1
|
El-Deen AK, Hussain CM. The cutting edge of surveillance: Exploring high-resolution mass spectrometry in wastewater-based epidemiology for monitoring forensic samples. J Pharm Biomed Anal 2025; 260:116821. [PMID: 40081308 DOI: 10.1016/j.jpba.2025.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Criminal activity has always been detected through forensic evidence. However, the potential for using such evidence to stop crimes in their tracks or slow them down has not yet been completely realized. There is a lot of potential for assessing trace quantities of chemicals in wastewater systems to provide effective forensic information. Wastewater-based epidemiology (WBE) has emerged in the last decades as a crucial epidemiological information source for collecting data on community-wide health. It can add important knowledge about illicit drug consumption and/or disposal, exposure to pathogens, infectious diseases, industrial pollutants, and antibiotic resistance. The use of high-resolution mass spectrometry (HRMS) in WBE has revolutionized the field by enabling the detection and quantification of these compounds. This review article explores the cutting edge of surveillance in WBE through applying HRMS techniques for forensic sample monitoring. It delves into the most recent WBE applications, examining their advantages and disadvantages. It also explores the potential for obtaining a more comprehensive evaluation of forensic samples. Furthermore, the application of these approaches to generate "forensic intelligence" for surveillance and criminal interruption is discussed, with examples of how this data can be integrated into future work.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
2
|
Schlosser O, Courtois S, Bryche P, Fressinet C, Revel N, Loret JF. Defining alarm thresholds for the load of pathogenic viruses in wastewater for decision making: An application to three French cities. Int J Hyg Environ Health 2025; 266:114563. [PMID: 40090160 DOI: 10.1016/j.ijheh.2025.114563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Wastewater monitoring has the potential to complement infectious disease surveillance systems. However, the absence of predefined viral signal thresholds in wastewater is often presented as a limiting factor in triggering public health action. To overcome this issue, the feasibility of defining alarm threshold for viral loads in wastewater samples was assessed by quantifying genome fragments of SARS-CoV-2, influenza A virus (IAV), respiratory syncytial virus (RSV), norovirus (NoV), and rotavirus (RoV) by RT-digital PCR (dPCR) in untreated wastewater samples from three treatment plants. Cut-point values were calculated for periods with a high rate of visits to emergency rooms or at-home visits by SOS Médecins for the related diseases. ROC curves were constructed, and the values of alarm threshold in wastewater were defined using the Youden index. For each targeted virus, alarm thresholds were close to each other across the three WWTPs. As indicated by likelihood ratios, evidence to rule in the diagnosis of high rate of visits when the alarm threshold was exceeded ranged from weak to strong and was highest for RSV and SARS-CoV-2. Evidence to rule out the diagnosis when the alarm threshold was not exceeded was strong or moderate for IAV, SARS-CoV-2 and RSV. Diagnostic performance of the test was not as high for NoV and RoV. Positive predictive value was highest for SARS-CoV-2 and RSV. For SARS-CoV-2 and RSV, the definition of an alarm threshold in wastewater could substantially inform the diagnosis of a period with a high rate of medical visits for COVID-19 and bronchiolitis, respectively.
Collapse
Affiliation(s)
| | - Sophie Courtois
- SUEZ, CIRSEE, 38 rue du Président Wilson, 78230, Le Pecq, France
| | - Philippe Bryche
- SUEZ Opale Assainissement, 114 Rue de L'Amiral Ruyter, 59140, Dunkerque, France
| | | | - Nicolas Revel
- Agence Nord SUEZ Eau France, 219 Avenue Anatole France, 59410, Anzin, France
| | | |
Collapse
|
3
|
Magnano San Lio R, Maugeri A, Barchitta M, Favara G, La Rosa MC, La Mastra C, Agodi A. Monitoring Antibiotic Resistance in Wastewater: Findings from Three Treatment Plants in Sicily, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:351. [PMID: 40238414 PMCID: PMC11942589 DOI: 10.3390/ijerph22030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 04/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a global public health threat. Wastewater analysis provides valuable insights into antimicrobial resistance genes (ARGs), identifying sources and trends and evaluating AMR control measures. Between February 2022 and March 2023, pre-treatment urban wastewater samples were collected weekly from treatment plants in Pantano D'Arci, Siracusa, and Giarre (Sicily, Italy). Monthly composite DNA extracts were prepared by combining weekly subsamples from each site, yielding 42 composite samples-14 from each treatment plant. Real-time PCR analysis targeted specific ARGs, including blaSHV, erm(A), erm(B), blaOXA, blaNDM, blaVIM, blaTEM, and blaCTX-M. The preliminary findings revealed that blaERM-B, blaOXA, blaTEM, and blaCTX-M were present in all samples, with erm(B) (median value: 8.51; range: 1.67-30.93), blaSHV (0.78; 0.00-6.36), and blaTEM (0.72; 0.34-4.30) showing the highest relative abundance. These results underscore the importance of integrating ARG data with broader research to understand the persistence and proliferation mechanisms of ARGs in wastewater environments. Future studies should employ metagenomic analyses to profile resistomes in urban, hospital, agricultural, and farm wastewater. Comparing these profiles will help identify contamination pathways and inform the development of targeted ARG surveillance programs. Monitoring shifts in ARG abundance could signal cross-sectoral contamination, enabling more effective AMR control strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.S.L.); (A.M.); (M.B.); (G.F.); (M.C.L.R.); (C.L.M.)
