1
|
Parvez S, Bhavani KS, Chanchayya Gupta C, Werz O, Aparoy P. Molecular dynamics simulations to decipher the hotspots at the allosteric site of human 5-lipoxygenase. J Mol Graph Model 2025; 136:108940. [PMID: 39799875 DOI: 10.1016/j.jmgm.2024.108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Human 5-lipoxygenase (LOX) is a non-heme, Fe-containing LOX which catalyses the conversion of arachidonic acid (AA) to leukotriene A4 (LTA4). LTA4 is subsequently converted to cysteinyl-LTs and LTB4 that cause bronchoconstriction and act as chemotactic and chemokinetic agent on human leukocytes, respectively. Leukotrienes play significant roles in inflammation in asthma, cardiovascular diseases, allergic rhinitis, atopic dermatitis, inflammatory bowel disease, rheumatoid arthritis, psoriasis and many more. Thus, in order to suppress LT formation for the management of such diseases, the intrinsic details of the structure of 5-LOX are crucial for the design/development of 5-LOX inhibitors. Here, we deciphered the role of various amino acids at the allosteric site of 5-LOX through molecular dynamics simulations. 3-O-Acetyl-11-keto-beta-boswellic acid (AKBA), a well-recognized allosteric inhibitor of 5-LOX, was used as reference compound. The consequences of amino acid mutations (R101, E108, H130, E134) on AKBA binding have been studied in silico. The changes were characterized at the interaction level. Our observations provide structural insights into crucial residues which are important for stabilizing the ligand at the allosteric site. Principal component analysis (PCA) was applied to the molecular dynamics simulation data to identify the structural fluctuations in the 5-LOX structure. The derived mechanistic details of allosteric 5-LOX inhibition may facilitate the development of novel therapeutics targeting 5-LOX.
Collapse
Affiliation(s)
- Sahanawaz Parvez
- Molecular Modeling and Protein Engineering Lab, Biology Division, Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Kallepalli Sarala Bhavani
- Molecular Modeling and Protein Engineering Lab, Biology Division, Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Chandaluri Chanchayya Gupta
- Chemistry Division, Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743, Jena, Germany
| | - Polamarasetty Aparoy
- Molecular Modeling and Protein Engineering Lab, Biology Division, Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India.
| |
Collapse
|
2
|
Li K, Zhou Z, Liu F, Huang Z, Chen X, Zhou F. Unphosphorylated STAT1 binds to the BST2 transcription promoter, promoting increased AKBA anchoring on HPMECs to alleviate ARDS. Sci Rep 2025; 15:15207. [PMID: 40307322 PMCID: PMC12044156 DOI: 10.1038/s41598-025-00028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025] Open
Abstract
Although the drug therapeutic targets of acute respiratory distress syndrome (ARDS) are still unclear and no specific drugs for ARDS treatment have been found, some breakthroughs have been gradually made in the biological target pathways such as endothelial injury. The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database suggests that Acetyl-11-keto-β-boswellic acid (AKBA), a processed product of boswellic acid, may be an effective intervention for ARDS. After preliminary in vitro and in vivo verification of the protective role of AKBA on ARDS, in order to explore the mechanism of AKBA in ARDS, we used transcriptomic and proteomic methods to explore its main targets, and used molecular docking and cell thermal shift assay (CETSA) to further reveal the potential value of bone marrow stromal cell antigen 2 (BST2) as a target. We subsequently examined the effect of AKBA targeting BST2 on tubule formation, cell proliferation (Colony formation and EdU assay), migration (transwell and scratch assays), apoptosis and autophagy levels both in vitro and in vivo, and protein changes (analyzed by Western blotting analysis). Our results show that the unphosphorylated signal transducers and transcription activation factors (U-STAT1) bins to the BST2 transcription promoter to encourage more AKBA anchoring the human pulmonary microvascular endothelial cells (HPMECs), thus inhibiting apoptosis and autophagy, promoting migration and tube formation, and restraining the cecal ligation and puncture (CLP) induced lung tissue damage in mice. In conclusion, AKBA treatment may be a potential strategy in the intervention of ARDS. Alternatively, BST2 may contribute to the anchoring of AKBA to HPMECs, and STAT1 as a transcription factor promoting BST2 expression may bind to its promoter.
Collapse
Affiliation(s)
- Kaili Li
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, 3rd Floor, Building 7, 400016, Chongqing, China
| | - Zixiang Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Feng Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Zuotian Huang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, 400030, Chongqing Municipality, China.
| | - Xiaoying Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China.
| | - Fachun Zhou
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, 3rd Floor, Building 7, 400016, Chongqing, China.
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
3
|
Padhee S, Mohanty D, Mohanty S, Sahoo A, Jena S, Patnaik J, Panda PC, Deb CR, Ray A, Nayak S. Identification of the active constituents and molecular mechanism of Eulophia nuda extract in the treatment of osteoarthritis by network pharmacology, molecular modelling and experimental assays. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2961-2982. [PMID: 39311920 DOI: 10.1007/s00210-024-03459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/12/2024] [Indexed: 03/19/2025]
Abstract
Osteoarthritis is a degenerative joint disease that worsens over time, often resulting in chronic pain. Eulophia nuda (Orchidaceae), a medicinal herb widely used by folklore and indigenous healers for treating arthritis but the active ingredients and the molecular mechanisms of action are yet to be explored. The present study systematically investigates the underlying anti-osteoarthritic mechanism of ENE through network pharmacology, molecular dynamics simulation and experimental assays. A comprehensive search on IMPPAT, KNApSAcK and Pubchem databases resulted 26 active compounds from E. nuda, of which 23 passed the drug-likeness criteria. A total of 2344 compound targets, 1370 osteoarthritis targets and 81 overlapping compound-disease targets were identified. The compound-disease target network resulted in five active constituents with degree > 23. Topological analysis of the protein-protein interaction network revealed six hub target genes. KEGG analysis revealed IL-17, TNF and AGE-RAGE signalling pathways as the enriched pathways involved in osteoarthritis. Molecular docking showed eulophiol had the good binding energy (>8.0 kcal/mol) with MMP9, JNK1, p38 and NF-kβ. The molecular dynamics simulations and the MMPBSA analysis indicate high stability and greater binding energy of eulophiol with the target proteins. ENE did not show cytotoxicity on SW982 cells up to a concentration of 100 μg/ml. ENE exhibited considerable anti-inflammatory effect by reducing PGE2, IL-6 and IL8 levels as well as reducing the mRNA expression of matrix metalloproteinases (MMP2 and MMP9). Furthermore, ENE effectively inhibited the NF-kβ nuclear translocation and phosphorylation of ERK2, p38 and JNK in SW982 cells. The current study showed that ENE may act as a potential drug candidate for treating osteoarthritis.
Collapse
Affiliation(s)
- Sucheesmita Padhee
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Debajani Mohanty
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Swagat Mohanty
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Jeetendranath Patnaik
- Department of Botany, Sri Krushna Chandra Gajapati Autonomous College, Paralakhemundi, 761200, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Chitta Ranjan Deb
- Department of Botany, Nagaland University, Lumami, Nagaland, 798627, India
| | - Asit Ray
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India.
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
4
|
Majumdar A, Prasad MAVV, Gandavarapu SR, Reddy KSK, Sureja V, Kheni D, Dubey V. Efficacy and safety evaluation of Boswellia serrata and Curcuma longa extract combination in the management of chronic lower back pain: A randomised, double-blind, placebo-controlled clinical study. Explore (NY) 2025; 21:103099. [PMID: 39700654 DOI: 10.1016/j.explore.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND AIM Chronic lower back pain (CLBP) is a major condition that leads to disability and reduced quality of life (QoL). This randomised, double-blind, placebo-controlled clinical study evaluated the efficacy and safety of a novel Boswellia serrata and Curcuma longa combination (CL20192) for the treatment of CLBP. MATERIAL AND METHODS Participants with CLBP were randomised to receive either a 300 mg CL20192 capsule (n = 45) or placebo capsule (n = 45) once daily for 90 days. Efficacy was evaluated using the Descriptor Differential Scale and Oswestry Disability Index scores for pain, unpleasantness, and disability. Additionally, the 36-item short form questionnaire was used for QoL evaluation. Frequency of painkiller use, serum levels of inflammatory biomarkers (tumour necrosis factor-α, interleukin-6, and high-sensitivity C-reactive protein), and phytoconstituents (total boswellic acids and curcuminoids) were determined. Therapy satisfaction was assessed using the Physician and Patient Global Assessment Scales. RESULTS All randomised participants completed the study. CL20192 supplementation significantly reduced Descriptor Differential Scale pain, unpleasantness, and Oswestry Disability Index scores compared with the placebo group (p < 0.001 for all parameters). Critical QoL scores greatly improved in the CL20192 group. Serum phytoconstituent levels were elevated in the CL20192-treated group. This group demonstrated a significant reduction in inflammatory biomarker levels (tumour necrosis factor-α, interleukin-6, and high-sensitivity C-reactive protein), confirming efficacy in abating CLBP compared with the placebo. Moreover, therapy satisfaction scores were significantly high in the CL20192-treated group, and intervention with CL20192 was well tolerated. CONCLUSION Intervention with 300 mg CL20192 capsules, containing a novel combination of Boswellia serrata and Curcuma longa extracts, effectively alleviated pain, unpleasantness, and disability in patients with CLBP compared with the placebo. This outcome was consistent with a decrease in serum inflammatory markers and improved therapy assessment scores.
Collapse
Affiliation(s)
- Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, India
| | | | - Satish Reddy Gandavarapu
- Aster Prime Hospital, Maitrivanam, Satyam Theatre Road, Srinivasa Nagar, Ameerpet, Hyderabad, Telangana, India
| | | | - Varun Sureja
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India.
| | - Dharmeshkumar Kheni
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India
| | - Vishal Dubey
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India
| |
Collapse
|
5
|
Han Q, Qian Y, Bai L, Zhou J, Hao Y, Hu D, Zhang Z, Yang X. Injectable Nano-Micron AKBA Delivery Platform for Treatment of Tendinopathy in a Rat Model. J Biomed Mater Res A 2025; 113:e37844. [PMID: 39668791 DOI: 10.1002/jbm.a.37844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Tendinopathy is a disorder characterized by pain and reduced function due to a series of changes in injured or diseased tendons. Inflammation and collagen degeneration are key contributors to the onset and chronic nature of tendinopathy. Acetyl-11-keto-β-boswellic acid (AKBA) is an effective anti-inflammatory agent widely used in chronic inflammatory disorders and holds potential for tendinopathy treatment; however, its therapeutic efficacy is limited by poor aqueous solubility. Here, we fabricated AKBA-encapsulated cationic liposome-gelatin methacrylamide (GelMA) microspheres (GM-Lipo-AKBA) using thin-film hydration and microfluidic technology for drug delivery therapy. GM-Lipo-AKBA exhibited high encapsulation efficiency, extended AKBA release for over 4 weeks, and prolonged degradation. In vitro and in vivo experiments demonstrated its effectiveness in improving inflammation and ECM remodeling in tendinopathy. In summary, the injectable nano-micron drug delivery platform provides a promising strategy for the sustained and localized delivery of AKBA for tendinopathy treatment.
