1
|
Vejux A, Ghzaiel I, Mackrill JJ, Dias IHK, Rezig L, Ksila M, Zarrouk A, Nury T, Brahmi F, El Midaoui A, Meziane S, Atanasov AG, Hammami S, Latruffe N, Jouanny P, Lizard G. Oxysterols, age-related-diseases and nutritherapy: Focus on 7-ketocholesterol and 7β-hydroxycholesterol. Prostaglandins Other Lipid Mediat 2025; 178:106993. [PMID: 40216356 DOI: 10.1016/j.prostaglandins.2025.106993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Age-related diseases are often associated with a disruption of RedOx balance that can lead to lipid peroxidation with the formation of oxysterols, especially those oxidized on carbon-7: 7-ketocholesterol (also known as 7-oxo-cholesterol) and 7β-hydroxycholesterol. Like cholesterol, these oxysterols have 27 carbons, they are composed of a sterane nucleus and have a hydroxyl function in position 3. The oxysterols 7-ketocholesterol and 7β-hydroxycholesterol are mainly formed by cholesterol autoxidation and are biomarkers of oxidative stress. These two oxysterols are frequently found at increased levels in the biological fluids (plasma, cerebrospinal fluid), tissues and/or organs (arterial wall, retina, brain) of patients with age-related diseases, especially cardiovascular diseases, neurodegenerative diseases (mainly Alzheimer's disease), ocular diseases (cataract, age-related macular degeneration), and sarcopenia. Depending on the cell type considered, 7-ketocholesterol and 7β-hydroxycholesterol induce either caspase- dependent or -independent types of cell death associated with mitochondrial and peroxisomal dysfunctions, autophagy and oxidative stress. The caspase dependent type of cell death associated with oxidative stress and autophagy is defined as oxiapoptophagy. These two oxysterols are also inducers of inflammation. These biological features associated with the toxicity of 7-ketocholesterol, and 7β-hydroxycholesterol are often observed in patients with age-related diseases, suggesting an involvement of these oxysterols in the pathophysiology of these disorders. The cytotoxic effects of 7-ketocholesterol and 7β-hydroxycholesterol are counteracted on different cell models by representative nutrients of the Mediterranean diet: ω3 and ω9 fatty acids, polyphenols, and tocopherols. There are also evidences, mainly in cardiovascular diseases, of the benefits of α-tocopherol and phenolic compounds. These in vitro and in vivo observations on 7-ketocholesterol and 7β-hydroxycholesterol, which are frequently increased in age-related diseases, reinforce the interest of nutritherapeutic treatments to prevent and/or cure age-related diseases currently without effective therapies.
Collapse
Affiliation(s)
- Anne Vejux
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université de Bourgogne Europe, 21000 Dijon, France; Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne Europe, 21000 Dijon, France.
| | - Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne Europe, 21000 Dijon, France; Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
| | - John J Mackrill
- Department of Physiology, University College Cork, Western Gateway Building, Western Road, Cork T12 XF62, Ireland
| | - Irundika H K Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis 1080, Tunisia; University of Carthage, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia
| | - Mohamed Ksila
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne Europe, 21000 Dijon, France
| | - Amira Zarrouk
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; Faculty of Medicine of Sousse, avenue Mohamed Karaoui, 4002 Sousse, Tunisia
| | - Thomas Nury
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne Europe, 21000 Dijon, France
| | - Fatiha Brahmi
- Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, 06000 Bejaia, Algeria
| | - Adil El Midaoui
- Department of Biology, Faculty of Sciences and Techniques of Errachidia, Moulay Ismail University of Meknes, Meknes 50050, Morocco; Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Smail Meziane
- Institut Européen des Antioxydants, 1B Rue Victor de Lespinats, 54230 Neuves-Maisons, France
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Jastrzebiec, Poland
| | - Sonia Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
| | - Norbert Latruffe
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université de Bourgogne Europe, 21000 Dijon, France; Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne Europe, 21000 Dijon, France
| | - Pierre Jouanny
- Geriatric Internal Medicine Department (Champmaillot), University Hospital Center, Université de Bourgogne Europe, 21000 Dijon, France
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne Europe, 21000 Dijon, France.
| |
Collapse
|
2
|
Asthana S, Verma A, Bhattacharya B, Nath A, Sajeev N, Maan K, Nair RR, Ayappa KG, Saini DK. Oxysterols Modulate Protein-Sterol Interactions to Impair CXCR4 Signaling in Aging Cells. Biochemistry 2025; 64:1606-1623. [PMID: 40099855 DOI: 10.1021/acs.biochem.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Organismal aging is accompanied by the accumulation of senescent cells in the body, which drives tissue dysfunction. Senescent cells have a distinctive profile, including proliferation arrest, resistance to apoptosis, altered gene expression, and high inflammation. Despite global signaling and metabolic dysregulation during senescence, the underlying reasons for changes in signaling remain unclear. GPCRs are pivotal in cellular signaling, dynamically mediating the complex interplay between cells and their surrounding environment to maintain cellular homeostasis. The chemokine receptor CXCR4 plays a crucial role in modulating immune responses and inflammation. It has been shown that the expression of CXCR4 increases in cells undergoing senescence, which enhances inflammation postactivation. Here, we examine CXCR4 signaling in deeply senescent cells (aged cells), where cholesterol and its oxidized derivatives, oxysterols, affect receptor function. We report elevated oxysterol levels in senescent cells, which altered classical CXCL12-mediated CXCR4 signaling. Tail-oxidized sterols disrupted signaling more than ring-oxidized counterparts. Molecular dynamics simulations revealed that 27-hydroxycholesterol displaces cholesterol and binds strongly to alter the conformation of critical signaling residues, modifying the sterol-CXCR4 interaction landscape. Our study provides a molecular view of the observed mitigated GPCR signaling in the presence of oxysterols, which switched G-protein signaling from Gαi/o to Gαs class. Overall, we present an altered paradigm of GPCR signaling, where cholesterol oxidation alters the signaling outcome in aged cells.
Collapse
Affiliation(s)
- Suramya Asthana
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
- Longevity India, Indian Institute of Science, Bengaluru 560012, India
| | - Anant Verma
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Baivabi Bhattacharya
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Arnab Nath
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | | | | | - Raji R Nair
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
- Longevity India, Indian Institute of Science, Bengaluru 560012, India
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
3
|
Yakut I, Kanal Y, Aksoy A, Ozeke O, Ozcan OU, Ozen Y, Aras D. Nutritional Status Is Associated with Mortality but Not Appropriate Discharge of Implantable Cardioverter Defibrillators in Patients with Heart Failure. Diagnostics (Basel) 2025; 15:610. [PMID: 40075857 PMCID: PMC11898791 DOI: 10.3390/diagnostics15050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Objective: To investigate the predictive value of nutritional status in heart failure (HF) patients with an implantable cardioverter defibrillator (ICD), and to identify factors associated with ICD discharge and mortality. Methods: This retrospective study was conducted by analyzing data from 2017 to 2021. HF patients who underwent ICD implantation for primary prevention were included. Follow-up visits were continued until December 2022. Patients were examined based on ICD shock occurrence (ICD-A: appropriate shock), ICD non-discharge (ICD-X), and mortality. Nutritional status was assessed by the Prognostic Nutritional Index (PNI) and the Controlling Nutritional Status (CONUT) scores. Results: A total of 221 patients were included in the study, 86 of whom were in the ICD-A group (135 in the ICD-X group). Age and sex distribution were similar in these groups. The all-cause mortality rate was 20.36%. A PNI with a cut-off value of <47.25 and a CONUT score with a cut-off value of >2.5 were able to significantly predict all-cause mortality. The PNI had a greater area under the curve compared to the CONUT. Non-ischemic cardiomyopathy and high left-ventricle end-systolic diameter (ESD) were independently associated with appropriate ICD shock. Low systolic blood pressure, high ESD, low sodium, low total cholesterol, low (<47.25) PNI, and ICD shock were independently associated with all-cause mortality. Conclusions: Malnutrition appears to be associated with mortality in patients with primary-prevention ICDs, and the PNI appears to be a more useful indicator than the CONUT for determining the risk of mortality in these patients.
Collapse
Affiliation(s)
- Idris Yakut
- Department of Cardiology, Medipol İstanbul University, Istanbul 34815, Turkey; (O.U.O.); (D.A.)
| | - Yücel Kanal
- Department of Cardiology, Sivas Cumhuriyet University, Sivas 58140, Turkey;
| | - Atik Aksoy
- Department of Cardiology, Health Sciences University, Ankara City Hospital, Ankara 06800, Turkey; (A.A.); (O.O.)
| | - Ozcan Ozeke
- Department of Cardiology, Health Sciences University, Ankara City Hospital, Ankara 06800, Turkey; (A.A.); (O.O.)
| | - Ozgür Ulaş Ozcan
- Department of Cardiology, Medipol İstanbul University, Istanbul 34815, Turkey; (O.U.O.); (D.A.)
| | - Yasin Ozen
- Department of Cardiology, Selçuk University, Konya 42130, Turkey;
| | - Dursun Aras
- Department of Cardiology, Medipol İstanbul University, Istanbul 34815, Turkey; (O.U.O.); (D.A.)
| |
Collapse
|
4
|
Sil R, Chakraborti AS. Major heme proteins hemoglobin and myoglobin with respect to their roles in oxidative stress - a brief review. Front Chem 2025; 13:1543455. [PMID: 40070406 PMCID: PMC11893434 DOI: 10.3389/fchem.2025.1543455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Oxidative stress is considered as the root-cause of different pathological conditions. Transition metals, because of their redox-active states, are capable of free radical generation contributing oxidative stress. Hemoglobin and myoglobin are two major heme proteins, involved in oxygen transport and oxygen storage, respectively. Heme prosthetic group of heme proteins is a good reservoir of iron, the most abundant transition metal in human body. Although iron is tightly bound in the heme pocket of these proteins, it is liberated under specific circumstances yielding free ferrous iron. This active iron can react with H2O2, a secondary metabolite, forming hydroxyl radical via Fenton reaction. Hydroxyl radical is the most harmful free radical among all the reactive oxygen species. It causes oxidative stress by damaging lipid membranes, proteins and nucleic acids, activating inflammatory pathways and altering membrane channels, resulting disease conditions. In this review, we have discussed how heme-irons of hemoglobin and myoglobin can promote oxidative stress under different pathophysiological conditions including metabolic syndrome, diabetes, cardiovascular, neurodegenerative and renal diseases. Understanding the association of heme proteins to oxidative stress may be important for knowing the complications as well as therapeutic management of different pathological conditions.
Collapse
Affiliation(s)
| | - Abhay Sankar Chakraborti
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| |
Collapse
|
5
|
Poçan S, Karakaş L. The relationship of ulnar variance with pathologies detected by magnetic resonance imaging in patients with chronic or subacute wrist pain. PeerJ 2025; 13:e18999. [PMID: 39959834 PMCID: PMC11830363 DOI: 10.7717/peerj.18999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/24/2025] [Indexed: 02/18/2025] Open
Abstract
Background This study aims to determine whether ulnar variance (UV) types are associated with chronic or subacute ulnar-side wrist pain using 3 Tesla (T) magnetic resonance imaging (MRI), and to investigate potential relationships between UV, clinical data, and MRI-detected findings. Methods This retrospective study included patients who presented with ulnar-side wrist pain for at least one month and underwent 3T MRI between January 2020 and October 2023. All demographic and clinical data, wrist radiography, and MRI images were obtained from computerized records. The patients were classified as having neutral-UV, negative-UV, and positive-UV. Results In total, 272 patients were included in the analysis. Mean age was 40.57 ± 13.18 years and 63.60% (n = 173) of the subjects were female. Neutral UV was detected in 147 (54.04%) patients, negative UV in 106 (38.97%), and positive UV in 19 (6.99%). Patients in the negative-UV group were significantly younger than those in the neutral-UV and positive-UV groups (p = 0.013); however, the sex distribution was similar in all groups (p = 0.653). All patients with ulnar impingement were in the negative-UV group, whereas all subjects with ulnar impaction were in the positive-UV group (p < 0.001). Finally, triangular fibrocartilage complex (TFCC) ruptures were significantly more common in the positive-UV group (p = 0.023). Conclusion There is a significant relationship between UV changes and ulnar impingement syndrome, ulnar impaction syndrome, and TFCC tears, which can be easily detected by MRI. The previously reported relationships between UV, sex, and other pathologies were not supported by our findings.
Collapse
Affiliation(s)
- Süheyl Poçan
- Department of Radiology, BHTCLINIC Istanbul Tema Hospital, Istanbul, Turkey
| | - Levent Karakaş
- Department of Radiology, Gaziosmanpaşa Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
Dynarowicz-Latka P, Chachaj-Brekiesz A, Wnętrzak A, Kobierski J, Półtorak A, Lupa D, Lipiec EW. Interactions of sphingomyelin with biologically crucial side chain-hydroxylated cholesterol derivatives. J Steroid Biochem Mol Biol 2025; 245:106635. [PMID: 39547287 DOI: 10.1016/j.jsbmb.2024.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Oxysterols are interesting molecules due to their dual nature, reflecting beneficial and harmful effects on the body. An issue that still needs to be solved is how slight modification of their structure owing to the location of the additional polar group in the molecules affects their biological activity. With this in mind, we selected three side chain-hydroxylated oxysterols namely: 20(S)-hydroxycholesterol (20(S)-OH), 24(S)-hydroxycholesterol (24(S)-OH), and 27-hydroxycholesterol (27-OH), and examined their behavior in mixtures with the bioactive sphingolipid - sphingomyelin (SM). Our research was based on the Langmuir monolayer technique supplemented with molecular dynamics (MD) and microscopic observation of the films texture (Brewster angle microscopy, BAM, and atomic force microscopy, AFM). Additionally, since 20(S)-hydroxycholesterol has not been studied so far, we thoroughly characterized this oxysterol in one-component monolayers. Our studies showed differences in the interactions of the studied oxysterols and sphingomyelin. Namely, it was found that 20(S)-OH binds to SM, unlike 24(S)-OH and 27-OH, which both weakly interact with SM. This distinct behavior was interpreted within the molecular dynamics as being due to weak intermolecular interactions between 20(S)-OH molecules, which allowed easy incorporation of SM into the 20(S)-OH monolayer. In contrast, the strong oxysterol-oxysterol interactions occurring in monolayers with 24(S)-OH or 27-OH make this process more difficult. This may be important in the process of bone formation/resorption. Other aspects derived from our study are: (i) the tendency of oxysterols to incorporate into lipid rafts (leading to their modification in structure and function), as well as (ii) the formation of multilayer structures, in which oxysterols are arranged in the characteristic forms of "strings of beads", which may facilitate their transport across the membrane.
