) or placebo ( n = 118). Rates of proven and probable IFD assessed independently were 7.9% (18/228) in the L-AMB group and 11.7% (13/111) in the placebo group ( P = 0.24). Rates of possible IFD were 4.8% (11/228) in the L-AMB and 5.4% (6/111) in the placebo group ( P = 0.82). The remission-induction phase was a median of 22 days for both groups. Overall mortality was similar between the groups: 7.2% (17/237) for L-AMB and 6.8% (8/118) for placebo ( P = 1.00). Hypokalaemia and creatinine increase were significantly more frequent with L-AMB. Conclusions The IFD rate among adult patients undergoing remission-induction chemotherapy for newly diagnosed ALL was 11.7% in the placebo group, and was not significantly different in patients receiving L-AMB, suggesting that the L-AMB regimen studied is not effective as prophylaxis against IFD. The IFD rate appears higher than previously reported, warranting further investigation. Tolerability of L-AMB was what might be expected. Further studies are needed to determine the optimal antifungal strategy during remission-induction chemotherapy of ALL.
Collapse
Affiliation(s)
- Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Department I of Internal Medicine, Clinical Trials Centre Cologne (ZKS), Center for Integrated Oncology (CIO KölnBonn), German Centre for Infection Research (DZIF), partner site Bonn-Cologne, University of Cologne, Cologne, Germany
| | - Thibaut Leguay
- Service d'hématologie clinique et Thérapie cellulaire, Hôpital du Haut-Lévèque, CHU de Bordeaux, France
| | - Johan Maertens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, University Hospitals Leuven, Department of Hematology, B-3000 Leuven, Belgium
| | | | | | - Carlo Castagnola
- Department of Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | | | - Christina Rieger
- Medizinische Klinik und Poliklinik III, Klinikum der Universität München, Munich, Germany
| | - Mustafa Kondakci
- Klinik für Hämatologie, Onkologie und klin. Immunologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Georg Härter
- Zentrum für Hormon- und Stoffwechselerkrankungen und Infektiologie, MVZ Endokrinologikum Ulm, and Department of Internal Medicine III, Ulm University Hospital Medical Center, Ulm, Germany
| | - Rafael F Duarte
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid 28222, Spain
| | | | - Catherine Cordonnier
- AP-HP-Henri Mondor, Hematology Department and University Paris-Est Creteil, F-94010 Créteil, France
| | | | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Australia
| | - Samir G Agrawal
- Division of Haemato-Oncology, St Bartholomew's Hospital, Barts Cancer Institute, Queen Mary University, London, UK
| | - J Peter Donnelly
- Department of Haematology, Radboud UMC, Nijmegen, the Netherlands
| | | | | | | | - Nicola Gökbuget
- Department of Medicine II, University Hospital, Goethe University, Frankfurt, Germany
| | | |
Collapse
|
47
|
Schmalz M, Joysula M, Staddon JH, Feinberg A. Caspofungin resistant disseminated candidiasis in a 7-year-old girl with T cell lymphoma: a case report. Transl Pediatr 2018; 7:63-66. [PMID: 29441283 PMCID: PMC5803021 DOI: 10.21037/tp.2017.06.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Immunocompromised patients are at increased risk of disseminated candidiasis. Guidelines for the treatment of invasive candidiasis were last published in 2009, but resistance to the recommended treatment has recently been described in the literature. Here we present the case of an immunocompromised child with T-cell lymphoma who died secondary to disseminated candidiasis despite prolonged antifungal therapy. Awareness of the increasing resistance patterns of Candida when caring for immunocompromised patients, especially pediatric patients, may improve treatment and create better patient outcomes.