Collapse
Affiliation(s)
- Qibin Han
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
- Research Institute of Clinical Medicine, Department of Orthopedic Surgery and Biochemistry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yinhua Qian
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, P. R. China
| | - Lang Bai
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Jing Zhou
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Yuefeng Hao
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Dan Hu
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Zhouzhou Zhang
- Department of Urology Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Xing Yang
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| |
Collapse
|
6
|
Chaudhary S, Sharma S, Fuloria S. A Panoramic Review on the Management of Rheumatoid Arthritis through Herbalism. Curr Rheumatol Rev 2025; 21:4-24. [PMID: 38591212 DOI: 10.2174/0115733971279100240328063232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 04/10/2024]
Abstract
Arthritis is a chronic inflammatory condition that affects millions of individuals worldwide. The conventional treatment options for arthritis often come with limitations and potential side effects, leading to increased interest in herbal plants as alternative therapies. This article provides a comprehensive overview of the use of herbal plants in arthritis treatment, focusing on their traditional remedies, active components, mechanisms of action, and pharmaceutical approaches for enhancing their delivery. Various herbal plants, including turmeric, ginger, Boswellia, and willow bark, have shown anti-inflammatory and analgesic properties, making them valuable options for managing arthritis symptoms. The active components of these herbal plants, such as curcumin, gingerols, and boswellic acids, contribute to their therapeutic effects. To enhance the delivery of herbal medicines, pharmaceutical approaches like nanoparticle-based drug delivery systems, liposomes, polymeric nanoparticles, nanoemulsions, microneedles, and inhalation systems have been explored. These approaches aim to improve bioavailability, targeted delivery, and controlled release of herbal compounds. Safety considerations, including potential interactions with medications and the risk of allergic reactions, are also discussed. Future perspectives for this field involve conducting well-designed clinical studies, enhancing standardization and quality control measures, exploring novel drug delivery systems, and fostering collaborations between traditional medicine practitioners and healthcare professionals. Continued research and development in these areas will help unlock the full potential of herbal plants in arthritis treatment, offering personalized and effective care for affected individuals.
Collapse
Affiliation(s)
- Shikha Chaudhary
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling Campus, Bedong, Kedah Aman, Malaysia
| |
Collapse
|
7
|
Rehman NU, Rafiq K, Avula SK, Gibbons S, Csuk R, Al-Harrasi A. Triterpenoids from Frankincense and Boswellia: A focus on their pharmacology and 13C-NMR assignments. PHYTOCHEMISTRY 2025; 229:114297. [PMID: 39401649 DOI: 10.1016/j.phytochem.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Here we report for the first time the entire 13C-NMR spectral assignments of 119 (out of 127) triterpenoids from the oleo-gum resins of the medicinally important genus Boswellia, which includes the culturally highly valuable Frankincense species. The complete 13C-NMR resonances of these triterpenoids isolated between 1998 and 2024 and their biological activities are presented. 13C-NMR spectroscopy is a highly powerful tool for the characterization of these bioactive natural products. The compounds are arranged according to their skeletons, i.e., ursane, oleanane, lupane, dammarane, and tirucallane triterpenes. This review will be a future reference for the identification of these compounds, which have key medicinal properties in the areas of cytotoxicity and inflammation.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Kashif Rafiq
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Satya K Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
8
|
Zarepour A, Gok B, Budama-Kilinc Y, Khosravi A, Iravani S, Zarrabi A. Bacterial nanocelluloses as sustainable biomaterials for advanced wound healing and dressings. J Mater Chem B 2024; 12:12489-12507. [PMID: 39533945 DOI: 10.1039/d4tb01024h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Wound healing remains a significant clinical challenge, calling for innovative approaches to expedite the recovery process and improve patient outcomes. Bacterial nanocelluloses (BNCs) have emerged as a promising solution in the field of wound healing and dressings due to their unique properties such as high crystallinity, mechanical strength, high purity, porosity, high water absorption capacity, biodegradability, biocompatibility, sustainability, and flexibility. BNC-based materials can be applied for the treatment of different types of wounds, from second-degree burns to skin tears, biopsy sites, and diabetic and ischemic wounds. BNC-based dressings have exceptional mechanical properties such as flexibility and strength, which ensure proper wound coverage and protection. The renewable nature, eco-friendly production process, longer lifespan, and potential for biodegradability of BNCs make them a more sustainable alternative to conventional wound care materials. This review aims to provide a detailed overview on the application of BNC-based composites for wound healing and dressings via highlighting their ability as a carrier for delivery of different types of antimicrobial compounds as well as their direct effect on the healing process. Besides, it mentions some of the in vivo and clinical studies using BNC-based dressings and describes challenges related to the application of these materials as well as their future directions.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Yasemin Budama-Kilinc
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Istanbul, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Türkiye.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
9
|
Mahajan S, Sureja V, Kheni D, Dubey V, Bhupathiraju K, Alluri VK, Majumdar A. Protective effects of Boswellia and Curcuma extract on oxaliplatin-induced neuropathy via modulation of NF-κB signaling. Toxicol Rep 2024; 13:101781. [PMID: 39512239 PMCID: PMC11541817 DOI: 10.1016/j.toxrep.2024.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Oxaliplatin is a third-generation anticancer agent with better efficacy, lower toxicity, and a broad spectrum of antineoplastic activity. Its use is frequently associated with chronic oxaliplatin-induced neuropathy (OIN), a cumulative phenomenon manifesting as loss of sensation, paresthesia, dysesthesia, and irresolvable fluctuations in proprioception that greatly affect the patients' quality of life. The inevitable nature and high incidence of OIN, along with the absence of efficacious preventive agents, necessitate the development of effective and reliable protective options for limiting OIN while maintaining anticancer activity. The pathogenesis of chronic OIN involves neuroinflammation and oxidative stress. This study aimed to explore the neuroprotective effects of Boswellia serrata and Curcuma longa via modulation of nuclear factor-kappa B (NF-κB) signaling. Behavioral tests were conducted to assess cold allodynia, heat hyperalgesia, mechanical allodynia, mechanical hyperalgesia, and slowed nerve conduction velocity associated with chronic oxaliplatin administration. The modulation of NF-κB signaling and the subsequent activation of cytokines were evaluated through quantitative analysis of inflammatory cytokines in sciatic nerve homogenates. Additional assessments included oxidative stress parameters, serum neuronal biomarkers, and examination of sciatic nerve cross-sections. The findings indicate improvements in behavioral and biochemical parameters, as well as nerve histology, with the combined extract of Boswellia serrata and Curcuma longa at doses of 50 mg/kg and 75 mg/kg. Thus, this study presents evidence for the protective potential of the combined extract of Boswellia serrata and Curcuma longa in OIN through modulation of NF-κB signaling.
Collapse
Affiliation(s)
- Sakshi Mahajan
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, Maharashtra, India
| | - Varun Sureja
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India
| | - Dharmeshkumar Kheni
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India
| | - Vishal Dubey
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India
| | | | | | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, Maharashtra, India
| |
Collapse
|
10
|
Dalmonte T, Andreani G, Rudelli C, Isani G. Efficacy of Extracts of Oleogum Resin of Boswellia in the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Phytother Res 2024; 38:5672-5689. [PMID: 39314013 PMCID: PMC11634824 DOI: 10.1002/ptr.8336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/22/2024] [Accepted: 07/06/2024] [Indexed: 09/25/2024]
Abstract
Knee osteoarthritis (OA) has recently been ranked as the 11th highest contributor to global disability. More than 40% of patients use complementary and alternative medicine including supplements containing phytoextracts with anti-inflammatory properties as those from the Boswellia genus. The aim of this meta-analysis was to evaluate the efficacy of phytoextracts from the oleogum resin of the Boswellia genus as supplementation for patients affected by knee OA. Four electronic databases were used for the research and PRISMA statements were followed throughout the study. The following inclusion criteria were used: (a) the subjects of the study were humans with a diagnosis of knee OA reported by medical staff; (b) randomization and the presence of control (placebo, negative or positive control), and (c) outcomes reported with WOMAC and/or visual analog scale (VAS) score. Publication bias was assessed with a funnel plot and through the Egger test. The Jadad scale was used in order to assess the quality of the studies included. The statistical heterogeneity was assessed using I2 statistics. Results of meta-analysis and subgroup analysis were reported using a forest plot. A total of 13 studies involving 850 (WOMAC) and 1185 (VAS) patients met the inclusion criteria. The meta-analysis did not detect a significant effect of the use of Boswellia extracts between the control and the treatment groups due to the high heterogeneity of the studies (p = 0.0865 for WOMAC) and (p = 0.3966 VAS). However, the subsequent subgroup analysis demonstrated the significant beneficial effect of Boswellia extracts in the treatment of knee OA with respect to a placebo (lower WOMAC score in the treatment groups). This was also confirmed in the meta-regression applied to the WOMAC scores. This is an important finding as people exposed to NSAID-related adverse effects could benefit from the use of Boswellia extracts. However, further high-quality studies are needed to establish the clinical efficacy of extracts from the genus Boswellia.
Collapse
Affiliation(s)
- Thomas Dalmonte
- Department of Veterinary Medical SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Giulia Andreani
- Department of Veterinary Medical SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Cecilia Rudelli
- Department of Veterinary Medical SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Gloria Isani
- Department of Veterinary Medical SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| |
Collapse
|
11
|
Schmiech M, Abdel-Kahaar E, Ulrich J, Pfeiffer M, Duweb A, Zolk O, Syrovets T, Simmet T. Single-dose comparative pharmacokinetic/pharmacodynamic study of a micellar formulation versus a native Boswellia serrata dry extract in healthy volunteers. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155863. [PMID: 39033725 DOI: 10.1016/j.phymed.2024.155863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Extracts of oleogum resins of Boswellia trees possess anti-inflammatory activities. Micellar formulations have been developed to increase the oral bioavailability of bioactive boswellic and lupeolic acids. PURPOSE The current single-dose crossover clinical trial compares for the first time pharmacokinetics/pharmacodynamics of two Boswellia serrata nutraceuticals, native Biotikon® BS-85 and micellar Boswellia-Loges®. METHODS After oral administration of the study preparations (800 mg) to 20 healthy volunteers, plasma concentrations of 8 boswellic and lupeolic acids were measured by using HPLC-MS/MS for up to 48 h Blood samples collected 2 and 5 h after drug administration were stimulated for 24 h with endotoxic lipopolysaccharide. The release of proinflammatory cytokines analyzed by flow cytometry was used as readout of the pharmacodynamic properties of the preparations. REGISTRATION German Clinical Trials Register (DRKS) No. DRKS00027369. RESULTS Administration of the micellar extract significantly increased Cmax, AUC0-48, and shortened Tmax for all boswellic and lupeolic acids compared to native extract. Accordingly, their relative bioavailability increased to 1,720-4,291 % with the highest difference for acetyl-11-keto-β-boswellic acid (AKBA). Both preparations reduced the release of TNF-α and the native formulation diminished also IL-1β and IL-6. However, no significant differences were observed between the preparations, except for a higher decrease in IL-1β by the native formulation Biotikon® BS-85. In a lymphocytic gene reporter cell line, both nutraceuticals similarly inhibited the NF-κB transcription factor activity as well as the TNF-α release, yet the native formulation Biotikon®BS-85 was more efficient in inhibiting TNF-α. CONCLUSION Administration of the micellar Boswellia serrata nutraceutical increased the oral bioavailability of boswellic and lupeolic acids. Yet, the increase in plasma concentration did not enhance the anti-inflammatory efficacy of the micellar extract compared to the native extract in this ex vivo model.