Collapse
Affiliation(s)
| | - Anna Chachaj-Brekiesz
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
| | - Anita Wnętrzak
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
| | - Jan Kobierski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biophysics, Medyczna 9, Kraków 30-688, Poland
| | - Andżelika Półtorak
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
| | - Dawid Lupa
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland
| | - Ewelina W Lipiec
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland
| |
Collapse
|
7
|
Yakut I, Dervis E. Impact of Anemia and Acquired Anemia on in-Hospital Mortality of Acute Coronary Syndrome Patients. Int J Gen Med 2024; 17:6431-6442. [PMID: 39735167 PMCID: PMC11681774 DOI: 10.2147/ijgm.s493385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024] Open
Abstract
Objective To investigate the associations of anemia-related parameters, with in-hospital mortality after acute coronary syndrome (ACS), as well as factors associated with prior anemia (PA) and hospital-acquired anemia (HAA) in patients with ACS. Methods This was a retrospective cohort study conducted between June 2021 and May 2023. The data of patients diagnosed with ACS who were hospitalized and treated in our hospital were recorded, including age and sex, smoking and comorbidity status, laboratory findings, CHA2DS2-VASc scores, prior medication use, left ventricular ejection fraction, ACS type, the synergy between percutaneous intervention with taxus drug-eluting stents and cardiac surgery (SYNTAX) scores, stent thrombosis status and mortality status. Mortality was assessed according to in-hospital death. Patients were grouped based on anemia presence (PA and HAA). Results A total of 329 patients were included in the study. Of these, 219 (66.56%) were in the no anemia group, 58 (17.63%) in the PA group, and 52 (15.81%) in the HAA group. The mean age of all participants was 61.27±12.45 years and 76.29% of them were male. 14 (4.26%) patients died during hospitalization. Multivariable logistic regression analysis had revealed that, prior coronary artery disease (OR: 3.779, 95% CI: 1.141-12.508, p=0.030), PA (OR: 7.043, 95% CI: 1.574-31.517, p = 0.011), HAA (OR: 5.857, 95% CI: 1.260-27.236, p=0.024) and high WBC (OR: 1.190, 95% CI: 1.028-1.378, p=0.020) were independently associated with the increased risk of in-hospital mortality. Conclusion Consequently, the risk of in-hospital mortality is higher in patients with a previous history of coronary artery disease, PA, HAA and high WBC, and additional precautions should be taken in these patients.
Collapse
Affiliation(s)
- Idris Yakut
- Department of Cardiology, Medipol Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Emir Dervis
- Department of Cardiology, Medipol Istanbul University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
8
|
Dervis E, Ozkan E, Yakut I, Konte HC, Hakgor A, Alyan O, Akgun T, Aras D. The Uric Acid-to-High-Density Lipoprotein Cholesterol Ratio: A New Biomarker for Predicting Arrhythmia Recurrence After Atrial Fibrillation Ablation. J Clin Med 2024; 13:7854. [PMID: 39768776 PMCID: PMC11727744 DOI: 10.3390/jcm13247854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Background: We aimed to assess the uric acid-to-high-density lipoprotein cholesterol (HDL-C) ratio (UHR) and several other parameters with respect to their performance in detecting recurrence among patients with atrial fibrillation (AF) who underwent ablation. Methods: This retrospective cohort study analyzed data from patients who underwent radiofrequency or cryoablation for paroxysmal, persistent, or long persistent AF between September 2021 and September 2023. After ablation, patients were monitored for 24 h, with an ECG Holter used for symptomatic cases. Follow-up visits occurred at 1, 3, and 12 months. Collected data included demographics, comorbidities, echocardiographic measurements, clinical data, ablation type, medication use, and a comprehensive set of laboratory findings. Results: The study included 163 patients, with AF recurrence in 39 (23.93%) patients. Mean age was 57.49 ± 11.22 years, and 59.51% of participants were male. There was no significant difference between recurrent and non-recurrent groups in terms of age or sex distribution. Univariate analysis showed that recurrent patients had significantly larger left atrium diameter, higher percentages of persistent/long AF, and elevated levels of CRP, uric acid, UHR, and uric acid-to-creatinine ratio (UCR). Logistic regression analysis revealed that high left atrium diameter, long persistent AF presence, high CRP and uric acid levels, and high UCR and UHR values greater than 15.1 were independent predictors of AF recurrence. A UHR value of >15.1 was found to predict recurrence with 61.54% sensitivity and 70.97% specificity. Conclusions: Despite low sensitivity, UHR appears to be an independent biomarker that can predict AF recurrence. Including UHR in future risk assessment tools may be beneficial to enhance their accuracy.
Collapse
Affiliation(s)
- Emir Dervis
- Department of Cardiology, Medipol University, Istanbul 34810, Türkiye; (I.Y.); (H.C.K.); (A.H.); (O.A.); (D.A.)
| | - Eyup Ozkan
- Department of Cardiology, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Türkiye; (E.O.); (T.A.)
| | - Idris Yakut
- Department of Cardiology, Medipol University, Istanbul 34810, Türkiye; (I.Y.); (H.C.K.); (A.H.); (O.A.); (D.A.)
| | - Hasan Can Konte
- Department of Cardiology, Medipol University, Istanbul 34810, Türkiye; (I.Y.); (H.C.K.); (A.H.); (O.A.); (D.A.)
| | - Aykun Hakgor
- Department of Cardiology, Medipol University, Istanbul 34810, Türkiye; (I.Y.); (H.C.K.); (A.H.); (O.A.); (D.A.)
| | - Omer Alyan
- Department of Cardiology, Medipol University, Istanbul 34810, Türkiye; (I.Y.); (H.C.K.); (A.H.); (O.A.); (D.A.)
| | - Taylan Akgun
- Department of Cardiology, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Türkiye; (E.O.); (T.A.)
| | - Dursun Aras
- Department of Cardiology, Medipol University, Istanbul 34810, Türkiye; (I.Y.); (H.C.K.); (A.H.); (O.A.); (D.A.)
| |
Collapse
|
9
|
Yigit E, Unsal S. Isoflavones obtained from red clover improve both dyslipidemia and menopausal symptoms in menopausal women: a prospective randomized placebo-controlled trial. Climacteric 2024; 27:548-554. [PMID: 39254422 DOI: 10.1080/13697137.2024.2393121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/10/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVE This study aimed to investigate the effects of red clover isoflavones on menopausal symptoms and the lipid profile in menopausal females. METHODS This study included postmenopausal women with dyslipidemia. The red clover group (n = 39) received 40 mg isoflavone red clover capsule twice daily for 6 months, while placebo (n = 36) was 40 mg starch capsule twice daily. Data were collected at baseline, 3 months and 6 months. The Menopause Rating Scale (MRS) was applied to calculate subdimension and total scores. RESULTS The two groups were similar in terms of age, MRS and lipid profile at baseline. In the red clover group, MRS scores decreased significantly at both 3 and 6 months. Similarly, total cholesterol, low-density lipoprotein cholesterol (LDL-C) and triglyceride levels decreased at both 3 months and 6 months. High-density lipoprotein cholesterol increased significantly from baseline to 3 months and 6 months. Except for LDL-C and MRS urogenital score at 3 months, the improvements were significantly in favor of red clover isoflavone treatment. CONCLUSIONS Red clover treatment for 3-6 months demonstrated significant improvements in lipid profiles and menopausal symptoms. While promising, further research is crucial to ascertain long-term safety and recommend the use of red clover isoflavones during menopause.
Collapse
Affiliation(s)
- Ece Yigit
- Department of Internal Medicine, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Saadet Unsal
- Department of Gynecology and Obstetrics, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
10
|
Ganjali S, Cardenia V, Bonciolini A, Santos RD, Al-Rasadi K, Sahebkar A. Lipidomic profiling in patients with familial hypercholesterolemia: Abnormalities in glycerolipids and oxysterols. Clin Biochem 2024; 131-132:110812. [PMID: 39197573 DOI: 10.1016/j.clinbiochem.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVES AND AIM This study aimed to identify precise biomarkers and develop targeted therapeutic strategies for preventing premature atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia (FH) by investigating the quantitative and qualitative abnormalities in the metabolic network of lipids in these patients using an advanced lipidomics platform. DESIGN & METHODS The study population comprised 18 homozygous (HoFH), 18 heterozygous (HeFH) FH patients, and 20 healthy controls. Cholesterol oxidation products (oxysterol, COPs) and main lipid classes were determined using gas chromatography-mass spectrometry. Results were expressed as percentages of total fat matter for lipid classes and percentages of total COPs for oxysterols. The principal component analysis (PCA) was also carried out, to highlight the correlation between studied parameters and groups investigated. RESULTS Patients (both HoFH and HeFH) showed lower content of free fatty acids (FFAs) and greater values of triacylglycerols (TAGs) in comparison to controls. HoFH showed lower monoacylglycerols (P<0.01) and higher free cholesterol (FC) (P<0.05) when compared to HeFH and controls. The total content of COPs ranged from 1.96 to 4.25 mg/dL, from 2.27 to 4.05 mg/dL, and from 0.79 to 4.12 mg/dL in healthy controls, HoFH and HeFH groups, respectively, with no significant differences between patients and controls. In general, the 7α-hydroxycholesterol (7α-HC) was greater than other COPs. However, no significant differences were found between the three studied groups. Moreover, an opposite trend was observed between 7α-HC and 7-ketocholesterol (7-KC). Additionally, when PCA was carried out, the first two PCs explained 92.13 % of the total variance, of which the PC1 describes 53.94 % of variance mainly correlated to TAGs, diacylglycerols (DAGs), and 7-KC. On the other hand, the PC2 was correlated primarily for FFAs, FC and esterified sterols (E-STE). CONCLUSIONS In conclusion, abnormal levels of TAGs, DAGs and 7-KC were associated with HeFH while HoFH was associated with the abnormal amount of E-STE.
Collapse
Affiliation(s)
- Shiva Ganjali
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, Australia
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Ambra Bonciolini
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Raul D Santos
- Lipid Clinic Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Khalid Al-Rasadi
- Medical Research Centre, Sultan Qaboos University, Muscat, Oman; Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Amirhossein Sahebkar
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Ozdemir DB, Karayigit A, Tekin E, Kocaturk E, Bal C, Ozer I. The Effect of Local Papaverine Use in an Experimental High-Risk Colonic Anastomosis Model: Reduced Inflammatory Findings and Less Necrosis. J Clin Med 2024; 13:5638. [PMID: 39337124 PMCID: PMC11433639 DOI: 10.3390/jcm13185638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: To assess the impact of topical papaverine administration in complete and incomplete colonic anastomosis, by examining bursting pressure, hydroxyproline concentration, collagen content, inflammation levels, inflammatory cell infiltration, neoangiogenesis, and necrosis grades. Methods: We performed an experimental study on rats, in which they were divided into the following 4 groups of 16 subjects each. Group 1 [complete anastomosis (CA) without papaverine (CA -P) group], Group 2 [CA with papaverine (CA +P) group], Group 3 [incomplete anastomosis (ICA) without papaverine (ICA -P) group], and Group 4 [ICA with papaverine (ICA +P) group]. Results: The lymphocyte infiltration score of the ICA +P3 (day 3) group was significantly higher compared to the ICA -P3 group (p = 0.018). The median Ehrlich-Hunt score (p = 0.012), inflammation score (p = 0.026), and neutrophil infiltration score (p = 0.041) of the CA +P7 (day 7) group were significantly lower than the corresponding data of the CA -P7 group. Additionally, the necrosis score of the ICA +P7 group was significantly lower than that of the ICA -P7 group (p = 0.014). Conclusions: Data from the current study reveal that, although topical papaverine seems to suppress inflammation in anastomosis tissue and reduce necrosis at 7 days, definite conclusions regarding its impact on anastomotic leak cannot be drawn without further studies investigating anastomotic wound healing and anastomotic leak, preferably with both shorter- and longer-term evaluations.
Collapse
Affiliation(s)
- Dursun Burak Ozdemir
- Department of Surgical Oncology, SBU Samsun Training and Research Hospital, 55090 Samsun, Turkey
| | - Ahmet Karayigit
- Department of Surgical Oncology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, 06200 Ankara, Turkey
| | - Emel Tekin
- Department of Pathology, Faculty of Medicine, Eskişehir Osmangazi University, 26480 Eskisehir, Turkey
| | - Evin Kocaturk
- Department of Medical Biochemistry, Faculty of Medicine, Eskişehir Osmangazi University, 26480 Eskisehir, Turkey
| | - Cengiz Bal
- Department of Biostatistics, Faculty of Medicine, Eskişehir Osmangazi University, 26480 Eskisehir, Turkey
| | - Ilter Ozer
- Department of Gastroenterology Surgery, Private Office, 06560 Ankara, Turkey
| |
Collapse
|
12
|
Truffin D, Marchand F, Chatelais M, Chêne G, Saias L, Herbst F, Lipner J, King AJ. Impact of Methylated Cyclodextrin KLEPTOSE ® CRYSMEB on Inflammatory Responses in Human In Vitro Models. Int J Mol Sci 2024; 25:9748. [PMID: 39273695 PMCID: PMC11396153 DOI: 10.3390/ijms25179748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
KLEPTOSE® CRYSMEB methylated cyclodextrin derivative displays less methylated group substitution than randomly methylated cyclodextrin. It has demonstrated an impact on atherosclerosis and neurological diseases, linked in part to cholesterol complexation and immune response, however, its impact on inflammatory cascade pathways is not clear. Thus, the impact of KLEPTOSE® CRYSMEB on various pharmacological targets was assessed using human umbilical vein endothelial cells under physiological and inflammatory conditions, followed by screening against twelve human primary cell-based systems designed to model complex human tissue and disease biology of the vasculature, skin, lung, and inflammatory tissues using the BioMAP® Diversity PLUS® panel. Finally, its anti-inflammatory mechanism was investigated on peripheral blood mononuclear cells to evaluate anti-inflammatory or pro-resolving properties. The results showed that KLEPTOSE® CRYSMEB can modulate the immune system in vitro and potentially manage vascular issues by stimulating the expression of molecules involved in the crosstalk between immune cells and other cell types. It showed anti-inflammatory effects that were driven by the inhibition of pro-inflammatory cytokine secretion and could have different impacts on different tissue types. Moreover, this cyclodextrin showed no clear impact on pro-resolving lipid mediators. Additionally, it appeared that the mechanism of action of KLEPTOSE® CRYSMEB seems to not be shared by other well-known anti-inflammatory molecules. Finally, KLEPTOSE® CRYSMEB may have an anti-inflammatory impact, which could be due to its effect on receptors such as TLR or direct complexation with LPS or PGE2, and conversely, this methylated cyclodextrin could stimulate a pro-inflammatory response involving lipid mediators and on proteins involved in communication with immune cells, probably via interaction with membrane cholesterol.