Collapse
Affiliation(s)
- Michael Schmalz
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Manasa Joysula
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Jack H Staddon
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Arthur Feinberg
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
48
|
Development and validation of a liquid chromatography-tandem mass spectrometry assay for the simultaneous quantitation of 5 azole antifungals and 1 active metabolite. Clin Chim Acta 2017; 474:8-13. [DOI: 10.1016/j.cca.2017.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
|
49
|
Liska MG, Dela Peña I. Granulocyte-colony stimulating factor and umbilical cord blood cell transplantation: Synergistic therapies for the treatment of traumatic brain injury. Brain Circ 2017; 3:143-151. [PMID: 30276316 PMCID: PMC6057694 DOI: 10.4103/bc.bc_19_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is now characterized as a progressive, degenerative disease and continues to stand as a prevalent cause of death and disability. The pathophysiology of TBI is complex, with a variety of secondary cell death pathways occurring which may persist chronically following the initial cerebral insult. Current therapeutic options for TBI are minimal, with surgical intervention or rehabilitation therapy existing as the only viable treatments. Considering the success of stem-cell therapies in various other neurological diseases, their use has been proposed as a potential potent therapy for patients suffering TBI. Moreover, stem cells are highly amenable to adjunctive use with other therapies, providing an opportunity to overcome the inherent limitations of using a single therapeutic agent. Our research has verified this additive potential by demonstrating the efficacy of co-delivering human umbilical cord blood (hUCB) cells with granulocyte-colony stimulating factor (G-CSF) in a murine model of TBI, providing encouraging results which support the potential of this approach to treat patients suffering from TBI. These findings justify ongoing research toward uncovering the mechanisms which underlie the functional improvements exhibited by hUCB + G-CSF combination therapy, thereby facilitating its safe and effect transition into the clinic. This paper is a review article. Referred literature in this paper has been listed in the reference section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Michael G Liska
- Center of Excellence for Aging and Brain Repair, Tampa, FL 33612, USA
| | - Ike Dela Peña
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, College of Pharmacy, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
50
|
Job KM, Olson J, Stockmann C, Constance JE, Enioutina EY, Rower JE, Linakis MW, Balch AH, Yu T, Liu X, Thorell EA, Sherwin CMT. Pharmacodynamic studies of voriconazole: informing the clinical management of invasive fungal infections. Expert Rev Anti Infect Ther 2017; 14:731-46. [PMID: 27355512 DOI: 10.1080/14787210.2016.1207526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Voriconazole is a broad-spectrum antifungal agent commonly used to treat invasive fungal infections (IFI), including aspergillosis, candidiasis, Scedosporium infection, and Fusarium infection. IFI often occur in immunocompromised patients, leading to increased morbidity and mortality. AREAS COVERED The objective of this review is to summarize the pharmacodynamic properties of voriconazole and to provide considerations for potential optimal dosing strategies. Studies have demonstrated superior clinical response when an AUC/MIC >25 or Cmin/MIC >1 is attained in adult patients, correlating to a trough concentration range as narrow as 2-4.5 mg/L; however, these targets are poorly established in the pediatric population. Topics in this discussion include voriconazole use in multiple age groups, predisposing patient factors for IFI, and considerations for clinicians managing IFI. Expert commentary: The relationship between voriconazole dosing and exposure is not well defined due to the large inter- and intra-subject variability. Development of comprehensive decision support tools for individualizing dosing, particularly in children who require higher dosing, will help to increase the probability of achieving therapeutic efficacy and decrease sub-therapeutic dosing and adverse events.
Collapse
Affiliation(s)
- Kathleen M Job
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Jared Olson
- b Pharmacy, Primary Children's Hospital, Intermountain Healthcare , University of Utah , Salt Lake City , UT , USA
| | - Chris Stockmann
- c Division of Pediatric Infectious Diseases, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA
| | - Jonathan E Constance
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Elena Y Enioutina
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA.,d Division of Microbiology and Immunology, Department of Pathology , University of Utah , Salt Lake City , UT , USA
| | - Joseph E Rower
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Matthew W Linakis
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Alfred H Balch
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Tian Yu
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Xiaoxi Liu
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Emily A Thorell
- c Division of Pediatric Infectious Diseases, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA
| | - Catherine M T Sherwin
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA.,e Department of Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|