Collapse
Affiliation(s)
- Michael Schmiech
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany
| | - Emaad Abdel-Kahaar
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany
| | - Judith Ulrich
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany
| | - Maximilian Pfeiffer
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany
| | - Amira Duweb
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany; Department of Pharmacology, Faculty of Medicine, University of Tripoli, Tripoli 13628, Libya
| | - Oliver Zolk
- Institute of Clinical Pharmacology, Brandenburg Medical School, Immanuel Hospital Rüdersdorf, Rüdersdorf 15562, Germany
| | - Tatiana Syrovets
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany
| | - Thomas Simmet
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany.
| |
Collapse
|
12
|
Dilixiati Y, Aipire A, Song M, Nijat D, Wubuli A, Cao Q, Li J. The Potential Role of Plant Polysaccharides in Treatment of Ulcerative Colitis. Pharmaceutics 2024; 16:1073. [PMID: 39204418 PMCID: PMC11360206 DOI: 10.3390/pharmaceutics16081073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Ulcerative colitis (UC) results in inflammation and ulceration of the colon and the rectum's inner lining. The application of herbal therapy in UC is increasing worldwide. As natural macromolecular compounds, polysaccharides have a significant role in the treatment of UC due to advantages of better biodegradation, good biocompatibility, immunomodulatory activity, and low reactogenicity. Therefore, polysaccharide drug formulation is becoming a potential candidate for UC treatment. In this review, we summarize the etiology and pathogenesis of UC and the therapeutic effects of polysaccharides on UC, such as regulating the expression of cytokines and tight junction proteins and modulating the balance of immune cells and intestinal microbiota. Polysaccharides can also serve as drug delivery carriers to enhance drug targeting and reduce side effects. This review provides a theoretical basis for applying natural plant polysaccharides in the prevention and treatment of UC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (Y.D.); (A.A.); (M.S.); (D.N.); (A.W.); (Q.C.)
| |
Collapse
|
13
|
Shentova R, Mihova A, Velikova T. Dietary Supplements as Concentrated Sources of Nutrients with a Nutritional or Physiological Effect for Children with Inflammatory Bowel Disease. GASTROENTEROLOGY INSIGHTS 2024; 15:647-660. [DOI: 10.3390/gastroent15030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
The consequences of inflammatory bowel disease (IBD) in children are connected to possible detrimental impacts on growth, development, psychosocial function, and general well-being. Therefore, the primary management plan in pediatric IBD is to achieve the long-term control of intestinal inflammation while also monitoring potential disease complications and therapeutic adverse effects, where nutritional management is of utmost importance. This review explores the role of dietary supplements as concentrated sources of nutrients with nutritional and/or physiological effects on children with IBD. While dietary supplements are commonly used in pediatric IBD management, their efficacy and, for some of them, safety remain subjects of debate. We provide an overview of the types of dietary supplements available and their potential benefits and risks in pediatric IBD patients. Additionally, we discuss the evidence supporting the use of specific supplements, their mechanisms of action, and considerations for clinical practice. Understanding the role of dietary supplements in pediatric IBD management is crucial for optimizing patient care and outcomes.
Collapse
Affiliation(s)
- Rayna Shentova
- Medical Faculty, Medical University—Sofia, 15 Akad. Ivan Geshov Blvd., 1431 Sofia, Bulgaria
| | - Antoaneta Mihova
- Department of Immunology, SMDL Ramus, Blvd. Kap. Spisarevski 26, 1527 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Department of Immunology, SMDL Ramus, Blvd. Kap. Spisarevski 26, 1527 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| |
Collapse
|
14
|
Kciuk M, Garg A, Rohilla M, Chaudhary R, Dhankhar S, Dhiman S, Bansal S, Saini M, Singh TG, Chauhan S, Mujwar S, Gielecińska A, Kontek R. Therapeutic Potential of Plant-Derived Compounds and Plant Extracts in Rheumatoid Arthritis-Comprehensive Review. Antioxidants (Basel) 2024; 13:775. [PMID: 39061843 PMCID: PMC11274232 DOI: 10.3390/antiox13070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune disorder that is characterized by joint inflammation, discomfort, and impairment. Despite the existence of several therapeutic approaches, their effectiveness is often restricted and may be linked to unfavorable side effects. Consequently, there has been growing interest in investigating naturally derived compounds as plausible therapeutic agents for RA disease. The objective of this review is to summarize the existing preclinical and clinical evidence regarding the efficacy of naturally extracted compounds and plant extracts in the treatment of RA, focusing on their anti-inflammatory, anti-oxidative, and immunomodulatory properties. Some of the problems with using natural chemicals are the uneven quality of commercially available preparations and the poor bioavailability of these compounds. Future investigations should focus on improving the formulations, conducting thorough clinical trials, and exploring different techniques to fully utilize the intrinsic potential of naturally derived chemicals in treating RA.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| | - Anjali Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Swami Devi Dyal College of Pharmacy, Golpura Barwala, Panchkula 134118, Haryana, India
| | - Manni Rohilla
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur 140601, Punjab, India
| | - Rishabh Chaudhary
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Sachin Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Seema Bansal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur 140601, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| |
Collapse
|
15
|
Coppola C, Greco M, Munir A, Musarò D, Quarta S, Massaro M, Lionetto MG, Maffia M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr Issues Mol Biol 2024; 46:4063-4105. [PMID: 38785519 PMCID: PMC11119992 DOI: 10.3390/cimb46050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.
Collapse
Affiliation(s)
- Chiara Coppola
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Anas Munir
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Stefano Quarta
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy;
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
16
|
Sun M, Zhang S, Wang J, Du G, Ji T. Synthesis of Novel Acetyl-11-keto-β-boswellic Acid Derivatives as Potential Anti-GBM Agents. Chem Biodivers 2024; 21:e202301979. [PMID: 38302832 DOI: 10.1002/cbdv.202301979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Acetyl-11-keto-β-boswellic acid (AKBA) is known to inhibit the growth of glioblastoma (GBM) cells and subcutaneous GBM. A series of acetyl-11-keto-β-boswellic acid (AKBA) derivatives containing the oxime-ester functionality or amide side chains were synthesized, and their anti-GBM activities were evaluated. Some of these compounds exhibited significant inhibitory activity against cell proliferation in U87 and U251 GBM cell lines, with IC50 values in the micromolar concentration range. Cellular thermal shift analysis showed that A-01 and A-10 improved the thermal stability of FOXM1, indicating that these highly active compounds may directly bind to FOXM1 in cells. Docking studies of the two most active compounds, A-01 and A-10, revealed key interactions between these compounds and the active site of FOXM1, in which the amide moiety at the C-24 position was essential for improving the activity. These results suggested that A-10 is a suitable lead molecule for the development of FOXM1 inhibitors. Thus, the rational design of AKBA derivatives with amide side chains holds significant potential for discovering of a new class of triterpenoids capable of inhibiting GBM cell proliferation.
Collapse
Affiliation(s)
- Mingxia Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinhua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
17
|
Valente IVB, Garcia D, Abbott A, Spruill L, Siegel J, Forcucci J, Hanna G, Mukherjee R, Hamann M, Hilliard E, Lockett M, Cole DJ, Klauber-DeMore N. The anti-proliferative effects of a frankincense extract in a window of opportunity phase ia clinical trial for patients with breast cancer. Breast Cancer Res Treat 2024; 204:521-530. [PMID: 38194131 PMCID: PMC10959833 DOI: 10.1007/s10549-023-07215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Boswellic acids, active components of frankincense, suppress tumor proliferation in vitro with a strong clinical trial safety profile in patients with inflammatory diseases. We performed a Phase Ia window of opportunity trial of Boswellia serrata (B. serrata) in patients with breast cancer to evaluate its biologic activity and safety. METHODS Patients with invasive breast cancer were treated pre-operatively with B. Serrata (2400 mg/day PO) until the night before surgery for a median of 11 days (SD 6 days; range: 5-23 days). Paraffin-embedded sections from pretreatment diagnostic core biopsies and post-treatment surgical excisions were evaluated using a tunnel assay and immunohistochemistry staining with Ki-67 antibodies. A non-intervention retrospective control arm consisting of core and surgical tissue specimens from untreated patients was used to compare patients treated with B. Serrata. The change in proliferation and apoptosis between diagnostic core specimens and surgical specimens was compared between the control and treatment groups using a two-tailed paired t-test. RESULTS Twenty-two patients were enrolled, of which 20 received treatment, and 18 had sufficient tissue for IHC. There was an increase in percent change in proliferation from core biopsy to surgical excision in the control group (n = 18) of 54.6 ± 21.4%. In the B. serrata-treated group there was a reduction in proliferation between core biopsy and excision (n = 18) of 13.8 ± 11.7%. This difference was statistically significant between the control and B. serrata-treated groups (p = 0.008). There was no difference in change in apoptosis. There were no serious adverse events related to the drug. CONCLUSION Boswellia serrata inhibited breast cancer proliferation and was well-tolerated in a Phase Ia window of opportunity trial.
Collapse
Affiliation(s)
| | - Denise Garcia
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Andrea Abbott
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Laura Spruill
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Julie Siegel
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Jessica Forcucci
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - George Hanna
- College of Pharmacy Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rupak Mukherjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Hamann
- College of Pharmacy Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Eleanor Hilliard
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Lockett
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA.
- Medical University of South Carolina, MSC 295, Room 240, 114 Doughty Street, Charleston, SC, 29425, USA.
| |
Collapse
|
18
|
Ragab EA, Abd El-Wahab MF, Doghish AS, Salama RM, Eissa N, Darwish SF. The journey of boswellic acids from synthesis to pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1477-1504. [PMID: 37740772 PMCID: PMC10858840 DOI: 10.1007/s00210-023-02725-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
There has been a lot of interest in using naturally occurring substances to treat a wide variety of chronic disorders in recent years. From the gum resin of Boswellia serrata and Boswellia carteri, the pentacyclic triterpene molecules known as boswellic acid (BA) are extracted. We aimed to provide a detailed overview of the origins, chemistry, synthetic derivatives, pharmacokinetic, and biological activity of numerous Boswellia species and their derivatives. The literature searched for reports of B. serrata and isolated BAs having anti-cancer, anti-microbial, anti-inflammatory, anti-arthritic, hypolipidemic, immunomodulatory, anti-diabetic, hepatoprotective, anti-asthmatic, and clastogenic activities. Our results revealed that the cytotoxic and anticancer effects of B. serrata refer to its triterpenoid component, including BAs. Three-O-acetyl-11-keto-BA was the most promising cytotoxic molecule among tested substances. Activation of caspases, upregulation of Bax expression, downregulation of nuclear factor-kappa B (NF-kB), and stimulation of poly (ADP)-ribose polymerase (PARP) cleavage are the primary mechanisms responsible for cytotoxic and antitumor effects. Evidence suggests that BAs have shown promise in combating a wide range of debilitating disease conditions, including cancer, hepatic, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Ehab A Ragab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed F Abd El-Wahab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
19
|
Nischang V, Witt FM, Börner F, Gomez M, Jordan PM, Werz O. Frankincense preparation promotes formation of inflammation-resolving lipid mediators by manipulating lipoxygenases in human innate immune cells. Front Pharmacol 2024; 14:1332628. [PMID: 38239198 PMCID: PMC10794731 DOI: 10.3389/fphar.2023.1332628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction: Frankincense preparations are frequently used as traditional anti-inflammatory remedies in folk medicine with increasing popularity. Boswellic acids (BAs), especially 3-O-acetyl-11-keto-βBA (AKBA), are unique anti-inflammatory principles of frankincense, with multiple pharmacological actions and target proteins. We recently showed that AKBA favorably impacts lipid mediator (LM) networks in innate immune cells, by modulation of lipoxygenase (LOX) activities. Thus, AKBA binds to allosteric sites in 5-LOX, shifting the regiospecificity to a 12/15-lipoxygnating enzyme, and to an analogous site in 15-LOX-1, leading to enzyme activation, which favors specialized pro-resolving mediator (SPM) formation at the expense of leukotriene production. Methods: Here, we investigated Boswellin super® (BSR), a commercially available frankincense extract with ≥30% AKBA, used as remedy that approved efficacy in osteoarthritis trials, for its ability to modulate LM pathways in human monocyte-derived macrophage (MDM) phenotypes, neutrophils, and neutrophil/platelet co-incubations. LM profiling was performed by using targeted ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS). Results: BSR concentration-dependently (10-100 μg/ml) suppressed formation of pro-inflammatory 5-LOX products including LTB4 in exotoxin-stimulated M1-MDM and neutrophils, and strongly elevated 12/15-LOX products and SPM in activated M2-MDM and neutrophil/platelet cocultures, starting at 10 μg/mL. Also, BSR (≥10 μg/mL) induced robust 12/15-LOX product and SPM generation in resting M2-MDM, which was further markedly elevated when exogenous docosahexaenoic acid (DHA) and eicosahexaenoic acid (EPA) were supplied, and induced translocation of 15-LOX from a soluble to a particulate locale in M2 MDM. Discussion: We conclude that BSR especially when co-added with DHA and EPA, promotes the LM class switch in innate immune cells from pro-inflammatory to pro-resolving mediators, which might be a plausible mechanism underlying the anti-inflammatory actions of BSR.