| |
Collapse
|
4
|
Lippi G, Henry BM, Mattiuzzi C. The Crucial Role of Laboratory Medicine in Addressing Future Public Health Infectious Threats: Insights Gained from the COVID-19 Pandemic. Diagnostics (Basel) 2025; 15:323. [PMID: 39941256 PMCID: PMC11817188 DOI: 10.3390/diagnostics15030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Laboratory testing has played a pivotal role throughout the coronavirus disease 2019 (COVID-19) pandemic, exemplifying the importance of in vitro diagnostics in addressing public health threats posed by outbreaks of infectious diseases. This article aims to present key insights from our expertise, derived from evidence gathered during the COVID-19 pandemic, to inform strategies for managing future infectious challenges. Current scientific evidence underscores that patient sample testing not only allows to diagnose an acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but also supports outbreak prediction, improved control measures, anticipation of pressure on the healthcare system, mitigation of adverse clinical outcomes, and early detection of emerging SARS-CoV-2 variants. Additionally, wastewater monitoring has emerged as a powerful tool for forecasting disease burden, including both prevalence and severity. Collectively, these findings underscore the value of diagnostic testing and wastewater surveillance in guiding healthcare planning and optimizing resource allocation during the COVID-19 pandemic, offering a valid framework to be applied to future public health threats, especially to any potential outbreak of "Disease X" that may emerge in the future.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Ospedale Policlinico GB Rossi, 37134 Verona, Italy;
| | - Brandon M. Henry
- Clinical Laboratory, Division of Nephrology & Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Evidence-Based Medicine and Laboratory Research Collective, San Antonio, TX 78201, USA
| | - Camilla Mattiuzzi
- Medical Direction, Rovereto Hospital, Provincial Agency for Social and Sanitary Services (APSS), 38068 Rovereto, Italy
| |
Collapse
|
5
|
Jourdain F, Toro L, Senta-Loÿs Z, Deryene M, Mokni W, Azevedo Da Graça T, Le Strat Y, Rahali S, Yamada A, Maisa A, Pretet M, Sudour J, Cordevant C, Chesnot T, Roman V, Wilhelm A, Gassilloud B, Mouly D. Wastewater-Based Epidemiological Surveillance in France: The SUM'EAU Network. Microorganisms 2025; 13:281. [PMID: 40005648 PMCID: PMC11857653 DOI: 10.3390/microorganisms13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Wastewater surveillance is a powerful public health tool which gained global prominence during the COVID-19 pandemic. This article describes the development and implementation of the national wastewater surveillance network in France: SUM'EAU. Preliminary work included defining a sampling strategy, evaluating/optimising analytical methods, launching a call for tenders to select network laboratories and producing wastewater monitoring indicators. SUM'EAU was then deployed in three stages: (i) a pilot study, (ii) the transfer of analytical activities from the National Reference Laboratory to four selected network laboratories, and (iii) the extension of the system to additional sampling sites. Currently, SUM'EAU monitors SARS-CoV-2 across 54 wastewater treatment plants in mainland France. Once a week on business days, 24 h flow-proportional composite samples are collected at plant inlets and transported at 5 °C (±3 °C) to partner laboratories for analysis. The analytical process involves sample concentration, RNA extraction, and digital RT-PCR/q-RT-PCR to detect and quantify the presence of the SARS-CoV-2 genome in wastewater. Subsequently, data are transferred to Santé publique France, the French National Public Health Agency, for analysis and interpretation. While SUM'EAU has been instrumental in monitoring the COVID-19 pandemic and holds significant potential for broader application, securing sustainable funding for its operation remains a major challenge.
Collapse
Affiliation(s)
- Frédéric Jourdain
- Occitanie Regional Office, Regional Division, Santé Publique France (French National Public Health Agency), 31050 Toulouse, France;
| | - Laila Toro
- Occitanie Regional Office, Regional Division, Santé Publique France (French National Public Health Agency), 31050 Toulouse, France;
| | - Zoé Senta-Loÿs
- General Directorate for Health, Ministry of Health, 75007 Paris, France (W.M.)
| | - Marilyne Deryene
- General Directorate for Health, Ministry of Health, 75007 Paris, France (W.M.)
| | - Walid Mokni
- General Directorate for Health, Ministry of Health, 75007 Paris, France (W.M.)
| | - Tess Azevedo Da Graça
- Data Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France
| | - Yann Le Strat
- Data Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France
| | - Sofiane Rahali
- Data Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France
| | - Ami Yamada
- Regional Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France;
| | - Anna Maisa
- Infectious Diseases Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France
| | - Maël Pretet
- Data Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France
| | - Jeanne Sudour
- Data Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France
| | - Christophe Cordevant
- Strategy and Programs Department, Research and Reference Division, ANSES, 94701 Maisons-Alfort, France;
| | - Thierry Chesnot
- Nancy Laboratory for Hydrology, ANSES, 54000 Nancy, France (V.R.)
| | - Veronica Roman
- Nancy Laboratory for Hydrology, ANSES, 54000 Nancy, France (V.R.)
| | - Amandine Wilhelm
- Nancy Laboratory for Hydrology, ANSES, 54000 Nancy, France (V.R.)
| | | | - Damien Mouly
- Occitanie Regional Office, Regional Division, Santé Publique France (French National Public Health Agency), 31050 Toulouse, France;
| |
Collapse
|
6
|
Matthew-Bernard M, Farmer-Diaz K, Dolphin-Bond G, Matthew-Belmar V, Cheetham S, Mitchell K, Macpherson CNL, Ramos-Nino ME. Phenotypic Antibiotic Resistance Patterns of Escherichia coli Isolates from Clinical UTI Samples and Municipal Wastewater in a Grenadian Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:97. [PMID: 39857550 PMCID: PMC11765413 DOI: 10.3390/ijerph22010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Antimicrobial resistance (AMR) is a growing global health threat. This study investigated antibiotic resistance in E. coli isolates from municipal wastewater (86 isolates) and clinical urinary tract infection (UTI) cases (34 isolates) in a Grenadian community, using data from January 2022 to October 2023. Antibiogram data, assessed per WHO guidelines for Critically Important antimicrobials (CIA), showed the highest resistance levels in both clinical and wastewater samples for ampicillin, followed by amoxicillin/clavulanic acid and nalidixic acid, all classified as Critically Important. Similar resistance was observed for sulfamethoxazole-trimethoprim (highly important) in both groups, with nitrofurantoin showing resistance in the important category. According to the WHO AWaRe classification, ampicillin (ACCESS group) had the highest resistance, while nitrofurantoin had the lowest across all samples. The WATCH group antibiotics, cefuroxime and cefoxitin, showed comparable resistance levels, whereas aztreonam from the RESERVE group (tested only in wastewater) was 100% sensitive. Multiple Antibiotic Resistance (MAR) index analysis revealed that 7% of wastewater and 38.2% of clinical samples had MAR values over 0.2, indicating prior antibiotic exposure in clinical isolates. These parallel patterns in wastewater and clinical samples highlight wastewater monitoring as a valuable tool for AMR surveillance, supporting antibiotic stewardship through ongoing environmental and clinical assessment.