Collapse
Affiliation(s)
- Damien Truffin
- Roquette Frères, Rue de la Haute Loge, 62136 Lestrem, France
| | - Flora Marchand
- ProfileHIT, 7 Rue du Buisson, 44680 Sainte-Pazanne, France
| | | | - Gérald Chêne
- Ambiotis, 3 Can Biotech 3 r Satellites, 31400 Toulouse, France
| | - Laure Saias
- Ambiotis, 3 Can Biotech 3 r Satellites, 31400 Toulouse, France
| | - Frauke Herbst
- Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| | - Justin Lipner
- Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| | - Alastair J King
- Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| |
Collapse
|
13
|
Yigit E, Yasar S, Can M, Bayraktar Z. Gout and erectile dysfunction: Increased carotid intima-media thickness is independently associated with greater likelihood for erectile dysfunction. Arch Rheumatol 2024; 39:393-403. [PMID: 39507839 PMCID: PMC11537691 DOI: 10.46497/archrheumatol.2024.10486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 07/01/2024] [Indexed: 11/08/2024] Open
Abstract
Objectives The study aimed to compare gout patients and healthy subjects in terms of erectile dysfunction, carotid intima-media thickness (CIMT), and other variables and to investigate the relationship between CIMT and erectile dysfunction. Patients and methods This cross-sectional study was conducted with 134 male gout patients (median age: 56 years; range, 48 to 62 years) and 104 healthy males (median age: 47 years; range, 40.5 to 54.5 years) between September 2022 and June 2023. Age, comorbidities, height, weight, laboratory results, gout treatment data, insulin resistance evaluated by the homeostatic model assessment for insulin resistance, presence and severity of erectile dysfunction evaluated by the six-item International Index of Erectile Function erectile function domain (IIEF-EF), and CIMT measured by ultrasound were assessed. Results Hypertension, hyperlipidemia, greater insulin resistance, erectile dysfunction, and bilaterally increased CIMT were significantly more common in the gout group. The mean IIEF-EF score of gout patients was significantly lower than that of controls. Multivariable logistic regression revealed increased CIMT as the sole parameter independently associated with erectile dysfunction (p=0.010). When both groups were categorized into CIMT-based subsets, erectile dysfunction was present in 97.9% of patients with coexistence of gout and increased CIMT (≥0.9 mm), a significantly higher proportion compared to the other three subsets (p<0.001). Conclusion Increased CIMT was the only factor independently associated with a greater likelihood of erectile dysfunction in patients with and without gout; however, coexistence of gout and increased CIMT appears to result in a significantly elevated risk for erectile dysfunction.
Collapse
Affiliation(s)
- Ece Yigit
- Department of Internal Medicine, İstanbul Medipol University Faculty of Medicine, İstanbul, Türkiye
| | - Serdar Yasar
- Department of Emergency Medicine, İstanbul Medipol University Faculty of Medicine, İstanbul, Türkiye
| | - Meryem Can
- Department of Internal Medicine, Division of Rheumatology, İstanbul Medipol University Faculty of Medicine, İstanbul, Türkiye
| | - Zeki Bayraktar
- Department of Urology, University of Health Science, Sancaktepe Prof. Dr. İlhan Varank Training and Research Hospital, İstanbul, Türkiye
| |
Collapse
|
14
|
Al-Hassan JM, Afzal M, Oommen S, Liu YF, Khan M, Pace-Asciak C. Oxidized Cholesterol Derivatives in Fraction B Prepared from Gulf Catfish ( Arius bilineatus, Val.) Skin Regulate Calcium Response and Neutrophil Extracellular Traps (NETs) Formation. Biomedicines 2024; 12:1380. [PMID: 39061953 PMCID: PMC11274240 DOI: 10.3390/biomedicines12071380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we present in vitro actions of pure commercial preparations of oxidized and/or dehydrated metabolites of cholesterol (OS) identified in the lipid fraction of Fraction B (FB) prepared from a catfish skin preparation on calcium transients and on the formation of human neutrophil extracellular traps (NETs). These investigations are part of an ongoing effort to understand the important roles these compounds play as components of FB when FB is applied to accelerate the healing of wounds and the healing of highly infected non-healing diabetic foot ulcers, without the use of antibiotics. Our aim was to determine potential therapeutic interventions for various disease states. Our results reveal interesting findings, demonstrating specific actions of the individual compounds. Compounds 7α-hydroxy-cholesterol (S3), Cholestane-3,5,6-triol (S5), 5-cholesten-3β-ol-7-one (S8) and Cholesta-3,5 dien-7-one (S10) are inhibitory, while Cholesterol 5β,6β-epoxide (S4) and 5α-cholestane-3,6-dione (S11) activate the response for calcium influx in human neutrophils. A somewhat similar response is observed in dHL60 cell lines, where S3, S5, S7, S8, and cholesta-2,4-diene (S14) inhibit the calcium influx, although S4, S10, and S11 activate the response in this cell line. Furthermore, we observed a relationship between actions against NETosis and calcium transients. Interestingly, relative to the vehicle control, S3, Cholesta-3,5 diene (S9), and S14 appeared to significantly stimulate DNA release (NETosis), while S2, 7α-hydroxy-cholesterol (S6) and cholesta-3,5 dien-7-one (S10) caused lesser stimulation. We provide the IC50 activities for each compound tested in each assay. Calcium influx and NETs formation (NETosis) correlate with diseases exacerbation. These findings offer valuable insights into the potential therapeutic applications of individual OS for various diseases, highlighting their importance in future interventions.
Collapse
Affiliation(s)
- Jassim M. Al-Hassan
- Biological Sciences Department, Faculty of Science, Kuwait University, Kuwait City 15462, Kuwait or (J.M.A.-H.); or (M.A.); or (S.O.)
- Health Sciences Research Center, Khaldiya Campus, Abdullah Al-Salem University, Khaldiya, Kuwait City 72303, Kuwait
| | - Mohammad Afzal
- Biological Sciences Department, Faculty of Science, Kuwait University, Kuwait City 15462, Kuwait or (J.M.A.-H.); or (M.A.); or (S.O.)
- Health Sciences Research Center, Khaldiya Campus, Abdullah Al-Salem University, Khaldiya, Kuwait City 72303, Kuwait
| | - Sosamma Oommen
- Biological Sciences Department, Faculty of Science, Kuwait University, Kuwait City 15462, Kuwait or (J.M.A.-H.); or (M.A.); or (S.O.)
- Health Sciences Research Center, Khaldiya Campus, Abdullah Al-Salem University, Khaldiya, Kuwait City 72303, Kuwait
| | - Yuan Fang Liu
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G OA4, Canada; (Y.F.L.); (M.K.)
| | - Meraj Khan
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G OA4, Canada; (Y.F.L.); (M.K.)
| | - Cecil Pace-Asciak
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G OA4, Canada; (Y.F.L.); (M.K.)
- Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
15
|
Kul AN, Kaya Tuna M. Evaluation of Sarcopenia in Patients with Monoclonal Gammopathy of Undetermined Significance. J Clin Med 2024; 13:3458. [PMID: 38929987 PMCID: PMC11205029 DOI: 10.3390/jcm13123458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Background: We aimed to determine the prevalence of sarcopenia in patients with monoclonal gammopathy of undetermined significance (MGUS) and to evaluate the links between MGUS and sarcopenia. Methods: Eighty-two patients with a diagnosis of MGUS were enrolled in the study. Muscle strength was measured using the handgrip dynamometer. Physical performance was assessed by assessing gait speed over a 6-minute walking test. Muscle mass was determined using a bioelectrical impedance analyzer. Results: Sarcopenia was confirmed in 34.15% of patients. Male predominance was demonstrated in MGUS subjects with sarcopenia, particularly patients with low hand grip strength, low appendicular skeletal muscle mass (ASMM), or low ASMM index (p < 0.001, 0.013, and 0.001, respectively). Higher age and lower serum free light-chain Lambda levels were shown in MGUS patients with low muscle function scores compared to normal scores (p < 0.001, and 0.014, respectively). In addition, having a low ASMM score was related to low body mass index and high-risk group (p = 0.020, 0.033, respectively). Conclusions: We demonstrated that the frequency of sarcopenia is high in patients with MGUS. Whether sarcopenia has a possible role as a factor contributing to the pathogenesis of MGUS should be supported by further studies containing longitudinal data.
Collapse
Affiliation(s)
- Ayse Nilgun Kul
- Department of Hematology, Prof. Dr. Ilhan Varank City Hospital, Istanbul 34785, Turkey
| | - Mujgan Kaya Tuna
- Department of Family Medicine and Obesity, Kartal Dr. Lutfi Kırdar City Hospital, Istanbul 34865, Turkey;
| |
Collapse
|
16
|
Cankaya MS, Pala OO. Outcomes of Mulligan Concept Applications in Obese Individuals with Chronic Mechanical Low Back Pain: A Randomized Controlled Trial. Life (Basel) 2024; 14:754. [PMID: 38929735 PMCID: PMC11205199 DOI: 10.3390/life14060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Various treatment modalities have been employed for mechanical low back pain (MLBP), but evidence of their efficacy varies greatly. Objectıve: This randomized controlled trial aimed to assess the outcomes of Mulligan concept applications, including sustained natural apophyseal glides (SNAGS) and natural apophyseal glides (NAGS), in obese patients with MLBP. METHODS The study, conducted between January 2021 and June 2022 at a tertiary hospital, involved randomizing patients into two groups. Both groups underwent six sessions of stretching and strengthening exercises every other day. The Mulligan group received additional intervention with SNAG and NAGS techniques. Measurements were made regarding the Visual Analog Scale (VAS) score, Oswestry Disability Index (ODI) score and range of motion (ROM) for the patients' MLBP level. RESULTS Post-interventions, both groups exhibited positive changes in flexion ROM, extension ROM, right and left rotation ROM, right and left lateral flexion ROM, VAS score, and ODI score compared to pre-intervention (p < 0.001 for both groups and variables). The Mulligan group showed a higher increase in ROM and a more significant decrease in VAS and ODI scores. Conclusıons: Mulligan mobilization techniques prove significantly beneficial for enhancing ROM in all directions, reducing pain levels, and alleviating disability in obese individuals with MLBP.
Collapse
Affiliation(s)
- Muhammed Safa Cankaya
- Vocational School of Health Services, Erzincan Binali Yıldırım University, Erzincan 24002, Turkey;
| | - Omer Osman Pala
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bolu Abant İzzet Baysal University, Bolu 14030, Turkey
| |
Collapse
|
17
|
Fang Z, Liu R, Xie J, He JC. Molecular mechanism of renal lipid accumulation in diabetic kidney disease. J Cell Mol Med 2024; 28:e18364. [PMID: 38837668 PMCID: PMC11151220 DOI: 10.1111/jcmm.18364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of end stage renal disease with unmet clinical demands for treatment. Lipids are essential for cell survival; however, renal cells have limited capability to metabolize overloaded lipids. Dyslipidaemia is common in DKD patients and renal ectopic lipid accumulation is associated with disease progression. Unveiling the molecular mechanism involved in renal lipid regulation is crucial for exploring potential therapeutic targets. In this review, we focused on the mechanism underlying cholesterol, oxysterol and fatty acid metabolism disorder in the context of DKD. Specific regulators of lipid accumulation in different kidney compartment and TREM2 macrophages, a lipid-related macrophages in DKD, were discussed. The role of sodium-glucose transporter 2 inhibitors in improving renal lipid accumulation was summarized.
Collapse
Affiliation(s)
- Zhengying Fang
- Department of Nephrology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruijie Liu
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jingyuan Xie
- Department of Nephrology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - John Cijiang He
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Renal SectionJames J Peters Veterans Affair Medical CenterBronxNew YorkUSA
| |
Collapse
|
18
|
Chen J, Zhang J, Cai L, Guo L, Cai Z, Han H, Zhang W. Cholestane-3β,5α,6β-triol Induces Multiple Cell Death in A549 Cells via ER Stress and Autophagy Activation. Mar Drugs 2024; 22:174. [PMID: 38667791 PMCID: PMC11051220 DOI: 10.3390/md22040174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Cholestane-3β,5α,6β-triol (CT) and its analogues are abundant in natural sources and are reported to demonstrate cytotoxicity toward different kinds of tumor cells without a deep probe into their mechanism of action. CT is also one of the major metabolic oxysterols of cholesterol in mammals and is found to accumulate in various diseases. An extensive exploration of the biological roles of CT over the past few decades has established its identity as an apoptosis inducer. In this study, the effects of CT on A549 cell death were investigated through cell viability assays. RNA-sequencing analysis and western blot of CT-treated A549 cells revealed the role of CT in inducing endoplasmic reticulum (ER) stress response and enhancing autophagy flux, suggesting a putative mechanism of CT-induced cell-death activation involving reactive oxygen species (ROS)-mediated ER stress and autophagy. It is reported for the first time that the upregulation of autophagy induced by CT can serve as a cellular cytotoxicity response in accelerating CT-induced cell death in A549 cells. This research provides evidence for the effect of CT as an oxysterol in cell response to oxidative damage and allows for a deep understanding of cholesterol in its response in an oxidative stress environment that commonly occurs in the progression of various diseases.
