1
|
Schaunaman N, Cervantes D, Ferrington DA, Chu HW. Degradation of IL-4Ralpha by Immunoproteasome: implication in airway type 2 inflammation and hyperresponsiveness. Front Immunol 2025; 16:1501898. [PMID: 40170850 PMCID: PMC11958175 DOI: 10.3389/fimmu.2025.1501898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Immunoproteasome (IP) is induced by pro-inflammatory stimuli such as interferon gamma to regulate inflammation and immunity. Asthma patients with airway type 2 high inflammation (e.g., IL-13) demonstrate more eosinophils and airway hyperresponsiveness (AHR) with less interferon gamma. The role of IP in regulating airway eosinophilic inflammation and AHR has not been investigated. Methods This study was aimed to determine how IP regulates type 2 inflammation and AHR using LMP7 (a subunit of IP) deficient mouse lungs, precision-cut lung slices (PCLS), and cultured human airway epithelial cells treated with IL-13 in the absence or presence of an IP inhibitor ONX-0914 or exogenous IP. Results LMP7 KO mouse lungs had significantly more IL-4Rα protein expression than the wildtype (WT) mice. Following IL-13 treatment in PCLS, LMP7 KO mice had significantly more airway contraction than WT mice, which was coupled with increased eotaxin-2 levels. IP inhibition by ONX-0914 in IL-13 treated human airway epithelial cells resulted in significantly more IL-4Rα protein expression and eotaxin-3 release. IP inhibition in human PCLS significantly increased AHR. Conclusion Collectively, these data demonstrated that IP promotes degradation of IL-4Rα, while inhibits type 2 inflammation and AHR. Enhancement of IP expression or activity may serve as an alternative approach to reduce the severity of type 2 inflammation and AHR.
Collapse
Affiliation(s)
| | - Diana Cervantes
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Deborah A. Ferrington
- Doheny Eye Institute, Pasadena, CA and University of California, Los Angeles, Los Angeles, CA, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
2
|
Qi S. Inhibition of FABP4 Ameliorates IL-13-Induced Inflammatory Response and Barrier Dysfunction in Nasal Mucosal Epithelial Cells through the Regulation of Ferroptosis. Cell Biochem Biophys 2025; 83:977-987. [PMID: 39306825 DOI: 10.1007/s12013-024-01530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 03/03/2025]
Abstract
This study was conducted to investigate the role and the mechanism of fatty acid-binding protein 4 (FABP4) in allergic rhinitis (AR). To induce AR in vitro, human nasal epithelial cells (hNECs) were treated by interleukin (IL)-13. Real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot were used to detect FABP4 expression. Enzyme-linked immunosorbent assay (ELISA) was used to detect the inflammatory level while inflammation-related proteins were detected by western blot. Immunofluorescence (IF) assay was used to detect mucin-5AC (MUC5AC) and zonula occludens-1 (ZO-1) level. The expressions of tight junction proteins were detected by western blot. Lipid reactive oxygen species (ROS) was detected using a BODIPY 581/591 C11 kit and iron level was detected by corresponding assay kits. Ferroptosis-related proteins were detected by western blot. With the goal of investigating the mechanism of FABP4 associated with ferroptosis, cells were pretreated by ferroptosis inducer erastin (30 mM) and rescue experiments were implemented. In this work, FABP4 expression was increased in hNECs treated by IL-13. After FABP4 was knocked down, the inflammation, mucus production, barrier dysfunction and ferroptosis induced by IL-13 in hNECs were all repressed. Nevertheless, erastin pre-treatment partially counteracted the protective role of FABP4 depletion against inflammation, mucus production and barrier dysfunction in IL-13-treated hNECs. In summary, FABP4 deficiency ameliorated IL-13-induced inflammatory response and barrier dysfunction in nasal mucosal epithelial cells through the regulation of ferroptosis.