Collapse
Affiliation(s)
- Makeda Matthew-Bernard
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada; (M.M.-B.); (K.F.-D.); (G.D.-B.)
| | - Karla Farmer-Diaz
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada; (M.M.-B.); (K.F.-D.); (G.D.-B.)
| | - Grace Dolphin-Bond
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada; (M.M.-B.); (K.F.-D.); (G.D.-B.)
| | - Vanessa Matthew-Belmar
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada; (V.M.-B.); (S.C.)
| | - Sonia Cheetham
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada; (V.M.-B.); (S.C.)
| | - Kerry Mitchell
- Department of Public Health and Preventive Medicine, School of Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada;
| | | | - Maria E. Ramos-Nino
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada; (M.M.-B.); (K.F.-D.); (G.D.-B.)
| |
Collapse
|
7
|
Gozlan Y, Zuckerman NS, Yizchaki M, Rich R, Bar-Or I, Mor O. Exploring hepatitis A dynamics in Israel, 2019-2022. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176861. [PMID: 39437928 DOI: 10.1016/j.scitotenv.2024.176861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Continuous monitoring of Hepatitis A Virus (HAV) may assist in identifying local outbreaks. The advent of the COVID-19 pandemic, which affected the circulation of numerous pathogens, may have also impacted the scope of HAV infections. AIM To investigate the incidence and environmental dissemination of HAV between 2019 and 2022 in Israel, a country with an anti-HAV vaccination program. METHODS HAV RT-PCR analysis was performed for all HAV cases and for 280 sewage samples collected in 2019-2022. Available amplified HAV fragments from clinical (n = 107) and sewage (n = 27) were also assessed by genotyping and phylogenetic analysis. RESULTS In 2019-2022, 158 individuals and 12.9 % (36/280) of sewage samples were HAV-RNA positive. Median age was 30 years (IQR 20.5-44); approximately half (51.9 %, 82/158) were males. Almost all patients (98.4 %, 124/126) were not vaccinated. Highest numbers were identified in 2019 (84 cases and 30 %, 21/71, positive sewage samples). In 2020, when three COVID-19 related lockdowns were implemented, 24 cases and 4.3 % (3/69) sewage samples were HAV-RNA positive. The number of HAV-RNA positive cases and positive sewage samples remained low in 2021-2022 (31 and 19 cases, 13.2 %, 9/68 and 4.2 %, 3/72 positive sewage samples, respectively). Sub-genotype IB dominated (90.7 %, 97/107 of cases and 81.5 %, 22/27 of sewage samples), and phylogenetic analysis of HAV samples demonstrated small transmission clusters of sequences from Jews, Bedouin Arabs and foreign workers. Sub-genotype IA was identified in 8.4 % (9/107) of cases and in 18.5 % (5/27) of sewage samples. CONCLUSION Combined clinical and environmental surveillance is optimal for monitoring HAV. In 2020, the circulation of HAV decreased, possibly following COVD-19 health restrictions. In subsequent years, the incidence remained low. Adults in risk-groups for HAV infection should be vaccinated to minimize HAV circulation.
Collapse
Affiliation(s)
- Yael Gozlan
- Central Virology Laboratory, Ministry of Health, Israel; Faculty of Medicine, Tel-Aviv University, Israel.
| | | | | | - Rivka Rich
- Department of Epidemiology, Ministry of Health, Israel
| | - Itay Bar-Or
- Central Virology Laboratory, Ministry of Health, Israel
| | - Orna Mor
- Central Virology Laboratory, Ministry of Health, Israel; Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
8
|
Pramanik R, Nannaware K, Malik V, Shah P, Sangewar P, Gogate N, Shashidhara LS, Boargaonkar R, Patil D, Kale S, Bhalerao A, Jain N, Kamble S, Dastager S, Dharne M. Monitoring Influenza A (H1N1, H3N2), RSV, and SARS-CoV-2 Using Wastewater-Based Epidemiology: A 2-Year Longitudinal Study in an Indian Megacity Covering Omicron and Post-Omicron Phases. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 17:3. [PMID: 39585577 DOI: 10.1007/s12560-024-09618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
The bourgeoning field of wastewater-based epidemiology (WBE) for the surveillance of several respiratory viruses which includes Influenza A, H1N1pdm09, H3N2, respiratory syncytial viruses (RSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of interest for public health concerns. However, there are few long-term monitoring studies globally. In this study, respiratory viruses were detected and quantified from 11 sewer sheds by utilizing reverse transcription-quantitative polymerase chain reaction analysis in Pune city, India, from Jan 2022 to Dec 2023. The RNA fragments of respiratory viruses were detected in sewage samples before clinical cases were reported, underscoring the potential of WBE for early detection and monitoring within the population. The Spearman correlation of wastewater viral copies was positively and significantly correlated with the clinically positive case of H1N1pdm09 (ρ = 0.55, p = 1.4 × 10-9), H3N2 (ρ = 0.25, p = 9.9 × 10-3), and SARS-CoV-2 (ρ = 0.43, p = 4.1 × 10-6). The impact of public health interventions on the circulation of infectious respiratory diseases showed a significant difference in the viral load during the period when many preventing measures were carried out against the COVID-19 pandemic (restriction phase), compared to the period when no such preventive measures are followed (no-restriction phase) for Influenza A, H1N1pdm09, H3N2, and RSV with p-value < 0.05, which indicates the influence of health policy implementation in controlling disease spread. The present study provides an effective approach to detecting multiple respiratory viruses from wastewater and provides insights into the epidemiology of respiratory illnesses. The WBE aids in providing information on the spread of pathogens (viruses) in the community, offering a proactive strategy for public health management, allowing for timely interventions and implementing targeted measures to mitigate the spread of these viruses under one health approach.