Collapse
Affiliation(s)
- Vivien Nischang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Finja M. Witt
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | | | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
20
|
Püski P, Körmöczi T, Berkecz R, Barta A, Bajtel Á, Kiss T. Rapid Detection of Adulteration in Boswellia Extracts with Citric Acid by UPLC-HRMS and 1H NMR. J Diet Suppl 2024; 21:462-477. [PMID: 38165273 DOI: 10.1080/19390211.2023.2299886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Boswellia serrata ole-gum-resin extracts (BSEs) are commonly used as food supplements, especially in osteoarthritis management. The quality standard is established by determining 11-keto-β-boswellic acid (KBA) and acetyl-11-keto-boswellic acid (AKBA) content using high-performance liquid chromatography (HPLC) or assessing the total boswellic acid (TBA) content by titrimetry. The limited geographical distribution of Boswellia species and increasing industrial demand could increase the risk of adulteration in Boswellia-containing products. In this study, 14 BSEs from commercial sources, used in food supplements, were analyzed in comparison with a USP Reference Standard extract. The KBA and AKBA content was determined by HPLC, whereas the TBA content was determined by titration. Targeted UHPLC-high-resolution mass spectrometry (HRMS) was applied to identify the carboxylic acid content in the samples. The 1H NMR spectra of extracts were also analyzed. Only two products met the criteria for KBA and AKBA content. Although, the TBA content complied with the expected amount, 10 extracts contained citric acid levels of 6-11% even though citric acid is not a cha-racteristic component of BSEs. Our results suggest undeclared addition of citric acid to comply with declared contents of TBA when using titration methods. Incorporation of citric acid to industrial samples - in order to alter the outcomes of the titration analysis - was demonstrated for the first time.
Collapse
Affiliation(s)
- Péter Püski
- Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Tímea Körmöczi
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Anita Barta
- Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Ákos Bajtel
- Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Tivadar Kiss
- Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| |
Collapse
|
21
|
Joseph A, Abhilash MB, Mulakal JN, Madhavamenon KI. Pharmacokinetics of a Natural Self-emulsifying Reversible Hybrid-Hydrogel (N'SERH) Formulation of Full-Spectrum Boswellia serrata Oleo-Gum Resin Extract: Randomised Double-Blinded Placebo-Controlled Crossover Study. Biol Pharm Bull 2024; 47:1583-1593. [PMID: 39343544 DOI: 10.1248/bpb.b24-00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The oleo-gum-resin of Boswellia serrata, an Ayurvedic herb for the treatment of chronic inflammatory diseases, contains both volatile (terpenes) and nonvolatile (boswellic acids) molecules as responsible for its bioactivity. The present randomized, double-blinded, placebo-controlled, crossover study evaluated the human pharmacokinetics of a 'natural' hybrid-hydrogel formulation of a unique full-spectrum boswellia extract (BFQ-20) (standardized for both volatile and nonvolatile bioactives) in comparison with unformulated extract (U-BE), for the first time. Mass spectrometry coupled with LC (UPLC-MS/MS) and gas chromatography (GC-MS/MS) measurements of the plasma concentration of boswellic acids and α-thujene at different post-administration time points followed by a single dose (400 mg) of U-BE and BFQ-20, to healthy volunteers (n = 16), offered 4-fold enhancement in the overall bioavailability of boswellic acids from BFQ-20, [area under the curve (AUC) (BFQ-20) = 9484.17 ± 767.82 ng * h/mL vs. AUC (U-BE) = 2365.87 ± 346.89 ng * h/mL], with the absorption maximum (Tmax) at 6.3 h post-administration and elimination half-life (T1/2) of 15.5 h (p < 0.001). While plasma α-thujene was not detectable upon U-BE administration, BFQ-20 provided significant absorption, [AUC (BFQ-20): 298.60 ± 35.48 ng * h/mL; Cmax: 68.80 ± 18.60 ng/mL; Tmax: 4.12 ± 0.38 h; T1/2: 16.24 ± 1.12 h]. Further investigation of the anti-inflammatory effect revealed 70.5% inhibition of paw edema in rats compared to 38.0% for U-BE. In summary, the natural self-emulsifying reversible hybrid-hydrogel (N'SERH) formulation of boswellia extract using fenugreek mucilage (FenuMat®) significantly increased the solubility (58-fold), stability, and bioavailability of both the volatile and non-volatile bioactives which in turn improved the anti-inflammatory efficacy of Boswellia extract.
Collapse
Affiliation(s)
- Ashil Joseph
- R&D Centre, Akay Bioactives, Akay Natural Ingredients Private Limited
| | | | | | | |
Collapse
|
22
|
Xu H, Wu C, Wang D, Wang H. Alleviating effect of Nexrutine on mucosal inflammation in mice with ulcerative colitis: Involvement of the RELA suppression. Immun Inflamm Dis 2024; 12:e1147. [PMID: 38270298 PMCID: PMC10797652 DOI: 10.1002/iid3.1147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Nexrutine is an herbal extract derived from Phellodendron amurense, known for its anti-inflammatory, antidiarrheal, and hemostatic properties. However, its effect on ulcerative colitis (UC) remains unclear. METHODS A mouse model of UC was induced by 3% dextran sulfate sodium, while human colonic epithelial cells NCM-460 were exposed to lipopolysaccharide. Both models were treated with Nexrutine at 300 or 600 mg/kg, with Mesalazine applied as a positive control regimen. The disease activity index (DAI) of mice was calculated, and the pathological injury scores were assessed through hematoxylin and eosin staining. The viability of NCM-460 cells was determined using the CCK-8 method. Inflammatory cytokines were detected using ELISA kits. Expression of mucin 3 (MUC3), Claudin-1, and tight junction protein (ZO-1) was detected to analyze mucosal barrier integrity. Target genes of Nexrutine were predicted using bioinformatics tools. Expression of RELA proto-oncogene (RELA) was analyzed using qPCR and western blot assays. RESULTS The Nexrutine treatments significantly alleviated DAI of mice, mitigated pathological changes in their colon tissues, decreased the production of pro-inflammatory cytokines, enhanced the barrier integrity-related proteins, and increased NCM-460 cell viability in vitro. RELA, identified as a target gene of Nexrutine, showed elevated levels in UC models but was substantially suppressed by Nexrutine treatment. Adenovirus-mediated RELA upregulation in mice or the overexpression plasmid of RELA in cells counteracted the effects of Nexrutine treatments, exacerbating UC-related symptoms. CONCLUSION This study demonstrates that Nexrutine alleviates inflammatory mucosal barrier damage in UC by suppressing RELA transcription.
Collapse
Affiliation(s)
- Hongyun Xu
- Graduate SchoolHeilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| | - Chunyu Wu
- Department of Continuing EducationFirst Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| | - Danning Wang
- Graduate SchoolHeilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| | - Haiqiang Wang
- Department of Liver, Spleen and StomachFirst Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| |
Collapse
|
23
|
Shekh MR, Ahmed N, Kumar V. A Review of the Occurrence of Rheumatoid Arthritis and Potential Treatments through Medicinal Plants from an Indian Perspective. Curr Rheumatol Rev 2024; 20:241-269. [PMID: 38018201 DOI: 10.2174/0115733971268416231116184056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 11/30/2023]
Abstract
Arthritis is a medical condition that affects the joints and causes inflammation, pain, and stiffness. There are different types of arthritis, and it can affect people of all ages, even infants and the elderly. Recent studies have found that individuals with diabetes, heart disease, and obesity are more likely to experience arthritis symptoms. According to the World Health Organization, over 21% of people worldwide suffer from musculoskeletal problems. Roughly 42.19 million individuals in India, constituting around 0.31% of the populace, have been documented as having Rheumatic Arthritis (RA). Compared to other common diseases like diabetes, cancer, and AIDS, arthritis is more prevalent in the general population. Unfortunately, there is no specific cure for arthritis, and treatment plans usually involve non-pharmacological methods, surgeries, and medications that target specific symptoms. Plant-based remedies have also been shown to be effective in managing inflammation and related complications. In addition to therapies, maintaining a healthy diet, exercise, and weight management are essential for managing arthritis. This review discusses the causes, prevalence, diagnostic methods, current and prospective future treatments, and potential medicinal plants that may act as anti-inflammatory or anti-rheumatic agents. However, more research is necessary to identify the underlying mechanisms and active molecules that could improve arthritis treatment.
Collapse
Affiliation(s)
- Mohammad Raeesh Shekh
- National Innovation Foundation (NIF), India, Grambharti, Amrapur, Gandhinagar, Mahudi Road, Gandhinagar, Gujarat, India
| | - Nasir Ahmed
- Forensic Anthropology-1, Department of Forensic Medicine, YMC, Yenepoya Deemed to be University, University Road, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Vivek Kumar
- National Innovation Foundation (NIF), India, Grambharti, Amrapur, Gandhinagar, Mahudi Road, Gandhinagar, Gujarat, India
| |
Collapse
|
24
|
Jones MA, Borun A, Greensmith DJ. Boswellia carterii oleoresin extracts induce caspase-mediated apoptosis and G 1 cell cycle arrest in human leukaemia subtypes. Front Pharmacol 2023; 14:1282239. [PMID: 38155908 PMCID: PMC10752984 DOI: 10.3389/fphar.2023.1282239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Background: Leukemias are a common cancer in adults and children. While existing treatments are effective, they are associated with severe side-effects compounded by the emergence of drug resistance. This necessitates the need to develop new drugs and phytopharmaceuticals offer a largely untapped source. Oleoresins produced by plants in the genus Boswellia have been used for centuries in traditional medicine and recent work suggests they may exhibit anti-cancer activity. However, the underlying mechanisms remain unclear and most existing research focusses on Boswellia serrata; just one of many species in the Boswellia genus. To address these limitations, we elucidated the anti-cancer potential and associated mechanisms of action of Boswellia carterii. Methods: A methanolic solvent extraction method was optimised. The effect of methanolic extracts of B. carterii on leukaemia (K562, MOLT-4 and CCRF-CEM) and normal (PBMC) cell line viability was assessed using MTT assay and flow cytometry. Cell morphology, apoptosis (Annexin-V/propidium iodide), mitochondrial membrane potential (Rhodamine-123) and the cell cycle (propidium iodide) were evaluated using flow cytometry. Regulatory protein expression was quantified using Western Blot. Results: Methanolic extracts of B. carterii oleoresin reduced the viability of K562, MOLT-4 and CCRF-CEM cell lines with selectivity indexes of between 1.75 and 2.68. Extracts increased the proportion of cells in late apoptosis by 285.4% ± 51.6%. Mitochondrial membrane potential was decreased by 41% ± 2% and the expression of cleaved caspase-3, -7, and -9 was increased by 5.7, 3.3, and 1.5-fold respectively. Extracts increased the proportion of cells in subG1 and G1 phase by 867.8% ± 122.9% and 14.0 ± 5.5 and decreased those in S phase and G2/M by 63.4% ± 2.0% and 57.6% ± 5.3%. Expression of CDK2, CDK6, cyclin D1, and cyclin D3 were decreased by 2.8, 4.9, 3.9, and 2.5-fold. Conclusion: We are the first to report that methanolic extracts of B. carterii are selectively cytotoxic against three leukemia cell lines. Cytotoxic mechanisms likely include activation of the intrinsic apoptotic pathway and cell cycle arrest through downregulation of CDK2, CDK6, cyclin D1, and cyclin D3. Our findings suggest that B. carterii may be an important source of novel chemotherapeutic drugs and justifies further investigation.
Collapse
Affiliation(s)
| | | | - David James Greensmith
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
25
|
Singh S, Semwal BC, Sharma H, Sharma D. Impact of Phytomolecules with Nanotechnology on the Treatment of
Inflammation. CURRENT BIOACTIVE COMPOUNDS 2023; 19. [DOI: 10.2174/1573407219666230807150030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 01/06/2025]
Abstract
Abstract:
Inflammation is a part of the biological response of body tissues against harmful stimuli,
such as damaged cells, pathogens, irradiations, and toxic compounds. Numerous treatments, including
anti-inflammatory drugs that treat the condition of inflammation, are available for its management.
Because of the severe adverse effects associated with synthetic medications, phytotherapy
may be a promising and effective approach to treating inflammation. The therapeutic potential of
herbs is due to their capacity to target a variety of inflammatory mediators, including chemokines,
cytokines, nitric oxide, lipoxygenase, nuclear factor kappa-B, and arachidonic acid. Furthermore,
nanomedicine may be a valuable and effective formulation approach for overcoming the drawbacks
of phytoconstituents, such as their low bioavailability, high first-pass metabolism, and poor stability.