Collapse
Affiliation(s)
- Shanshan Qi
- Department of Allergy, Wuhan No.1 Hospital, Wuhan, 430022, China.
| |
Collapse
|
3
|
Chen J, Chen S, Gong G, Yang F, Chen J, Wang Y. Inhibition of IL-4/STAT6/IRF4 signaling reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2023; 121:110554. [PMID: 37385124 DOI: 10.1016/j.intimp.2023.110554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Previous studies have shown that epithelial-to-mesenchymal transition (EMT) in nasal epithelial cells is critical for tissue remodeling of chronic rhinosinusitis with nasal polyps (CRSwNP). However, the precise mechanism underlying the EMT remains poorly understood. This study aimed to investigate the role of interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (STAT6)/interferon regulatory factor 4 (IRF4) signaling pathway on EMT in eosinophilic CRSwNP. METHODS We performed quantitative real-time polymerase chain reaction, immunohistochemistry, immunofluorescent staining, and Western blotting to evaluate the expression of STAT6, IRF4, and EMT markers in sinonasal mucosal samples. Effects of IL-4-induced EMT were determined using primary human nasal epithelial cells (hNECs) from patients with eosinophilic CRSwNP. Wound scratch assay, cell morphology, Western blotting, and immunofluorescence cytochemistry were performed to evaluate EMT, and EMT-related markers. Next, human THP-1 monocytic cells were stimulated by phorbolate-12-myristate-13-acetate to differentiate into M0 and were subsequently polarized into M1 with lipopolysaccharide and interferon-γ, M2 with IL-4. The markers of the macrophage phenotype were assessed by Western blotting. The co-culture system was built to explore the interaction between macrophages (THP-1 cells) and hNECs. After co-culture with M2 macrophages, EMT-related markers of primary hNECs were evaluated by immunofluorescence cytochemistry and Western blotting. Enzymelinked immunosorbent assays were used to detect transforming growth factor beta 1 (TGF-β1) in THP-1-derived supernatants. RESULTS STAT6 and IRF4 mRNA and protein expression were significantly upregulated in both eosinophilic and noneosinophilic nasal polyps compared with control tissues. The expression of STAT6 and IRF4 in eosinophilic nasal polyps was higher than those in noneosinophilic nasal polyps. STAT6 and IRF4 were not only expressed in epithelial cells but also in macrophages. The number of STAT6+CD68+ cells and IRF4+CD68+ cells in eosinophilic nasal polyps was higher than those in noneosinophilic nasal polyps and control tissues. EMT was enhanced in eosinophilic CRSwNP compared to the healthy controls and noneosinophilic CRSwNP. IL-4-stimulated human nasal epithelial cells exhibited EMT characteristics. The hNECs co-cultured with M2 macrophages demonstrated high levels of EMT-related markers. The TGF-β1 level was significantly induced by IL-4 and elevated (M2) rather than control macrophages. The inhibition of STAT6 by AS1517499 reduced the expression of IRF4 in epithelial cells and macrophages and counteracted IL-4-induced EMT in epithelial cells. CONCLUSION In eosinophilic nasal polyps, IL-4 induces STAT6 signaling to upregulate IRF4 expression in epithelial cells and macrophages. IL-4 promotes EMT of hNECs through the STAT6/IRF4 signaling pathway. IL-4-induced M2 macrophages enhanced EMT of hNECs. Inhibition of STAT6 can downregulate the expression of IRF4 and suppress the EMT process, thus providing a new strategy for the treatment of nasal polyps.
Collapse
Affiliation(s)
- Jingcai Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Otorhinolaryngology, The First Affiliated Hospital, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoqing Gong
- Department of Otorhinolaryngology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan 430022, China
| | - Fan Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianjun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanjun Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Jung MA, Song HK, Jo K, Lee A, Hwang YH, Ji KY, Jung DH, Cai M, Lee JY, Pyun BJ, Kim T. Gleditsia sinensis Lam. aqueous extract attenuates nasal inflammation in allergic rhinitis by inhibiting MUC5AC production through suppression of the STAT3/STAT6 pathway. Biomed Pharmacother 2023; 161:114482. [PMID: 36921533 DOI: 10.1016/j.biopha.2023.114482] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Allergic rhinitis (AR), a chronic respiratory inflammatory disease, is among the most common chronic diseases reported worldwide. Mucus hypersecretion is a critical feature of AR pathogenesis. Although the Gleditsia sinensis extract has several beneficial effects on human health, its effects on allergic inflammation have not yet been investigated. In this study, we examined the effects of G. sinensis aqueous extract (GSAE) on nasal inflammation in an ovalbumin (OVA)-induced AR mouse model. GSAE was administered orally for 1 week and then the clinical nasal symptoms were evaluated. The levels of histamine, OVA-specific immunoglobulin (Ig) E, and interleukin (IL)-13 were measured in the serum using an enzyme-linked immunosorbent assay (ELISA). Inflammatory cells were then counted in the nasal lavage fluid (NALF) and histopathology in the nasal epithelium was evaluated. STAT3/STAT6 phosphorylation was examined in primary human nasal epithelial cells (HNEpCs) using western blot analysis. Oral administration of GSAE to OVA-induced AR mice alleviated nasal clinical symptoms and reduced OVA-specific immunoglobulin E, interleukin (IL)-13, and histamine levels. The accumulation of eosinophils in nasal lavage fluid, nasal mucosa, mast cells, goblet cells, and mucin 5AC (MUC5AC) in the nasal epithelium was also inhibited by GSAE. Treatment with GSAE inhibited the production of MUC5AC in IL-4/IL-13-stimulated primary human nasal epithelial cells through the signal transducer and activator of transcription (STAT)3/STAT6 signaling pathway. These results indicated that GSAE reduces nasal inflammation suggesting that it is a potential treatment option for AR.