Collapse
Affiliation(s)
- Jiaxi Chen
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
| | - Jieping Zhang
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
| | - Lijuan Cai
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
| | - Li Guo
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
| | - Zhenyu Cai
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
| | - Hua Han
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
| | - Wen Zhang
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
- Ningbo Institute of Marine Medicine, Peking University, 56 Kang-Da Road, Ningbo 315832, China
| |
Collapse
|
19
|
Kleiboeker B, He A, Tan M, Lu D, Hu D, Liu X, Goodarzi P, Hsu FF, Razani B, Semenkovich CF, Lodhi IJ. Adipose tissue peroxisomal lipid synthesis orchestrates obesity and insulin resistance through LXR-dependent lipogenesis. Mol Metab 2024; 82:101913. [PMID: 38458567 PMCID: PMC10950804 DOI: 10.1016/j.molmet.2024.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE Adipose tissue mass is maintained by a balance between lipolysis and lipid storage. The contribution of adipose tissue lipogenesis to fat mass, especially in the setting of high-fat feeding, is considered minor. Here we investigated the effect of adipose-specific inactivation of the peroxisomal lipid synthetic protein PexRAP on fatty acid synthase (FASN)-mediated lipogenesis and its impact on adiposity and metabolic homeostasis. METHODS To explore the role of PexRAP in adipose tissue, we metabolically phenotyped mice with adipose-specific knockout of PexRAP. Bulk RNA sequencing was used to determine transcriptomic responses to PexRAP deletion and 14C-malonyl CoA allowed us to measure de novo lipogenic activity in adipose tissue of these mice. In vitro cell culture models were used to elucidate the mechanism of cellular responses to PexRAP deletion. RESULTS Adipose-specific PexRAP deletion promoted diet-induced obesity and insulin resistance through activation of de novo lipogenesis. Mechanistically, PexRAP inactivation inhibited the flux of carbons to ethanolamine plasmalogens. This increased the nuclear PC/PE ratio and promoted cholesterol mislocalization, resulting in activation of liver X receptor (LXR), a nuclear receptor known to be activated by increased intracellular cholesterol. LXR activation led to increased expression of the phospholipid remodeling enzyme LPCAT3 and induced FASN-mediated lipogenesis, which promoted diet-induced obesity and insulin resistance. CONCLUSIONS These studies reveal an unexpected role for peroxisome-derived lipids in regulating LXR-dependent lipogenesis and suggest that activation of lipogenesis, combined with dietary lipid overload, exacerbates obesity and metabolic dysregulation.
Collapse
Affiliation(s)
- Brian Kleiboeker
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anyuan He
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Min Tan
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dongliang Lu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donghua Hu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuejing Liu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Parniyan Goodarzi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
21
|
Yammine A, Ghzaiel I, Pires V, Zarrouk A, Kharoubi O, Greige-Gerges H, Auezova L, Lizard G, Vejux A. Cytoprotective effects of α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol on 7-ketocholesterol - Induced oxiapoptophagy: Major roles of PI3-K / PDK-1 / Akt signaling pathway and glutathione peroxidase activity in cell rescue. Curr Res Toxicol 2024; 6:100153. [PMID: 38379847 PMCID: PMC10877125 DOI: 10.1016/j.crtox.2024.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
On murine N2a cells, 7-ketocholesterol induced an oxiapotophagic mode of cell death characterized by oxidative stress (reactive oxygen species overproduction on whole cells and at the mitochondrial level; lipid peroxidation), apoptosis induction (caspase-9, -3 and -7 cleavage, PARP degradation) and autophagy (increased ratio LC3-II / LC3-I). Oxidative stress was strongly attenuated by diphenyleneiodonium chloride which inhibits NAD(P)H oxidase. Mitochondrial and peroxisomal morphological and functional changes were also observed. Down regulation of PDK1 / Akt signaling pathways as well as of GSK3 / Mcl-1 and Nrf2 pathways were simultaneously observed in 7-ketocholesterol-induced oxiapoptophagy. These events were prevented by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol. The inhibition of the cytoprotection by LY-294002, a PI3-K inhibitor, demonstrated an essential role of PI3-K in cell rescue. The rupture of oxidative stress in 7-ketocholesterol-induced oxiapoptophagy was also associated with important modifications of glutathione peroxidase, superoxide dismutase and catalase activities as well as of glutathione peroxidase-1, superoxide dismutase-1 and catalase level and expression. These events were also counteracted by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol. The inhibition of the cytoprotection by mercaptosuccinic acid, a glutathione peroxidase inhibitor, showed an essential role of this enzyme in cell rescue. Altogether, our data support that the reactivation of PI3-K and glutathione peroxidase activities by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol are essential to prevent 7KC-induced oxiapoptophagy.
Collapse
Affiliation(s)
- Aline Yammine
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Vivien Pires
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Amira Zarrouk
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Omar Kharoubi
- University Oran 1 ABB: Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, Oran, Algeria
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Lizette Auezova
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| |
Collapse
|
22
|
Ghosh S, Ghzaiel I, Vejux A, Meaney S, Nag S, Lizard G, Tripathi G, Naez F, Paul S. Impact of Oxysterols in Age-Related Disorders and Strategies to Alleviate Adverse Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:163-191. [PMID: 38036880 DOI: 10.1007/978-3-031-43883-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols or cholesterol oxidation products are a class of molecules with the sterol moiety, derived from oxidative reaction of cholesterol through enzymatic and non-enzymatic processes. They are widely reported in animal-origin foods and prove significant involvement in the regulation of cholesterol homeostasis, lipid transport, cellular signaling, and other physiological processes. Reports of oxysterol-mediated cytotoxicity are in abundance and thus consequently implicated in several age-related and lifestyle disorders such as cardiovascular diseases, bone disorders, pancreatic disorders, age-related macular degeneration, cataract, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and some types of cancers. In this chapter, we attempt to review a selection of physiologically relevant oxysterols, with a focus on their formation, properties, and roles in health and disease, while also delving into the potential of natural and synthetic molecules along with bacterial enzymes for mitigating oxysterol-mediated cell damage.
Collapse
Affiliation(s)
- Shubhrima Ghosh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Imen Ghzaiel
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Faculty of Medicine, Laboratory 'Nutrition, Functional Food and Vascular Health' (LR12ES05), University of Monastir, Monastir, Tunisia
| | - Anne Vejux
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Steve Meaney
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin 7, Ireland
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Garima Tripathi
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Falal Naez
- Department of Microbiology, Vijaygarh Jyotish Ray College, University of Calcutta, Kolkata, India
| | - Srijita Paul
- Department of Microbiology, Gurudas College, Kolkata, West Bengal, India
| |
Collapse
|
23
|
Dias IHK, Shokr H. Oxysterols as Biomarkers of Aging and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:307-336. [PMID: 38036887 DOI: 10.1007/978-3-031-43883-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols derive from either enzymatic or non-enzymatic oxidation of cholesterol. Even though they are produced as intermediates of bile acid synthesis pathway, they are recognised as bioactive compounds in cellular processes. Therefore, their absence or accumulation have been shown to be associated with disease phenotypes. This chapter discusses the contribution of oxysterol to ageing, age-related diseases such as neurodegeneration and various disorders such as cancer, cardiovascular disease, diabetes, metabolic and ocular disorders. It is clear that oxysterols play a significant role in development and progression of these diseases. As a result, oxysterols are being investigated as suitable markers for disease diagnosis purposes and some drug targets are in development targeting oxysterol pathways. However, further research will be needed to confirm the suitability of these potentials.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Hala Shokr
- Manchester Pharmacy School, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Ksila M, Ghzaiel I, Sassi K, Zarrouk A, Leoni V, Poli G, Rezig L, Pires V, Meziane S, Atanasov AG, Hammami S, Hammami M, Masmoudi-Kouki O, Hamdi O, Jouanny P, Samadi M, Vejux A, Ghrairi T, Lizard G. Therapeutic Applications of Oxysterols and Derivatives in Age-Related Diseases, Infectious and Inflammatory Diseases, and Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:379-400. [PMID: 38036890 DOI: 10.1007/978-3-031-43883-7_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols, resulting from the oxidation of cholesterol, are formed either by autoxidation, enzymatically, or by both processes. These molecules, which are provided in more or less important quantities depending on the type of diet, are also formed in the body and their presence is associated with a normal physiological activity. Their increase and decrease at the cellular level and in biological fluids can have significant consequences on health due or not to the interaction of some of these molecules with different types of receptors but also because oxysterols are involved in the regulation of RedOx balance, cytokinic and non-cytokinic inflammation, lipid metabolism, and induction of cell death. Currently, various pathologies such as age-related diseases, inflammatory and infectious diseases, and several cancers are associated with abnormal levels of oxysterols. Due to the important biological activities of oxysterols, their interaction with several receptors and their very likely implications in several diseases, this review focuses on these molecules and on oxysterol derivatives, which are often more efficient, in a therapeutic context. Currently, several oxysterol derivatives are developed and are attracting a lot of interest.
Collapse
Affiliation(s)
- Mohamed Ksila
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Imen Ghzaiel
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Khouloud Sassi
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Amira Zarrouk
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- Faculty of Medicine, University of Sousse, Laboratory of Biochemistry, Sousse, Tunisia
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Desio, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia
- University of Carthage, High Institute of Food Industries, El Khadra City, Tunis, Tunisia
| | - Vivien Pires
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Smail Meziane
- Institut Européen des Antioxydants (IEA), Neuves-Maisons, France
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Sonia Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - Mohamed Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Oumaima Hamdi
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Pierre Jouanny
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, Metz, France
| | - Anne Vejux
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France.
| |
Collapse
|
25
|
Ghzaiel I, Maaloul S, Ksila M, Namsi A, Yammine A, Debbabi M, Badreddine A, Meddeb W, Pires V, Nury T, Ménétrier F, Avoscan L, Zarrouk A, Baarine M, Masmoudi-Kouki O, Ghrairi T, Abdellaoui R, Nasser B, Hammami S, Hammami M, Samadi M, Vejux A, Lizard G. In Vitro Evaluation of the Effects of 7-Ketocholesterol and 7β-Hydroxycholesterol on the Peroxisomal Status: Prevention of Peroxisomal Damages and Concept of Pexotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:437-452. [PMID: 38036892 DOI: 10.1007/978-3-031-43883-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
7-Ketocholesterol and 7β-hydroxycholesterol are most often derived from the autoxidation of cholesterol. Their quantities are often increased in the body fluids and/or diseased organs of patients with age-related diseases such as cardiovascular diseases, Alzheimer's disease, age-related macular degeneration, and sarcopenia which are frequently associated with a rupture of RedOx homeostasis leading to a high oxidative stress contributing to cell and tissue damages. On murine cells from the central nervous system (158N oligodendrocytes, microglial BV-2 cells, and neuronal N2a cells) as well as on C2C12 murine myoblasts, these two oxysterols can induce a mode of cell death which is associated with qualitative, quantitative, and functional modifications of the peroxisome. These changes can be revealed by fluorescence microscopy (apotome, confocal microscopy), transmission electron microscopy, flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and gas chromatography-coupled with mass spectrometry (GC-MS). Noteworthy, several natural molecules, including ω3 fatty acids, polyphenols, and α-tocopherol, as well as several Mediterranean oils [argan and olive oils, Milk-thistle (Sylibum marianum) and Pistacia lenticus seed oils], have cytoprotective properties and attenuate 7-ketocholesterol- and 7β-hydroxycholesterol-induced peroxisomal modifications. These observations led to the concept of pexotherapy.
Collapse
Affiliation(s)
- Imen Ghzaiel
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Faculty of Medicine, Laboratory 'Nutrition, Functional Food and Vascular Health' (LR12ES05), University of Monastir, Monastir, Tunisia
| | - Samah Maaloul
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Mohamed Ksila
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Amira Namsi
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Aline Yammine
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Meriam Debbabi
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Asma Badreddine
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Biochemistry, Neuroscience, Natural Resources and Environment, Faculty of Science and Technology, University Hassan I, Settat, Morocco
| | - Wiem Meddeb
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Vivien Pires
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Thomas Nury
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Franck Ménétrier
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Laure Avoscan
- Agroécologie, AgroSup Dijon, CNRS, INRAE, University Bourgogne Franche-Comté, Plateforme DimaCell, Dijon, France
| | - Amira Zarrouk
- Faculty of Medicine, Laboratory 'Nutrition, Functional Food and Vascular Health' (LR12ES05), University of Monastir, Monastir, Tunisia
- Faculty of Medicine, University of Sousse, Laboratory of Biochemistry, Sousse, Tunisia
| | - Mauhamad Baarine
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Raoudha Abdellaoui
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Boubker Nasser
- Laboratory of Biochemistry, Neuroscience, Natural Resources and Environment, Faculty of Science and Technology, University Hassan I, Settat, Morocco
| | - Sonia Hammami
- Faculty of Medicine, Laboratory 'Nutrition, Functional Food and Vascular Health' (LR12ES05), University of Monastir, Monastir, Tunisia
| | - Mohamed Hammami
- Faculty of Medicine, Laboratory 'Nutrition, Functional Food and Vascular Health' (LR12ES05), University of Monastir, Monastir, Tunisia
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Department of Chemistry, University Lorraine, Metz Technopôle, Metz, France
| | - Anne Vejux
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France.
| |
Collapse
|
26
|
Olivier E, Rat P. Role of Oxysterols in Ocular Degeneration Mechanisms and Involvement of P2X7 Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:277-292. [PMID: 38036885 DOI: 10.1007/978-3-031-43883-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Ocular degeneration, including cataracts, glaucoma, macular degeneration, and diabetic retinopathy, is a major public health challenge, as it affects the quality of life of millions of people worldwide and, in its advanced stages, leads to blindness. Ocular degeneration, although it can affect different parts of the eye, shares common characteristics such as oxysterols and the P2X7 receptor. Indeed, oxysterols, which are cholesterol derivatives, are associated with ocular degeneration pathogenesis and trigger inflammation and cell death pathways. Activation of the P2X7 receptor is also linked to ocular degeneration and triggers the same pathways. In age-related macular degeneration, these two key players have been associated, but further studies are needed to extrapolate this interrelationship to other ocular degenerations.