The current manuscript provides a thorough description of many phytoconstituents and herbal
plants that have great potential for treating inflammation-related diseases, as well as information on
their limitations, drug formulations, and regulatory issues.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Bhupesh C Semwal
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University Mathura, U.P, 281406, India
| | - Divya Sharma
- Parexel International,
DLF Building Tower F, 3rd Floor, Chandigarh Technology Park, Chandigarh-160101, India
| |
Collapse
|
26
|
Cherepanova MO, Subotyalov MA. Component Composition and Biological Activity of Oleo-Gum Resin from Boswellia serrata (Burseraceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 512:336-342. [PMID: 38087024 DOI: 10.1134/s0012496623700643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 12/18/2023]
Abstract
The review summarizes the published data on identification of biologically active compounds (BACs) and the pharmacological potential of various components of oleo-gum resin from the Indian frankincense Boswellia serrata Roxb. ex Colebr. Boswellia oleo-gum resin contains a wide range of BACs from the classes of mono-, sesqui-, di-, and triterpenes. Numerous in vivo and in vitro studies demonstrated their anti-inflammatory and antiproliferative effects. Boswellic acids (BAs), which belong to the tetra- and pentacyclic triterpenoid classes, showed the highest anti-inflammatory activity. The frankincense resin is traditionally used in Ayurvedic and Unani medicine and can provide a promising source to design drugs effective in treating musculoskeletal disorders.
Collapse
Affiliation(s)
- M O Cherepanova
- Novosibirsk State Pedagogical University, Novosibirsk, Russia
| | - M A Subotyalov
- Novosibirsk State Pedagogical University, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
27
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Raj VS, Chang CM, Priyadarshini A. Liposomes and phytosomes: Nanocarrier systems and their applications for the delivery of phytoconstituents. Coord Chem Rev 2023; 491:215251. [DOI: 10.1016/j.ccr.2023.215251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
28
|
Sethi P, Mehan S, Khan Z, Chhabra S. Acetyl-11-keto-beta boswellic acid(AKBA) modulates CSTC-pathway by activating SIRT-1/Nrf2-HO-1 signalling in experimental rat model of obsessive-compulsive disorder: Evidenced by CSF, blood plasma and histopathological alterations. Neurotoxicology 2023; 98:61-85. [PMID: 37549874 DOI: 10.1016/j.neuro.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Obsessive-Compulsive disorder (OCD) is a long-term and persistent mental illness characterised by obsessive thoughts and compulsive behaviours. Numerous factors can contribute to the development or progression of OCD. These factors may result from the dysregulation of multiple intrinsic cellular pathways, including SIRT-1, Nrf2, and HO-1. Inhibitors of selective serotonin reuptake (SSRIs) are effective first-line treatments for OCD. In our ongoing research, we have investigated the role of SIRT-1, Nrf2, and HO-1, as well as the neuroprotective potential of Acetyl-11-keto-beta boswellic acid (AKBA) against behavioural and neurochemical changes in rodents treated with 8-OH-DPAT. In addition, the effects of AKBA were compared to those of fluvoxamine (FLX), a standard OCD medication. Injections of 8-OH-DPAT into the intra-dorso raphe nuclei (IDRN) of rats for seven days induced repetitive and compulsive behaviour accompanied by elevated oxidative stress, inflammatory processes, apoptosis, and neurotransmitter imbalances in CSF, blood plasma, and brain samples. Chronic administration of AKBA at 50 mg/kg and 100 mg/kg p.o. restored histopathological alterations in the cortico-striatal-thalamo-cortical (CSTC) pathway, including the cerebral cortex, striatum, and hippocampal regions. Our investigation revealed that when AKBA and fluvoxamine were administered together, the alterations were restored to a greater degree than when administered separately. These findings demonstrate that the neuroprotective effect of AKBA can serve as an effective basis for developing a novel OCD treatment.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Swesha Chhabra
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
29
|
Zhu MZ, Yang MF, Song Y, Xu HM, Xu J, Yue NN, Zhang Y, Tian CM, Shi RY, Liang YJ, Yao J, Wang LS, Nie YQ, Li DF. Exploring the efficacy of herbal medicinal products as oral therapy for inflammatory bowel disease. Biomed Pharmacother 2023; 165:115266. [PMID: 37541177 DOI: 10.1016/j.biopha.2023.115266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) encompasses a collection of idiopathic diseases characterized by chronic inflammation in the gastrointestinal (GI) tract. Patients diagnosed with IBD often experience necessitate long-term pharmacological interventions. Among the multitude of administration routes available for treating IBD, oral administration has gained significant popularity owing to its convenience and widespread utilization. In recent years, there has been extensive evaluation of the efficacy of orally administered herbal medicinal products and their extracts as a means of treating IBD. Consequently, substantial evidence has emerged, supporting their effectiveness in IBD treatment. This review aimed to provide a comprehensive summary of recent studies evaluating the effects of herbal medicinal products in the treatment of IBD. We delved into the regulatory role of these products in modulating immunity and maintaining the integrity of the intestinal epithelial barrier. Additionally, we examined their impact on antioxidant activity, anti-inflammatory properties, and the modulation of intestinal flora. By exploring these aspects, we aimed to emphasize the significant advantages associated with the use of oral herbal medicinal products in the treatment of IBD. Of particular note, this review introduced the concept of herbal plant-derived exosome-like nanoparticles (PDENs) as the active ingredient in herbal medicinal products for the treatment of IBD. The inclusion of PDENs offers distinct advantages, including enhanced tissue penetration and improved physical and chemical stability. These unique attributes not only demonstrate the potential of PDENs but also pave the way for the modernization of herbal medicinal products in IBD treatment.
Collapse
Affiliation(s)
- Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yang Song
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
30
|
Kazemi S, Marefati N, Beheshti F, Salmani H, Bigham M, Hosseini M. The effect of olibanum on the rats with memory deficit induced by scopolamine. Cent Nerv Syst Agents Med Chem 2023; 23:CNSAMC-EPUB-134227. [PMID: 37680155 DOI: 10.2174/1871524923666230901142436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/10/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Oxidative stress is an important contributor to Alzheimer's disease. Olibanum has therapeutic effects on various diseases. The effect of Olibanum on memory deficit induced by scopolamine (Sco) was challenged. METHODS Four groups were considered as (1) control (2) Sco, (3-4) Sco - Olib 100 and 200 mg/kg. Treatment by Olib or vehicle was done for two weeks. The third week was accompanied by the Morris water maze (MWM) and passive avoidance (PA) with Sco injection. On the last day, the brain and hippocampus were used for evaluation of the malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and a total thiol group. RESULTS Sco increased the traveled time and distance to reach the hidden platform during five days of learning (p<0.01 - p<0.001) whereas it decreased the traveled time and distance (p<0.05- p<0.01) in the target area during the probe test of MWM. Sco also decreased delay time in the PA test (P<0.05 - P<0.001). Sco also decreased CAT, SOD, and thiol, whereas it, increased MDA in both the cortex and hippocampus (p<0.01 - p<0.001). Olib attenuated the impaired performance of the rats induced by Sco in MWM and PA tests. Olib reversed the increasing effects of Sco on MDA in both cortex and hippocampus and also reversed the attenuating effects of Sco on CAT, SOD, and thiol. CONCLUSION Olib had an inhibitory effect on memory deficit induced by Sco probably through its anti-oxidant property.
Collapse
Affiliation(s)
- Sara Kazemi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Salmani
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Maryam Bigham
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Ahmed SA, Al-Shanon AF, Al-Saffar AZ, Tawang A, Al-Obaidi JR. Antiproliferative and cell cycle arrest potentials of 3-O-acetyl-11-keto-β-boswellic acid against MCF-7 cells in vitro. J Genet Eng Biotechnol 2023; 21:75. [PMID: 37393563 DOI: 10.1186/s43141-023-00529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Cancer is a major issue in medical science with increasing death cases every year worldwide. Therefore, searching for alternatives and nonorthodox methods of treatments with high efficiency, selectivity and less toxicity is the main goal in fighting cancer. Acetyl-11-keto-β-boswellic acid (AKBA), is a derivative pentacyclic triterpenoid that exhibited various biological activities with potential anti-tumoral agents. In this research, AKBA was utilized to examine the potential cytotoxic activity against MCF-7 cells in vitro and monitor the cellular and morphological changes with a prospective impact on apoptosis induction. METHODS The cytotoxic activity of AKBA was measured by 3(4,5dimethylthiazole- 2-yl)-2,5 diphyneltetrazolium bromide (MTT) assay. A dose-dependent inhibition in MCF-7 cell viability was detected. The clonogenicity of MCF-7 cells was significantly suppressed by AKBA increment in comparison with untreated cells. RESULT Morphologically, exposure of MCF-7 cells to high AKBA concentrations caused changes in cell nuclear morphology which was indicated by increasing in nuclear size and cell permeability intensity. The mitochondrial membrane potential (ΔΨm) was reduced by increasing AKBA concentration with a significant release of cytochrome c. Acridine orange/ethidium bromide dual staining experiment confirmed that MCF-7 cells treated with AKBA (IC50 concentration) displayed a late stage of apoptosis indicated by intense and bright reddish colour. CONCLUSION A significant increase in reactive oxygen species formation was observed. Caspase 8 and caspase 9 activities were estimated and AKBA activated the production of caspase 8 and caspase 9 in a dose-dependent pattern. Finally, the cell phase distribution analysis was conducted, and flow cytometric analysis showed that AKBA at 200 μg mL-1 significantly arrest MCF-7 cells at the G1 phase and triggered apoptosis.
Collapse
Affiliation(s)
- Saja A Ahmed
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | | | - Ali Z Al-Saffar
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq.
| | - Alene Tawang
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
| |
Collapse
|
32
|
Burton I, McCormack A. Nutritional Supplements in the Clinical Management of Tendinopathy: A Scoping Review. J Sport Rehabil 2023; 32:493-504. [PMID: 37146985 DOI: 10.1123/jsr.2022-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/02/2023] [Accepted: 02/24/2023] [Indexed: 05/07/2023]
Abstract
INTRODUCTION Tendinopathy has a high prevalence and incidence in the general population and among athletes, with a lack of consensus among medical practitioners on optimal management strategies. The objective of this scoping review was to evaluate current research on the use of nutritional supplements for treating tendinopathies, including what supplements have been used and what outcomes, outcome measures, and intervention parameters have been reported. METHODS Databases searched included Embase, SPORTDiscus, the Cochrane Library, MEDLINE, CINAHL, and AMED. This scoping review considered primary studies investigating nutritional supplements for tendinopathies and was reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews. RESULTS A total of 1527 articles were identified with 16 included in the review. Studies investigated a range of nutritional supplements in the clinical management of various tendinopathies, including several commercially available proprietary blends of several ingredients. TendoActive (mucopolysaccharides, type I collagen, and vitamin C) was used in 2 studies, TENDISULFUR (methylsulfonylmethane, hydrolyzed collagen, L-arginine, L-lysine, vitamin C, bromelain, chondroitin, glucosamine, Boswellia, and myrrh) was used in 3 studies, and Tenosan (arginine-L-alpha ketoglutarate, hydrolyzed collagen type I, methylsulfonylmethane, vitamin C, bromelain, and vinitrox) was used in 2 studies. Collagen peptides were used in 2 studies, with omega-3 fatty acids, combined fatty acids and antioxidants, turmeric rhizome combined with Boswellia, β-hydroxy β-methylbutyric, vitamin C in isolation and combined with gelatin, and creatine investigated in one study each. CONCLUSION Despite a paucity of studies to date, findings from this review suggest that several nutritional compounds may be beneficial in the clinical management of tendinopathies, by exerting anti-inflammatory effects and improving tendon healing. Nutritional supplements may have potential as an adjunctive method to standard treatment methods such as exercise, where their pain-relieving, anti-inflammatory, and structural tendon effects may augment the positive functional outcomes gained from progressive exercise rehabilitation.
