1
|
Zheng X, Xie P, Cai AC, Jiang Y, Huang S, Ma X, Su H, Wang B. Decoding Specificity of Cyanobacterial MysDs in Mycosporine-like Amino Acid Biosynthesis through Heterologous Expression in Saccharomyces cerevisiae. ACS OMEGA 2025; 10:13664-13673. [PMID: 40224414 PMCID: PMC11983340 DOI: 10.1021/acsomega.5c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/02/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025]
Abstract
Mycosporine-like amino acids (MAAs) are potent natural UV-protectants, but their industrial production is hindered by efficiency and sustainability issues in large-scale extraction of native hosts. Heterologous biosynthesis in chassis organisms provides a promising alternative route, although the substrate promiscuity of the ATP-grasp ligase MysD complicates the biosynthesis of specific MAAs. In this study, we developed a Saccharomyces cerevisiae strain with enhanced capacity of producing mycosporine-glycine (MG). This strain serves as an efficient MysD expression platform that converts MG into shinorine and porphyra-334. Through structural modeling, site-directed mutagenesis, and mutant characterization, we identified two residues on the omega-loop of MysD involved in determining product specificity. We further characterized the product specificity of 20 MysDs from diverse cyanobacterial lineages and confirmed the residue pattern-product specificity correlation. Our findings provide guidance for screening, selecting, and designing novel MysDs for industrial-scale MAA production through heterologous expression.
Collapse
Affiliation(s)
- Xiaoyou Zheng
- Churchill
College, University of Cambridge, Storey’s Way, Cambridge CB3 0DS, U.K.
| | - Peifeng Xie
- LINK
SPIDER Co., Ltd., 11 Langshan Rd, Nanshan District, Shenzhen 518000, China
| | - Andrew Chen Cai
- LINK
SPIDER Co., Ltd., 11 Langshan Rd, Nanshan District, Shenzhen 518000, China
| | - Yuze Jiang
- LINK
SPIDER Co., Ltd., 11 Langshan Rd, Nanshan District, Shenzhen 518000, China
| | - Sirui Huang
- Thurgood
Marshall College, University of California, 9500 Gilman Dr., La Jolla, San Diego, California 92093, United States
| | - Xiaochong Ma
- LINK
SPIDER Co., Ltd., 11 Langshan Rd, Nanshan District, Shenzhen 518000, China
| | - Honghao Su
- Earlham
Institute, Norwich Research Park, Norwich NR4 7UZ, U.K.
| | - Boxiang Wang
- LINK
SPIDER Co., Ltd., 11 Langshan Rd, Nanshan District, Shenzhen 518000, China
| |
Collapse
|
2
|
Zuccarotto A, Sollitto M, Leclère L, Panzella L, Gerdol M, Leone S, Castellano I. Molecular evolution of ovothiol biosynthesis in animal life reveals diversity of the natural antioxidant ovothiols in Cnidaria. Free Radic Biol Med 2025; 227:117-128. [PMID: 39617215 DOI: 10.1016/j.freeradbiomed.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 12/08/2024]
Abstract
Sulfoxide synthase OvoA is the key enzyme involved in the biosynthesis of ovothiols (OSHs), secondary metabolites endowed with unique antioxidant properties. Understanding the evolution of such enzymes and the diversity of their metabolites should reveal fundamental mechanisms governing redox signaling and environmental adaptation. "Early-branching" animals such as Cnidaria display unique molecular diversity and symbiotic relationships responsible for the biosynthesis of natural products, however, they have been neglected in previous research on antioxidants and OSHs. In this work, we have integrated genome and transcriptome mining with biochemical analyses to study the evolution and diversification of OSHs biosynthesis in cnidarians. By tracing the history of the ovoA gene, we inferred its loss in the latest common ancestor of Medusozoa, followed by the acquisition of a unique ovoB/ovoA chimaeric gene in Hydrozoa, likely through a horizontal gene transfer from dinoflagellate donors. While Anthozoa (corals and anemones), bearing canonical ovoA genes, produced a striking variety of OSHs (A, B, and C), the multifunctional enzyme in Hydrozoa was related to OSH B biosynthesis, as shown in Clytia hemisphaerica. Surprisingly, the ovoA-lacking jellyfish Aurelia aurita and Pelagia noctiluca also displayed OSHs, and we provided evidence of their incorporation from external sources. Finally, transcriptome mining revealed ovoA conserved expression pattern during larval development from Cnidaria to more evolved organisms and its regulation by external stimuli, such as UV exposure. The results of our study shed light on the origin and diversification of OSH biosynthesis in basal animals and highlight the importance of redox-active molecules from ancient metazoans as cnidarians to vertebrates.
Collapse
Affiliation(s)
- Annalisa Zuccarotto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marco Sollitto
- Department of Life Sciences, University of Trieste, 34128, Trieste, Italy; Department of Biology, University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Lucas Leclère
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", I-80126 Naples, Italy
| | - Marco Gerdol
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Department of Life Sciences, University of Trieste, 34128, Trieste, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
3
|
Vuori I, Gaiani G, Arsın S, Delbaje E, Järn J, Snårbacka R, Couëdelo A, Murukesan G, Wahlsten M, Jokela J, Shishido TK, Fewer DP. Direct Evidence of Microbial Sunscreen Production by Scum-Forming Cyanobacteria in the Baltic Sea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70056. [PMID: 39821521 PMCID: PMC11738650 DOI: 10.1111/1758-2229.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 01/19/2025]
Abstract
Mycosporine-like amino acids are water-soluble secondary metabolites that protect photosynthetic microorganisms from ultraviolet radiation. Here, we present direct evidence for the production of these compounds in surface scums of cyanobacteria along the Baltic Sea coast. We collected 59 environmental samples from the southern coast of Finland during the summers of 2021 and 2022 and analysed them using high-resolution liquid chromatography-mass spectrometry. Our results revealed the presence of microbial sunscreens in nearly all surface scum samples. Mycosporine-like amino acids are synthesised through the coordinated action of four biosynthetic enzymes encoded in a compact biosynthetic pathway. Bioinformatics analysis of the mysB biosynthetic gene from a surface scum indicated that the cyanobacteria responsible for production belonged to the Anabaena/Dolichospermum/Aphanizomenon species complex. We mapped the distribution of biosynthetic enzymes onto a phylogenomic tree, utilising 120 bacterial single-copy conserved genes from 101 draft or complete genomes within the species complex. This analysis showed that 48% of identified species possess the ability to produce these compounds, with biosynthetic pathways being most common in Dolichospermum and Aphanizomenon strains. We detected the production of porphyra-334 and shinorine, two widely reported family members, in Dolichospermum strains isolated from the Gulf of Finland's surface layer. The estimated content of porphyra-334 in Dolichospermum sp. UHCC 0684 was 7.4 mg per gram dry weight. Our results suggest that bloom-forming cyanobacteria could be a potential source of these compounds for cosmetic and biotechnological applications and may play a significant role in cyanobacterial bloom formation.
Collapse
Affiliation(s)
- Inkeri Vuori
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Greta Gaiani
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Sıla Arsın
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Endrews Delbaje
- Universidade de São PauloCenter for Nuclear Energy in AgriculturePiracicabaBrazil
| | - Julia Järn
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | | | - Annaël Couëdelo
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | | | - Matti Wahlsten
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Jouni Jokela
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | | | - David P. Fewer
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
4
|
Luccarini A, Marcheggiani F, Galeazzi R, Zuccarotto A, Castellano I, Damiani E. Characterizing the Ultraviolet (UV) Screening Ability of L-5-Sulfanylhistidine Derivatives on Human Dermal Fibroblasts. Mar Drugs 2025; 23:57. [PMID: 39997180 PMCID: PMC11857345 DOI: 10.3390/md23020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Using sunscreens is one of the most widespread measures to protect human skin from sun ultraviolet radiation (UVR) damage. However, several studies have highlighted the toxicity of certain inorganic and organic UV filters used in sunscreens for the marine environment and human health. An alternative strategy may involve the use of natural products of marine origin to counteract UVR-mediated damage. Ovothiols are sulfur-containing amino acids produced by marine invertebrates, microalgae, and bacteria, endowed with unique antioxidant and UV-absorption properties. This study aimed to evaluate the protective effect of synthetic L-5-sulfanyl histidine derivatives, inspired by natural ovothiols, on human dermal fibroblasts (HDFs) upon UVA exposure. By using a custom-made experimental set-up to assess the UV screening ability, we measured the levels of cytosolic and mitochondrial reactive oxygen species (ROS), as well as cell viability and apoptosis in HDFs, in the presence of tested compounds, after UVA exposure, using flow cytometry assays with specific fluorescent probes. The results show that L-5-sulfanyl histidine derivatives display a UV screening capacity and prevent loss in cell viability, the production of cytosolic and mitochondrial ROS induced by UVA exposure in HDFs, and subsequent apoptosis. Overall, this study sheds light on the potential applications of marine-inspired sulfur-containing amino acids in developing alternative eco-safe sunscreens for UVR skin protection.
Collapse
Affiliation(s)
- Alessia Luccarini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.)
| | - Fabio Marcheggiani
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma University, 00166 Rome, Italy;
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.)
| | - Annalisa Zuccarotto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy;
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.)