Collapse
Affiliation(s)
- Rinka Pramanik
- Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), National Collection of Industrial Microorganisms (NCIM), Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Kiran Nannaware
- Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), National Collection of Industrial Microorganisms (NCIM), Pune, 411008, Maharashtra, India
| | - Vinita Malik
- Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), National Collection of Industrial Microorganisms (NCIM), Pune, 411008, Maharashtra, India
| | - Priyanki Shah
- Pune Knowledge Cluster (PKC), Savitribai Phule Pune University (SPPU), 3rd floor, Placement Cell, Pune, 411007, Maharashtra, India
| | - Poornima Sangewar
- Pune Knowledge Cluster (PKC), Savitribai Phule Pune University (SPPU), 3rd floor, Placement Cell, Pune, 411007, Maharashtra, India
| | - Niharika Gogate
- Pune Knowledge Cluster (PKC), Savitribai Phule Pune University (SPPU), 3rd floor, Placement Cell, Pune, 411007, Maharashtra, India
| | - L S Shashidhara
- Pune Knowledge Cluster (PKC), Savitribai Phule Pune University (SPPU), 3rd floor, Placement Cell, Pune, 411007, Maharashtra, India
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research Bellary Road, Bangalore, 560065, Karnataka, India
| | | | - Dhawal Patil
- Ecosan Services Foundation (ESF), Pune, 411030, Maharashtra, India
| | - Saurabh Kale
- Ecosan Services Foundation (ESF), Pune, 411030, Maharashtra, India
| | - Asim Bhalerao
- Fluid Analytics Private Limited (FAPL), Pune, 411052, Maharashtra, India
| | - Nidhi Jain
- Fluid Analytics Private Limited (FAPL), Pune, 411052, Maharashtra, India
| | - Sanjay Kamble
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
- Chemical Engineering and Process Development (CEPD) Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Syed Dastager
- Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), National Collection of Industrial Microorganisms (NCIM), Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Mahesh Dharne
- Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), National Collection of Industrial Microorganisms (NCIM), Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Troja F, Indio V, Savini F, Seguino A, Serraino A, Fuschi A, Remondini D, De Cesare A. Monitoring and preventing foodborne outbreaks: are we missing wastewater as a key data source? Ital J Food Saf 2024; 13:12725. [PMID: 39749179 PMCID: PMC11694617 DOI: 10.4081/ijfs.2024.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/29/2024] [Indexed: 01/04/2025] Open
Abstract
In 2022, the number of foodborne outbreaks in Europe increased by 43.9%, highlighting the need to improve surveillance systems and design outbreak predictive tools. This review aims to assess the scientific literature describing wastewater surveillance to monitor foodborne pathogens in association with clinical data. In the selected studies, the relationship between peaks of pathogen concentration in wastewater and reported clinical cases is described. Moreover, details on analytical methods to detect and quantify pathogens as well as wastewater sampling procedures are discussed. Few papers show a statistically significant correlation between high concentrations of foodborne pathogens in wastewater and the occurrence of clinical cases. However, monitoring pathogen concentration in wastewater looks like a promising and cost-effective strategy to improve foodborne outbreak surveillance. Such a strategy can be articulated in three steps, where the first one is testing wastewater with an untargeted method, like shotgun metagenomic, to detect microorganisms belonging to different domains. The second consists of testing wastewater with a targeted method, such as quantitative polymerase chain reaction, to quantify those specific pathogens that in the metagenomic dataset display an increasing trend or exceed baseline concentration thresholds. The third involves the integrated wastewater and clinical data analysis and modeling to find meaningful epidemiological correlations and make predictions.
Collapse
Affiliation(s)
- Fulvia Troja
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia
| | - Federica Savini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia
| | - Alessandro Seguino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia
| | | | - Daniel Remondini
- Department of Astronomy and Physics, University of Bologna, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia
| |
Collapse
|
10
|
Knight ME, Webster G, Perry WB, Baldwin A, Rushton L, Pass DA, Cross G, Durance I, Muziasari W, Kille P, Farkas K, Weightman AJ, Jones DL. National-scale antimicrobial resistance surveillance in wastewater: A comparative analysis of HT qPCR and metagenomic approaches. WATER RESEARCH 2024; 262:121989. [PMID: 39018584 DOI: 10.1016/j.watres.2024.121989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Wastewater serves as an important reservoir of antimicrobial resistance (AMR), and its surveillance can provide insights into population-level trends in AMR to inform public health policy. This study compared two common high-throughput screening approaches, namely (i) high-throughput quantitative PCR (HT qPCR), targeting 73 antimicrobial resistance genes, and (ii) metagenomic sequencing. Weekly composite samples of wastewater influent were taken from 47 wastewater treatment plants (WWTPs) across Wales, as part of a national AMR surveillance programme, alongside 4 weeks of daily wastewater effluent samples from a large municipal hospital. Metagenomic analysis provided more comprehensive resistome coverage, detecting 545 genes compared to the targeted 73 genes by HT qPCR. It further provided contextual information critical to risk assessment (i.e. potential bacterial hosts). In contrast, HT qPCR exhibited higher sensitivity, quantifying all targeted genes including those of clinical relevance present at low abundance. When limited to the HT qPCR target genes, both methods were able to reflect the spatiotemporal dynamics of the complete metagenomic resistome, distinguishing that of the hospital and the WWTPs. Both approaches revealed correlations between resistome compositional shifts and environmental variables like ammonium wastewater concentration, though differed in their interpretation of some potential influencing factors. Overall, metagenomics provides more comprehensive resistome profiling, while qPCR permits sensitive quantification of genes significant to clinical resistance. We highlight the importance of selecting appropriate methodologies aligned to surveillance aims to guide the development of effective wastewater-based AMR monitoring programmes.