Collapse
Affiliation(s)
- Myung-A Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Hyun-Kyung Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Kyuhyung Jo
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Ami Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Youn-Hwan Hwang
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea; Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology (KIT), 30 Baekhak1-gil, Jeongeup-si 56212, the Republic of Korea
| | - Dong Ho Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Mudan Cai
- KM Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Bo-Jeong Pyun
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea.
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea.
| |
Collapse
|
5
|
Yamaya M, Kikuchi A, Sugawara M, Nishimura H. Anti-inflammatory effects of medications used for viral infection-induced respiratory diseases. Respir Investig 2023; 61:270-283. [PMID: 36543714 PMCID: PMC9761392 DOI: 10.1016/j.resinv.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
Respiratory viruses like rhinovirus, influenza virus, respiratory syncytial virus, and coronavirus cause several respiratory diseases, such as bronchitis, pneumonia, pulmonary fibrosis, and coronavirus disease 2019, and exacerbate bronchial asthma, chronic obstructive pulmonary disease, bronchiectasis, and diffuse panbronchiolitis. The production of inflammatory mediators and mucin and the accumulation of inflammatory cells have been reported in patients with viral infection-induced respiratory diseases. Interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, granulocyte-macrophage colony-stimulating factor, and regulated on activation normal T-cell expressed and secreted are produced in the cells, including human airway and alveolar epithelial cells, partly through the activation of toll-like receptors, nuclear factor kappa B and p44/42 mitogen-activated protein kinase. These mediators are associated with the development of viral infection-induced respiratory diseases through the induction of inflammation and injury in the airway and lung, airway remodeling and hyperresponsiveness, and mucus secretion. Medications used to treat respiratory diseases, including corticosteroids, long-acting β2-agonists, long-acting muscarinic antagonists, mucolytic agents, antiviral drugs for severe acute respiratory syndrome coronavirus 2 and influenza virus, macrolides, and Kampo medicines, reduce the production of viral infection-induced mediators, including cytokines and mucin, as determined in clinical, in vivo, or in vitro studies. These results suggest that the anti-inflammatory effects of these medications on viral infection-induced respiratory diseases may be associated with clinical benefits, such as improvements in symptoms, quality of life, and mortality rate, and can prevent hospitalization and the exacerbation of chronic obstructive pulmonary disease, bronchial asthma, bronchiectasis, and diffuse panbronchiolitis.