Collapse
Affiliation(s)
| | - Patrice Rat
- Université Paris Cité, CNRS, CiTCoM, Paris, France
| |
Collapse
|
27
|
Wang T, Feng W, Ju M, Yu H, Guo Z, Sun X, Yang K, Liu M, Xiao R. 27-hydroxycholesterol causes cognitive deficits by disturbing Th17/Treg balance and the related immune responses in mild cognitive impairment patients and C57BL/6J mice. J Neuroinflammation 2023; 20:305. [PMID: 38115100 PMCID: PMC10729399 DOI: 10.1186/s12974-023-02986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Cognitive impairment is associated with dysregulated immune responses. Emerging evidence indicates that Th17 cells and their characteristic cytokine-IL-17 are receiving growing interest in the pathogenesis of cognitive decline. Here, we focus on the involvement of Th17 cells in mild cognitive impairment (MCI) and the possible mechanism of cholesterol metabolite-27-hydroxycholesterol (27-OHC). METHODS 100 individuals were recruited into the nested case-control study who completed cognition assessment and the detection of oxysterols and Th17-related cytokines in serum. In addition, mice were treated with 27-OHC and inhibitors of RORγt and Foxp3 (Th17 and Treg transcription factors), and the factors involved in Th17/Treg balance and amyloidosis were detected. RESULTS Our results showed there was enhanced 27-OHC level in serum of MCI individuals. The Th17-related cytokines homeostasis was altered, manifested as increased IL-17A, IL-12p70, IL-23, GM-CSF, MIP-3α and TNF-α but decreased IL-13, IL-28A and TGF-β1. Further, in vivo experiments showed that 27-OHC induced higher immunogenicity, which increased Th17 proportion but decreased Treg cells in peripheral blood mononuclear cells (PBMCs); Th17 proportions in hippocampus, and IL-17A level in serum and brain were also higher than control mice. The fluorescence intensity of amyloid-β (Aβ) and the precursor of amyloid A amyloidosis-serum amyloid A (SAA) was increased in the brain of 27-OHC-treated mice, and worse learning and memory performance was supported by water maze test results. While by inhibiting RORγt in 27-OHC-loaded mice, Th17 proportions in both PBMCs and hippocampus were reduced, and expressions of IL-17A and TGF-β1 were down- and up-regulated, respectively, along with a decreased amyloidosis in brain and improved learning and memory decline. CONCLUSIONS Altogether, our results demonstrate that excessive 27-OHC aggravates the amyloidosis and leads to cognitive deficits by regulating RORγt and disturbing Th17/Treg balance.
Collapse
Affiliation(s)
- Tao Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Wenjing Feng
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Mengwei Ju
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Huiyan Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Zhiting Guo
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Xuejing Sun
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Kexin Yang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Miao Liu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China.
| |
Collapse
|
28
|
Ünlütürk U, Bahçecioğlu AB, Samadi A, Lay I, Bayraktar M, Dağdelen S. Glycemic variability leads to higher levels of auto-oxidized oxysterol species in patients with type 1 diabetes mellitus. J Endocrinol Invest 2023; 46:2547-2554. [PMID: 37188911 DOI: 10.1007/s40618-023-02110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE Hyperglycemia and glycemic variability (GV) are associated with oxidative stress in patients with diabetes mellitus (DM). Oxysterol species, produced by the non-enzymatic oxidation of cholesterol, are potential biomarkers of oxidative stress. This study examined the relationship between auto-oxidized oxysterols and GV in patients with type 1 DM. METHODS Thirty patients with type 1 DM using a continuous subcutaneous insulin infusion pump therapy and a healthy control group (n = 30) were included in this prospective study. A Continuous Glucose Monitoring System device was applied for 72 h. Blood samples were taken for oxysterols produced by non-enzymatic oxidation [7-ketocholesterol (7-KC) and cholestane-3β, 5α, 6β-triol (Chol-Triol)] levels at 72 h. Short-term glycemic variability parameters, mean amplitude of glycemic excursions (MAGE), the standard deviation of glucose measurements (Glucose-SD), and mean of daily differences (MODD) were calculated with continuous glucose monitoring data. HbA1c was used to evaluate glycemic control and HbA1c-SD (the SD of HbA1c over the past year) for long-term glycemic variability. RESULTS 7-KC and Chol-triol levels were significantly higher in the study group than in the control group. Strong positive correlations were found between 7-KC with MAGE(24-48 h) and Glucose-SD(24-48 h). 7-KC was positively correlated with MAGE(0-72 h) and Glucose-SD(0-72 h). No significant correlation was found between HbA1c and HbA1c -SD with oxysterol levels. The regression models showed that SD(24-48 h) and MAGE(24-48 h) predicted 7-KC levels while HbA1c did not. CONCLUSIONS Glycemic variability leads to higher levels of auto-oxidized oxysterol species in patients with type 1 DM independent of long-term glycemic control.
Collapse
Affiliation(s)
- U Ünlütürk
- Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey.
- Department of Internal Medicine, Hacettepe University, Ankara, Turkey.
| | - A B Bahçecioğlu
- Department of Internal Medicine, Hacettepe University, Ankara, Turkey
| | - A Samadi
- Department of Medical Biochemistry, School of Medicine, Hacettepe University, Ankara, Turkey
- Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe, KIST EU), Campus 7.1, 66123, Saarbrucken, Germany
| | - I Lay
- Department of Medical Biochemistry, School of Medicine, Hacettepe University, Ankara, Turkey
| | - M Bayraktar
- Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
- Department of Internal Medicine, Hacettepe University, Ankara, Turkey
| | - S Dağdelen
- Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
- Department of Internal Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
29
|
Rojas D, Benachenhou S, Laroui A, Aden AA, Abolghasemi A, Galarneau L, Irakoze TJ, Plantefeve R, Bouhour S, Toupin A, Corbin F, Fink G, Mallet PL, Çaku A. Development and validation of a liquid chromatography-tandem mass spectrometry assay to quantify plasma 24(S)-hydroxycholesterol and 27-hydroxycholesterol: A new approach integrating the concept of ion ratio. J Steroid Biochem Mol Biol 2023; 235:106408. [PMID: 37806531 DOI: 10.1016/j.jsbmb.2023.106408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Accurate quantification of 24(S)-hydroxycholesterol and 27-hydroxycholesterol holds substantial biological significance due to their involvement in pivotal cellular processes, encompassing cholesterol homeostasis, inflammatory responses, neuronal signaling, and their potential as disease biomarkers. The plasma determination of these oxysterols is challenging considering their low concentrations and similarities in terms of empirical formulae, molecular structure, and physicochemical properties across all human endogenous plasma oxysterols. To overcome these sensitivity and specificity issues, we developed and validated a quantification method using liquid chromatography coupled to a tandem mass spectrometry instrument. Validation studies were designed inspired by Clinical and Laboratory Standards Institute (CLSI) C62-A Guidelines. The linearity ranged between 20 and 300 nM for both oxysterols with limits of quantification at 20 nM and 30 nM for 24(S)-OHC and 27-OHC, respectively. Inter-day precision coefficient variations (CV) were lower than 10% for both oxysterols. An optimal separation of 25-OHC was obtained from 24(S)-OHC and 27-OHC with a resolution (Rs) > 1.25. The determination and validation of ion ratios for 24(S)-OHC and 27-OHC enabled another quality check in identifying interferents that could impact the quantification. Our developed and validated LC-MS/MS method allows consistent and reliable quantification of human plasmatic 24(S)-OHC and 27-OHC that is warranted in fundamental and clinical research projects.
Collapse
Affiliation(s)
- Daniela Rojas
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sérine Benachenhou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Asma Laroui
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Amira Abdourahim Aden
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Armita Abolghasemi
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luc Galarneau
- The Medical Physics Unit, McGill University Health Center, Montreal, QC, Canada
| | - Taratibu Janvière Irakoze
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Rosalie Plantefeve
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sophie Bouhour
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Amanda Toupin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Corbin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Fink
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Mallet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Artuela Çaku
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
30
|
Ghzaiel I, Zarrouk A, Pires V, de Barros JPP, Hammami S, Ksila M, Hammami M, Ghrairi T, Jouanny P, Vejux A, Lizard G. 7β-Hydroxycholesterol and 7-ketocholesterol: New oxidative stress biomarkers of sarcopenia inducing cytotoxic effects on myoblasts and myotubes. J Steroid Biochem Mol Biol 2023; 232:106345. [PMID: 37286110 DOI: 10.1016/j.jsbmb.2023.106345] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/21/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
Aging is a complex biological process which can be associated with skeletal muscle degradation leading to sarcopenia. The aim of this study consisted i) to determine the oxidative and inflammatory status of sarcopenic patients and ii) to clarify the impact of oxidative stress on myoblasts and myotubes. To this end, various biomarkers of inflammation (C-reactive protein (CRP), TNF-α, IL-6, IL-8, leukotriene B4 (LTB4)) and oxidative stress (malondialdehyde, conjugated dienes, carbonylated proteins and antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase) as well as oxidized derivatives of cholesterol formed by cholesterol autoxidation (7-ketocholesterol, 7β-hydroxycholesterol), were analyzed. Apelin, a myokine which contributes to muscle strength, was also quantified. To this end, a case-control study was conducted to evaluate the RedOx and inflammatory status in 45 elderly subjects (23 non-sarcopenic; 22 sarcopenic) from 65 years old and higher. SARCopenia-Formular (SARC-F) and Timed Up and Go (TUG) tests were used to distinguish between sarcopenic and non-sarcopenic subjects. By using red blood cells, plasma and/or serum, we observed in sarcopenic patients an increased activity of major antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) associated with lipid peroxidation and protein carbonylation (increased level of malondialdehyde, conjugated dienes and carbonylated proteins). Higher levels of 7-ketocholesterol and 7β-hydroxycholesterol were also observed in the plasma of sarcopenic patients. Significant differences were only observed with 7β-hydroxycholesterol. In sarcopenic patients comparatively to non-sarcopenic subjects, significant increase of CRP, LTB4 and apelin were observed whereas similar levels of TNF-α, IL-6 and IL-8 were found. The increased plasma level of 7-ketocholesterol and 7β-hydroxycholesterol in sarcopenic patients led us to study the cytotoxic effect of these oxysterols on undifferentiated (myoblasts) and differentiated (myotubes) murine C2C12 cells. With the fluorescein diacetate and sulforhodamine 101 assays, an induction of cell death was observed both on undifferentiated and differentiated cells: the cytotoxic effects were less pronounced with 7-ketocholesterol. In addition, IL-6 secretion was never detected whatever the culture conditions, TNF-α secretion was significantly increased on undifferentiated and differentiated C2C12 cells treated with 7-ketocholesterol- and 7β-hydroxycholesterol, and IL-8 secretion was increased on differentiated cells. 7-ketocholesterol- and 7β-hydroxycholesterol-induced cell death was strongly attenuated by α-tocopherol and Pistacia lentiscus L. seed oil both on myoblasts and/or myotubes. TNF-α and/or IL-8 secretions were reduced by α-tocopherol and Pistacia lentiscus L. seed oil. Our data support the hypothesis that the enhancement of oxidative stress observed in sarcopenic patients could contribute, especially via 7β-hydroxycholesterol, to skeletal muscle atrophy and inflammation via cytotoxic effects on myoblasts and myotubes. These data bring new elements to understand the pathophysiology of sarcopenia and open new perspectives for the treatment of this frequent age-related disease.
Collapse
Affiliation(s)
- Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne, 21000 Dijon, France; Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
| | - Amira Zarrouk
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia.
| | - Vivien Pires
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne, 21000 Dijon, France
| | | | - Sonia Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
| | - Mohamed Ksila
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne, 21000 Dijon, France; Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, University Tunis-El Manar, Tunis 2092, Tunisia
| | - Mohamed Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
| | - Taoufik Ghrairi
- Université de Bourgogne, Lipidomic Platform, 21000 Dijon, France
| | - Pierre Jouanny
- Geriatric Internal Medicine Department (Champmaillot), University Hospital Center, Université de Bourgogne, 21000 Dijon, France
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne, 21000 Dijon, France
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne, 21000 Dijon, France.
| |
Collapse
|
31
|
Khedr A, Khayat MT, Khayyat AN, Asfour HZ, Alsilmi RA, Kammoun AK. Accumulation of oxysterols in the erythrocytes of COVID-19 patients as a biomarker for case severity. Respir Res 2023; 24:206. [PMID: 37612691 PMCID: PMC10464166 DOI: 10.1186/s12931-023-02515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Due to the high risk of COVID-19 patients developing thrombosis in the circulating blood, atherosclerosis, and myocardial infarction, it is necessary to study the lipidome of erythrocytes. Specifically, we examined the pathogenic oxysterols and acylcarnitines in the erythrocyte homogenate of COVID-19 patients. These molecules can damage cells and contribute to the development of these diseases. METHODS This study included 30 patients and 30 healthy volunteers. The erythrocyte homogenate extract was analyzed using linear ion trap mass spectrometry combined with high-performance liquid chromatography. The concentrations of oxysterols and acylcarnitines in erythrocyte homogenates of healthy individuals and COVID-19 patients were measured. Elevated levels of toxic biomarkers in red blood cells could initiate oxidative stress, leading to a process known as Eryptosis. RESULTS In COVID-19 patients, the levels of five oxysterols and six acylcarnitines in erythrocyte homogenates were significantly higher than those in healthy individuals, with a p-value of less than 0.05. The mean total concentration of oxysterols in the red blood cells of COVID-19 patients was 23.36 ± 13.47 μg/mL, while in healthy volunteers, the mean total concentration was 4.92 ± 1.61 μg/mL. The 7-ketocholesterol and 4-cholestenone levels were five and ten times higher, respectively, in COVID-19 patients than in healthy individuals. The concentration of acylcarnitines in the red blood cell homogenate of COVID-19 patients was 2 to 4 times higher than that of healthy volunteers on average. This finding suggests that these toxic biomarkers may cause the red blood cell death seen in COVID-19 patients. CONCLUSIONS The abnormally high levels of oxysterols and acylcarnitines found in the erythrocytes of COVID-19 patients were associated with the severity of the cases, complications, and the substantial risk of thrombosis. The concentration of oxysterols in the erythrocyte homogenate could serve as a diagnostic biomarker for COVID-19 case severity.