| |
Collapse
|
5
|
Rotter A, Varamogianni-Mamatsi D, Zvonar Pobirk A, Gosenca Matjaž M, Cueto M, Díaz-Marrero AR, Jónsdóttir R, Sveinsdóttir K, Catalá TS, Romano G, Aslanbay Guler B, Atak E, Berden Zrimec M, Bosch D, Deniz I, Gaudêncio SP, Grigalionyte-Bembič E, Klun K, Zidar L, Coll Rius A, Baebler Š, Lukić Bilela L, Rinkevich B, Mandalakis M. Marine cosmetics and the blue bioeconomy: From sourcing to success stories. iScience 2024; 27:111339. [PMID: 39650733 PMCID: PMC11625311 DOI: 10.1016/j.isci.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
As the global population continues to grow, so does the demand for longer, healthier lives and environmentally responsible choices. Consumers are increasingly drawn to naturally sourced products with proven health and wellbeing benefits. The marine environment presents a promising yet underexplored resource for the cosmetics industry, offering bioactive compounds with the potential for safe and biocompatible ingredients. This manuscript provides a comprehensive overview of the potential of marine organisms for cosmetics production, highlighting marine-derived compounds and their applications in skin/hair/oral-care products, cosmeceuticals and more. It also lays down critical safety considerations and addresses the methodologies for sourcing marine compounds, including harvesting, the biorefinery concept, use of systems biology for enhanced product development, and the relevant regulatory landscape. The review is enriched by three case studies: design of macroalgal skincare products in Iceland, establishment of a microalgal cosmetics spin-off in Italy, and the utilization of marine proteins for cosmeceutical applications.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Rósa Jónsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
| | - Kolbrún Sveinsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Teresa S. Catalá
- Global Society Institute, Wälderhaus, am Inselpark 19, 21109 Hamburg, Germany
- Organization for Science, Education and Global Society GmbH, am Inselpark 19, 21109 Hamburg, Germany
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn - Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy
| | - Bahar Aslanbay Guler
- Faculty of Engineering Department of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Eylem Atak
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | | | - Daniel Bosch
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Irem Deniz
- Faculty of Engineering Department of Bioengineering, Manisa Celal Bayar University, Manisa 45119, Turkey
| | - Susana P. Gaudêncio
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Luen Zidar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Anna Coll Rius
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa 3102201, Israel
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
6
|
Figueroa FL, Castro-Varela P, Vega J, Losantos R, Peñín B, López-Cóndor L, Pacheco MJ, Redoli SL, Marí-Beffa M, Abdala-Díaz R, Sampedro D. Novel synthetic UV screen compounds inspired in mycosporine-like amino acids (MAAs): Antioxidant capacity, photoprotective properties and toxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113050. [PMID: 39515247 DOI: 10.1016/j.jphotobiol.2024.113050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The combination of environmental stress on the ozone layer, climate change and a greater sun exposure due to outdoor habits has led to an increase in skin cancer cases and other health issues related with UV radiation. Researchers are searching for new alternative UV filters that could protect our skin from the deleterious effects of UV radiation while also presenting low toxicity and biodegradable character (unlike the UV filters currently available in the market). In this work, two compounds inspired in the natural oxo-mycosporine-like amino acids (MAAs) have been synthesized and their antioxidant and photoprotective properties, as well as their in vitro and in vivo toxicity effects were evaluated. Both compounds featured a strong UV-B absorption together with a high antioxidant capacity, close to 50 μmol TE g-1 DW in the ABTS assay. Compound 1 presented an absorption peak at 285-300 nm, whereas compound 2 showed a wider band with a peak around 295-305 nm and two shoulders at 318 and 342 nm. The addition of 5 % of compound 2 to galenic formulas increased the photoprotection, reaching SPF values of 4. Both compounds were stable under UV radiation exposure. Regarding toxicity, the synthetic compounds did not show cytotoxic activity against healthy human cell lines or significant toxicity over zebrafish embryos. Compound 1 showed a complete lack of toxicity over zebrafish, although compound 2 showed slight, not-significant effects on viability, hatching, pericardial stability or body axis formation over 5 mg mL-1. Moreover, compound 1 presented relatively antitumoral activities against HCT-116 cells (selective index:1.49). The relevant antioxidant and photoprotective ability together with the great advantage provided by the reduced toxicity to health cells or zebrafish embryos, make these compounds promising candidates to be exploited as functional ingredients with specific applications in the biotechnological or pharma sector.
Collapse
Affiliation(s)
- Félix L Figueroa
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Lomas de San Julián, 2, 29004 Málaga, Spain.
| | - Pablo Castro-Varela
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Lomas de San Julián, 2, 29004 Málaga, Spain; Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile
| | - Julia Vega
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Lomas de San Julián, 2, 29004 Málaga, Spain
| | - Raúl Losantos
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios, 53, 26006 Logroño, La Rioja, Spain
| | - Beatriz Peñín
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios, 53, 26006 Logroño, La Rioja, Spain
| | - Leonardo López-Cóndor
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios, 53, 26006 Logroño, La Rioja, Spain
| | - María Jesús Pacheco
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Sofía Latorre Redoli
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Manuel Marí-Beffa
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Lomas de San Julián, 2, 29004 Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain; Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Roberto Abdala-Díaz
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Lomas de San Julián, 2, 29004 Málaga, Spain
| | - Diego Sampedro
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios, 53, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
7
|
Lim MCX, Loo CT, Wong CY, Lee CS, Koh RY, Lim CL, Kok YY, Chye SM. Prospecting bioactivity in Antarctic algae: A review of extracts, isolated compounds and their effects. Fitoterapia 2024; 176:106025. [PMID: 38768797 DOI: 10.1016/j.fitote.2024.106025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Algae and its metabolites have been a popular subject of research in numerous fields over the years. Various reviews have been written on algal bioactive components, but a specific focus on Antarctic-derived algae is seldom reviewed. Due to the extreme climate conditions of Antarctica, it is hypothesized that the acclimatized algae may have given rise to a new set of bioactive compounds as a result of adaptation. Although most studies done on Antarctic algae are based on ecological and physiological studies, as well as in the field of nanomaterial synthesis, some studies point out the potential therapeutic properties of these compounds. As an effort to shed light on a different application of Antarctic algae, this review focuses on evaluating its different medicinal properties, including antimicrobial, anticancer, antioxidative, anti-inflammatory, and skin protective effects.
Collapse
Affiliation(s)
- Mervyn Chen Xi Lim
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee Tou Loo
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chiew Yen Wong
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Choy Sin Lee
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chooi Ling Lim
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Yih Yih Kok
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
8
|
Hengardi MT, Liang C, Madivannan K, Yang LK, Koduru L, Kanagasundaram Y, Arumugam P. Reversing the directionality of reactions between non-oxidative pentose phosphate pathway and glycolytic pathway boosts mycosporine-like amino acid production in Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:121. [PMID: 38725068 PMCID: PMC11080194 DOI: 10.1186/s12934-024-02365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/15/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Miselle Tiana Hengardi
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- NUS Graduate School for Integrated Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
| | - Cui Liang
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore
| | - Keshiniy Madivannan
- Innovation & Enterprise, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Lay Kien Yang
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Lokanand Koduru
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yoganathan Kanagasundaram
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Prakash Arumugam
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
9
|
Luccarini A, Zuccarotto A, Galeazzi R, Morresi C, Masullo M, Castellano I, Damiani E. Insights on the UV-Screening Potential of Marine-Inspired Thiol Compounds. Mar Drugs 2023; 22:2. [PMID: 38276640 PMCID: PMC10817281 DOI: 10.3390/md22010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
One of the major threats to skin aging and the risk of developing skin cancer is excessive exposure to the sun's ultraviolet radiation (UVR). The use of sunscreens containing different synthetic, organic, and inorganic UVR filters is one of the most widespread defensive measures. However, increasing evidence suggests that some of these compounds are potentially eco-toxic, causing subtle damage to the environment and to marine ecosystems. Resorting to natural products produced in a wide range of marine species to counteract UVR-mediated damage could be an alternative strategy. The present work investigates marine-inspired thiol compounds, derivatives of ovothiol A, isolated from marine invertebrates and known to exhibit unique antioxidant properties. However, their potential use as photoprotective molecules for biocompatible sunscreens and anti-photo aging formulations has not yet been investigated. Here, we report on the UVR absorption properties, photostability, and in vitro UVA shielding activities of two synthetic ovothiol derivatives, 5-thiohistidine and iso-ovothiol A, by spectrophotometric and fluorimetric analysis. We found that the UVA properties of these compounds increase upon exposure to UVA and that their absorption activity is able to screen UVA rays, thus reducing the oxidative damage induced to proteins and lipids. The results of this work demonstrate that these novel marine-inspired compounds could represent an alternative eco-friendly approach for UVR skin protection.
Collapse
Affiliation(s)
- Alessia Luccarini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.); (C.M.)
| | - Annalisa Zuccarotto
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.); (C.M.)
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.); (C.M.)
| | - Mariorosario Masullo
- Department of Medical, Movement and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80121 Naples, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.); (C.M.)
| |
Collapse
|
10
|
Punchakara A, Prajapat G, Bairwa HK, Jain S, Agrawal A. Applications of mycosporine-like amino acids beyond photoprotection. Appl Environ Microbiol 2023; 89:e0074023. [PMID: 37843273 PMCID: PMC10686070 DOI: 10.1128/aem.00740-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Recent years have seen a lot of interest in mycosporine-like amino acids (MAAs) because of their alleged potential as a natural microbial sunscreen. Since chemical ultraviolet (UV) absorbers are unsafe for long-term usage, the demand for natural UV-absorbing substances has increased. In this situation, MAA is a strong contender for an eco-friendly UV protector. The capacity of MAAs to absorb light in the UV-A (320-400 nm) and UV-B (280-320 nm) range without generating free radicals is potentially relevant in photoprotection. The usage of MAAs for purposes other than photoprotection has now shifted in favor of medicinal applications. Aside from UV absorption, MAAs also have anti-oxidant, anti-inflammatory, wound-healing, anti-photoaging, cell proliferation stimulators, anti-cancer agents, and anti-adipogenic properties. Recently, MAAs application to combat SARS-CoV-2 infection was also investigated. In this review article, we highlight the biomedical applications of MAAs that go beyond photoprotection, which can help in utilizing the MAAs as promising bioactive compounds in both pharmaceutical and cosmetic applications.
Collapse
Affiliation(s)
- Akhila Punchakara
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Ganshyam Prajapat
- The Energy and Resources Institute (TERI), Darbari Seth Block, India Habitat Centre, New Delhi, India
| | - Himanshu Kumar Bairwa
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shikha Jain
- Department of Chemistry, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India
| | - Akhil Agrawal
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
11
|
Orfanoudaki M, Alilou M, Hartmann A, Mayr J, Karsten U, Nguyen-Ngoc H, Ganzera M. Isolation and Structure Elucidation of Novel Mycosporine-like Amino Acids from the Two Intertidal Red Macroalgae Bostrychia scorpioides and Catenella caespitosa. Mar Drugs 2023; 21:543. [PMID: 37888478 PMCID: PMC10608480 DOI: 10.3390/md21100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
This study presents a phytochemical survey of two common intertidal red algal species, Bostrychia scorpioides and Catenella caespitosa, regarding their MAA (mycosporine-like amino acid) composition, which are known as biogenic sunscreen compounds. Six novel MAAs from Bostrychia scorpioides named bostrychines and two novel MAAs from Catenella caespitosa named catenellines were isolated using a protocol which included silica gel column chromatography, flash chromatography on reversed phase material and semipreparative HPLC (High-Performance Liquid Chromatography). The structure of the novel MAAs was elucidated using NMR (Nuclear Magnetic Resonance) and HR-MS (High-Resolution Mass Spectrometry), and their absolute configuration was confirmed by ECD (Electronic Circular Dichroism). All isolated MAAs possess a cyclohexenimine scaffold, and the metabolites from B. scorpioides are related to the known MAAs bostrychines A-F, which contain glutamine, glutamic acid and/or threonine in their side chains. The new MAAs from C. caespitosa contain taurine, an amino sulfonic acid that is also present in another MAA isolated from this species, namely, catenelline. Previous and new data confirm that intertidal red algae are chemically rich in MAAs, which explains their high tolerance against biologically harmful ultraviolet radiation.