Collapse
Affiliation(s)
- Mutsuo Yamaya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan; Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Akiko Kikuchi
- Department of Kampo and Integrative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Mitsuru Sugawara
- Department of Otolaryngology, Tohoku Kosai Hospital, Sendai 980-0803, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| |
Collapse
|
6
|
Nagai T, Terada N, Fujii M, Nagata Y, Nakahara K, Mukai S, Okasho K, Kamiyama Y, Akamatsu S, Kobayashi T, Iida K, Denawa M, Hagiwara M, Inoue T, Ogawa O, Kamoto T. Identification of the α2 chain of interleukin-13 receptor as a potential biomarker for predicting castration resistance of prostate cancer using patient-derived xenograft models. Cancer Rep (Hoboken) 2023; 6:e1701. [PMID: 36806727 PMCID: PMC9939991 DOI: 10.1002/cnr2.1701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/30/2022] [Accepted: 07/31/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Several treatment strategies use upfront chemotherapy or androgen receptor axis-targeting therapies for metastatic prostate cancer. However, there are no useful biomarkers for selecting appropriate patients who urgently require these treatments. METHODS Novel patient-derived xenograft (PDX) castration-sensitive and -resistant models were established and gene expression patterns were comprehensively compared. The function of a gene highly expressed in the castration-resistant models was evaluated by its overexpression in LNCaP prostate cancer cells. Protein expression in the tumors and serum of patients was examined by immunohistochemistry and ELISA, and correlations with castration resistance were analyzed. RESULTS Expression of the α2 chain of interleukin-13 receptor (IL13Rα2) was higher in castration-resistant PDX tumors. LNCaP cells overexpressing IL13Rα2 acquired castration resistance in vitro and in vivo. In tissue samples, IL13Rα2 expression levels were significantly associated with castration-resistant progression (p < 0.05). In serum samples, IL13Rα2 levels could be measured in 5 of 28 (18%) castration-resistant prostate cancer patients. CONCLUSION IL13Rα2 was highly expressed in castration-resistant prostate cancer PDX models and was associated with the castration resistance of prostate cancer cells. It might be a potential tissue and serum biomarker for predicting castration resistance in prostate cancer patients.
Collapse
Affiliation(s)
- Takahiro Nagai
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| | - Naoki Terada
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| | - Masato Fujii
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| | - Yasuhisa Nagata
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| | - Kozue Nakahara
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| | - Shoichiro Mukai
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| | - Kosuke Okasho
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Yuki Kamiyama
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Shusuke Akamatsu
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takashi Kobayashi
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Kei Iida
- Medical Research Support Center, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masatsugu Denawa
- Medical Research Support Center, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takahiro Inoue
- Department of Nephro‐Urologic Surgery and AndrologyMie University Graduate School of MedicineTsuJapan
| | - Osamu Ogawa
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Toshiyuki Kamoto
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| |
Collapse
|
7
|
Moarbes V, Gaudreault V, Karkout R, Labrie L, Zhao H, Shan J, Fixman ED. STAT6-IP-Dependent Disruption of IL-33-Mediated ILC2 Expansion and Type 2 Innate Immunity in the Murine Lung. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2192-2202. [PMID: 36426982 DOI: 10.4049/jimmunol.2100688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
Recent interest has focused on innate-type cytokines as promoters of type 2 immunity and targets for drug development in asthma. IL-33 induces production of IL-4 and/or IL-13, which is associated with STAT6-dependent responses in innate cells, including group 2 innate lymphoid cells (ILC2s), macrophages, and eosinophils. Our published data show that STAT6-immunomodulatory peptide (STAT6-IP), an immunomodulatory peptide designed to inhibit the STAT6 transcription factor, reduces induction of Th2 adaptive immunity in respiratory syncytial virus infection and asthma models. Nevertheless, the mechanism of STAT6-IP-dependent inhibition has remained obscure. In this study, we demonstrate that STAT6-IP reduced IL-33-induced type 2 innate lung inflammation. Specifically, our data show that STAT6-IP reduced recruitment and activation of eosinophils as well as polarization of alternatively activated macrophages. Decreases in these cells correlated with reduced levels of IL-5 and IL-13 as well as several type 2 chemokines in the bronchoalveolar lavage fluid. STAT6-IP effectively inhibited expansion of ILC2s as well as the number of IL-5- and IL-13-producing ILC2s. Our data suggest that STAT6-IP effectively disrupts IL-13-dependent positive feedback loops, initiated by ILC2 activation, to suppress IL-33-induced type 2 innate immunity in the murine lung.
Collapse
Affiliation(s)
- Vanessa Moarbes
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Véronique Gaudreault
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rami Karkout
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Lydia Labrie
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Hedi Zhao
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jichuan Shan
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Elizabeth D Fixman
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Otaru S, Lawrence DA. Autism: genetics, environmental stressors, maternal immune activation, and the male bias in autism. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022. [DOI: 10.37349/ent.2022.00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/20/2022] [Indexed: 01/05/2025]
Abstract
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders (NDD) characterized by deficits in three domains: impairments in social interactions, language, and communication, and increased stereotyped restrictive/repetitive behaviors and interests. The exact etiology of ASD remains unknown. Genetics, gestational exposure to inflammation, and environmental stressors, which combine to affect mitochondrial dysfunction and metabolism, are implicated yet poorly understood contributors and incompletely delineated pathways toward the relative risk of ASD. Many studies have shown a clear male bias in the incidence of ASD and other NDD. In other words, being male is a significant yet poorly understood risk factor for the development of NDD. This review discusses the link between these factors by looking at the current body of evidence. Understanding the link between the multiplicity of hits—from genes to environmental stressors and possible sexual determinants, contributing to autism susceptibility is critical to developing targeted interventions to mitigate these risks.