Collapse
Affiliation(s)
- Margaret E Knight
- School of Environmental & Natural Sciences, Bangor University, Bangor, LL57 2UW, Wales, UK.
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - William B Perry
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Amy Baldwin
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Laura Rushton
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Daniel A Pass
- Compass Bioinformatics, 17 Habershon Street, Cardif, CF24 2DU, Wales, UK
| | - Gareth Cross
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cathays Park, Cardiff, CF10 3NQ, Wales, UK
| | - Isabelle Durance
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Windi Muziasari
- Resistomap Oy, Cultivator II, Viikinkaari 4, Helsinki, Finland
| | - Peter Kille
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Kata Farkas
- School of Environmental & Natural Sciences, Bangor University, Bangor, LL57 2UW, Wales, UK
| | - Andrew J Weightman
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Davey L Jones
- School of Environmental & Natural Sciences, Bangor University, Bangor, LL57 2UW, Wales, UK
| |
Collapse
|
11
|
Toro L, de Valk H, Zanetti L, Huot C, Tarantola A, Fournet N, Moulin L, Atoui A, Gassilloud B, Mouly D, Jourdain F. Pathogen prioritisation for wastewater surveillance ahead of the Paris 2024 Olympic and Paralympic Games, France. Euro Surveill 2024; 29. [PMID: 38994605 PMCID: PMC11241851 DOI: 10.2807/1560-7917.es.2024.29.28.2400231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
BackgroundWastewater surveillance is an effective approach to monitor population health, as exemplified by its role throughout the COVID-19 pandemic.AimThis study explores the possibility of extending wastewater surveillance to the Paris 2024 Olympic and Paralympic Games, focusing on identifying priority pathogen targets that are relevant and feasible to monitor in wastewater for these events.MethodsA list of 60 pathogens of interest for general public health surveillance for the Games was compiled. Each pathogen was evaluated against three inclusion criteria: (A) analytical feasibility; (B) relevance, i.e. with regards to the specificities of the event and the characteristics of the pathogen; and (C) added value to inform public health decision-making. Analytical feasibility was assessed through evidence from peer-reviewed publications demonstrating the detectability of pathogens in sewage, refining the initial list to 25 pathogens. Criteria B and C were evaluated via expert opinion using the Delphi method. The panel consisting of some 30 experts proposed five additional pathogens meeting criterion A, totalling 30 pathogens assessed throughout the three-round iterative questionnaire. Pathogens failing to reach 70% group consensus threshold underwent further deliberation by a subgroup of experts.ResultsSix priority targets suitable for wastewater surveillance during the Games were successfully identified: poliovirus, influenza A virus, influenza B virus, mpox virus, SARS-CoV-2 and measles virus.ConclusionThis study introduced a model framework for identifying context-specific wastewater surveillance targets for a mass gathering. Successful implementation of a wastewater surveillance plan for Paris 2024 could incentivise similar monitoring efforts for other mass gatherings globally.
Collapse
Affiliation(s)
- Laila Toro
- Santé publique France (French National Public Health Agency), Montpellier, France
| | - Henriette de Valk
- Santé publique France (French National Public Health Agency), Saint-Maurice, France
| | - Laura Zanetti
- Santé publique France (French National Public Health Agency), Saint-Maurice, France
| | - Caroline Huot
- Institut national de santé publique du Québec, Québec, Canada
| | - Arnaud Tarantola
- Santé publique France (French National Public Health Agency), Saint-Denis, France
| | - Nelly Fournet
- Santé publique France (French National Public Health Agency), Saint-Denis, France
| | | | - Ali Atoui
- ANSES Nancy Laboratory for Hydrology, Nancy, France
| | | | - Damien Mouly
- Santé publique France (French National Public Health Agency), Toulouse, France
| | - Frédéric Jourdain
- Santé publique France (French National Public Health Agency), Montpellier, France
| |
Collapse
|
12
|
Lehto KM, Länsivaara A, Hyder R, Luomala O, Lipponen A, Hokajärvi AM, Heikinheimo A, Pitkänen T, Oikarinen S. Wastewater-based surveillance is an efficient monitoring tool for tracking influenza A in the community. WATER RESEARCH 2024; 257:121650. [PMID: 38692254 DOI: 10.1016/j.watres.2024.121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Around the world, influenza A virus has caused severe pandemics, and the risk of future pandemics remains high. Currently, influenza A virus surveillance is based on the clinical diagnosis and reporting of disease cases. In this study, we apply wastewater-based surveillance to monitor the amount of the influenza A virus RNA at the population level. We report the influenza A virus RNA levels in 10 wastewater treatment plant catchment areas covering 40 % of the Finnish population. Altogether, 251 monthly composite influent wastewater samples (collected between February 2021 and February 2023) were analysed from supernatant fraction using influenza A virus specific RT-qPCR method. During the study period, an influenza A virus epidemic occurred in three waves in Finland. This study shows that the influenza A virus RNA can be detected from the supernatant fraction of 24 h composite influent wastewater samples. The influenza A virus RNA gene copy number in wastewater correlated with the number of confirmed disease cases in the Finnish National Infectious Diseases Register. The median Kendall's τ correlation strength was 0.636 (min= 0.486 and max=0.804) and it was statistically significant in all 10 WTTPs. Wastewater-based surveillance of the influenza A virus RNA is an independent from individual testing method and cost-efficiently reflects the circulation of the virus in the entire population. Thus, wastewater monitoring complements the available, but often too sparse, information from individual testing and improves health care and public health preparedness for influenza A virus pandemics.