Collapse
Affiliation(s)
- Maria Orfanoudaki
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (M.A.); (A.H.); (J.M.); (H.N.-N.)
| | - Mostafa Alilou
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (M.A.); (A.H.); (J.M.); (H.N.-N.)
| | - Anja Hartmann
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (M.A.); (A.H.); (J.M.); (H.N.-N.)
| | - Julia Mayr
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (M.A.); (A.H.); (J.M.); (H.N.-N.)
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology & Phycology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany;
| | - Hieu Nguyen-Ngoc
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (M.A.); (A.H.); (J.M.); (H.N.-N.)
- Faculty of Pharmacy, Phenikaa University, Hanoi 12116, Vietnam
- A&A Green Phoenix Group JSC, Phenikaa Research and Technology Institute (PRATI), No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Vietnam
| | - Markus Ganzera
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (M.A.); (A.H.); (J.M.); (H.N.-N.)
| |
Collapse
|
12
|
Wang K, Deng Y, He Y, Cao J, Zhang L, Qin L, Qu C, Li H, Miao J. Protective Effect of Mycosporine-like Amino Acids Isolated from an Antarctic Diatom on UVB-Induced Skin Damage. Int J Mol Sci 2023; 24:15055. [PMID: 37894736 PMCID: PMC10606268 DOI: 10.3390/ijms242015055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Although it is well recognized that mycosporine-like amino acids (MAAs) are ultraviolet (UV) protective agents that can reduce UV damage, the specific biological mechanism of its role in the skin remains unclear. In this study, we investigated the effect of MAAs extracted from Antarctic diatom Phaeodactylum tricornutum ICE-H on UVB-induced skin damage using a mice model. The MAAs components identified by liquid chromatography-tandem mass spectrometry included 4-deoxygadusol, shinorine, and porphyra-334, which were purified using a Supledean Carboxen1000 solid phase extraction column. The antioxidant activities of these MAA compounds were tested in vitro. For UVB-induced skin photodamage in mice, MAAs alleviated skin swelling and epidermal thickening in this study. We detected the content of reactive oxygen species (ROS), malondialdehyde, and collagen in skin tissue. In addition, quantitative real-time polymerase chain reaction was used to detect nuclear factor-κB (NF-κB), tumor necrosis factor α, interleukin-1β, cyclooxygenase-2, mitogen activated protein kinase (MAPK) family (extracellular signal-regulated kinase, c-Jun amino-terminal kinase, and p38 kinase), and matrix metalloproteinases. The expression of these cytokines and enzymes is related to inflammatory responses and collagen degradation. In comparison to the model group without MAA treatment, the MAA component decreased the concentration of ROS, the degree of oxidative stress in the skin tissue, and the expression of genes involved in the NF-κB and MAPK pathways. In summary, these MAA components extracted from Phaeodactylum tricornutum ICE-H protected against UVB-induced skin damage by inhibiting ROS generation, relieving skin inflammation, and slowing down collagen degradation, suggesting that these MAA components are effective cosmetic candidate molecules for the protection and therapy of UVB damage.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Yashan Deng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Hongmei Li
- Key Laboratory of Biomedical Polymers, Shandong Academy of Pharmaceutical Science, Jinan 250100, China;
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| |
Collapse
|
13
|
Peng J, Guo F, Liu S, Fang H, Xu Z, Wang T. Recent Advances and Future Prospects of Mycosporine-like Amino Acids. Molecules 2023; 28:5588. [PMID: 37513460 PMCID: PMC10384724 DOI: 10.3390/molecules28145588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Mycosporine-like amino acids (MAAs) are a class of water-soluble active substances produced by various aquatic organisms. However, due to the limitations of low accumulation of MAAs in organisms, the cumbersome extraction process, difficult identification, and high cost, MAAs have not yet been widely used in human life. Recently, there has been an emergence of heterologous synthesis for MAAs, making increasing yield the key to the quantification and application of MAAs. This review summarizes the latest research progress of MAAs, including: (1) introducing the biodistribution of MAAs and the content differences among different species to provide a reference for the selection of research subjects; (2) elaborating the species and molecular information of MAAs; (3) dissecting the synthesis mechanism and sorting out the synthesis pathways of various MAAs; (4) summarizing the methods of extraction and identification, summarizing the advantages and disadvantages, and providing a reference for the optimization of extraction protocols; (5) examining the heterologous synthesis method; and (6) summarizing the physiological functions of MAAs. This paper comprehensively updates the latest research status of MAAs and the various problems that need to be addressed, especially emphasizing the potential advantages of heterologous synthesis in the future production of MAAs.
Collapse
Affiliation(s)
- Jiahui Peng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Sishi Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Haiyan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| |
Collapse
|
14
|
Neale PJ, Williamson CE, Banaszak AT, Häder DP, Hylander S, Ossola R, Rose KC, Wängberg SÅ, Zepp R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem Photobiol Sci 2023; 22:1093-1127. [PMID: 37129840 PMCID: PMC10153058 DOI: 10.1007/s43630-023-00370-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.
Collapse
Affiliation(s)
- P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA.
| | | | - A T Banaszak
- Universidad Nacional Autónoma de México, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Mexico
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | | | - R Ossola
- Colorado State University, Fort Collins, USA
| | - K C Rose
- Rensselaer Polytechnic Institute, Troy, USA
| | | | - R Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, USA
| |
Collapse
|
15
|
Dextro RB, Fiore MF, Long PF. Resolving Confusion Surrounding d-Ala-d-Ala Ligase Catalysis in Cyanobacterial Mycosporine-Like Amino Acid (MAA) Biosynthesis. Chembiochem 2023; 24:e202300158. [PMID: 37104846 DOI: 10.1002/cbic.202300158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Mycosporine-like amino acids (MAAs) are natural UV-absorbing sunscreens that evolved in cyanobacteria and algae to palliate harmful effects from obligatory exposure to solar radiation. Multiple lines of evidence prove that in cyanobacteria all MAAs are derived from mycosporine-glycine, which is typically modified by an ATP-dependent ligase encoded by the gene mysD. The function of the mysD ligase has been experimentally described but haphazardly named based solely upon sequence similarity to the d-alanine-d-alanine ligase of bacterial peptidoglycan biosynthesis. Combining phylogeny and alpha-fold tertiary protein structure prediction unambiguously distinguished mysD from d-alanine-d-alanine ligase. The renaming of mysD to mycosporine-glycine-amine ligase (MG-amine ligase) using recognised enzymology rules of nomenclature is, therefore, proposed, and considers relaxed specificity for several different amino acid substrates. The evolutionary and ecological context of MG-amine ligase catalysis merits wider appreciation especially when considering exploiting cyanobacteria for biotechnology, for example, producing mixtures of MAAs with enhanced optical or antioxidant properties.
Collapse
Affiliation(s)
- Rafael B Dextro
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo, Avenida Centenário 303, Piracicaba, 13416-000, Brazil
| | - Marli F Fiore
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo, Avenida Centenário 303, Piracicaba, 13416-000, Brazil
| | - Paul F Long
- Institute of Pharmaceutical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
16
|
Rosic N, Climstein M, Boyle GM, Thanh Nguyen D, Feng Y. Exploring Mycosporine-like Amino Acid UV-Absorbing Natural Products for a New Generation of Environmentally Friendly Sunscreens. Mar Drugs 2023; 21:md21040253. [PMID: 37103392 PMCID: PMC10142268 DOI: 10.3390/md21040253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Human skin needs additional protection from damaging ultraviolet radiation (UVR: 280-400 nm). Harmful UVR exposure leads to DNA damage and the development of skin cancer. Available sunscreens offer chemical protection from detrimental sun radiation to a certain extent. However, many synthetic sunscreens do not provide sufficient UVR protection due to the lack of photostability of their UV-absorbing active ingredients and/or the lack of ability to prevent the formation of free radicals, inevitably leading to skin damage. In addition, synthetic sunscreens may negatively affect human skin, causing irritation, accelerating skin aging and even resulting in allergic reactions. Beyond the potential negative effect on human health, some synthetic sunscreens have been shown to have a harmful impact on the environment. Consequently, identifying photostable, biodegradable, non-toxic, and renewable natural UV filters is imperative to address human health needs and provide a sustainable environmental solution. In nature, marine, freshwater, and terrestrial organisms are protected from harmful UVR through several important photoprotective mechanisms, including the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). Beyond MAAs, several other promising, natural UV-absorbing products could be considered for the future development of natural sunscreens. This review investigates the damaging impact of UVR on human health and the necessity of using sunscreens for UV protection, specifically UV-absorbing natural products that are more environmentally friendly than synthetic UV filters. Critical challenges and limitations related to using MAAs in sunscreen formulations are also evaluated. Furthermore, we explain how the genetic diversity of MAA biosynthetic pathways may be linked to their bioactivities and assess MAAs' potential for applications in human health.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2480, Australia
| | - Mike Climstein
- Physical Activity, Sport and Exercise Research (PASER) Theme, Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
- Physical Activity, Lifestyle, Ageing and Wellbeing, Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2000, Australia
| | - Glen M Boyle
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Duy Thanh Nguyen
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
17
|
Exploring the Relationship between Biosynthetic Gene Clusters and Constitutive Production of Mycosporine-like Amino Acids in Brazilian Cyanobacteria. Molecules 2023; 28:molecules28031420. [PMID: 36771087 PMCID: PMC9918943 DOI: 10.3390/molecules28031420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cyanobacteria are oxygenic phototrophic prokaryotes that have evolved to produce ultraviolet-screening mycosporine-like amino acids (MAAs) to lessen harmful effects from obligatory exposure to solar UV radiation. The cyanobacterial MAA biosynthetic cluster is formed by a gene encoding 2-epi-5-epi-valiolone synthase (EVS) located immediately upstream from an O-methyltransferase (OMT) encoding gene, which together biosynthesize the expected MAA precursor 4-deoxygadusol. Accordingly, these genes are typically absent in non-producers. In this study, the relationship between gene cluster architecture and constitutive production of MAAs was evaluated in cyanobacteria isolated from various Brazilian biomes. Constitutive production of MAAs was only detected in strains where genes formed a co-linear cluster. Expectedly, this production was enhanced upon exposure of the strains to UV irradiance and by using distinct culture media. Constitutive production of MAAs was not detected in all other strains and, unexpectedly, production could not be induced by exposure to UV irradiation or changing growth media. Other photoprotection strategies which might be employed by these MAA non-producing strains are discussed. The evolutionary and ecological significance of gene order conservation warrants closer experimentation, which may provide a first insight into regulatory interactions of genes encoding enzymes for MAA biosynthesis.