Collapse
Affiliation(s)
- Alaa Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, 21589, Jeddah, Saudi Arabia.
| | - Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, 21589, Jeddah, Saudi Arabia
| | - Ahdab N Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, 21589, Jeddah, Saudi Arabia
| | - Hany Z Asfour
- Department of Microbiology and Medical Parasitology, Faculty of Medicine, King Abdulaziz University, P.O. Box 80200, 21589, Jeddah, Saudi Arabia
| | - Rahmah A Alsilmi
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80200, 21589, Jeddah, Saudi Arabia
| | - Ahmed K Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Bresgen N, Kovacs M, Lahnsteiner A, Felder TK, Rinnerthaler M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023; 13:912. [PMID: 37371492 PMCID: PMC10301655 DOI: 10.3390/biom13060912] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Melanie Kovacs
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Angelika Lahnsteiner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| |
Collapse
|
33
|
Yan C, Zheng L, Jiang S, Yang H, Guo J, Jiang LY, Li T, Zhang H, Bai Y, Lou Y, Zhang Q, Liang T, Schamel W, Wang H, Yang W, Wang G, Zhu ZJ, Song BL, Xu C. Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity. Cancer Cell 2023:S1535-6108(23)00142-3. [PMID: 37244259 DOI: 10.1016/j.ccell.2023.04.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 05/29/2023]
Abstract
The concept of targeting cholesterol metabolism to treat cancer has been widely tested in clinics, but the benefits are modest, calling for a complete understanding of cholesterol metabolism in intratumoral cells. We analyze the cholesterol atlas in the tumor microenvironment and find that intratumoral T cells have cholesterol deficiency, while immunosuppressive myeloid cells and tumor cells display cholesterol abundance. Low cholesterol levels inhibit T cell proliferation and cause autophagy-mediated apoptosis, particularly for cytotoxic T cells. In the tumor microenvironment, oxysterols mediate reciprocal alterations in the LXR and SREBP2 pathways to cause cholesterol deficiency of T cells, subsequently leading to aberrant metabolic and signaling pathways that drive T cell exhaustion/dysfunction. LXRβ depletion in chimeric antigen receptor T (CAR-T) cells leads to improved antitumor function against solid tumors. Since T cell cholesterol metabolism and oxysterols are generally linked to other diseases, the new mechanism and cholesterol-normalization strategy might have potential applications elsewhere.
Collapse
Affiliation(s)
- Chengsong Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Zheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shutan Jiang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haochen Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Guo
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lu-Yi Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tongzhou Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haosong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yibing Bai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Lou
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wolfgang Schamel
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weiwei Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guangchuan Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Chenqi Xu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
34
|
Feyzioglu BS, Güven CM, Avul Z. Eight-Hour Time-Restricted Feeding: A Strong Candidate Diet Protocol for First-Line Therapy in Polycystic Ovary Syndrome. Nutrients 2023; 15:nu15102260. [PMID: 37242145 DOI: 10.3390/nu15102260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
We aimed to investigate the effects of a 6-week program of 8 h time-restricted feeding (TRF) diet in polycystic ovary syndrome (PCOS), as determined by anthropometric, hormonal, metabolic profiles, and fecal calprotectin level. Thirty women diagnosed with PCOS underwent a 6-week 8 h TRF diet intervention. Age, anthropometric features (body mass index (BMI), waist-to-hip ratio (WHR)) and biochemical results were recorded. Free androgen index (FAI, defining hyperandrogenism) and the homeostatic model assessment-insulin resistance (HOMA-IR) were calculated. Baseline (pre-diet) and 6-week post-diet findings were compared. Mean age was 25.57 ± 2.67 years. BMI (p < 0.001) and WHR (p = 0.001) were found to have significantly decreased after the diet, as well as the percentage of patients defined to have hyperandrogenism (p = 0.016). Reproductive hormone levels, FAI (p < 0.001) and HOMA-IR (p < 0.001) were improved significantly. Metabolic parameters associated with glucose and lipid profiles were also significantly improved after the diet. Additionally, fecal calprotectin levels demonstrated a significant decrease from pre-diet to post-diet (p < 0.001). In conclusion, a 6-week diet intervention with 8 h TRF may be a suitable and effective intermittent fasting protocol that can be used as a first-line option in PCOS.
Collapse
Affiliation(s)
- Bihter Senem Feyzioglu
- Department of Obstetrics and Gynecology, Private Erciyes-Kartal Hospital, 38020 Kayseri, Turkey
| | - Cenk Mustafa Güven
- Department of Obstetrics and Gynecology, Izmir Private Can Hospital, 35630 Izmir, Turkey
| | - Zerrin Avul
- Department of Obstetrics and Gynecology, Private Erciyes-Kartal Hospital, 38020 Kayseri, Turkey
| |
Collapse
|
35
|
Kai T, Hirayama S, Soda S, Fuwa F, Nakagawa S, Ueno T, Hori A, Miida T. Higher concentration of 25-hydroxycholesterol in treatment-naïve patients with type 2 diabetes compared to healthy individuals. J Clin Lipidol 2023; 17:384-391. [PMID: 37149432 DOI: 10.1016/j.jacl.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Oxysterols are cholesterol oxidation derivatives with diverse biological activities. However, little is known about the oxysterol levels in treatment-naïve patients with type 2 diabetes. OBJECTIVE We utilized gas chromatography-mass spectrometry to investigate the potential association between oxysterol concentrations and type 2 diabetes and atherosclerosis in treatment-naïve patients diagnosed with type 2 diabetes. METHODS This case-control study enrolled 53 eligible patients with type 2 diabetes and 50 healthy volunteers. We compared serum oxysterol concentrations between the two groups; we examined the correlation between the oxysterol concentrations and the carotid plaque score in the type 2 diabetes group. RESULTS Univariate analysis revealed significant differences in the concentrations of oxysterols (i.e., cholesterol-5α, 6α-epoxide; cholesterol-5β, 6β-epoxide; 7β-hydroxycholesterol; and 25-hydroxycholesterol [25-HC]) and other cardiovascular risk factors between the two groups. The 25-HC concentration was almost twofold greater in the type 2 diabetes group than in the healthy volunteers (median [interquartile range]: 8.52 [6.37-11.26] vs. 4.58 [3.45-5.44] ng/mL). After adjusting for multiple covariates, such as age, body mass index, mean arterial pressure, and triglyceride, low-density lipoprotein-cholesterol, and high-density lipoprotein-cholesterol levels, only the concentration of 25-HC showed a significant association with type 2 diabetes. However, the univariate analysis failed to demonstrate any significant correlation between oxysterol concentrations and the carotid plaque score among individuals with type 2 diabetes. CONCLUSIONS The levels of various oxysterols differ between treatment-naïve patients with type 2 diabetes and healthy individuals; the 25-HC level differs the most prominently.
Collapse
Affiliation(s)
- Takahito Kai
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan; Health Care Center, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei, Tokyo 184-8501, Japan.
| | - Satoshi Soda
- Department of Endocrinology and Metabolism, Niigata City General Hospital, Shumoku 463-7, Niigata 950-1197, Japan
| | - Fumiko Fuwa
- Department of Bioanalytical Chemistry, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Akiha-ku, Niigata 956-8603, Japan
| | - Saori Nakagawa
- Department of Bioanalytical Chemistry, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Akiha-ku, Niigata 956-8603, Japan
| | - Tsuyoshi Ueno
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Atsushi Hori
- Department of Clinical Laboratory Technology, Juntendo University, Faculty of Medical Science, Hinode 6-8-1, Urayasu, Chiba 279-0013, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Clinical Laboratory Technology, Juntendo University, Faculty of Medical Science, Hinode 6-8-1, Urayasu, Chiba 279-0013, Japan
| |
Collapse
|
36
|
Harrington AW, Liu C, Phillips N, Nepomuceno D, Kuei C, Chang J, Chen W, Sutton SW, O'Malley D, Pham L, Yao X, Sun S, Bonaventure P. Identification and characterization of select oxysterols as ligands for GPR17. Br J Pharmacol 2023; 180:401-421. [PMID: 36214386 DOI: 10.1111/bph.15969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE G-protein coupled receptor 17 (GPR17) is an orphan receptor involved in the process of myelination, due to its ability to inhibit the maturation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Despite multiple claims that the biological ligand has been identified, it remains an orphan receptor. EXPERIMENTAL APPROACH Seventy-seven oxysterols were screened in a cell-free [35 S]GTPγS binding assay using membranes from cells expressing GPR17. The positive hits were characterized using adenosine 3',5' cyclic monophosphate (cAMP), inositol monophosphate (IP1) and calcium mobilization assays, with results confirmed in rat primary oligodendrocytes. Rat and pig brain extracts were separated by high-performance liquid chromatography (HPLC) and endogenous activator(s) were identified in receptor activation assays. Gene expression studies of GPR17, and CYP46A1 (cytochrome P450 family 46 subfamily A member 1) enzymes responsible for the conversion of cholesterol into specific oxysterols, were performed using quantitative real-time PCR. KEY RESULTS Five oxysterols were able to stimulate GPR17 activity, including the brain cholesterol, 24(S)-hydroxycholesterol (24S-HC). A specific brain fraction from rat and pig extracts containing 24S-HC activates GPR17 in vitro. Expression of Gpr17 during mouse brain development correlates with the expression of Cyp46a1 and the levels of 24S-HC itself. Other active oxysterols have low brain concentrations below effective ranges. CONCLUSIONS AND IMPLICATIONS Oxysterols, including but not limited to 24S-HC, could be physiological activators for GPR17 and thus potentially regulate OPC differentiation and myelination through activation of the receptor.
Collapse
Affiliation(s)
| | - Changlu Liu
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Naomi Phillips
- Janssen Research & Development, LLC, San Diego, California, USA
| | | | - Chester Kuei
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Joseph Chang
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Weixuan Chen
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Steven W Sutton
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Daniel O'Malley
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Ly Pham
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Xiang Yao
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Siquan Sun
- Janssen Research & Development, LLC, San Diego, California, USA
| | | |
Collapse
|
37
|
Zanjani BN, Samadi A, Isikhan SY, Lay I, Beyaz S, Gelincik A, Buyukozturk S, Arda N. Plasma levels of oxysterols 7-ketocholesterol and cholestane-3β, 5α, 6β-triol in patients with allergic asthma. J Asthma 2023; 60:288-297. [PMID: 35188447 DOI: 10.1080/02770903.2022.2045310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The prevalence of allergic asthma is increasing on a global scale, reflecting changes in air pollution, climatic changes, and other environmental stimulants. In allergic conditions, oxidative stress occurs as a result of immune system activation. Oxidation of cholesterol leads to the formation of oxysterols. The main purpose of the study was to compare plasma levels of two oxysterols, namely 7-ketocholesterol (7-KC) and cholestane-3β, 5α, 6β-triol (C-triol), and a lipid peroxidation product, malondialdehyde (MDA) in allergic asthma patients with those of healthy controls, in order to provide information about the involvement of lipid peroxidation in allergic asthma. Oxysterols were quantified by LC-MS/MS in plasma samples of 120 asthma patients (90 females + 30 males) and 120 healthy controls (matched by age and sex). Plasma MDA level was analyzed by a spectrophotometric method. Plasma 7-KC (39.45 ± 20.37 ng/mL) and C-triol (25.61 ± 10.13 ng/mL) levels in patients were significantly higher than in healthy subjects (17.84 ± 4.26 ng/mL and 10.00 ± 3.90 ng/mL, respectively) (P < 0.001). Plasma MDA levels were also higher in asthmatic patients (4.98 ± 1.77 nmol/mL) than in healthy controls (1.14 ± 0.31 nmol/mL) (P < 0.001). All data support that lipid peroxidation products are involved in allergic asthma. Oxysterols were quantified for the first time in allergic asthma. Since the high plasma 7-KC and C-triol levels of allergic asthma patients correlate with high IgE levels, detection of these oxysterols by LC-MS/MS may be helpful in the clinical monitoring of allergic asthma. Current data may also lead to new approaches for the prevention, diagnosis, and treatment of the disease. Supplemental data for this article is available online at at.
Collapse
Affiliation(s)
- Behnoush Nasr Zanjani
- Division of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Afshin Samadi
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe, Saarbrucken, Germany
| | - Selen Yilmaz Isikhan
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Incilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sengul Beyaz
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Asli Gelincik
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Suna Buyukozturk
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nazli Arda
- Division of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey.,Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey.,Center for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Istanbul, Turkey
| |
Collapse
|
38
|
Ghzaiel I, Nury T, Zarrouk A, Vejux A, Lizard G. Oxiapoptophagy in Age-Related Diseases. Comment on Ouyang et al. 7-Ketocholesterol Induces Oxiapoptophagy and Inhibits Osteogenic Differentiation in MC3T3-E1 Cells. Cells 2022, 11, 2882. Cells 2022; 11:cells11223612. [PMID: 36429041 PMCID: PMC9688161 DOI: 10.3390/cells11223612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Due to the increase in life span and life expectancy, which can, however, be more or less pronounced depending on the economic, social and cultural context [...].