Collapse
Affiliation(s)
- Kirsi-Maarit Lehto
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Annika Länsivaara
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Rafiqul Hyder
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Oskari Luomala
- Finnish Institute for Health and Welfare, THL, Department of Health Security, Neulaniementie 4, Kuopio 70210, Finland
| | - Anssi Lipponen
- Finnish Institute for Health and Welfare, THL, Department of Health Security, Neulaniementie 4, Kuopio 70210, Finland
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, THL, Department of Health Security, Neulaniementie 4, Kuopio 70210, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, FI00014, Finland; Finnish Food Authority, Ruokavirasto, Alvar Aallon katu 5, Seinäjoki 60100, Finland
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, THL, Department of Health Security, Neulaniementie 4, Kuopio 70210, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, FI00014, Finland
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere 33520, Finland.
| |
Collapse
|
13
|
Gamage SD, Jinadatha C, Rizzo V, Chatterjee P, Choi H, Mayo L, Brackens E, Hwang M, Xu J, Bennett M, Kowalskyj O, Litvin EA, Minor L, McClarin J, Hofman R, Dulaney D, Roselle GA. Nursing home wastewater surveillance for early warning of SARS-CoV-2-positive occupants-Insights from a pilot project at 8 facilities. Am J Infect Control 2024; 52:701-706. [PMID: 38181902 DOI: 10.1016/j.ajic.2023.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Wastewater surveillance for SARS-CoV-2 has been used widely in the United States for indication of community incidence during the COVID-19 pandemic, but less is known about the feasibility of its use on a building level in nursing homes to provide early warning and prevent transmission. METHODS A pilot study was conducted at 8 Department of Veterans Affairs nursing homes across the United States to examine operational feasibility. Wastewater from the participating facilities was sampled daily during the week for 6 months (January 11, 2021-July 2, 2021) and analyzed for SARS-CoV-2 genetic material. Wastewater results were compared to new SARS-CoV-2 infections in nursing home residents and employees to determine if wastewater surveillance could provide early warning of a COVID-19-positive occupant. RESULTS All 8 nursing homes had wastewater samples positive for SARS-CoV-2 and COVID-19-positive occupants. The sensitivity of wastewater surveillance for early warning of COVID-19-positive residents was 60% (3/5) and for COVID-19-positive employees was 46% (13/28). CONCLUSIONS Wastewater surveillance may provide additional information for reinforcing infection control practices and lead to preventing transmission in a setting with high-risk residents. The low sensitivity for early warning in this real-world pilot highlights limitations and insights for applicability in buildings.
Collapse
Affiliation(s)
- Shantini D Gamage
- National Infectious Diseases Service, Veterans Health Administration, Department of Veterans Affairs (VA), Washington, DC; Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH.
| | - Chetan Jinadatha
- Department of Medicine, Central Texas Veterans Health Care System, Temple, TX; Department of Medical Education, College of Medicine, Texas A & M University, Bryan, TX
| | - Vincent Rizzo
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Piyali Chatterjee
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Hosoon Choi
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Lynn Mayo
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Emma Brackens
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Munok Hwang
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Jing Xu
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Morgan Bennett
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Oleh Kowalskyj
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Edward A Litvin
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Lisa Minor
- Office of Geriatrics and Extended Care, Veterans Health Administration, VA, Washington, DC
| | - Jody McClarin
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Richard Hofman
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Douglas Dulaney
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Gary A Roselle
- National Infectious Diseases Service, Veterans Health Administration, Department of Veterans Affairs (VA), Washington, DC; Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH; Medical Service, Cincinnati VA Medical Center, Cincinnati, OH
| |
Collapse
|
14
|
Gholipour S, Shamsizadeh Z, Halabowski D, Gwenzi W, Nikaeen M. Combating antibiotic resistance using wastewater surveillance: Significance, applications, challenges, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168056. [PMID: 37914125 DOI: 10.1016/j.scitotenv.2023.168056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
The global increase of antibiotic resistance (AR) and resistant infections call for effective surveillance methods for understanding and mitigating (re)-emerging public health risks. Wastewater surveillance (WS) of antibiotic resistance is an emerging, but currently under-utilized decision-support tool in public health systems. Recent years have witnessed an increase in evidence linking antibiotic resistance in wastewaters to that of the community. To date, very few comprehensive reviews exist on the application of WS to understand AR and resistant infections in population. Current and emerging AR detection methods, and their merits and limitations are discussed. Wastewater surveillance has several merits relative to individual testing, including; (1) low per capita testing cost, (2) high spatial coverage, (3) low requirement for diagnostic equipment, and (4) detection of health threats ahead of real outbreaks. The applications of WS as an early warning system and decision support tool to understand and mitigate AR are discussed. Wastewater surveillance could be a tool of choice in low-income settings lacking resources and diagnostic facilities for individual testing. To demonstrate the utility of WS, empirical evidence from field case studies is presented. However, constraints still exist, including; (1) lack of standardized protocols, (2) the clinical utility and sensitivity of WS-based data, (3) uncertainties in relating WS data to pathogenic and virulent bacteria, and (4) whether or not AR in stools and ultimately wastewater represent the complete human resistome. Finally, further prospects are presented, include knowledge gaps on; (1) development of low-cost biosensors for AR, (2) development of WS protocols (sampling, processing, interpretation), (3) further pilot scale studies to understand the opportunities and limits of WS, and (4) development of computer-based analytical tools to facilitate rapid data collection, visualization and interpretation. Therefore, the present paper discusses the principles, opportunities, and constraints of wastewater surveillance applications to understand AR and safeguard public health.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| | - Willis Gwenzi