Collapse
|
18
|
Eze CN, Onyejiaka CK, Ihim SA, Ayoka TO, Aduba CC, Ndukwe JK, Nwaiwu O, Onyeaka H. Bioactive compounds by microalgae and potentials for the management of some human disease conditions. AIMS Microbiol 2023; 9:55-74. [PMID: 36891530 PMCID: PMC9988413 DOI: 10.3934/microbiol.2023004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Microalgae biomasses are excellent sources of diverse bioactive compounds such as lipids, polysaccharides, carotenoids, vitamins, phenolics and phycobiliproteins. Large-scale production of these bioactive substances would require microalgae cultivation either in open-culture systems or closed-culture systems. Some of these bioactive compounds (such as polysaccharides, phycobiliproteins and lipids) are produced during their active growth phase. They appear to have antibacterial, antifungal, antiviral, antioxidative, anticancer, neuroprotective and chemo-preventive activities. These properties confer on microalgae the potential for use in the treatment and/or management of several neurologic and cell dysfunction-related disease conditions, including Alzheimer's disease (AD), AIDS and COVID-19, as shown in this review. Although several health benefits have been highlighted, there appears to be a consensus in the literature that the field of microalgae is still fledgling, and more research needs to be carried out to ascertain the mechanisms of action that underpin the effectiveness of microalgal compounds. In this review, two biosynthetic pathways were modeled to help elucidate the mode of action of the bioactive compounds from microalgae and their products. These are carotenoid and phycobilin proteins biosynthetic pathways. The education of the public on the importance of microalgae backed with empirical scientific evidence will go a long way to ensure that the benefits from research investigations are quickly rolled out. The potential application of these microalgae to some human disease conditions was highlighted.
Collapse
Affiliation(s)
- Chijioke Nwoye Eze
- Department of Science Laboratory Technology, University of Nigeria Nsukka
| | | | - Stella Amarachi Ihim
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical, University of Nigeria Nsukka
| | | | | | - Johnson K Ndukwe
- Department of Microbiology, University of Nigeria Nsukka.,UNESCO International Centre for Biotechnology, University of Nigeria Nsukka
| | - Ogueri Nwaiwu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
19
|
Martinez-Ruiz M, Vazquez K, Losoya L, Gonzalez S, Robledo-Padilla F, Aquines O, Iqbal HM, Parra-Saldivar R. Microalgae growth rate multivariable mathematical model for biomass production. Heliyon 2022; 9:e12540. [PMID: 36691555 PMCID: PMC9860277 DOI: 10.1016/j.heliyon.2022.e12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background The use of microalgae has been emerging as a potential technology to reduce greenhouse gases and bioremediate polluted water and produce high-value products as pigments, phytohormones, biofuels, and bioactive compounds. The improvement in biomass production is a priority to make the technology implementation profitable in every application mentioned before. Methods The present study was conducted to explore the use of microalgae from genus Chlorella and Tetradesmus for the generation of substances of interest with UV absorption capacity. A mathematical model was developed for both microalgae to characterize the production of microalgae biomass considering the effects of light intensity, temperature, and nutrient consumption. The model was programmed in MATLAB software, where the three parameters were incorporated into a single specific growth rate equation. Results It was found that the optimal environmental conditions for each genus (Chlorella T=36°C, and I<787 μmol/m2s; Tetradesmus T=23°C and I<150 μmol/m2s), as well as the optimal specific growth rate depending on the personalized values of the three parameters. Conclussion This work could be used in the production of microalgae biomass for the design and development of topical applications to replace commercial options based on compounds that compromise health and have a harmful impact on the environment.
Collapse
Affiliation(s)
- Manuel Martinez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Karina Vazquez
- Department of Biomedical Engineering, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Liliana Losoya
- Department of Biomedical Engineering, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Susana Gonzalez
- Department of Biomedical Engineering, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Felipe Robledo-Padilla
- Department of Physics and Mathematics, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Osvaldo Aquines
- Department of Physics and Mathematics, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico,Corresponding authors.
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico,Corresponding authors.
| |
Collapse
|
20
|
Figueroa FL, Álvarez-Gómez F, Bonomi-Barufi J, Vega J, Massocato TF, Gómez-Pinchetti JL, Korbee N. Interactive effects of solar radiation and inorganic nutrients on biofiltration, biomass production, photosynthetic activity and the accumulation of bioactive compounds in Gracilaria cornea (Rhodophyta). ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Susano P, Silva J, Alves C, Martins A, Pinteus S, Gaspar H, Goettert MI, Pedrosa R. Saccorhiza polyschides-A Source of Natural Active Ingredients for Greener Skincare Formulations. Molecules 2022; 27:6496. [PMID: 36235032 PMCID: PMC9573298 DOI: 10.3390/molecules27196496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The growing knowledge about the harmful effects caused by some synthetic ingredients present in skincare products has led to an extensive search for natural bioactives. Thus, this study aimed to investigate the dermatological potential of five fractions (F1-F5), obtained by a sequential extraction procedure, from the brown seaweed Saccorhiza polyschides. The antioxidant (DPPH, FRAP, ORAC and TPC), anti-enzymatic (collagenase, elastase, hyaluronidase and tyrosinase), antimicrobial (Staphylococcus epidermidis, Cutibacterium acnes and Malassezia furfur), anti-inflammatory (nitric oxide, tumor necrosis factor-α, interleukin-6 and interleukin-10) and photoprotective (reactive oxygen species) properties of all fractions were evaluated. The ethyl acetate fraction (F3) displayed the highest antioxidant and photoprotective capacity, reducing ROS levels in UVA/B-exposed 3T3 fibroblasts, and the highest anti-enzymatic capacity against tyrosinase (IC50 value: 89.1 µg/mL). The solid water-insoluble fraction (F5) revealed the greatest antimicrobial activity against C. acnes growth (IC50 value: 12.4 µg/mL). Furthermore, all fractions demonstrated anti-inflammatory potential, reducing TNF-α and IL-6 levels in RAW 264.7 macrophages induced with lipopolysaccharides. Chemical analysis of the S. polyschides fractions by NMR revealed the presence of different classes of compounds, including lipids, polyphenols and sugars. The results highlight the potential of S. polyschides to be incorporated into new nature-based skincare products.
Collapse
Affiliation(s)
- Patrícia Susano
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Alice Martins
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Márcia Inês Goettert
- Cell Culture Laboratory, Postgraduate Programme in Biotechnology, University of Vale do Taquari-Univates, Lajeado 95914-014, RS, Brazil
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, D 72076 Tübingen, Germany
| | - Rui Pedrosa
- MARE/ARNET, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal
| |
Collapse
|
22
|
Liu Y, Liu Y, Deng J, Wu X, He W, Mu X, Nie X. Molecular mechanisms of Marine-Derived Natural Compounds as photoprotective strategies. Int Immunopharmacol 2022; 111:109174. [PMID: 35998505 DOI: 10.1016/j.intimp.2022.109174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
Excessive exposure of the skin to ultraviolet radiation (UVR) causes oxidative stress, inflammation, immunosuppression, apoptosis, and changes in the extracellular matrix, which lead to the development of photoaging and photodamage of skin. At the molecular level, these pathological changes are mainly caused by the activation of related protein kinases and downstream transcription pathways, the increase of matrix metalloproteinase, the formation of reactive oxygen species, and the combined action of cytokines and inflammatory mediators. At present, the photostability, toxicity, and damage to marine ecosystems of most sun protection products in the market have affected their efficacy and safety. Another way is to use natural products produced by various marine species. Marine organisms have evolved a variety of molecular strategies to protect themselves from the harmful effects of ultraviolet radiation, and their unique chemicals have attracted more and more attention in the research of photoprotection and photoaging resistance. This article provides an extensive description of the recent literature on the potential of Marine-Derived Natural Compounds (MDNCs) as photoprotective and photoprotective agents. It reviews the positive effects of MDNCs in counteracting UV-induced oxidative stress, inflammation, DNA damage, apoptosis, immunosuppression, and extracellular matrix degradation. Some MDNCs have the potential to develop feasible solutions for related phenomena, such as photoaging and photodamage caused by UVR.
Collapse
Affiliation(s)
- Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
23
|
Photoprotective effect of 18β-glycyrrhetinic acid derivatives against ultra violet (UV)-B-Induced skin aging. Bioorg Med Chem Lett 2022; 76:128984. [PMID: 36167293 DOI: 10.1016/j.bmcl.2022.128984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/07/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Excessive exposure to sun can harm the skin, causing sunburn, photo-aging, and even skin cancer. Different benzylidene derivatives (A02-A18 and A19-A34) of 18β-Glycyrrhetinic acid (A01) were designed and synthesized in an effort to discover photo-protective compounds against UV-B -induced skin aging. The synthesized derivatives were subjected to cellular viability test using MTT assay in primary Human Dermal Fibroblasts (HDFs). The results indicate A01, A05, A15, A22, A23, A25, A26, A28, A29, A32, A33, and A34 significantly enhanced cell viability of HDFs. Compound A33 at 10 and 25 μM showed a significant photo-protective effect against UV-B (10 mJ/cm2) -induced damage in HDFs. A33 at 25 μM significantly restored the UV-B -induced damage via its potent anti-oxidant, anti-apoptotic effects and ability to prevent collagen degradation. These findings pave the way for further development of A33 as a photo-protective skin agent.