Collapse
Affiliation(s)
- Sarah Otaru
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, New York 12144, USA
| | - David A. Lawrence
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, New York 12144, USA;Clinical and Experimental Immunology, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| |
Collapse
|
9
|
Watchorn D, Menzies-Gow A. Investigational approaches for unmet need in severe asthma. Expert Rev Respir Med 2022; 16:661-678. [PMID: 35786146 DOI: 10.1080/17476348.2022.2096593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Molecular antibodies (mAb) targeting inflammatory mediators are effective in T2-high asthma. The recent approval of Tezepelumab presents a novel mAb therapeutic option for those with T2-low asthma. AREAS COVERED We discuss a number of clinical problems pertinent to severe asthma that are less responsive to current therapies, such as persistent airflow obstruction and airway hyperresponsiveness. We discuss selected investigational approaches, including a number of candidate therapies under investigation in two adaptive platform trials currently in progress, with particular reference to this unmet need, as well as their potential in phenotypes such as neutrophilic asthma and obese asthma, which may or may not overlap with a T2-high phenotype. EXPERT OPINION The application of discrete targeting approaches to T2-low molecular phenotypes, including those phenotypes in which inflammation may not arise within the airway, has yielded variable results to date. Endotypes associated with T2-low asthma are likely to be diverse but await validation. Investigational therapeutic approaches must, likewise, be diverse if the goal of remission is to become attainable for all those living with asthma.
Collapse
Affiliation(s)
- David Watchorn
- Lung Division, Royal Brompton & Harefield Hospitals,London,UK
| | | |
Collapse
|
10
|
Georas SN, Wright RJ, Ivanova A, Israel E, LaVange LM, Akuthota P, Carr TF, Denlinger LC, Fajt ML, Kumar R, O'Neal WK, Phipatanakul W, Szefler SJ, Aronica MA, Bacharier LB, Burbank AJ, Castro M, Crotty Alexander L, Bamdad J, Cardet JC, Comhair SAA, Covar RA, DiMango EA, Erwin K, Erzurum SC, Fahy JV, Gaffin JM, Gaston B, Gerald LB, Hoffman EA, Holguin F, Jackson DJ, James J, Jarjour NN, Kenyon NJ, Khatri S, Kirwan JP, Kraft M, Krishnan JA, Liu AH, Liu MC, Marquis MA, Martinez F, Mey J, Moore WC, Moy JN, Ortega VE, Peden DB, Pennington E, Peters MC, Ross K, Sanchez M, Smith LJ, Sorkness RL, Wechsler ME, Wenzel SE, White SR, Zein J, Zeki AA, Noel P. The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: An overview of Network organization, procedures, and interventions. J Allergy Clin Immunol 2022; 149:488-516.e9. [PMID: 34848210 PMCID: PMC8821377 DOI: 10.1016/j.jaci.2021.10.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
Asthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation-prone asthma, who contribute disproportionately to disease burden. Extensive deep phenotyping has revealed the heterogeneous nature of severe asthma and identified distinct disease subtypes. A current challenge in the field is to translate new and emerging knowledge about different pathobiologic mechanisms in asthma into patient-specific therapies, with the ultimate goal of modifying the natural history of disease. Here, we describe the Precision Interventions for Severe and/or Exacerbation-Prone Asthma (PrecISE) Network, a groundbreaking collaborative effort of asthma researchers and biostatisticians from around the United States. The PrecISE Network was designed to conduct phase II/proof-of-concept clinical trials of precision interventions in the population with severe asthma, and is supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health. Using an innovative adaptive platform trial design, the PrecISE Network will evaluate up to 6 interventions simultaneously in biomarker-defined subgroups of subjects. We review the development and organizational structure of the PrecISE Network, and choice of interventions being studied. We hope that the PrecISE Network will enhance our understanding of asthma subtypes and accelerate the development of therapeutics for severe asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY.