- Universität Kassel, Fachbereich Ökologische Agrarwissenschaften Fachgebiet Grünlandwissenschaft und Nachwachsende Rohstoffe, Steinstr. 19, 37249 Witzenhausen, Germany; Leibniz-Institut für Agrartechnik und Bioökonomie e.V. Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
15
|
Iwu-Jaja C, Ndlovu NL, Rachida S, Yousif M, Taukobong S, Macheke M, Mhlanga L, van Schalkwyk C, Pulliam JRC, Moultrie T, le Roux W, Schaefer L, Pocock G, Coetzee LZ, Mans J, Bux F, Pillay L, de Villiers D, du Toit AP, Jambo D, Gomba A, Groenink S, Madgewick N, van der Walt M, Mutshembele A, Berkowitz N, Suchard M, McCarthy K. The role of wastewater-based epidemiology for SARS-CoV-2 in developing countries: Cumulative evidence from South Africa supports sentinel site surveillance to guide public health decision-making. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165817. [PMID: 37506905 DOI: 10.1016/j.scitotenv.2023.165817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
The uptake of wastewater-based epidemiology (WBE) for SARS-CoV-2 as a complementary tool for monitoring population-level epidemiological features of the COVID-19 pandemic in low-and-middle-income countries (LMICs) is low. We report on the findings from the South African SARS-CoV-2 WBE surveillance network and make recommendations regarding the implementation of WBE in LMICs. Eight laboratories quantified influent wastewater collected from 87 wastewater treatment plants in all nine South African provinces from 01 June 2021 to 31 May 2022 inclusive, during the 3rd and 4th waves of COVID-19. Correlation and regression analyses between wastewater levels of SARS-CoV-2 and district laboratory-confirmed caseloads were conducted. The sensitivity and specificity of novel 'rules' based on WBE data to predict an epidemic wave were determined. Amongst 2158 wastewater samples, 543/648 (85 %) samples taken during a wave tested positive for SARS-CoV-2 compared with 842 positive tests from 1512 (55 %) samples taken during the interwave period. Overall, the regression-co-efficient was 0,66 (95 % confidence interval = 0,6-0,72, R2 = 0.59), ranging from 0.14 to 0.87 by testing laboratory. Early warning of the 4th wave of SARS-CoV-2 in Gauteng Province in November-December 2021 was demonstrated. A 50 % increase in log copies of SARS-CoV-2 compared with a rolling mean over the previous five weeks was the most sensitive predictive rule (58 %) to predict a new wave. Our findings support investment in WBE for SARS-CoV-2 surveillance in LMICs as an early warning tool. Standardising test methodology is necessary due to varying correlation strengths across laboratories and redundancy across testing plants. A sentinel site model can be used for surveillance networks without affecting WBE finding for decision-making. Further research is needed to identify optimal test frequency and the need for normalisation to population size to identify predictive and interpretive rules to support early warning and public health action.
Collapse
Affiliation(s)
- Chinwe Iwu-Jaja
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, South Africa.
| | - Nkosenhle Lindo Ndlovu
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, South Africa.
| | - Said Rachida
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, South Africa
| | - Mukhlid Yousif
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, South Africa; School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Setshaba Taukobong
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, South Africa
| | - Mokgaetji Macheke
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, South Africa
| | - Laurette Mhlanga
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Cari van Schalkwyk
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Juliet R C Pulliam
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Tom Moultrie
- Centre for Actuarial Research, University of Cape Town, South Africa
| | - Wouter le Roux
- Water Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Lisa Schaefer
- Water Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | | | | | - Janet Mans
- Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Leanne Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | | | - A P du Toit
- Lumegen Laboratories (Pty) Ltd, Potchefstroom, South Africa
| | - Don Jambo
- National Institute for Occupational Health, South Africa
| | | | | | | | | | | | | | - Melinda Suchard
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, South Africa; School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Kerrigan McCarthy
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, South Africa; School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Schmiege D, Kraiselburd I, Haselhoff T, Thomas A, Doerr A, Gosch J, Schoth J, Teichgräber B, Moebus S, Meyer F. Analyzing community wastewater in sub-sewersheds for the small-scale detection of SARS-CoV-2 variants in a German metropolitan area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165458. [PMID: 37454854 DOI: 10.1016/j.scitotenv.2023.165458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Wastewater surveillance of SARS-CoV-2 proved useful, including for identifying the local appearance of newly identified virus variants. Previous studies focused on wastewater treatment plants (WWTP) with sewersheds of several hundred thousand people or at single building level, representing only a small number of people. Both approaches may prove inadequate for small-scale intra-urban inferences for early detection of emerging or novel virus variants. Our study aims (i) to analyze SARS-CoV-2 single nucleotide variants (SNVs) in wastewater of sub-sewersheds and WWTP using whole genome sequencing in order to (ii) investigate the potential of small-scale detection of novel known SARS-CoV-2 variants of concern (VOC) within a metropolitan wastewater system. We selected three sub-sewershed sampling sites, based on estimated population- and built environment-related indicators, and the inlet of the receiving WWTP in the Ruhr region, Germany. Untreated wastewater was sampled weekly between October and December 2021, with a total of 22 samples collected. SARS-CoV-2 RNA was analyzed by RT-qPCR and whole genome sequencing. For all samples, genome sequences were obtained, while only 13 samples were positive for RT-qPCR. We identified multiple specific SARS-CoV-2 SNVs in the wastewater samples of the sub-sewersheds and the WWTP. Identified SNVs reflected the dominance of VOC Delta at the time of sampling. Interestingly, we could identify an Omicron-specific SNV in one sub-sewershed. A concurrent wastewater study sampling the same WWTP detected the VOC Omicron one week later. Our observations suggest that the small-scale approach may prove particularly useful for the detection and description of spatially confined emerging or existing virus variants circulating in populations. Future studies applying small-scale sampling strategies taking into account the specific features of the wastewater system will be useful to analyze temporal and spatial variance in more detail.