Collapse
|
24
|
Ashokkumar V, Jayashree S, Kumar G, Aruna Sharmili S, Gopal M, Dharmaraj S, Chen WH, Kothari R, Manasa I, Hoon Park J, Shruthi S, Ngamcharussrivichai C. Recent developments in biorefining of macroalgae metabolites and their industrial applications - A circular economy approach. BIORESOURCE TECHNOLOGY 2022; 359:127235. [PMID: 35487449 DOI: 10.1016/j.biortech.2022.127235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The macroalgal industry is expanding, and the quest for novel ingredients to improve and develop innovative products is crucial. Consumers are increasingly looking for natural-derived ingredients in cosmetic products that have been proven to be effective and safe. Macroalgae-derived compounds have growing popularity in skincare products as they are natural, abundant, biocompatible, and renewable. Due to their high biomass yields, rapid growth rates, and cultivation process, they are gaining widespread recognition as potentially sustainable resources better suited for biorefinery processes. This review demonstrates macroalgae metabolites and their industrial applications in moisturizers, anti-aging, skin whitening, hair, and oral care products. These chemicals can be obtained in combination with energy products to increase the value of macroalgae from an industrial perspective with a zero-waste approach by linking multiple refineries. The key challenges, bottlenecks, and future perspectives in the operation and outlook of macroalgal biorefineries were also discussed.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum wan, Bangkok 10330, Thailand.
| | - Shanmugam Jayashree
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai 600086, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - S Aruna Sharmili
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai 600086, India
| | - Mayakkannan Gopal
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya Suchani, (Bagla) Samba, J&K 181143, India
| | - Isukapatla Manasa
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai 600086, India
| | - Jeong Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, South Korea
| | | | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum wan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
25
|
Nutraceuticals: Pharmacologically Active Potent Dietary Supplements. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2051017. [PMID: 35832855 PMCID: PMC9273442 DOI: 10.1155/2022/2051017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
A growing demand exists for nutraceuticals, which seem to reside in the grey area between pharmaceuticals and food. Nutraceuticals, up today, do not have a specific definition distinct from those of other food-derived categories, e.g., food supplements, herbal products, functional foods, and fortified foods. They have, however, a pharmacological beneficial effect on health. Many studies have been recently addressed to assess their safety, efficacy, and regulation. The object of writing this review article is that we need to pay more attention to natural and organic foods. The bases of nutraceutical components (food supplements) are known for potent and powerful clinical evidence effects on the treatment of hypertension and type 2 diabetes.
Collapse
|
26
|
Resende DISP, Jesus A, Sousa Lobo JM, Sousa E, Cruz MT, Cidade H, Almeida IF. Up-to-Date Overview of the Use of Natural Ingredients in Sunscreens. Pharmaceuticals (Basel) 2022; 15:ph15030372. [PMID: 35337168 PMCID: PMC8949675 DOI: 10.3390/ph15030372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
The photoprotective skincare segment is in high demand to meet consumer concerns on UV-induced skin damage, with a recent trend towards sunscreen alternatives with a natural origin. In this study, the use of natural ingredients, either from terrestrial or marine origin, in a panel of 444 sunscreen commercial formulations (2021) was analyzed. Ingredients from terrestrial organisms represent the large majority found in the analyzed sunscreen formulations (48%), whereas marine ingredients are present only in 13% of the analyzed products. A deeper analysis regarding the most prevalent families of ingredients from terrestrial and marine organisms used as top ingredients is also presented, as well as their mechanisms of action. This study provides an up-to-date overview of the sunscreen market regarding the use of natural ingredients, which is of relevance for scientists involved in the development of new sunscreens to identify opportunities for innovation.
Collapse
Affiliation(s)
- Diana I. S. P. Resende
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Jesus
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - José M. Sousa Lobo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: (E.S.); (I.F.A.); Tel.: +351-220-428-689 (E.S.); +351-220-428-621 (I.F.A.)
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Honorina Cidade
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel F. Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (E.S.); (I.F.A.); Tel.: +351-220-428-689 (E.S.); +351-220-428-621 (I.F.A.)
| |
Collapse
|
27
|
Harada Y, Hatakeyama M, Maeda S, Gao Q, Koizumi K, Sakamoto Y, Ono Y, Nakamura S. Molecular Design Learned from the Natural Product Porphyra-334: Molecular Generation via Chemical Variational Autoencoder versus Database Mining via Similarity Search, A Comparative Study. ACS OMEGA 2022; 7:8581-8590. [PMID: 35309498 PMCID: PMC8928499 DOI: 10.1021/acsomega.1c06453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
A comparative study is presented. The method via chemical variational autoencoder (VAE) and the method via similarity search are compared, focusing on their generation ability for new functional molecular design. Focusing on the natural porphyra-334 as a model molecule, we generated three groups: molecules of mycosporine-like amino acids (MAAs) as seeds (G SEEDS ), molecules generated via chemical VAE (G VAE ) and molecules gathered via similarity search (G SIM ). The number of molecules that satisfy the condition for the light absorption ability of porphyra-334 in G SEEDS , G VAE , and G SIM are 52, 138, and 6, respectively. The method via chemical VAE shows a promising potential for future molecular design. By using quantum chemistry wave function properties for chemical VAE, we find new molecules that are comparable to porphyra-334, including some with unexpected geometries. At the end, we show a group of molecules found with this method.
Collapse
Affiliation(s)
- Yuki Harada
- Cluster
for Science, Technology, and Innovation Hub, Nakamura Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Hatakeyama
- Cluster
for Science, Technology, and Innovation Hub, Nakamura Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- Sanyo-Onoda
City University, 1-1-1
Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Shuichi Maeda
- Cluster
for Science, Technology, and Innovation Hub, Nakamura Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qi Gao
- Mitsubishi
Chemical Corporation Science & Innovation Center 1000 Kamoshida-cho, Yokohama, Kanagawa 227-8502, Japan
| | - Kenichi Koizumi
- Cluster
for Science, Technology, and Innovation Hub, Nakamura Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuki Sakamoto
- Cluster
for Science, Technology, and Innovation Hub, Nakamura Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuuki Ono
- Mitsubishi
Chemical Corporation Science & Innovation Center 1000 Kamoshida-cho, Yokohama, Kanagawa 227-8502, Japan
| | - Shinichiro Nakamura
- Cluster
for Science, Technology, and Innovation Hub, Nakamura Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
28
|
Angelé-Martínez C, Goncalves LCP, Premi S, Augusto FA, Palmatier MA, Amar SK, Brash DE. Triplet-Energy Quenching Functions of Antioxidant Molecules. Antioxidants (Basel) 2022; 11:antiox11020357. [PMID: 35204239 PMCID: PMC8868474 DOI: 10.3390/antiox11020357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
UV-like DNA damage is created in the dark by chemiexcitation, in which UV-activated enzymes generate reactive oxygen and nitrogen species that create a dioxetane on melanin. Thermal cleavage creates an electronically excited triplet-state carbonyl whose high energy transfers to DNA. Screening natural compounds for the ability to quench this energy identified polyenes, polyphenols, mycosporine-like amino acids, and related compounds better known as antioxidants. To eliminate false positives such as ROS and RNS scavengers, we then used the generator of triplet-state acetone, tetramethyl-1,2-dioxetane (TMD), to excite the triplet-energy reporter 9,10-dibromoanthracene-2-sulfonate (DBAS). Quenching measured as reduction in DBAS luminescence revealed three clusters of 50% inhibitory concentration, ~50 μM, 200–500 μM, and >600 μM, with the former including sorbate, ferulic acid, and resveratrol. Representative triplet-state quenchers prevented chemiexcitation-induced “dark” cyclobutane pyrimidine dimers (dCPD) in DNA and in UVA-irradiated melanocytes. We conclude that (i) the delocalized pi electron cloud that stabilizes the electron-donating activity of many common antioxidants allows the same molecule to prevent an electronically excited species from transferring its triplet-state energy to targets such as DNA and (ii) the most effective class of triplet-state quenchers appear to operate by energy diversion instead of electron donation and dissipate that energy by isomerization.
Collapse
Affiliation(s)
- Carlos Angelé-Martínez
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; (C.A.-M.); (L.C.P.G.); (S.P.); (F.A.A.); (M.A.P.); (S.K.A.)
| | - Leticia Christina Pires Goncalves
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; (C.A.-M.); (L.C.P.G.); (S.P.); (F.A.A.); (M.A.P.); (S.K.A.)
| | - Sanjay Premi
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; (C.A.-M.); (L.C.P.G.); (S.P.); (F.A.A.); (M.A.P.); (S.K.A.)
| | - Felipe A. Augusto
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; (C.A.-M.); (L.C.P.G.); (S.P.); (F.A.A.); (M.A.P.); (S.K.A.)
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Meg A. Palmatier
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; (C.A.-M.); (L.C.P.G.); (S.P.); (F.A.A.); (M.A.P.); (S.K.A.)
| | - Saroj K. Amar
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; (C.A.-M.); (L.C.P.G.); (S.P.); (F.A.A.); (M.A.P.); (S.K.A.)
| | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; (C.A.-M.); (L.C.P.G.); (S.P.); (F.A.A.); (M.A.P.); (S.K.A.)
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA
- Correspondence:
| |
Collapse
|
29
|
Comparative Study of Three Raspberry Cultivar (Rubus idaeus L.) Leaves Metabolites: Metabolome Profiling and Antioxidant Activities. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Raspberry (Rubus idaeus L.), known as one of the famous healthy fruits an d are consumed fresh or processed products all over the world. The antioxidation activity of raspberry fruits as well as leaves have been widely investigated. To better understand the metabolite accumulation mechanisms and to develop different functional cultivars, we performed a non-targeted metabolomics analysis using LC-MS/MS to investigate the contents of existing components from three raspberry cultivars, Autumn Britten, Autumn Bliss, and Red Autumn leaves, respectively. The results show multiple differentially accumulated metabolites among three cultivars, especially for the lipids (α-linolenic acid and eicosatetraenoic acid), amino acids and their derivatives (L-cysteine, Phenylalanine), flavonoids (Kaempferol 3-O-rhamnoside-7-O-glucoside, Quercetin 3-glucoside), and vitamins (Biotin, Thiamine, Vitamin K2), etc. The in vitro cellular antioxidant activities of three raspberry cultivars leaves ethanol extracts (RLEE) were also characterized. Through comparison the superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and reactive oxygen species (ROS) levels before or after RLEE protection of L929 fibroblast cells upon excessive UVB exposure, we evaluated the antioxidation potentials for all three cultivar RLEEs. It turns out the raspberry Autumn Britten leaf extract holds the greatest potential for protecting the L929 fibroblast cells from UVB induced damage. Our study provides theoretical support for screening of active metabolites from three raspberry cultivars leaves, spanning metabolites’ accumulation to cell damage protection, which could be used to refine bioactivity assessment for different raspberry cultivars suitable for antioxidant products extraction.
Collapse
|
30
|
Rincón-Valencia S, Mejía-Giraldo JC, Puertas-Mejía MÁ. Algae Metabolites as an Alternative in Prevention and Treatment of Skin Problems Associated with Solar Radiation and Conventional Photo-protection. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
31
|
Coral holobionts and biotechnology: from Blue Economy to coral reef conservation. Curr Opin Biotechnol 2021; 74:110-121. [PMID: 34861476 DOI: 10.1016/j.copbio.2021.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022]
Abstract
Corals are of ecological and economic importance, providing habitat for species and contributing to coastal protection, fisheries, and tourism. Their biotechnological potential is also increasingly recognized. Particularly, the production of pharmaceutically interesting compounds by corals and their microbial associates stimulated natural product-based drug discovery. The efficient light distribution by coral skeletons for optimal photosynthesis by algal symbionts has led to 3D-printed bionic corals that may be used to upscale micro-algal cultivation for bioenergy generation. However, corals are under threat from climate change and pollution, and biotechnological approaches to increase their resilience, like 'probiotics' and 'assisted evolution', are being evaluated. In this review, we summarize the recent biotechnological developments related to corals with an emphasis on coral conservation, drug discovery and bioenergy.