| | | | - Anastasia Ivanova
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Elliot Israel
- Department of Medicine, Divisions of Pulmonary & Critical Care Medicine & Allergy & Immunology, Brigham & Women's Hospital, Harvard Medical School, Boston, Mass
| | - Lisa M LaVange
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Praveen Akuthota
- Pulmonary Division, Department of Medicine, University of California-San Diego, La Jolla, Calif
| | - Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Merritt L Fajt
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, Pa
| | | | - Wanda K O'Neal
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Stanley J Szefler
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Mark A Aronica
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Allison J Burbank
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Mario Castro
- University of Kansas School of Medicine, Kansas City, Mo
| | - Laura Crotty Alexander
- Pulmonary Division, Department of Medicine, University of California-San Diego, La Jolla, Calif
| | - Julie Bamdad
- Division of Lung Diseases, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Md
| | | | | | | | | | - Kim Erwin
- Institute for Healthcare Delivery Design, University of Illinois at Chicago, Chicago, Ill
| | | | - John V Fahy
- University of California, San Francisco School of Medicine, San Francisco, Calif
| | | | - Benjamin Gaston
- Wells Center for Pediatric Research, Indiana University, Indianapolis, Ind
| | - Lynn B Gerald
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | | | - Daniel J Jackson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - John James
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Nicholas J Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, Calif
| | - Sumita Khatri
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - John P Kirwan
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, La
| | - Monica Kraft
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Andrew H Liu
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Mark C Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, the Johns Hopkins University, Baltimore, Md
| | - M Alison Marquis
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Fernando Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Jacob Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, La
| | - Wendy C Moore
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - James N Moy
- Rush University Medical Center, Chicago, Ill
| | - Victor E Ortega
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - David B Peden
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Michael C Peters
- University of California, San Francisco School of Medicine, San Francisco, Calif
| | - Kristie Ross
- The Cleveland Clinic, Cleveland, Ohio; UH Rainbow Babies and Children's Hospitals, Cleveland, Ohio
| | - Maria Sanchez
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | | | - Ronald L Sorkness
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Michael E Wechsler
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, Pa
| | - Steven R White
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Joe Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, Calif
| | - Patricia Noel
- Division of Lung Diseases, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Md
| |
Collapse
|
11
|
Yang X, Liu P, Zhao X, Yang C, Li B, Liu Y, Liu Y. Sulforaphane inhibits cytokine-stimulated chemokine and adhesion molecule expressions in human corneal fibroblasts: Involvement of the MAPK, STAT, and NF-κB signaling pathways. Exp Eye Res 2022; 216:108946. [PMID: 35038457 DOI: 10.1016/j.exer.2022.108946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022]
Abstract
Chemokines and adhesion molecules are major inflammatory mediators of chronic and recurrent vernal keratoconjunctivitis (VKC). Sulforaphane (SFN) is a natural plant extract that is known to have anti-inflammatory and antioxidant properties. SFN is demonstrated to be effective against a variety of human diseases. The current investigation examines the effects and the molecular mechanisms of SFN on cytokine-induced human corneal fibroblasts (HCFs) expression of adhesion molecules and chemokines. HCFs were exposed to both interleukin (IL)-4 and tumor necrosis factor (TNF)-α in the absence or presence of SFN treatment. The levels of thymus- and activation-regulated chemokine (TARC) and eotaxin-1 in culture supernatants were evaluated using enzyme-linked immunosorbent assay (ELISA). Reverse transcription-polymerase chain reaction analysis (RT-PCR) enabled quantification of mRNA levels of vascular cell adhesion molecule (VCAM)-1, eotaxin-1, and TARC along with cytokine receptors. An immunoblotting assay was used to evaluate the activities of VCAM-1, nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), signal transducer and activator of transcription factor (STAT)6 pathways, along with the expression of the cytokine receptors including IL-4 receptor (R)α, IL-13Rα1, TNFRI, as well as TNFRII. SFN inhibited TARC and eotaxin-1 release in HCFs stimulated by TNF-α and IL-4 in a manner dependent on dose and time. SFN suppressed transcriptions of TARC, eotaxin-1, and VCAM-1. Furthermore, the mRNA and protein expression levels of IL-4Rα, TNFRI, and TNFRII were also attenuated by SFN exposure, however, those of IL-13Rα1 remained unaffected. In addition, SFN downregulated the expression of VCAM-1 and the phosphorylation of MAPKs, IκBα, and STAT6. These results suggest that SFN inhibited cytokine-stimulated TARC, eotaxin-1 secretion as well as VCAM-1 expression in HCFs, with these effects likely occurring as a result of cytokine receptor inhibition and attenuation of MAPK, NF-κB, and STAT6 signaling. SFN may therefore have therapeutic potential in VKC treatment.