Collapse
Affiliation(s)
- Dennis Schmiege
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130 Essen, Germany.
| | - Ivana Kraiselburd
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Timo Haselhoff
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130 Essen, Germany
| | - Alexander Thomas
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Adrian Doerr
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Jule Gosch
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| | - Jens Schoth
- Emschergenossenschaft/Lippeverband, Kronprinzenstraße 24, 45128 Essen, Germany
| | | | - Susanne Moebus
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130 Essen, Germany
| | - Folker Meyer
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany
| |
Collapse
|
17
|
Nadzirah S, Mohamad Zin N, Khalid A, Abu Bakar NF, Kamarudin SS, Zulfakar SS, Kon KW, Muhammad Azami NA, Low TY, Roslan R, M Nassir MNH, Alim AA, Menon PS, Soin N, Gopinath SCB, Abdullah H, Sampe J, Zainal Abidin HE, Mohd Noor SN, Ismail AG, Dee CF, Hamzah AA. Detection of SARS-CoV-2 in Environment: Current Surveillance and Effective Data Management of COVID-19. Crit Rev Anal Chem 2023; 54:3083-3094. [PMID: 37358486 DOI: 10.1080/10408347.2023.2224433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Since diagnostic laboratories handle large COVID-19 samples, researchers have established laboratory-based assays and developed biosensor prototypes. Both share the same purpose; to ascertain the occurrence of air and surface contaminations by the SARS-CoV-2 virus. However, the biosensors further utilize internet-of-things (IoT) technology to monitor COVID-19 virus contamination, specifically in the diagnostic laboratory setting. The IoT-capable biosensors have great potential to monitor for possible virus contamination. Numerous studies have been done on COVID-19 virus air and surface contamination in the hospital setting. Through reviews, there are abundant reports on the viral transmission of SARS-CoV-2 through droplet infections, person-to-person close contact and fecal-oral transmission. However, studies on environmental conditions need to be better reported. Therefore, this review covers the detection of SARS-CoV-2 in airborne and wastewater samples using biosensors with comprehensive studies in methods and techniques of sampling and sensing (2020 until 2023). Furthermore, the review exposes sensing cases in public health settings. Then, the integration of data management together with biosensors is well explained. Last, the review ended with challenges to having a practical COVID-19 biosensor applied for environmental surveillance samples.
Collapse
Affiliation(s)
- Sh Nadzirah
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Malaysia
| | - Noraziah Mohamad Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arif Khalid
- Center for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Faizah Abu Bakar
- Center for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Syafiqah Kamarudin
- Center for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Shahara Zulfakar
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ken Wong Kon
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Roharsyafinaz Roslan
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - M Nizar Hadi M Nassir
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Anis Amirah Alim
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - P Susthitha Menon
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Norhayati Soin
- Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Malaysia
- School of Bioprocess Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Malaysia
| | - Huda Abdullah
- Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Jahariah Sampe
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | | | - Siti Nurfadhlina Mohd Noor
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Ahmad Ghadafi Ismail
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Chang Fu Dee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| |
Collapse
|
18
|
Huijbers PMC, Bobis Camacho J, Hutinel M, Larsson DGJ, Flach CF. Sampling Considerations for Wastewater Surveillance of Antibiotic Resistance in Fecal Bacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4555. [PMID: 36901565 PMCID: PMC10002399 DOI: 10.3390/ijerph20054555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Wastewaters can be analyzed to generate population-level data for public health surveillance, such as antibiotic resistance monitoring. To provide representative data for the contributing population, bacterial isolates collected from wastewater should originate from different individuals and not be distorted by a selection pressure in the wastewater. Here we use Escherichia coli diversity as a proxy for representativeness when comparing grab and composite sampling at a major municipal wastewater treatment plant influent and an untreated hospital effluent in Gothenburg, Sweden. All municipal samples showed high E. coli diversity irrespective of the sampling method. In contrast, a marked increase in diversity was seen for composite compared to grab samples from the hospital effluent. Virtual resampling also showed the value of collecting fewer isolates on multiple occasions rather than many isolates from a single sample. Time-kill tests where individual E. coli strains were exposed to sterile-filtered hospital wastewater showed rapid killing of antibiotic-susceptible strains and significant selection of multi-resistant strains when incubated at 20 °C, an effect which could be avoided at 4 °C. In conclusion, depending on the wastewater collection site, both sampling method and collection/storage temperature could significantly impact the representativeness of the wastewater sample.
Collapse
Affiliation(s)
- Patricia M. C. Huijbers
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Guldhedsgatan 10A, 40530 Gothenburg, Sweden
| | - Julián Bobis Camacho
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Guldhedsgatan 10A, 40530 Gothenburg, Sweden
| | - Marion Hutinel
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Guldhedsgatan 10A, 40530 Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Guldhedsgatan 10A, 40530 Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Guldhedsgatan 10A, 40530 Gothenburg, Sweden
| |
Collapse
|
19
|
Wade MJ, Bunce JT, Petterson S, Ferguson C, Del Campo NC, Gaddis E, Karanis P. Editorial: Wastewater-based epidemiology at the frontier of global public health. JOURNAL OF WATER AND HEALTH 2023; 21:iii-vi. [PMID: 37338311 PMCID: wh_2023_001 DOI: 10.2166/wh.2023.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Affiliation(s)
- Matthew J Wade
- Analytics & Data Science Directorate, UK Health Security Agency, Nobel House, Smith Square, London SW1P 3JR, United Kingdom
| | - Joshua T Bunce
- Department for Environment, Food and Rural Affairs, 2 Marsham Street, London SW1P 4DF, United Kingdom
| | - Susan Petterson
- School of Medicine, Griffith University, North Sydney, 2060, Australia
| | | | - Nohelia Castro Del Campo
- Centro de Investigación en Alimentación y Desarrollo, Carretera a Eldorado k.m. 5.5 Campo El Diez, C.P. 80110. Culiacán, Sinaloa, México
| | - Erica Gaddis
- SWCA Environmental Consultants, 257 East 200 South, Salt Lake City, Utah 84111, USA
| | - Panagiotos Karanis
- Unit of Anatomy and Morphology, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, CY-1700, Nicosia, Cyprus
| |
Collapse
|