Collapse
|
32
|
Raj S, Kuniyil AM, Sreenikethanam A, Gugulothu P, Jeyakumar RB, Bajhaiya AK. Microalgae as a Source of Mycosporine-like Amino Acids (MAAs); Advances and Future Prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12402. [PMID: 34886126 PMCID: PMC8656575 DOI: 10.3390/ijerph182312402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
Mycosporine-like amino acids (MAAs), are secondary metabolites, first reported in 1960 and found to be associated with the light-stimulated sporulation in terrestrial fungi. MAAs are nitrogenous, low molecular weight, water soluble compounds, which are highly stable with cyclohexenone or cycloheximine rings to store the free radicals. Microalgae are considered as a good source of different kinds of MAAs, which in turn, has its own applications in various industries due to its UV absorbing, anti-oxidant and therapeutic properties. Microalgae can be easily cultivated and requires a very short generation time, which makes them environment friendly source of biomolecules such as mycosporine-like amino acids. Modifying the cultural conditions along withmanipulation of genes associated with mycosporine-like amino acids biosynthesis can help to enhance MAAs synthesis and, in turn, can make microalgae suitable bio-refinery for large scale MAAs production. This review focuses on properties and therapeutic applications of mycosporine like amino acids derived from microalgae. Further attention is drawn on various culture and genetic engineering approaches to enhance the MAAs production in microalgae.
Collapse
Affiliation(s)
- Subhisha Raj
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| | - Anusree M. Kuniyil
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| | - Arathi Sreenikethanam
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| | - Poornachandar Gugulothu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (P.G.); (R.B.J.)
| | - Rajesh Banu Jeyakumar
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (P.G.); (R.B.J.)
| | - Amit K. Bajhaiya
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| |
Collapse
|
33
|
Januário AP, Félix R, Félix C, Reboleira J, Valentão P, Lemos MFL. Red Seaweed-Derived Compounds as a Potential New Approach for Acne Vulgaris Care. Pharmaceutics 2021; 13:pharmaceutics13111930. [PMID: 34834345 PMCID: PMC8623078 DOI: 10.3390/pharmaceutics13111930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris (AV) is a chronic skin disease of the pilosebaceous unit affecting both adolescents and adults. Its pathophysiology includes processes of inflammation, increased keratinization, sebum production, hormonal dysregulation, and bacterial Cutibacterium acnes proliferation. Common AV has been treated with antibiotics since the 1960s, but strain resistance has emerged and is of paramount concern. Macroalgae are known producers of substances with bioactive properties, including anti-viral, antibacterial, antioxidant, and anti-inflammatory properties, among several others. In particular, red algae are rich in bioactive compounds such as polysaccharides, phenolic compounds, lipids, sterols, alkaloids, and terpenoids, conferring them antioxidant, antimicrobial, and anti-inflammatory activities, among others. Thus, the exploration of compounds from marine resources can be an appealing approach to discover new treatment options against AV. The aim of this work is to provide an overview of the current knowledge of the potentialities of red macroalgae in the treatment of AV by reviewing the main therapeutic targets of this disease, and then the existence of compounds or extracts with bioactive properties against them.
Collapse
Affiliation(s)
- Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
- Correspondence: (A.P.J.); (M.F.L.L.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - João Reboleira
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- Correspondence: (A.P.J.); (M.F.L.L.)
| |
Collapse
|
34
|
Abstract
Among photosynthetic microorganisms, Cyanobacteria and Microalgae species have been highly studied thank to their high value-added compounds for several industrial applications. Thus, their production is increasing in the last decade to produce raw material for cosmetics. In fact, the daily routine includes the use of cosmetics and sunscreens to protect against the environmental changes, mainly the increment of ultraviolet (UV) radiation rate with a consequent skin damage and premature aging due to this overexposure. As it is well discussed, chemical UV filters are extensively incorporated into sunscreens formulas; however, they can induce allergenic reactions as well. For these reasons, some pigments derived from microalgae, such as astaxanthin, lutein, β-carotene as well as other biocompounds are now well described in the literature as well as biotechnologically manufactured as natural ingredients to be incorporated into skin care products with multifunctional benefits even for sunscreen purposes. Hence, this investigation summarizes the recent studies about the main pigments from photosynthetic microorganisms' biomasses as well as their uses in dermocosmetics with novel attributes, such as anti-aging agents, makeups, skin lightening and whitening, among others.
Collapse
|
35
|
Guan LL, Lim HW, Mohammad TF. Sunscreens and Photoaging: A Review of Current Literature. Am J Clin Dermatol 2021; 22:819-828. [PMID: 34387824 PMCID: PMC8361399 DOI: 10.1007/s40257-021-00632-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/17/2022]
Abstract
Sunscreens have been on the market for many decades as a means of protection against ultraviolet-induced erythema. Over the years, evidence has also shown their efficacy in the prevention of photoaging, dyspigmentation, DNA damage, and photocarcinogenesis. In the USA, most broad-spectrum sunscreens provide protection against ultraviolet B (UVB) radiation and short-wavelength ultraviolet A (UVA) radiation. Evidence suggests that visible light and infrared light may play a role in photoaging and should be considered when choosing a sunscreen. Currently, there is a paucity of US FDA-approved filters that provide protection against long UVA (> 370 nm) and none against visible light. Additionally, various sunscreen additives such as antioxidants and photolyases have also been reported to protect against and possibly reverse signs of photoaging. This literature review evaluates the utility of sunscreen in protecting against photoaging and further explores the requirements for an ideal sunscreen.
Collapse
Affiliation(s)
- Linna L Guan
- Department of Dermatology, Henry Ford Health Systems, Henry Ford Medical Center-New Center One, 3031 W. Grand Boulevard, Suite 800, Detroit, MI, 48202, USA
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health Systems, Henry Ford Medical Center-New Center One, 3031 W. Grand Boulevard, Suite 800, Detroit, MI, 48202, USA
| | - Tasneem F Mohammad
- Department of Dermatology, Henry Ford Health Systems, Henry Ford Medical Center-New Center One, 3031 W. Grand Boulevard, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
36
|
Nandagopal P, Steven AN, Chan LW, Rahmat Z, Jamaluddin H, Mohd Noh NI. Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties. BIOLOGY 2021; 10:1061. [PMID: 34681158 PMCID: PMC8533319 DOI: 10.3390/biology10101061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles by fixing atmospheric nitrogen. Environmental factors influence the dynamic, physiological characteristics, and metabolic profiles of cyanobacteria, which results in their great adaptation ability to survive in diverse ecosystems. The evolution of these primitive bacteria resulted from the unique settings of photosynthetic machineries and the production of bioactive compounds. Specifically, bioactive compounds play roles as regulators to provide protection against extrinsic factors and act as intracellular signaling molecules to promote colonization. In addition to the roles of bioactive metabolites as indole alkaloids, terpenoids, mycosporine-like amino acids, non-ribosomal peptides, polyketides, ribosomal peptides, phenolic acid, flavonoids, vitamins, and antimetabolites for cyanobacterial survival in numerous habitats, which is the focus of this review, the bioactivities of these compounds for the treatment of various diseases are also discussed.
Collapse
Affiliation(s)
- Pavitra Nandagopal
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Anthony Nyangson Steven
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Liong-Wai Chan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Zaidah Rahmat
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| |
Collapse
|
37
|
Chauton MS, Forbord S, Mäkinen S, Sarno A, Slizyte R, Mozuraityte R, Standal IB, Skjermo J. Sustainable resource production for manufacturing bioactives from micro- and macroalgae: Examples from harvesting and cultivation in the Nordic region. PHYSIOLOGIA PLANTARUM 2021; 173:495-506. [PMID: 33751623 DOI: 10.1111/ppl.13391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Micro- and macroalgae are a great and important source of raw material for manufacturing of bioactives and ingredients for food, feed, cosmetics, or pharmaceuticals. Macroalgae (or seaweeds) have been harvested locally from wild stocks in smaller volumes for a long time, and a production chain based on cultivated seaweed for the harvest of considerably larger amounts is in progress for several species. Microalgae and cyanobacteria such as Spirulina have been produced in "backyard ponds" for use in food and feed also for a long time, and now we see the establishment of large production plants to control the cultivation process and increase the production yields. There is also a shift from harvesting or cultivation centered in warmer, sunnier areas to increasing exploitation of natural resources in temperate to boreal regions. In locations with strong seasonal variations in solar irradiance and temperatures, we need to develop procedures to maximize the biomass production in the productive seasons and ensure efficient stabilization of the biomass for year-round processing and product manufacturing. Industrialized biomass production and large-scale manufacturing of bioactives also mean that we must employ sustainable, cost-effective, and environmentally friendly processing methods, including stabilization and extraction methods such as ensiling and subcritical water extraction (SWE) and advanced analytic tools to characterize the products. These topics are focus areas of the Nordic Centre of Excellence (NCoE) NordAqua, and here we present a review of current activities in the field of micro- and macroalgae biomass production sectors illustrated with some of our experiences from the NordAqua consortium.
Collapse
Affiliation(s)
| | - Silje Forbord
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Sari Mäkinen
- LUKE, Natural Resources Institute Finland, Jokioinen, Finland
| | - Antonio Sarno
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Rasa Slizyte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Revilija Mozuraityte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Inger Beate Standal
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Jorunn Skjermo
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| |
Collapse
|
38
|
Kalasariya HS, Yadav VK, Yadav KK, Tirth V, Algahtani A, Islam S, Gupta N, Jeon BH. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021; 26:5313. [PMID: 34500745 PMCID: PMC8434260 DOI: 10.3390/molecules26175313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
Amongst the countless marine organisms, seaweeds are considered as one of the richest sources of biologically active ingredients having powerful biological activities. Seaweeds or marine macroalgae are macroscopic multicellular eukaryotic photosynthetic organisms and have the potential to produce a large number of valuable compounds, such as proteins, carbohydrates, fatty acids, amino acids, phenolic compounds, pigments, etc. Since it is a prominent source of bioactive constituents, it finds diversified industrial applications viz food and dairy, pharmaceuticals, medicinal, cosmeceutical, nutraceutical, etc. Moreover, seaweed-based cosmetic products are risen up in their demands by the consumers, as they see them as a promising alternative to synthetic cosmetics. Normally it contains purified biologically active compounds or extracts with several compounds. Several seaweed ingredients that are useful in cosmeceuticals are known to be effective alternatives with significant benefits. Many seaweeds' species demonstrated skin beneficial activities, such as antioxidant, anti-melanogenesis, antiaging, photoprotection, anti-wrinkle, moisturizer, antioxidant, anti-inflammatory, anticancer and antioxidant properties, as well as certain antimicrobial activities, such as antibacterial, antifungal and antiviral activities. This review presents applications of bioactive molecules derived from marine algae as a potential substitute for its current applications in the cosmetic industry. The biological activities of carbohydrates, proteins, phenolic compounds and pigments are discussed as safe sources of ingredients for the consumer and cosmetic industry.