Collapse
Affiliation(s)
- Imen Ghzaiel
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Faculty of Sciences of Tunis, University Tunis-El Manar, Tunis 2092, Tunisia
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
- Correspondence: ; Tel.: +33-3-80-39-62-56
| |
Collapse
|
39
|
Maja M, Tyteca D. Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Front Physiol 2022; 13:999883. [PMID: 36439249 PMCID: PMC9682260 DOI: 10.3389/fphys.2022.999883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Cholesterol-enriched domains are nowadays proposed to contribute to cancer cell proliferation, survival, death and invasion, with important implications in tumor progression. They could therefore represent promising targets for new anticancer treatment. However, although diverse strategies have been developed over the years from directly targeting cholesterol membrane content/distribution to adjusting sterol intake, all approaches present more or less substantial limitations. Those data emphasize the need to optimize current strategies, to develop new specific cholesterol-targeting anticancer drugs and/or to combine them with additional strategies targeting other lipids than cholesterol. Those objectives can only be achieved if we first decipher (i) the mechanisms that govern the formation and deformation of the different types of cholesterol-enriched domains and their interplay in healthy cells; (ii) the mechanisms behind domain deregulation in cancer; (iii) the potential generalization of observations in different types of cancer; and (iv) the specificity of some alterations in cancer vs. non-cancer cells as promising strategy for anticancer therapy. In this review, we will discuss the current knowledge on the homeostasis, roles and membrane distribution of cholesterol in non-tumorigenic cells. We will then integrate documented alterations of cholesterol distribution in domains at the surface of cancer cells and the mechanisms behind their contribution in cancer processes. We shall finally provide an overview on the potential strategies developed to target those cholesterol-enriched domains in cancer therapy.
Collapse
|
40
|
Rezig L, Ghzaiel I, Ksila M, Yammine A, Nury T, Zarrouk A, Samadi M, Chouaibi M, Vejux A, Lizard G. Cytoprotective activities of representative nutrients from the Mediterranean diet and of Mediterranean oils against 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity: Application to age-related diseases and civilization diseases. Steroids 2022; 187:109093. [PMID: 36029811 DOI: 10.1016/j.steroids.2022.109093] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
7-ketocholesterol and 7β-hydroxycholesterol are two oxysterols mainly formed by the autoxidation of cholesterol. These two molecules are interconvertible via specific enzymes. These two oxysterols are often observed at increased amounts in biological fluids as well as tissues and organs affected during age-related diseases and in diseases of civilization such as cardiovascular, neurodegenerative, and ocular diseases as well as type 2 diabetes and metabolic syndrome. Noteworthy, 7-ketocholesterol and 7β-hydroxycholesterol induce oxidative stress and inflammation, which are frequently observed in patients with age-related and civilization diseases. For this reason, the involvement of these two oxysterols in the pathophysiology of these diseases is widely suspected. In addition, the toxicity of these oxysterols can lead to death by oxiapoptophagy characterized by oxidative stress, apoptosis induction and autophagy criteria. To prevent, or even treat, certain age-related or civilization diseases associated with increased levels of 7-ketocholesterol and 7β-hydroxycholesterol, the identification of molecules or mixtures of molecules attenuating or inhibiting the toxic effects of these oxysterols allows to consider new treatments. In this context, many nutrients present in significant amounts in the Mediterranean diet, especially tocopherols, fatty acids, and polyphenols, have shown cytoprotective activities as well as several Mediterranean oils (argan and olive oils, milk thistle seed oil, and pistacia lentiscus seed oil). Consequently, a nutraceutical approach, rich in nutrients present in the Mediterranean diet, could thus make it possible to counteract certain age-related and civilization diseases associated with increased levels of 7-ketocholesterol and 7β-hydroxycholesterol.
Collapse
Affiliation(s)
- Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis 1080, Tunisia; University of Carthage, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia.
| | - Imen Ghzaiel
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France; University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir 5000, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, Tunis 2092, Tunisia
| | - Mohamed Ksila
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France; Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia
| | - Aline Yammine
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France; Institut Européen des Antioxydants (IEA), 1B, rue Victor de Lespinats, Neuves-Maisons 54230, France
| | - Thomas Nury
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France
| | - Amira Zarrouk
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir 5000, Tunisia; Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Department of Chemistry, University Lorraine, Metz Technopôle, Metz 57070, France
| | - Moncef Chouaibi
- University of Carthage, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia; University of Carthage, Bio-preservation and Valorization of Agricultural Products UR13-AGR 02, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia
| | - Anne Vejux
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France.
| |
Collapse
|
41
|
Kim JS, Lim H, Seo JY, Kang KR, Yu SK, Kim CS, Kim DK, Kim HJ, Seo YS, Lee GJ, You JS, Oh JS. GPR183 Regulates 7α,25-Dihydroxycholesterol-Induced Oxiapoptophagy in L929 Mouse Fibroblast Cell. Molecules 2022; 27:4798. [PMID: 35956750 PMCID: PMC9369580 DOI: 10.3390/molecules27154798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
7α,25-dihydroxycholesterol (7α,25-DHC) is an oxysterol synthesized from 25-hydroxycholesterol by cytochrome P450 family 7 subfamily B member 1 (CYP7B1) and is a monooxygenase (oxysterol-7α-hydroxylase) expressed under inflammatory conditions in various cell types. In this study, we verified that 7α,25-DHC-induced oxiapoptophagy is mediated by apoptosis, oxidative stress, and autophagy in L929 mouse fibroblasts. MTT assays and live/dead cell staining revealed that cytotoxicity was increased by 7α,25-DHC in L929 cells. Consequentially, cells with condensed chromatin and altered morphology were enhanced in L929 cells incubated with 7α,25-DHC for 48 h. Furthermore, apoptotic population was increased by 7α,25-DHC exposure through the cascade activation of caspase-9, caspase-3, and poly (ADP-ribose) polymerase in the intrinsic pathway of apoptosis in these cells. 7α,25-DHC upregulated reactive oxygen species (ROS) in L929 cells. Expression of autophagy biomarkers, including beclin-1 and LC3, was significantly increased by 7α,25-DHC treatment in L929 cells. 7α,25-DHC inhibits the phosphorylation of Akt associated with autophagy and increases p53 expression in L929 cells. In addition, inhibition of G-protein-coupled receptor 183 (GPR183), a receptor of 7α,25-DHC, using GPR183 specific antagonist NIBR189 suppressed 7α,25-DHC-induced apoptosis, ROS production, and autophagy in L929 cells. Collectively, GPR183 regulates 7α,25-DHC-induced oxiapoptophagy in L929 cells.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - HyangI Lim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Jeong-Yeon Seo
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Kyeong-Rok Kang
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Sun-Kyoung Yu
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Chun Sung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Do Kyung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Heung-Joong Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Yo-Seob Seo
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Gyeong-Je Lee
- Department of Prosthodontics, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Jae-Seek You
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Ji-Su Oh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| |
Collapse
|
42
|
Ghzaiel I, Zarrouk A, Essadek S, Martine L, Hammouda S, Yammine A, Ksila M, Nury T, Meddeb W, Tahri Joutey M, Mihoubi W, Caccia C, Leoni V, Samadi M, Acar N, Andreoletti P, Hammami S, Ghrairi T, Vejux A, Hammami M, Lizard G. Protective effects of milk thistle (Sylibum marianum) seed oil and α-tocopherol against 7β-hydroxycholesterol-induced peroxisomal alterations in murine C2C12 myoblasts: Nutritional insights associated with the concept of pexotherapy. Steroids 2022; 183:109032. [PMID: 35381271 DOI: 10.1016/j.steroids.2022.109032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022]
Abstract
Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7β-hydroxycholesterol (7β-OHC; 50 μM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100 μg/mL) as well as α-tocopherol (400 µM; reference cytoprotective agent) to counteract the toxic effects of 7β-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7β-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7β-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7β-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal β-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal β-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).
Collapse
Affiliation(s)
- Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia; Faculty of Sciences of Tunis, University Tunis-El Manar, 2092 Tunis, Tunisia
| | - Amira Zarrouk
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia; Faculty of Medicine, University of Sousse, 4000 Sousse, Tunisia.
| | - Soukaina Essadek
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco
| | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21065 Dijon, France
| | - Souha Hammouda
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia
| | - Aline Yammine
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Mohamed Ksila
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Faculty of Sciences of Tunis, University Tunis-El Manar, 2092 Tunis, Tunisia
| | - Thomas Nury
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Wiem Meddeb
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mounia Tahri Joutey
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco
| | - Wafa Mihoubi
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, B.P 1177, Université de Sfax, 3018 Sfax, Tunisia
| | - Claudio Caccia
- Laboratory of Clinical Chemistry, Hospitals of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospitals of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Department of Chemistry, University Lorraine, Metz Technopôle, 57070 Metz, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21065 Dijon, France
| | - Pierre Andreoletti
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Sonia Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia
| | - Taoufik Ghrairi
- Faculty of Sciences of Tunis, University Tunis-El Manar, 2092 Tunis, Tunisia
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mohamed Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
43
|
Benešová L, Klouda J, Bláhová E, Nesměrák K, Kočovský P, Nádvorníková J, Barták P, Skopalová J, Schwarzová-Pecková K. Non-enzymatic electrochemical determination of cholesterol in dairy products on boron-doped diamond electrode. Food Chem 2022; 393:133278. [PMID: 35653986 DOI: 10.1016/j.foodchem.2022.133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
Determination of cholesterol in food matrices is essential for quality control concerning the health of consumers. Herein, a simple electrochemical approach for cholesterol quantitation in dairy products is evaluated. The newly developed differential pulse voltammetric method using acetonitrile-perchloric acid mixture as a supporting electrolyte is statistically compared to GC-MS and HPLC-UV. Oxidation signals of cholesterol at +1.5 V and +1.4 V (vs. Ag/AgNO3 in acetonitrile) provide detection limits of 4.9 µM and 6.1 µM on boron-doped diamond and glassy carbon electrodes, respectively. A simple liquid-liquid extraction procedure from dairy products into hexane resulted in a recovery rate of (74.8 ± 3.8)%. The method provides results in close agreement (at a 95% confidence level) with GC-MS, while HPLC-UV resulted in a significant difference in estimated cholesterol concentrations for all samples. This newly developed method is a simpler, faster and cheaper alternative to instrumentally demanding MS-based methods and clearly outperforms HPLC-UV.
Collapse
Affiliation(s)
- Lenka Benešová
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8, 128 43 Prague, Czech Republic
| | - Jan Klouda
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8, 128 43 Prague, Czech Republic
| | - Eva Bláhová
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8, 128 43 Prague, Czech Republic
| | - Karel Nesměrák
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8, 128 43 Prague, Czech Republic
| | - Pavel Kočovský
- Charles University, Faculty of Science, Department of Organic Chemistry, Hlavova 8, 128 43 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
| | - Jana Nádvorníková
- Palacký University, Faculty of Science, Department of Analytical Chemistry, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Barták
- Palacký University, Faculty of Science, Department of Analytical Chemistry, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jana Skopalová
- Palacký University, Faculty of Science, Department of Analytical Chemistry, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Karolina Schwarzová-Pecková
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8, 128 43 Prague, Czech Republic.
| |
Collapse
|
44
|
Nunes VS, da Silva Ferreira G, Quintão ECR. Cholesterol metabolism in aging simultaneously altered in liver and nervous system. Aging (Albany NY) 2022; 14:1549-1561. [PMID: 35130181 PMCID: PMC8876915 DOI: 10.18632/aging.203880] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022]
Abstract
In humans, aging, triggers increased plasma concentrations of triglycerides, cholesterol, low-density lipoproteins and lower capacity of high-density lipoproteins to remove cellular cholesterol. Studies in rodents showed that aging led to cholesterol accumulation in the liver and decrease in the brain with reduced cholesterol synthesis and increased levels of cholesterol 24-hydroxylase, an enzyme responsible for removing cholesterol from the brain. Liver diseases are also related to brain aging, inducing changes in cholesterol metabolism in the brain and liver of rats. It has been suggested that late onset Alzheimer's disease is associated with metabolic syndrome. Non-alcoholic fatty liver is associated with lower total brain volume in the Framingham Heart Study offspring cohort study. Furthermore, disorders of cholesterol homeostasis in the adult brain are associated with neurological diseases such as Niemann-Pick, Alzheimer, Parkinson, Huntington and epilepsy. Apolipoprotein E (apoE) is important in transporting cholesterol from astrocytes to neurons in the etiology of sporadic Alzheimer's disease, an aging-related dementia. Desmosterol and 24S-hydroxycholesterol are reduced in ApoE KO hypercholesterolemic mice. ApoE KO mice have synaptic loss, cognitive dysfunction, and elevated plasma lipid levels that can affect brain function. In contrast to cholesterol itself, there is a continuous uptake of 27- hydroxycholesterol in the brain as it crosses the blood-brain barrier and this flow can be an important link between intra- and extracerebral cholesterol homeostasis. Not surprisingly, changes in cholesterol metabolism occur simultaneously in the liver and nervous tissues and may be considered possible biomarkers of the liver and nervous system aging.
Collapse
Affiliation(s)
- Valéria Sutti Nunes
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Bazil
| | - Guilherme da Silva Ferreira
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Bazil
| | - Eder Carlos Rocha Quintão
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Bazil
| |
Collapse
|
45
|
Poli G, Leoni V, Biasi F, Canzoneri F, Risso D, Menta R. Oxysterols: From redox bench to industry. Redox Biol 2022; 49:102220. [PMID: 34968886 PMCID: PMC8717233 DOI: 10.1016/j.redox.2021.102220] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
More and more attention is nowadays given to the possible translational application of a great number of biochemical and biological findings with the involved molecules. This is also the case of cholesterol oxidation products, redox molecules over the last years deeply investigated for their implication in human pathophysiology. Oxysterols of non-enzymatic origin, the excessive increase of which in biological fluids and tissues is of toxicological relevance for their marked pro-oxidant and pro-inflammatory properties, are increasingly applied in clinical biochemistry as molecular markers in the diagnosis and monitoring of several human and veterinary diseases. Conversely, oxysterols of enzymatic origin, the production of which is commonly under physiological regulation, could be considered and tested as promising pharmaceutical agents because of their antiviral, pro-osteogenic and antiadipogenic properties of some of them. Very recently, the quantification of oxysterols of non-enzymatic origin has been adopted in a systematic way to evaluate, monitor and improve the quality of cholesterol-based food ingredients, that are prone to auto-oxidation, as well as their industrial processing and the packaging and the shelf life of the finished food products. The growing translational value of oxysterols is here reviewed in its present and upcoming applications in various industrial fields.