Collapse
Affiliation(s)
| | | | | | | | - Binhui Li
- Department of Ophthalmology, PR China
| | - Ye Liu
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, PR China.
| | - Yang Liu
- Department of Ophthalmology, PR China.
| |
Collapse
|
12
|
Han NR, Moon PD, Nam SY, Ko SG, Park HJ, Kim HM, Jeong HJ. TSLP up-regulates inflammatory responses through induction of autophagy in T cells. FASEB J 2022; 36:e22148. [PMID: 34997949 DOI: 10.1096/fj.202101447r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), a type I cytokine belonging to the IL-2 cytokine family, promotes Th2-mediated inflammatory responses. The aim of this study is to investigate whether TSLP increases inflammatory responses via induction of autophagy using a murine T cell lymphoma cell line, EL4 cells, and lipopolysaccharide (LPS)-injected mice. TSLP increased expression levels of autophagy-related factors, such as Beclin-1, LC3-II, p62, Atg5, and lysosome associated membrane protein 1/2, whereas these factors increased by TSLP disappeared by neutralization of TSLP in EL4 cells. TSLP activated JAK1/JAK2/STAT5/JNK/PI3K, while the blockade of JAK1/JAK2/STAT5/JNK/PI3K signaling pathways reduced the expression levels of Beclin-1, LC3-II, and p62 in TSLP-stimulated EL4 cells. In addition, TSLP simultaneously increased levels of inflammatory cytokines via induction of autophagy by activation of JAK1/JAK2/STAT5/JNK/PI3K signaling pathways. In an LPS-induced acute liver injury (ALI) mouse model, exogenous TSLP increased expression levels of Beclin-1 and LC3-II, whereas functional deficiency of TSLP by TSLP siRNA resulted in lower expression of Beclin-1, LC3-II, and inflammatory cytokines, impairing their ability to form autophagosomes in ALI mice. Thus, our findings show a new role of TSLP between autophagy and inflammatory responses. In conclusion, regulating TSLP-induced autophagy may be a potential therapeutic strategy for inflammatory responses.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Science & Technology, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
13
|
Wei H, Xu L, Sun P, Xing H, Zhu Z, Liu J. Activation of STAT6 by intranasal allergens correlated with the development of eosinophilic chronic rhinosinusitis in a mouse model. Int J Immunopathol Pharmacol 2022; 36:3946320221109529. [PMID: 35726645 PMCID: PMC9218454 DOI: 10.1177/03946320221109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eosinophilic chronic rhinosinusitis (ECRS) is a chronic inflammatory disease characterized by prominent eosinophilic infiltration along with a T-helper-2 (Th2) response. It has been well documented that signal transducer and activator of transcription 6 (STAT6) is a nuclear transcription factor that mediates Th2-type immunity and is implicatory of STAT1 and STAT3 in the pathogenesis of allergic airway diseases. However, little is known about the association between STATs and ECRS. Here, we explored the relationship between STAT1, STAT3, and/or STAT6 and eosinophilic inflammation accompanied by Th2-type immunity in a mouse model of ECRS. An ovalbumin (OVA)-staphylococcal enterotoxin B (SEB)-induced ECRS murine model was first established. The mucosal histological alterations were determined using hematoxylin and eosin staining. The number of eosinophils in peripheral blood was measured using a blood cell analyzer. The cytokine (IL-4, IL-5, IL17 A and IFN-γ) expression levels in the sinonasal mucosa and total and OVA-specific IgE from serum were measured using ELISA. Then, the protein levels of STAT1, STAT3, STAT6, phosphorylated STAT1 (p-STAT1), p-STAT3, p-STAT6, T-box expressed in T-cells (T-bet), GATA binding protein 3 (GATA-3), and retinoic acid receptor-related orphan receptor γ (RORγt) in the sinonasal mucosa were examined by immunohistochemical staining or Western blotting. Local administration of OVA combined with SEB (OVA + SEB) induced multiple polyp-like lesions, accompanied by prominent eosinophilic infiltration in the sinonasal mucosa. The OVA- and OVA+SEB-treated groups showed significantly higher eosinophil counts from peripheral blood and total and OVA-specific IgE levels from serum than those in the PBS- and SEB-treated groups. The levels of p-STAT6 were markedly increased by OVA + SEB exposure, as well as GATA-3, IL-4, and IL-5, but did not affect STAT6, p-STAT1, p-STAT3, T-bet, RORγt, IFN-γ, or IL-17A. Furthermore, an eosinophil count in the sinonasal mucosa showed a positive correlation with the level of p-STAT6 in the ECRS mouse model. Signal transducer and activator of transcription 6 signaling could be activated in the OVA+SEB-induced ECRS model and might be a crucial signal transducer in the development of Th2-skewed ECRS.