Collapse
Affiliation(s)
- Haresh S. Kalasariya
- Microbiology Department, Sankalchand Patel University, Visnagar 384315, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Engineering, River Engineering Pvt. Ltd., Ecotech Phase III, Greater Noida 110042, Uttar Pradesh, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, Madhya Pradesh, India;
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Saudi Arabia; (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Asir, Saudi Arabia
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Saudi Arabia; (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Asir, Saudi Arabia
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61413, Asir, Saudi Arabia;
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
39
|
Milito A, Castellano I, Damiani E. From Sea to Skin: Is There a Future for Natural Photoprotectants? Mar Drugs 2021; 19:md19070379. [PMID: 34209059 PMCID: PMC8303403 DOI: 10.3390/md19070379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
In the last few decades, the thinning of the ozone layer due to increased atmospheric pollution has exacerbated the negative effects of excessive exposure to solar ultraviolet radiation (UVR), and skin cancer has become a major public health concern. In order to prevent skin damage, public health advice mainly focuses on the use of sunscreens, along with wearing protective clothing and avoiding sun exposure during peak hours. Sunscreens present on the market are topical formulations that contain a number of different synthetic, organic, and inorganic UVR filters with different absorbance profiles, which, when combined, provide broad UVR spectrum protection. However, increased evidence suggests that some of these compounds cause subtle damage to marine ecosystems. One alternative may be the use of natural products that are produced in a wide range of marine species and are mainly thought to act as a defense against UVR-mediated damage. However, their potential for human photoprotection is largely under-investigated. In this review, attention has been placed on the molecular strategies adopted by marine organisms to counteract UVR-induced negative effects and we provide a broad portrayal of the recent literature concerning marine-derived natural products having potential as natural sunscreens/photoprotectants for human skin. Their chemical structure, UVR absorption properties, and their pleiotropic role as bioactive molecules are discussed. Most studies strongly suggest that these natural products could be promising for use in biocompatible sunscreens and may represent an alternative eco-friendly approach to protect humans against UV-induced skin damage.
Collapse
Affiliation(s)
- Alfonsina Milito
- Centre for Research in Agricultural Genomics, Department of Molecular Genetics, Cerdanyola, 08193 Barcelona, Spain;
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- Correspondence: (I.C.); (E.D.)
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of the Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Correspondence: (I.C.); (E.D.)
| |
Collapse
|
40
|
Abstract
Long life expectancy of populations in the developing world together with some cultural and social issues has driven the need to pay special attention to health and physical appearance. Cosmeceuticals are gaining interest in the cosmetic industry as their uses fulfills a double purpose: the requirements of a cosmetic (clean, perfume, protect, change the appearance of the external parts of the body or keeping them in good condition) with a particular bioactivity function. The cosmetics industry, producing both cosmetics and cosmeceuticals, is currently facing numerous challenges to satisfy different attitudes of consumers (vegetarianism, veganism, cultural or religious concerns, health or safety reasons, eco-friendly process, etc.). A currently growing trend in the market is the interest in products of low environmental impact. Marine origin ingredients are increasingly being incorporated into cosmeceutical preparations because they are able to address several consumer requirements and also due to the wide range of bioactivities they present (antioxidant, whitening, anti-aging, etc.). Many companies claim “Marine” as a distinctive marketing signal; however, only a few indicate whether they use sustainable ingredient sources. Sustainable marine ingredients might be obtained using wild marine biomass through a sustainable extractive fishing activity; by adopting valorization strategies including the use of fish discards and fish by-products; and by sustainably farming and culturing marine organisms.
Collapse
|
41
|
Orfanoudaki M, Hartmann A, Mayr J, Figueroa FL, Vega J, West J, Bermejo R, Maggs C, Ganzera M. Analysis of the Mycosporine-Like Amino Acid (MAA) Pattern of the Salt Marsh Red Alga Bostrychia scorpioides. Mar Drugs 2021; 19:321. [PMID: 34072870 PMCID: PMC8229764 DOI: 10.3390/md19060321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
This study presents the validation of a high-performance liquid chromatography diode array detector (HPLC-DAD) method for the determination of different mycosporine-like amino acids (MAAs) in the red alga Bostrychia scorpioides. The investigated MAAs, named bostrychines, have only been found in this specific species so far. The developed HPLC-DAD method was successfully applied for the quantification of the major MAAs in Bostrychia scorpioides extracts, collected from four different countries in Europe showing only minor differences between the investigated samples. In the past, several Bostrychia spp. have been reported to include cryptic species, and in some cases such as B. calliptera, B. simpliciuscula, and B. moritziana, the polyphyly was supported by differences in their MAA composition. The uniformity in the MAA composition of the investigated B. scorpioides samples is in agreement with the reported monophyly of this Bostrychia sp.
Collapse
Affiliation(s)
- Maria Orfanoudaki
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (J.M.); (M.G.)
| | - Anja Hartmann
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (J.M.); (M.G.)
| | - Julia Mayr
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (J.M.); (M.G.)
| | - Félix L. Figueroa
- Experimental Centre Grice-Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, 29004 Malaga, Spain; (F.L.F.); (J.V.)
| | - Julia Vega
- Experimental Centre Grice-Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, 29004 Malaga, Spain; (F.L.F.); (J.V.)
| | - John West
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Ricardo Bermejo
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Christine Maggs
- Medical Biology Centre, School of Biological Sciences, Queen’s University Belfast, Belfast BT22 1PF, UK;
| | - Markus Ganzera
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (J.M.); (M.G.)
| |
Collapse
|
42
|
Mycosporine-Like Amino Acids from Red Macroalgae: UV-Photoprotectors with Potential Cosmeceutical Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115112] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macroalgae belong to a diverse group of organisms that could be exploited for biomolecule application. Among the biocompounds found in this group, mycosporine-like amino acids (MAAs) are highlighted mainly due to their photoprotection, antioxidant properties, and high photo and thermo-stability, which are attractive characteristics for the development of cosmeceutical products. Therefore, here we revise published data about MAAs, including their biosynthesis, biomass production, extraction, characterization, identification, purification, and bioactivities. MAAs can be found in many algae species, but the highest concentrations are found in red macroalgae, mainly in the order Bangiales, as Porphyra spp. In addition to the species, the content of MAAs can vary depending on environmental factors, of which solar radiation and nitrogen availability are the most influential. MAAs can confer photoprotection due to their capacity to absorb ultraviolet radiation or reduce the impact of free radicals on cells, among other properties. To extract these compounds, different approaches can be used. The efficiency of these methods can be evaluated with characterization and identification using high performance liquid chromatography (HPLC), associated with other apparatus such as mass spectrometry (MS) and nuclear magnetic resonance (NMR). Therefore, the data presented in this review allow a broad comprehension of MAAs and show perspectives for their inclusion in cosmeceutical products.
Collapse
|
43
|
Vasilopoulou MΑ, Ioannou E, Roussis V, Chondrogianni N. Modulation of the ubiquitin-proteasome system by marine natural products. Redox Biol 2021; 41:101897. [PMID: 33640701 PMCID: PMC7921624 DOI: 10.1016/j.redox.2021.101897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a key player in the maintenance of cellular protein homeostasis (proteostasis). Since proteasome function declines upon aging leading to the acceleration of its progression and the manifestation of age-related pathologies, many attempts have been performed towards proteasome activation as a strategy to promote healthspan and longevity. The marine environment hosts a plethora of organisms that produce a vast array of primary and secondary metabolites, the majority of which are unique, exhibiting a wide spectrum of biological activities. The fact that these biologically important compounds are also present in edible marine organisms has sparked the interest for elucidating their potential health-related applications. In this review, we focus on the antioxidant, anti-aging, anti-aggregation and anti-photoaging properties of various marine constituents. We further discuss representatives of marine compounds classes with regard to their potential (direct or indirect) action on UPS components that could serve as UPS modulators and exert beneficial effects on conditions such as oxidative stress, aging and age-related diseases.
Collapse
Affiliation(s)
- Mary Α Vasilopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larisa, Greece.
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
44
|
Souak D, Barreau M, Courtois A, André V, Duclairoir Poc C, Feuilloley MGJ, Gault M. Challenging Cosmetic Innovation: The Skin Microbiota and Probiotics Protect the Skin from UV-Induced Damage. Microorganisms 2021; 9:microorganisms9050936. [PMID: 33925587 PMCID: PMC8145394 DOI: 10.3390/microorganisms9050936] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Many studies performed in the last decade have focused on the cutaneous microbiota. It has been shown that this microbiota plays a key role in skin homeostasis. Considered as “a second barrier” to the environment, it is very important to know how it reacts to exogenous aggressions. The cosmetics industry has a started to use this microbiota as a source of natural ingredients, particularly ones that confer photoprotection against ultraviolet (UV) rays. Interestingly, it has been demonstrated that bacterial molecules can block UV rays or reverse their harmful effects. Oral probiotics containing living microorganisms have also shown promising results in restoring skin homeostasis and reversing the negative effects of UV rays. Microbial-based active sunscreen compounds have huge potential for use as next-generation photoprotection products.