Collapse
Affiliation(s)
- Giuseppe Poli
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043, Orbassano, Turin, Italy.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Desio, ASST Brianza, School of Medicine and Surgery, University of Milano Bicocca, 20126, Milan, Italy
| | - Fiorella Biasi
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043, Orbassano, Turin, Italy
| | | | - Davide Risso
- Soremartec Italia Srl, Ferrero Group, 12051, Alba, CN, Italy
| | - Roberto Menta
- Soremartec Italia Srl, Ferrero Group, 12051, Alba, CN, Italy
| |
Collapse
|
46
|
Liu Y, Yang X, Xiao F, Jie F, Zhang Q, Liu Y, Xiao H, Lu B. Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 2021; 21:738-779. [PMID: 34953101 DOI: 10.1111/1541-4337.12880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Dietary cholesterol oxidation products (COPs) are heterogeneous compounds formed during the processing and storage of cholesterol-rich foods, such as seafood, meat, eggs, and dairy products. With the increased intake of COPs-rich foods, the concern about health implications of dietary COPs is rising. Dietary COPs may exert deleterious effects on human health to induce several inflammatory diseases including atherosclerosis, neurodegenerative diseases, and inflammatory bowel diseases. Thus, knowledge regarding the effects of processing and storage conditions leading to formation of COPs is needed to reduce the levels of COPs in foods. Efficient methodologies to determine COPs in foods are also essential. More importantly, the biological roles of dietary COPs in human health and effects of phytochemicals on dietary COPs-induced diseases need to be established. This review summarizes the recent information on dietary COPs including their formation in foods during their processing and storage, analytical methods of determination of COPs, metabolic fate, implications for human health, and beneficial interventions by phytochemicals. The formation of COPs is largely dependent on the heating temperature, storage time, and food matrices. Alteration of food processing and storage conditions is one of the potent strategies to restrict hazardous dietary COPs from forming, including maintaining relatively low temperatures, shorter processing or storage time, and the appropriate addition of antioxidants. Once absorbed into the circulation, dietary COPs can contribute to the progression of several inflammatory diseases, where the absorbed dietary COPs may induce inflammation, apoptosis, and autophagy in cells in the target organs or tissues. Improved intake of phytochemicals may be an effective strategy to reduce the hazardous effects of dietary COPs.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
47
|
Ghzaiel I, Zarrouk A, Nury T, Libergoli M, Florio F, Hammouda S, Ménétrier F, Avoscan L, Yammine A, Samadi M, Latruffe N, Biressi S, Levy D, Bydlowski SP, Hammami S, Vejux A, Hammami M, Lizard G. Antioxidant Properties and Cytoprotective Effect of Pistacia lentiscus L. Seed Oil against 7β-Hydroxycholesterol-Induced Toxicity in C2C12 Myoblasts: Reduction in Oxidative Stress, Mitochondrial and Peroxisomal Dysfunctions and Attenuation of Cell Death. Antioxidants (Basel) 2021; 10:antiox10111772. [PMID: 34829643 PMCID: PMC8615043 DOI: 10.3390/antiox10111772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Aging is characterized by a progressive increase in oxidative stress, which favors lipid peroxidation and the formation of cholesterol oxide derivatives, including 7β-hydroxycholesterol (7β-OHC). This oxysterol, which is known to trigger oxidative stress, inflammation, and cell death, could contribute to the aging process and age-related diseases, such as sarcopenia. Identifying molecules or mixtures of molecules preventing the toxicity of 7β-OHC is therefore an important issue. This study consists of determining the chemical composition of Tunisian Pistacia lentiscus L. seed oil (PLSO) used in the Tunisian diet and evaluating its ability to counteract the cytotoxic effects induced by 7β-OHC in murine C2C12 myoblasts. The effects of 7β-OHC (50 µM; 24 h), associated or not with PLSO, were studied on cell viability, oxidative stress, and on mitochondrial and peroxisomal damages induction. α-Tocopherol (400 µM) was used as the positive control for cytoprotection. Our data show that PLSO is rich in bioactive compounds; it contains polyunsaturated fatty acids, and several nutrients with antioxidant properties: phytosterols, α-tocopherol, carotenoids, flavonoids, and phenolic compounds. When associated with PLSO (100 µg/mL), the 7β-OHC-induced cytotoxic effects were strongly attenuated. The cytoprotection was in the range of those observed with α-tocopherol. This cytoprotective effect was characterized by prevention of cell death and organelle dysfunction (restoration of cell adhesion, cell viability, and plasma membrane integrity; prevention of mitochondrial and peroxisomal damage) and attenuation of oxidative stress (reduction in reactive oxygen species overproduction in whole cells and at the mitochondrial level; decrease in lipid and protein oxidation products formation; and normalization of antioxidant enzyme activities: glutathione peroxidase (GPx) and superoxide dismutase (SOD)). These results provide evidence that PLSO has similar antioxidant properties than α-tocopherol used at high concentration and contains a mixture of molecules capable to attenuate 7β-OHC-induced cytotoxic effects in C2C12 myoblasts. These data reinforce the interest in edible oils associated with the Mediterranean diet, such as PLSO, in the prevention of age-related diseases, such as sarcopenia.
Collapse
Affiliation(s)
- Imen Ghzaiel
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
- Faculty of Sciences of Tunis, University Tunis-El Manar, Tunis 2092, Tunisia
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
- Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
- Correspondence: (A.Z.); (G.L.); Tel.: +216-94-837-999 or +1-212-241 9304 (A.Z.); +33-380-396-256 (G.L.)
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Michela Libergoli
- Department of Cellular, Computational and Integrative Biology (CIBio) and Dulbecco Telethon Institute, University of Trento, 38123 Trento, Italy; (M.L.); (F.F.); (S.B.)
| | - Francesca Florio
- Department of Cellular, Computational and Integrative Biology (CIBio) and Dulbecco Telethon Institute, University of Trento, 38123 Trento, Italy; (M.L.); (F.F.); (S.B.)
| | - Souha Hammouda
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
| | - Franck Ménétrier
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21065 Dijon, France;
| | - Laure Avoscan
- Agroécologie, AgroSup Dijon, CNRS, INRAE, University Bourgogne Franche-Comté, Plateforme DimaCell, 21000 Dijon, France;
| | - Aline Yammine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Department of Chemistry, University Lorraine, Metz Technopôle, 57070 Metz, France;
| | - Norbert Latruffe
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBio) and Dulbecco Telethon Institute, University of Trento, 38123 Trento, Italy; (M.L.); (F.F.); (S.B.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil; (D.L.); (S.P.B.)
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil; (D.L.); (S.P.B.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, Brazil
| | - Sonia Hammami
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Mohamed Hammami
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
- Correspondence: (A.Z.); (G.L.); Tel.: +216-94-837-999 or +1-212-241 9304 (A.Z.); +33-380-396-256 (G.L.)
| |
Collapse
|
48
|
Ghzaiel I, Sassi K, Zarrouk A, Nury T, Ksila M, Leoni V, Bouhaouala-Zahar B, Hammami S, Hammami M, Mackrill JJ, Samadi M, Ghrairi T, Vejux A, Lizard G. 7-Ketocholesterol: Effects on viral infections and hypothetical contribution in COVID-19. J Steroid Biochem Mol Biol 2021; 212:105939. [PMID: 34118414 PMCID: PMC8188774 DOI: 10.1016/j.jsbmb.2021.105939] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
7-Ketocholesterol, which is one of the earliest cholesterol oxidization products identified, is essentially formed by the auto-oxidation of cholesterol. In the body, 7-ketocholesterol is both provided by food and produced endogenously. This pro-oxidant and pro-inflammatory molecule, which can activate apoptosis and autophagy at high concentrations, is an abundant component of oxidized Low Density Lipoproteins. 7-Ketocholesterol appears to significantly contribute to the development of age-related diseases (cardiovascular diseases, age-related macular degeneration, and Alzheimer's disease), chronic inflammatory bowel diseases and to certain cancers. Recent studies have also shown that 7-ketocholesterol has anti-viral activities, including on SARS-CoV-2, which are, however, lower than those of oxysterols resulting from the oxidation of cholesterol on the side chain. Furthermore, 7-ketocholesterol is increased in the serum of moderately and severely affected COVID-19 patients. In the case of COVID-19, it can be assumed that the antiviral activity of 7-ketocholesterol could be counterbalanced by its toxic effects, including pro-oxidant, pro-inflammatory and pro-coagulant activities that might promote the induction of cell death in alveolar cells. It is therefore suggested that this oxysterol might be involved in the pathophysiology of COVID-19 by contributing to the acute respiratory distress syndrome and promoting a deleterious, even fatal outcome. Thus, 7-ketocholesterol could possibly constitute a lipid biomarker of COVID-19 outcome and counteracting its toxic effects with adjuvant therapies might have beneficial effects in COVID-19 patients.
Collapse
Affiliation(s)
- Imen Ghzaiel
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, 2092 Tunis, Tunisia.
| | - Khouloud Sassi
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University Tunis El Manar, Laboratory of Onco-Hematology (LR05ES05), Faculty of Medicine, 1007 Tunis, Tunisia.
| | - Amira Zarrouk
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University of Sousse, Faculty of Medicine, Sousse, Tunisia.
| | - Thomas Nury
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| | - Mohamed Ksila
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMoleecules, LR18ES03, Department of Biologie, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospitals of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Molecules, Pasteur Institute of Tunis & University of Tunis El Manar, 1002 Tunis, Tunisia.
| | - Sonia Hammami
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia.
| | - Mohamed Hammami
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia.
| | - John J Mackrill
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland.
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Dept of Chemistry, Univ. Lorraine, Metz Technopôle, Metz, France.
| | - Taoufik Ghrairi
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMoleecules, LR18ES03, Department of Biologie, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Anne Vejux
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| | - Gérard Lizard
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| |
Collapse
|
49
|
Han M, Lee D, Lee SH, Kim TH. Oxidative Stress and Antioxidant Pathway in Allergic Rhinitis. Antioxidants (Basel) 2021; 10:antiox10081266. [PMID: 34439514 PMCID: PMC8389336 DOI: 10.3390/antiox10081266] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/18/2023] Open
Abstract
Oxidative stress is the cause and consequence of redox metabolism in various physiological and pathological conditions. Understanding the molecular pathways underlying oxidative stress and the role of antioxidants could serve as the key to helping treat associated diseases. Allergic rhinitis is a condition that deteriorates the daily function and quality of life of afflicted individuals and is associated with a high socioeconomic burden and prevalence. Recent studies have focused on the role of oxidative stress and antioxidants in allergic rhinitis. This review discusses animal and clinical studies on oxidative markers and the potential therapeutic dietary antioxidants for allergic rhinitis.
Collapse
|
50
|
Nury T, Yammine A, Ghzaiel I, Sassi K, Zarrouk A, Brahmi F, Samadi M, Rup-Jacques S, Vervandier-Fasseur D, Pais de Barros J, Bergas V, Ghosh S, Majeed M, Pande A, Atanasov A, Hammami S, Hammami M, Mackrill J, Nasser B, Andreoletti P, Cherkaoui-Malki M, Vejux A, Lizard G. Attenuation of 7-ketocholesterol- and 7β-hydroxycholesterol-induced oxiapoptophagy by nutrients, synthetic molecules and oils: Potential for the prevention of age-related diseases. Ageing Res Rev 2021; 68:101324. [PMID: 33774195 DOI: 10.1016/j.arr.2021.101324] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Age-related diseases for which there are no effective treatments include cardiovascular diseases; neurodegenerative diseases such as Alzheimer's disease; eye disorders such as cataract and age-related macular degeneration; and, more recently, Severe Acute Respiratory Syndrome (SARS-CoV-2). These diseases are associated with plasma and/or tissue increases in cholesterol derivatives mainly formed by auto-oxidation: 7-ketocholesterol, also known as 7-oxo-cholesterol, and 7β-hydroxycholesterol. The formation of these oxysterols can be considered as a consequence of mitochondrial and peroxisomal dysfunction, leading to increased in oxidative stress, which is accentuated with age. 7-ketocholesterol and 7β-hydroxycholesterol cause a specific form of cytotoxic activity defined as oxiapoptophagy, including oxidative stress and induction of death by apoptosis associated with autophagic criteria. Oxiaptophagy is associated with organelle dysfunction and in particular with mitochondrial and peroxisomal alterations involved in the induction of cell death and in the rupture of redox balance. As the criteria characterizing 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity are often simultaneously observed in major age-related diseases (cardiovascular diseases, age-related macular degeneration, Alzheimer's disease) the involvement of these oxysterols in the pathophysiology of the latter seems increasingly likely. It is therefore important to better understand the signalling pathways associated with the toxicity of 7-ketocholesterol and 7β-hydroxycholesterol in order to identify pharmacological targets, nutrients and synthetic molecules attenuating or inhibiting the cytotoxic activities of these oxysterols. Numerous natural cytoprotective compounds have been identified: vitamins, fatty acids, polyphenols, terpenes, vegetal pigments, antioxidants, mixtures of compounds (oils, plant extracts) and bacterial enzymes. However, few synthetic molecules are able to prevent 7-ketocholesterol- and/or 7β-hydroxycholesterol-induced cytotoxicity: dimethyl fumarate, monomethyl fumarate, the tyrosine kinase inhibitor AG126, memantine, simvastatine, Trolox, dimethylsufoxide, mangafodipir and mitochondrial permeability transition pore (MPTP) inhibitors. The effectiveness of these compounds, several of which are already in use in humans, makes it possible to consider using them for the treatment of certain age-related diseases associated with increased plasma and/or tissue levels of 7-ketocholesterol and/or 7β-hydroxycholesterol.
Collapse
|