Collapse
Affiliation(s)
- Ian Burton
- Portlethen Medical Centre, Aberdeenshire, NHS Grampian, Aberdeen,United Kingdom
| | | |
Collapse
|
33
|
Cho MK, Jin JS, Jo Y, Han JH, Shin S, Bae SJ, Ryu D, Joo J, Park JK, Ha KT. Frankincense ameliorates endometriosis via inducing apoptosis and reducing adhesion. Integr Med Res 2023; 12:100947. [PMID: 37168676 PMCID: PMC10165193 DOI: 10.1016/j.imr.2023.100947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 04/05/2023] Open
Abstract
Background Frankincense, a resin derived from trees of the Boswellia genus, has been used as an incense and a type of herbal medicine for treating inflammatory diseases such arthritis, chronic bowel illness, and asthma. While endometriosis is a well-known inflammatory gynecological illness caused by the ectopic attachment and development of uterine tissue over the menstrual cycle, the impact of frankincense on this illness is poorly understood. The purpose of this study was to explore the effects of frankincense on endometriosis. Methods We used a network pharmacological assessment, in vitro and in vivo investigations with a human endometriotic cell line as well as a syngeneic uterine transfer mouse model. High-performance liquid chromatographic analysis was used to compare water-extracted frankincense (Fr) to its reference compounds and validate the sample. Results A network pharmacological analysis suggested a positive effect of Fr on endometriosis. Fr relieved endometriosis by reducing ectopic endometrial adherence and development, according to both in vivo and in vitro models. We suggested that the ER stress/p53-apoptosis and chemokine-migration/adhesion pathways underlie Fr's anti-endometriotic action using RNA sequencing and bioinformatic analysis. Conclusion This study revealed the potential effect of Fr on endometriosis using an experimental investigation. Fr may have the potential to be an effective and safe treatment for endometriosis.
Collapse
Affiliation(s)
- Min Kyoung Cho
- Korean Medical Research Center for Healthy Aging, Pusan National University, Gyeongsangnam-do, Republic of Korea
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Jung-Sook Jin
- Korean Medical Research Center for Healthy Aging, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jung Ho Han
- Korean Medical Research Center for Healthy Aging, Pusan National University, Gyeongsangnam-do, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Su Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jongkil Joo
- Department of Korean Obstetrics and Gynecology, Pusan National University Korean Medicine Hospital, Gyeongsangnam-do, Republic of Korea
| | - Jang-Kyung Park
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan, Republic of Korea
| | - Ki-Tae Ha
- Korean Medical Research Center for Healthy Aging, Pusan National University, Gyeongsangnam-do, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
34
|
Keyßer G, Michalsen A, Reuß-Borst M, Frohne I, Gläß M, Pfeil A, Schultz O, Seifert O, Sander O. [Recommendations of the committee on complementary medicine and nutrition in ayurvedic medicine, homeopathy, nutrition and Mediterranean diet]. Z Rheumatol 2023:10.1007/s00393-023-01356-z. [PMID: 37212842 PMCID: PMC10382356 DOI: 10.1007/s00393-023-01356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 05/23/2023]
Abstract
Methods of complementary and alternative medicine (CAM) are appealing for many patients with rheumatic diseases. The scientific data are currently characterized by a large number of publications that stand in contrast to a remarkable shortage of valid clinical studies. The applications of CAM procedures are situated in an area of conflict between efforts for an evidence-based medicine and high-quality therapeutic concepts on the one hand and ill-founded or even dubious offers on the other hand. In 2021 the German Society of Rheumatology (DGRh) launched a committee for CAM and nutrition, which aims to collect and to evaluate the current evidence for CAM applications and nutritional medical interventions in rheumatology, in order to elaborate recommendations for the clinical practice. The current article presents recommendations for nutritional interventions in the rheumatological routine for four areas: nutrition, Mediterranean diet, ayurvedic medicine and homeopathy.
Collapse
Affiliation(s)
- Gernot Keyßer
- Klinik für Innere Medizin II, Universitätsklinikum Halle (Saale), Ernst-Grube-Str. 40, 06120, Halle, Deutschland.
| | - Andreas Michalsen
- Immanuel Krankenhaus Berlin, Königstr. 63, 14109, Berlin-Wannsee, Deutschland
| | - Monika Reuß-Borst
- Facharztpraxis für Innere Medizin, Frankenstr. 36, 97708, Bad Bocklet, Deutschland
| | - Inna Frohne
- Privatpraxis für Rheumatologie, Frankenstr. 238, 45134, Essen, Deutschland
| | - Mandy Gläß
- Helios Fachklinik Vogelsang-Gommern, Sophie-von-Boetticher-Str. 1, 39245, Vogelsang-Gommern, Deutschland
| | - Alexander Pfeil
- Klinik für Innere Medizin III, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Deutschland
| | - Olaf Schultz
- Rheumazentrum, ACURA Kliniken Baden-Baden, Rotenbachtalstr. 5, 76530, Baden-Baden, Deutschland
| | - Olga Seifert
- Klinik und Poliklinik für Rheumatologie, Universitätsklinikum Leipzig, Liebigstr. 20, Haus 4, 04103, Leipzig, Deutschland
| | - Oliver Sander
- Klinik für Rheumatologie, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| |
Collapse
|
35
|
Mohsenzadeh A, Karimifar M, Soltani R, Hajhashemi V. Evaluation of the effectiveness of topical oily solution containing frankincense extract in the treatment of knee osteoarthritis: a randomized, double-blind, placebo-controlled clinical trial. BMC Res Notes 2023; 16:28. [PMID: 36869332 PMCID: PMC9984289 DOI: 10.1186/s13104-023-06291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
OBJECTIVE Pharmacological treatments of osteoarthritis (OA) have several side effects. Boswellia serrata resin (frankincense) is rich in boswellic acids that have antioxidant and anti-inflammatory effects; though, their oral bioavailability is low. The aim of this study was evaluation of the clinical effectiveness of frankincense extract in the treatment of knee OA. In a randomized double-blind placebo-controlled clinical trial, eligible patients with knee OA were randomly divided into two groups of drug (33 patients) and control (37 patients), to use oily solution of frankincense extract or placebo, respectively, on the involved knee three times daily for four weeks. WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index), VAS (visual analogue scale; for pain severity), and PGA (patient global assessment) scores were determined before and after intervention. RESULTS For all evaluated outcome variables, there was a significant decrease from baseline in both groups (P < 0.001 for all). Furthermore, the end-of-intervention values for all parameters were significantly lower in drug group than placebo group (P < 0.001 for all), showing more effectiveness of drug compared to placebo. CONCLUSION Topical oily solution containing enriched extract of boswellic acids could decrease pain severity and improve the function in patients with knee OA. Trial Registration Trial registration number: IRCT20150721023282N14. Trial registration date: September 20, 2020. The study was retrospectively registered in Iranian Registry of Clinical Trials (IRCT).
Collapse
Affiliation(s)
- Afsaneh Mohsenzadeh
- Students Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Karimifar
- Department of Rheumatology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rasool Soltani
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. .,Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Valiollah Hajhashemi
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
36
|
Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, López-Fagúndez M, Pazos-Pérez A, Crespo-Golmar A, Belén Bravo S, López-López V, Jorge-Mora A, Cerón-Carrasco JP, Lois Iglesias A, Gómez R. β Boswellic Acid Blocks Articular Innate Immune Responses: An In Silico and In Vitro Approach to Traditional Medicine. Antioxidants (Basel) 2023; 12:371. [PMID: 36829930 PMCID: PMC9952103 DOI: 10.3390/antiox12020371] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is hallmarked as a silent progressive rheumatic disease of the whole joint. The accumulation of inflammatory and catabolic factors such as IL6, TNFα, and COX2 drives the OA pathophysiology into cartilage degradation, synovia inflammation, and bone destruction. There is no clinical available OA treatment. Although traditional ayurvedic medicine has been using Boswellia serrata extracts (BSE) as an antirheumatic treatment for a millennium, none of the BSE components have been clinically approved. Recently, β boswellic acid (BBA) has been shown to reduce in vivo OA-cartilage loss through an unknown mechanism. We used computational pharmacology, proteomics, transcriptomics, and metabolomics to present solid evidence of BBA therapeutic properties in mouse and primary human OA joint cells. Specifically, BBA binds to the innate immune receptor Toll-like Receptor 4 (TLR4) complex and inhibits both TLR4 and Interleukin 1 Receptor (IL1R) signaling in OA chondrocytes, osteoblasts, and synoviocytes. Moreover, BBA inhibition of TLR4/IL1R downregulated reactive oxygen species (ROS) synthesis and MAPK p38/NFκB, NLRP3, IFNαβ, TNF, and ECM-related pathways. Altogether, we present a solid bulk of evidence that BBA blocks OA innate immune responses and could be transferred into the clinic as an alimentary supplement or as a therapeutic tool after clinical trial evaluations.
Collapse
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Miriam López-Fagúndez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Antía Crespo-Golmar
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Verónica López-López
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - José P. Cerón-Carrasco
- Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, C/Coronel López Peña S/N, Base Aérea de San Javier, Santiago de La Ribera, 30720 Murcia, Spain
| | - Ana Lois Iglesias
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| |
Collapse
|
37
|
Börner F, Pace S, Jordan PM, Gerstmeier J, Gomez M, Rossi A, Gilbert NC, Newcomer ME, Werz O. Allosteric Activation of 15-Lipoxygenase-1 by Boswellic Acid Induces the Lipid Mediator Class Switch to Promote Resolution of Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205604. [PMID: 36567268 PMCID: PMC9951388 DOI: 10.1002/advs.202205604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Specialized pro-resolving mediators (SPM), primarily produced in innate immune cells, exert crucial bioactions for resolving inflammation. Among various lipoxygenases (LOX), 15-LOX-1 is key for SPM biosynthesis, but cellular activation principles of 15-LOX-1 are unexplored. It was shown that 3-O-acetyl-11-keto-β-boswellic acid (AKBA) shifts 5-LOX regiospecificity from 5- to 12-lipoxygenation products. Here, it is demonstrated that AKBA additionally activates cellular 15-LOX-1 via an allosteric site accomplishing robust SPM formation in innate immune cells, particularly in M2 macrophages. Compared to ionophore, AKBA-induced LOX activation is Ca2+ - and phosphorylation-independent, with modest induction of 5-LOX products. AKBA docks into a groove between the catalytic and regulatory domains of 15-LOX-1 interacting with R98; replacement of R98 by alanine abolishes AKBA-induced 15-LOX product formation in HEK293 cells. In zymosan-induced murine peritonitis, AKBA strikingly elevates SPM levels and promotes inflammation resolution. Together, targeted allosteric modulation of LOX activities governs SPM formation and offers new concepts for inflammation resolution pharmacotherapy.