Collapse
Affiliation(s)
- Djouhar Souak
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
| | - Magalie Barreau
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
| | - Aurélie Courtois
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
| | - Valérie André
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
| | - Cécile Duclairoir Poc
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
- Correspondence: (C.D.P.); (M.G.J.F.); (M.G.)
| | - Marc G. J. Feuilloley
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
- Correspondence: (C.D.P.); (M.G.J.F.); (M.G.)
| | - Manon Gault
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
- Correspondence: (C.D.P.); (M.G.J.F.); (M.G.)
| |
Collapse
|
45
|
Kiran BR, Venkata Mohan S. Microalgal Cell Biofactory-Therapeutic, Nutraceutical and Functional Food Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:836. [PMID: 33919450 PMCID: PMC8143517 DOI: 10.3390/plants10050836] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
Microalgae are multifaceted photosynthetic microorganisms with emerging business potential. They are present ubiquitously in terrestrial and aquatic environments with rich species diversity and are capable of producing significant biomass. Traditionally, microalgal biomass is being used as food and feed in many countries around the globe. The production of microalgal-based bioactive compounds at an industrial scale through biotechnological interventions is gaining interest more recently. The present review provides a detailed overview of the key algal metabolites, which plays a crucial role in nutraceutical, functional foods, and animal/aquaculture feed industries. Bioactive compounds of microalgae known to exhibit antioxidant, antimicrobial, antitumor, and immunomodulatory effects were comprehensively reviewed. The potential microalgal species and biological extracts against human pathogens were also discussed. Further, current technologies involved in upstream and downstream bioprocessing including cultivation, harvesting, and cell disruption were documented. Establishing microalgae as an alternative supplement would complement the sustainable and environmental requirements in the framework of human health and well-being.
Collapse
Affiliation(s)
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India;
| |
Collapse
|
46
|
Susano P, Silva J, Alves C, Martins A, Gaspar H, Pinteus S, Mouga T, Goettert MI, Petrovski Ž, Branco LB, Pedrosa R. Unravelling the Dermatological Potential of the Brown Seaweed Carpomitra costata. Mar Drugs 2021; 19:135. [PMID: 33671016 PMCID: PMC7997182 DOI: 10.3390/md19030135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
The ever-increasing interest in keeping a young appearance and healthy skin has leveraged the skincare industry. This, coupled together with the increased concern regarding the safety of synthetic products, has boosted the demand for new and safer natural ingredients. Accordingly, the aim of this study was to evaluate the dermatological potential of the brown seaweed Carpomitra costata. The antioxidant, anti-enzymatic, antimicrobial, photoprotective and anti-inflammatory properties of five C. costata fractions (F1-F5) were evaluated. The ethyl acetate fraction (F3) demonstrated the most promising results, with the best ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals (EC50 of 140.1 µg/mL) and the capacity to reduce reactive oxygen species (ROS) production promoted by UVA and UVB radiation in 3T3 cells, revealing its antioxidant and photoprotective potential. This fraction also exhibited the highest anti-enzymatic capacity, inhibiting the activities of collagenase, elastase and tyrosinase (IC50 of 7.2, 4.8 and 85.9 µg/mL, respectively). Moreover, F3 showed anti-inflammatory potential, reducing TNF-α and IL-6 release induced by LPS treatment in RAW 264.7 cells. These bioactivities may be related to the presence of phenolic compounds, such as phlorotannins, as demonstrated by NMR analysis. The results highlight the potential of C. costata as a source of bioactive ingredients for further dermatological applications.
Collapse
Affiliation(s)
- Patrícia Susano
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (J.S.); (A.M.); (H.G.); (S.P.)
| | - Joana Silva
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (J.S.); (A.M.); (H.G.); (S.P.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (J.S.); (A.M.); (H.G.); (S.P.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (J.S.); (A.M.); (H.G.); (S.P.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (J.S.); (A.M.); (H.G.); (S.P.)
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (J.S.); (A.M.); (H.G.); (S.P.)
| | - Teresa Mouga
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| | - Márcia Ines Goettert
- Cell Culture Laboratory, Postgraduate Programme in Biotechnology, University of Vale do Taquari-Univates, Lajeado, RS 95914-014, Brazil;
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Ž.P.); (L.B.B.)
| | - Luís B. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Ž.P.); (L.B.B.)
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| |
Collapse
|
47
|
Unravelling the Dermatological Potential of the Brown Seaweed Carpomitra costata. Mar Drugs 2021. [DOI: 10.3390/md19030135
expr 985274223 + 856008892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The ever-increasing interest in keeping a young appearance and healthy skin has leveraged the skincare industry. This, coupled together with the increased concern regarding the safety of synthetic products, has boosted the demand for new and safer natural ingredients. Accordingly, the aim of this study was to evaluate the dermatological potential of the brown seaweed Carpomitra costata. The antioxidant, anti-enzymatic, antimicrobial, photoprotective and anti-inflammatory properties of five C. costata fractions (F1–F5) were evaluated. The ethyl acetate fraction (F3) demonstrated the most promising results, with the best ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals (EC50 of 140.1 µg/mL) and the capacity to reduce reactive oxygen species (ROS) production promoted by UVA and UVB radiation in 3T3 cells, revealing its antioxidant and photoprotective potential. This fraction also exhibited the highest anti-enzymatic capacity, inhibiting the activities of collagenase, elastase and tyrosinase (IC50 of 7.2, 4.8 and 85.9 µg/mL, respectively). Moreover, F3 showed anti-inflammatory potential, reducing TNF-α and IL-6 release induced by LPS treatment in RAW 264.7 cells. These bioactivities may be related to the presence of phenolic compounds, such as phlorotannins, as demonstrated by NMR analysis. The results highlight the potential of C. costata as a source of bioactive ingredients for further dermatological applications.
Collapse
|
48
|
Sunscreens and their usefulness: have we made any progress in the last two decades? Photochem Photobiol Sci 2021; 20:189-244. [PMID: 33721254 DOI: 10.1007/s43630-021-00013-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
Sunscreens have now been around for decades to mitigate the Sun's damaging ultraviolet (UV) radiation which, although essential for the existence of life, is a recognized prime carcinogen. Accordingly, have suncreams achieved their intended purposes towards protection against sunburns, skin photo-ageing and the like? Most importantly, however, have they provided the expected protection against skin cancers that current sunscreen products claim to do? In the last two decades, there have been tens, if not hundreds of studies on sunscreens with respect to skin protection against UVB (280‒320 nm)-traditionally sunscreens with rather low sun protection factors (SPF) were intended to protect against this type of radiation-and UVA (320‒400 nm) radiation; a distinction between SPF and UVA protection factor (UVA-PF) is made. Many of the studies of the last two decades have focused on protection against the more skin-penetrating UVA radiation. This non-exhaustive article reviews some of the important facets of what is currently known about sunscreens with regard (i) to the physical UV filters titanium dioxide (TiO2) and zinc oxide (ZnO) and the mostly photo-unstable chemical UVB/UVA filters (e.g., octinoxate (OMC) and avobenzone (AVO), among others), (ii) to novel chemical sunscreen agents, (iii) to means that minimize the breakdown of chemical filters and improve their stability when exposed to UV sunlight, (iv) to SPF factors, and (v) to a short discussion on non-melanoma skin cancers and melanoma. Importantly, throughout the article we allude to the safety aspects of sunscreens and at the end ask the question: do active ingredients in sunscreen products pose a risk to human health, and what else can be done to enhance protection? Significant loss of skin protection from two well-known commercial suncreams when exposed to simulated UV sunlight. Cream I: titanium dioxide, ethylhexyl triazone, avobenzone, and octinoxate; Cream II: octyl salicylate, oxybenzone, avobenzone, and octinoxate.
Collapse
|
49
|
Garcia-Cortes A, Garcia-Vásquez JA, Aranguren Y, Ramirez-Castrillon M. Pigment Production Improvement in Rhodotorula mucilaginosa AJB01 Using Design of Experiments. Microorganisms 2021; 9:microorganisms9020387. [PMID: 33672878 PMCID: PMC7918216 DOI: 10.3390/microorganisms9020387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
The discovery of biopigments has received considerable attention from the industrial sector, mainly for potential applications as novel molecules with biological activity, in cosmetics or if aquaculture food supplements. The main objective of this study was to increase the production of carotenoid pigments in a naturally pigmented yeast by subjecting the yeast to various cellular stresses using design of experiments. The fungal strain Rhodotorula mucilaginosa AJB01 was isolated from a food sample collected in Barranquilla, Colombia, and one of the pigments produced was β-carotene. This strain was subjected to various stress conditions, including osmotic stress using different salts, physical stress by ultraviolet (UV) light, and light stress using different photoperiods. The optimal growth conditions for carotenoid production were determined to be 1 min of UV light, 0.5 mg/L of magnesium sulfate, and an 18:6 h light/dark period, which resulted in a carotenoid yield of 118.3 µg of carotenoid per gram of yeast.
Collapse
Affiliation(s)
- Alejandra Garcia-Cortes
- Facultad de Ciencias Básicas, Universidad Santiago de Cali, Campus Pampalinda, Calle 5 # 62-00, Santiago de Cali 760035, Colombia; (A.G.-C.); (J.A.G.-V.)
| | - Julián Andres Garcia-Vásquez
- Facultad de Ciencias Básicas, Universidad Santiago de Cali, Campus Pampalinda, Calle 5 # 62-00, Santiago de Cali 760035, Colombia; (A.G.-C.); (J.A.G.-V.)
| | - Yani Aranguren
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Carrera 59 # 59-65, Barranquilla 080003, Colombia;
| | - Mauricio Ramirez-Castrillon
- Facultad de Ciencias Básicas, Universidad Santiago de Cali, Campus Pampalinda, Calle 5 # 62-00, Santiago de Cali 760035, Colombia; (A.G.-C.); (J.A.G.-V.)
- Correspondence:
| |
Collapse
|
50
|
Geraldes V, Pinto E. Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features. Pharmaceuticals (Basel) 2021; 14:63. [PMID: 33466685 PMCID: PMC7828830 DOI: 10.3390/ph14010063] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/16/2023] Open
Abstract
Mycosporines and mycosporine-like amino acids are ultra-violet-absorbing compounds produced by several organisms such as lichens, fungi, algae and cyanobacteria, especially upon exposure to solar ultraviolet radiation. These compounds have photoprotective and antioxidant functions. Mycosporine-like amino acids have been used as a natural bioactive ingredient in cosmetic products. Several reviews have already been developed on these photoprotective compounds, but they focus on specific features. Herein, an extremely complete database on mycosporines and mycosporine-like amino acids, covering the whole class of these natural sunscreen compounds known to date, is presented. Currently, this database has 74 compounds and provides information about the chemistry, absorption maxima, protonated mass, fragments and molecular structure of these UV-absorbing compounds as well as their presence in organisms. This platform completes the previous reviews and is available online for free and in the public domain. This database is a useful tool for natural product data mining, dereplication studies, research working in the field of UV-absorbing compounds mycosporines and being integrated in mass spectrometry library software.
Collapse
Affiliation(s)
- Vanessa Geraldes
- School of Pharmaceutical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo-SP CEP 05508-000, Brazil;
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Piracicaba-SP CEP 13400-970, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Piracicaba-SP CEP 13400-970, Brazil
| |
Collapse
|