Collapse
Affiliation(s)
- Friedemann Börner
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaPhilosophenweg 1407743JenaGermany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaPhilosophenweg 1407743JenaGermany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaPhilosophenweg 1407743JenaGermany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaPhilosophenweg 1407743JenaGermany
| | - Mario Gomez
- Evonik Operations GmbHKirschenallee 4564293DarmstadtGermany
| | - Antonietta Rossi
- Department of PharmacySchool of Medicine and SurgeryUniversity of Naples Federico IIVia D. Montesano 49NaplesI‐80131Italy
| | - Nathaniel C. Gilbert
- Department of Biological SciencesLouisiana State University202 Life Science BuildingBaton RougeLA70803USA
| | - Marcia E. Newcomer
- Department of Biological SciencesLouisiana State University202 Life Science BuildingBaton RougeLA70803USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaPhilosophenweg 1407743JenaGermany
| |
Collapse
|
38
|
Abou Zaid ES, Mansour SZ, El-Sonbaty SM, Moawed FSM, Kandil EI, Haroun RAH. Boswellic acid coated zinc nanoparticles attenuate NF-κB-mediated inflammation in DSS-induced ulcerative colitis in rats. Int J Immunopathol Pharmacol 2023; 37:3946320221150720. [PMID: 36600460 PMCID: PMC9830081 DOI: 10.1177/03946320221150720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease, and until now therapeutic agents for UC still cannot exert satisfied effects. Therefore, this study aimed to investigate the ameliorative effect of boswellic acid coated zinc nanoparticles (BAs-ZnNPs) on dextran sodium sulphate (DSS) induced-UC in rats. METHODS Rats were divided into five groups; control, BAs-ZnNPs, DSS, DSS+BAs, and DSS + BAs-ZnNPs. The activity of alkaline phosphatase (ALP) was determined colorimetrically, while the concentration of IgM, IgG, TNF-α, IL-1β, and IL-8 were measured by ELISA. Levels of gene expression of NF-κB and COX-2 genes were evaluated by RT-qPCR, while the expression of protein levels of PI3K and STAT-3 were done by western blotting. Finally, histopathological examination of colon tissues of different groups of rats was done. RESULTS The depicted ball-like structure of the BAs-ZnNPs in the TEM images ranging in size from 50 to 100 nm in diameter while their formation was confirmed by UV-visible spectroscopy with a sharp peak of maximum absorbance at 266 nm. Our results revealed that BAs-ZnNPs exerted an anti-inflammatory effect in the experimental model of colitis, demonstrated histologically and biochemically as shown by the improvement of ALP, IgM, IgG, and the gene expression levels of NF-κB and COX-2. Also, this beneficial effect was associated with the reduction in the expression of TNF-α, IL-1β, IL-8, PI3K, and STAT-3. Thus, this effect improves the altered immune response associated with the colonic inflammation. CONCLUSION BAs-ZnNPs can be proposed as a therapeutic candidate to attenuate UC. The potential underlying mechanism includes suppression of ALP, IgM, IgG, IL-1β, and IL-8 levels via regulation of NF-κB and COX-2 gene expression and STAT-3 and PI3K protein expression in a UC rat model.
Collapse
Affiliation(s)
- Eman S Abou Zaid
- Biochemistry Department, Faculty of
Science, Ain Shams
University, Cairo, Egypt
| | - Somya Z Mansour
- Radiation Biology Department,
National
Centre for Radiation Research and Technology, Atomic Energy
Authority, Cairo, Egypt
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department,
National
Centre for Radiation Research and Technology, Atomic Energy
Authority, Cairo, Egypt
| | - Fatma SM Moawed
- Health Radiation Research
Department, National
Centre for Radiation Research and Technology, Atomic Energy
Authority, Cairo, Egypt
| | - Eman I Kandil
- Biochemistry Department, Faculty of
Science, Ain Shams
University, Cairo, Egypt
| | - Riham Abdel-Hamid Haroun
- Biochemistry Department, Faculty of
Science, Ain Shams
University, Cairo, Egypt,Riham Abdel-Hamid Haroun, Faculty of
Science, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo 11566,
Egypt.
| |
Collapse
|
39
|
Moudgil KD, Venkatesha SH. The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation. Int J Mol Sci 2022; 24:95. [PMID: 36613560 PMCID: PMC9820125 DOI: 10.3390/ijms24010095] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammation is an integral part of autoimmune diseases, which are caused by dysregulation of the immune system. This dysregulation involves an imbalance between pro-inflammatory versus anti-inflammatory mediators. These mediators include various cytokines and chemokines; defined subsets of T helper/T regulatory cells, M1/M2 macrophages, activating/tolerogenic dendritic cells, and antibody-producing/regulatory B cells. Despite the availability of many anti-inflammatory/immunomodulatory drugs, the severe adverse reactions associated with their long-term use and often their high costs are impediments in effectively controlling the disease process. Accordingly, suitable alternatives are being sought for these conventional drugs. Natural products offer promising adjuncts/alternatives in this regard. The availability of specific compounds isolated from dietary/medicinal plant extracts have permitted rigorous studies on their disease-modulating activities and the mechanisms involved therein. Here, we describe the basic characteristics, mechanisms of action, and preventive/therapeutic applications of 5 well-characterized natural product compounds (Resveratrol, Curcumin, Boswellic acids, Epigallocatechin-3-gallate, and Triptolide). These compounds have been tested extensively in animal models of autoimmunity as well as in limited clinical trials in patients having the corresponding diseases. We have focused our description on predominantly T cell-mediated diseases, such as rheumatoid arthritis, multiple sclerosis, Type 1 diabetes, ulcerative colitis, and psoriasis.
Collapse
Affiliation(s)
- Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Vita Therapeutics, Baltimore, MD 21201, USA
| |
Collapse
|
40
|
Rajabian A, Farzanehfar M, Hosseini H, Arab FL, Nikkhah A. Boswellic acids as promising agents for the management of brain diseases. Life Sci 2022; 312:121196. [DOI: 10.1016/j.lfs.2022.121196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
|
41
|
Analysis of the Anti-Inflammatory and Anti-Osteoarthritic Potential of Flonat Fast®, a Combination of Harpagophytum Procumbens DC. ex Meisn., Boswellia Serrata Roxb., Curcuma longa L., Bromelain and Escin (Aesculus hippocastanum), Evaluated in In Vitro Models of Inflammation Relevant to Osteoarthritis. Pharmaceuticals (Basel) 2022; 15:ph15101263. [PMID: 36297375 PMCID: PMC9609228 DOI: 10.3390/ph15101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a joint disease characterized by inflammation of the synovium, angiogenesis, cartilage degradation, and osteophyte formation. Harpagophytum Procumbens DC. ex Meisn., Boswellia Serrata Roxb., Curcuma longa L., Bromelain and Escin (Aesculus hippocastanum) are plants which extracts, together to Bromelain and Escin (Aesculus hippocastanum) are traditionally used in OA. However, their mechanistic role remains unclear. We aimed to investigate whether these bioactives alone or in combination (as in Flonat Fast®) can suppress TNF-α-induced inflammation, angiogenesis, and osteophyte formation using two cell models involved in OA: endothelial cells and monocytes. Each plant extract was evaluated for its polyphenol content, antioxidant activity, and toxicity. In endothelial cells and monocytes, expression of genes involved in OA was assessed, functional assays for inflammation and angiogenesis were performed, and impairment of reactive oxygen species production (ROS) was evaluated. Exposure of cells to the bioactives alone and in combination before cytokine stimulation resulted in differential counterregulation of several gene and protein expressions, including those for cyclooxygenases-2, metalloproteinase-9, transforming growth factor β1, and bone morphogenic protein-2. We demonstrated that these bioactives modulated monocyte adhesion to endothelial cells as well as cell migration and endothelial angiogenesis. Consistent with radical scavenging activity in the cell-free system, the bioactives curbed TNF-α-stimulated intracellular ROS production. We confirmed the potential anti-inflammatory and antiangiogenic effects of the combination of Harpagophytum procumbens, Boswellia, Curcuma, Bromelain, and Escin and provided new mechanistic evidence for their use in OA. However, further clinical studies are needed to evaluate the true clinical utility of these bioactives as supportive, preventive, and therapeutic agents.
Collapse
|
42
|
Sethi V, Garg M, Herve M, Mobasheri A. Potential complementary and/or synergistic effects of curcumin and boswellic acids for management of osteoarthritis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221124545. [PMID: 36171802 PMCID: PMC9511324 DOI: 10.1177/1759720x221124545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
For several thousand years (~4000) Boswellia serrata and Curcuma longa have been used in Aryuvedic medicine for treatment of various illnesses, including asthma, peptic ulcers, and rheumatoid arthritis, all of which are mediated through pathways associated with inflammation and pain. Although the in vivo pharmacology of both these natural ingredients is difficult to study because of poor bioavailability, in vitro data suggest that both influence gene expression mediated through nuclear factor kappa B (NF-κB). Therefore, the activity of pathways associated with inflammation (including NF-κB and lipoxygenase- and cyclooxygenase-mediated reduction in leukotrienes/prostaglandins) and those involved in matrix degradation and apoptosis are reduced, resulting in a reduction in pain. Additive activity of boswellic acids and curcumin was observed in preclinical models and synergism was suggested in clinical trials for the management of osteoarthritis (OA) pain. Overall, studies of these natural ingredients, alone or in combination, revealed that these extracts relieved pain from OA and other inflammatory conditions. This may present an opportunity to improve patient care by offering alternatives for patients and physicians, and potentially reducing nonsteroidal anti-inflammatory or other pharmacologic agent use. Additional research is needed on the effects of curcumin on the microbiome and the influence of intestinal metabolism on the activity of curcuminoids to further enhance formulations to ensure sufficient anti-inflammatory and antinociceptive activity. This narrative review includes evidence from in vitro and preclinical studies, and clinical trials that have evaluated the mechanism of action, pharmacokinetics, efficacy, and safety of curcumin and boswellic acids individually and in combination for the management of OA pain.
Collapse
Affiliation(s)
- Vidhu Sethi
- Pain Relief, Medical Affairs, Consumer Healthcare R&D, Haleon, 23, Rochester Park, GSK Asia House, 139234 Singapore
| | - Manohar Garg
- Nutraceuticals Research Program, University of Newcastle, Callaghan, NSW, Australia
| | - Maxime Herve
- was an employee of Consumer Healthcare R&D, GlaxoSmithKline Consumer Healthcare, Singapore
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| |
Collapse
|
43
|
Single-Center-Single-Blinded Clinical Trial to Evaluate the Efficacy of a Nutraceutical Containing Boswellia Serrata, Bromelain, Zinc, Magnesium, Honey, Tyndallized Lactobacillus Acidophilus and Casei to Fight Upper Respiratory Tract Infection and Otitis Media. Healthcare (Basel) 2022; 10:healthcare10081526. [PMID: 36011184 PMCID: PMC9408187 DOI: 10.3390/healthcare10081526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Some nutraceuticals have been studied as supportive treatment for fighting upper respiratory tract infection and middle ear disease. Our study aims at evaluating the effect of a specific oral supplementation in the treatment of pediatric otits media. The subjects were randomly assigned by the physician (single-blinded study) to one of three groups: Control Group (CG), Treatment Group 1 (TG1), or Treatment Group 2 (TG2). Both TG were treated with Flogostop Duo (for 20 days—TG1 or 30 days—TG2) in combination with the standard treatment, while CG underwent standard treatment only. The standard treatment was nasal aerosol with Fluticasone and Mucolytic, and nasal washing with hypertonic solution. All patients were analyzed by otoscopy, impedance, fibroscopy, and pure auditory test at the baseline (T0), after 20 days (T1) and 35 days (T2). 120 children were included in the study, 40 in the CG, 40 in the TG1, and 40 in the TG2. Both TG1 and TG2 presented statistically significant differences with respect to controls in otoscopy, impedance, fibroscopy, and PTA at T2. The otoscopy improved at T2 with statistically significant value only in TG2. The impedance and fibroscopy improved at T1 both in TG1 and TG2 compared to CG. A statistically significant improvement was observed in TG2 at T2 in comparison to both CG and TG1. Statistically significant differences were observed in PTA at T2 only compared with controls. This study confirmed the efficacy of nutraceutical as supporting therapy in the upper respiratory tract infection in children. In particular, the supplement containing Boswellia serrata and Bromelain, which are molecules with strong anti-inflammatory and pain-control capacities, could add the benefit without the adverse effects which are related to NSAID use.
Collapse
|
44
|
Li T, Gao S, Han W, Gao Z, Wei Y, Wu G, Qiqiu W, Chen L, Feng Y, Yue S, Kuang H, Jiang X. Potential effects and mechanisms of Chinese herbal medicine in the treatment of psoriasis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115275. [PMID: 35487447 DOI: 10.1016/j.jep.2022.115275] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a chronic inflammatory dermatosis related to high morbidity and mortality. The incidence of psoriasis is increasing in recent decades. Some patients with psoriasis are anxious about the underlying side effects of synthetic drugs they are on. Therefore, they are eager to seek alternative and efficient therapy, such as Chinese herbal medicine (CHM). Researchers have found some CHM provides best source for the development of anti-psoriatic drugs because of their structural diversity and fewer adverse reactions. Some of CHM formulas or active constituents extracted from CHM have been rapidly developed into clinical drugs with good efficacy. At present, along with the CHM formulas, single CHM and its active components have been extensively accepted and utilized in the treatment of psoriasis, whose therapeutic mechanisms hitherto have not been thoroughly illustrated. AIM OF THE STUDY This review aimed to comprehensively summarize about the existing therapeutic mechanisms of CHM in the treatment of psoriasis and to provide a reference to develop future related studies in this field. MATERIALS AND METHODS Relevant literatures about how CHM treated psoriasis were acquired from published scientific studies (including PubMed, CNKI, Web of Science, Baidu Scholar, The Plant List, Elsevier and SciFinder). All plants appearing in the review have been included in The Plant List or Medicinal Plant Names Services (MPNS). RESULTS In this review, we collect numerous literatures about how CHM treats psoriasis via immune cells, signaling pathways and disease-related mediators and systematically elucidates potential mechanisms from the point of the suppression of oxidative stress, the inhibition of abnormal abnormal proliferation and differentiation, the inhibition of immune responses, and the suppression of angiogenesis. CONCLUSIONS Psoriasis is considered as a complicated disease caused by interaction among various mechanisms. The CHM formulas, single CHM and its active components have considerable positive reports about the treatment of psoriasis, which brings hope for a promising future of CHM in the clinical therapy of psoriasis. In the paper, we have concluded that the existing therapeutic mechanisms of CHM in the treatment of psoriasis.
Collapse
Affiliation(s)
- Tingting Li
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Si Gao
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Wei Han
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No.4 Dong-qing Road, Huaxi District, Guiyang, 550025, China
| | - Zhenqiu Gao
- School of Pharmacy, Yancheng Teachers University, Xiwang Road, Tinghu District, Yancheng, 224007, China
| | - Yundong Wei
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Gang Wu
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Wei Qiqiu
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Li Chen
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Yiping Feng
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Shijiao Yue
- Gangnan Castle Peak Psychiatric Hospital, Jiangnan Industrial Park District, Guigang, 537100, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Traditional Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, China.
| | - Xudong Jiang
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China.
| |
Collapse
|
45
|
D’Egidio F, Lombardozzi G, Kacem Ben Haj M’Barek HE, Mastroiacovo G, Alfonsetti M, Cimini A. The Influence of Dietary Supplementations on Neuropathic Pain. Life (Basel) 2022; 12:1125. [PMID: 36013304 PMCID: PMC9410423 DOI: 10.3390/life12081125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain is defined as pain caused by a lesion or disease of the somatosensory nervous system and affects 7-10% of the worldwide population. Neuropathic pain can be induced by the use of drugs, including taxanes, thus triggering chemotherapy-induced neuropathic pain or as consequence of metabolic disorders such as diabetes. Neuropathic pain is most often a chronic condition, and can be associated with anxiety and depression; thus, it negatively impacts quality of life. Several pharmacologic approaches exist; however, they can lead numerous adverse effects. From this perspective, the use of nutraceuticals and diet supplements can be helpful in relieve neuropathic pain and related symptoms. In this review, we discuss how diet can radically affect peripheral neuropathy, and we focus on the potential approaches to ameliorate this condition, such as the use of numerous nutritional supplements or probiotics.
Collapse
Affiliation(s)
- Francesco D’Egidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Giorgia Lombardozzi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Housem E. Kacem Ben Haj M’Barek
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Giada Mastroiacovo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
46
|
Raina D, Khan FG, Tiwari H, Sangwan PL, Nargotra A, Kumar V, Khan IA, Saran S. Boswellic acids, as novel inhibitor targeting peptidoglycan biosynthetic enzyme UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) in Escherichia coli. Arch Microbiol 2022; 204:472. [PMID: 35819545 DOI: 10.1007/s00203-022-03066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is an essential cytosolic enzyme in the biosynthesis of peptidoglycan. It becomes a potential bacterial target for screening promising antibacterial compounds as it is associated with the early phases of peptidoglycan production. MurA enzyme is conserved and necessary for bacterial viability with no mammalian homolog, which is a well-proven therapeutic research target. The present study reports the natural compounds from Boswellia serrata targeting the MurA enzyme. The identified inhibitors against MurA Escherichia coli (E. coli): β-boswellic acid (IC50 33.65 µM), Acetyl-β-boswellic acid (IC50 30.17 µM), and Acetyl-11-keto-β-boswellic acid (IC50 37.67 µM). Inhibitors showed a fourfold decrease in IC50 values on pre-incubation with substrate-UDP-N-acetyl-glucosamine (UDP-GlcNAc). Mode-of-inhibition studies revealed their uncompetitive nature with both the substrates. Although these boswellic acids have been explored for their pharmacological potential, this is the first study reporting these compounds' E. coli MurA inhibiting potential.
Collapse
Affiliation(s)
- Diksha Raina
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
- Fermentation Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Farrah Gul Khan
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Harshita Tiwari
- Discovery Informatics, NPMC Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Payare L Sangwan
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Amit Nargotra
- Discovery Informatics, NPMC Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Vinod Kumar
- Fermentation Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Inshad Ali Khan
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| | - Saurabh Saran
- Fermentation Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
47
|
Almeida-da-Silva CLC, Sivakumar N, Asadi H, Chang-Chien A, Qoronfleh MW, Ojcius DM, Essa MM. Effects of Frankincense Compounds on Infection, Inflammation, and Oral Health. Molecules 2022; 27:molecules27134174. [PMID: 35807419 PMCID: PMC9268443 DOI: 10.3390/molecules27134174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Boswellia trees, found throughout the Middle East and parts of Africa and Asia, are the source of frankincense oil. Since antiquity, frankincense has been traded as a precious commodity, but it has also been used for the treatment of chronic disease, inflammation, oral health, and microbial infection. More recently, the bioactive components of Boswellia trees have been identified and characterized for their effects on cancer, microbial infection (especially infection by oral pathogens), and inflammation. Most studies have focused on cell lines, but more recent research has also investigated effects in animal models of disease. As natural products are considered to be safer than synthetic drugs, there is growing interest in further developing the use of substances such as frankincense oil for therapeutic treatment.
Collapse
Affiliation(s)
- Cássio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA; (C.L.C.A.-d.-S.); (H.A.)
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Oman;
| | - Homer Asadi
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA; (C.L.C.A.-d.-S.); (H.A.)
| | - Anna Chang-Chien
- Dental Surgery Program, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA;
| | - M. Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha 0974, Qatar;
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA; (C.L.C.A.-d.-S.); (H.A.)
- Correspondence:
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
| |
Collapse
|
48
|
Bie F, Zhang G, Yan X, Ma X, Zhan S, Qiu Y, Cao J, Ma Y, Ma M. β-Boswellic Acid Suppresses Breast Precancerous Lesions via GLUT1 Targeting-Mediated Glycolysis Inhibition and AMPK Pathway Activation. Front Oncol 2022; 12:896904. [PMID: 35712503 PMCID: PMC9194511 DOI: 10.3389/fonc.2022.896904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Breast carcinoma is a multistep progressive disease. Precancerous prevention seems to be crucial. β-Boswellic acid (β-BA), the main component of the folk medicine Boswellia serrata (B. serrata), has been reported to be effective in various diseases including tumors. In this work, we demonstrated that β-BA could inhibit breast precancerous lesions in rat disease models. Consistently, β-BA could suppress proliferation and induce apoptosis on MCF-10AT without significantly influencing MCF-10A. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that β-BA may interfere with the metabolic pathway. Metabolism-related assays showed that β-BA suppressed glycolysis and reduced ATP production, which then activated the AMPK pathway and inhibited the mTOR pathway to limit MCF-10AT proliferation. Further molecular docking analysis suggested that GLUT1 might be the target of β-BA. Forced expression of GLUT1 could rescue the glycolysis suppression and survival limitation induced by β-BA on MCF-10AT. Taken together, β-BA could relieve precancerous lesions in vivo and in vitro through GLUT1 targeting-induced glycolysis suppression and AMPK/mTOR pathway alterations. Here, we offered a molecular basis for β-BA to be developed as a promising drug candidate for the prevention of breast precancerous lesions.
Collapse
Affiliation(s)
- Fengjie Bie
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Guijuan Zhang
- School of Nursing, Jinan University, Guangzhou, China
| | - Xianxin Yan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xinyi Ma
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Sha Zhan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yebei Qiu
- The Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingyu Cao
- The Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, National Engineering, Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Min Ma
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- The Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
49
|
Modulation of Inflammation by Plant-Derived Nutraceuticals in Tendinitis. Nutrients 2022; 14:nu14102030. [PMID: 35631173 PMCID: PMC9143056 DOI: 10.3390/nu14102030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Tendinitis (tendinopathy) is a pro-inflammatory and painful tendon disease commonly linked with mechanical overuse and associated injuries, drug abuse, and lifestyle factors (including poor diet and physical inactivity) that causes significant healthcare expenditures due to its high incidence. Nuclear factor kappa B (NF-κB) is one of the major pro-inflammatory transcription factors, along with other inflammation signaling pathways, triggered by a variety of stimuli, including cytokines, endotoxins, physical and chemical stressors, hypoxia, and other pro-inflammatory factors. Their activation is known to regulate the expression of a multitude of genes involved in inflammation, degradation, and cell death. The pathogenesis of tendinitis is still poorly understood, whereas efficient and sustainable treatment is missing. Targeting drug suppression of the key inflammatory regulators represents an effective strategy for tendinitis therapy, but requires a comprehensive understanding of their principles of action. Conventional monotherapies are often ineffective and associated with severe side effects in patients. Therefore, agents that modulate multiple cellular targets represent therapeutic treatment potential. Plant-derived nutraceuticals have been shown to act as multi-targeting agents against tendinitis via various anti-oxidant and anti-inflammatory mechanisms, whereat they were able to specifically modulate numerous signaling pathways, including NF-κB, p38/MAPK, JNK/STAT3, and PI3K/Akt, thus down-regulating inflammatory processes. This review discusses the utility of herbal nutraceuticals that have demonstrated safety and tolerability as anti-inflammatory agents for the prevention and treatment of tendinitis through the suppression of catabolic signaling pathways. Limitations associated with the use of nutraceuticals are also described.
Collapse
|
50
|
Giresha AS, Urs D, Manjunatha JG, Sophiya P, Supreetha BH, Jayarama S, Dharmappa KK. Group IIA secreted phospholipase A 2 inhibition by elemolic acid as a function of anti-inflammatory activity. Sci Rep 2022; 12:7649. [PMID: 35538123 PMCID: PMC9087174 DOI: 10.1038/s41598-022-10950-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Human group IIA secreted phospholipase A2 (GIIA) is a key enzyme in inflammatory reactions, worsening the condition of several chronic inflammatory diseases. The natural inhibitors of GIIA potentially block the production of inflammatory mediators. In the present study, elemolic acid, a triterpenoid from Boswellia serrata inhibited the GIIA enzyme in a concentration-dependent manner with IC50 value of 5.70 ± 0.02 µM. The mode of GIIA inhibition was studied by increasing the concentration of the substrate from 30 to 120 nM, and calcium from 2.5 to 15 mM, the level of inhibition was not changed. The inhibitor-enzyme interaction was examined by fluorimetry and Circular Dichroism (CD) studies; elemolic acid altered intrinsic fluorescence intensity and shifted far UV- CD spectra of GIIA enzyme, suggesting the direct interaction with GIIA. Elemolic acid neutralized the GIIA mediated indirect hemolytic activity from 94.5 to 9.8% and reduced GIIA induced mouse paw edema from 171.75 to 113.68%. Elemolic acid also reduced the hemorrhagic effect of GIIA along with Vipera russelii neurotoxic non-enzymatic peptide -VNTx-II (VR-HC-I). Thus, the elemolic acid has been proven as a potent inhibitor of GIIA enzyme and modulated the GIIA induced inflammatory response by in situ and in vivo methods.
Collapse
Affiliation(s)
- Aladahalli S Giresha
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India
| | - J G Manjunatha
- Department of Chemistry, FMKMC College Madikeri, Mangalore University Constituent College, Mangalore, Karnataka, 571201, India
| | - P Sophiya
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India
| | - B H Supreetha
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India
| | - Shankar Jayarama
- Department of Studies in Food Technology, Davangere University, Shivagangotri, Davangere, 577002, India
| | - K K Dharmappa
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India.
| |
Collapse
|