Collapse
Affiliation(s)
- Hongqi Wei
- Department of Otorhinolaryngology, 74566The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Otorhinolaryngology, 105860The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Longjiang Xu
- Department of Pathology, 105860The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Sun
- Department of Otorhinolaryngology, 74566The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongyu Xing
- Department of Otorhinolaryngology, 105860The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengwen Zhu
- Department of Otorhinolaryngology, 105860The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jisheng Liu
- Department of Otorhinolaryngology, 74566The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Zhang M, Duffen JL, Nocka KH, Kasaian MT. IL-13 Controls IL-33 Activity through Modulation of ST2. THE JOURNAL OF IMMUNOLOGY 2021; 207:3070-3080. [PMID: 34789557 DOI: 10.4049/jimmunol.2100655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
IL-33 is a multifunctional cytokine that mediates local inflammation upon tissue damage. IL-33 is known to act on multiple cell types including group 2 innate lymphoid cells (ILC2s), Th2 cells, and mast cells to drive production of Th2 cytokines including IL-5 and IL-13. IL-33 signaling activity through transmembrane ST2L can be inhibited by soluble ST2 (sST2), which acts as a decoy receptor. Previous findings suggested that modulation of IL-13 levels in mice lacking decoy IL-13Rα2, or mice lacking IL-13, impacted responsiveness to IL-33. In this study, we used Il13 -/- mice to investigate whether IL-13 regulates IL-33 activity by modulating the transmembrane and soluble forms of ST2. In Il13 -/- mice, the effects of IL-33 administration were exacerbated relative to wild type (WT). Il13 -/- mice administered IL-33 i.p. had heightened splenomegaly, more immune cells in the peritoneum including an expanded ST2L+ ILC2 population, increased eosinophilia in the spleen and peritoneum, and reduced sST2 in the circulation and peritoneum. In the spleen, lung, and liver of mice given IL-33, gene expression of both isoforms of ST2 was increased in Il13 -/- mice relative to WT. We confirmed fibroblasts to be an IL-13-responsive cell type that can regulate IL-33 activity through production of sST2. This study elucidates the important regulatory activity that IL-13 exerts on IL-33 through induction of IL-33 decoy receptor sST2 and through modulation of ST2L+ ILC2s.
Collapse
Affiliation(s)
- Melvin Zhang
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| | - Jennifer L Duffen
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| | - Karl H Nocka
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| | - Marion T Kasaian
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| |
Collapse
|
15
|
Bee Venom Prevents Mucin 5AC Production through Inhibition of AKT and SPDEF Activation in Airway Epithelia Cells. Toxins (Basel) 2021; 13:toxins13110773. [PMID: 34822557 PMCID: PMC8619940 DOI: 10.3390/toxins13110773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
IL-13 induces mucus metaplasia, which causes airway obstruction in asthma. Bee venom (BV) and its components have shown anti-inflammatory effects in allergic diseases such as atopic dermatitis and asthma. In this study, we investigated the effect of BV on IL-13-induced mucus metaplasia through activation of the signal transducer and activator of transcription (STAT6), and regulation of SAM-pointed domain containing Ets-like factor (SPDEF) and forkhead box A2 (FOXA2) in the airway epithelia cell line A549. In A549 cells, BV (1.0 µg/mL) inhibited IL-13 (10 ng/mL)-induced AKT phosphorylation, increase in SPDEF protein expression, and decrease in FOXA2 protein expression—but not STAT6 phosphorylation. BV also prevented the IL-13-induced increase in mucin 5AC (MUC5AC) mRNA and protein expression. Moreover, we observed that inhibition of phosphoinositide 3 kinase (PI3K)/AKT using LY294002 (50 µM) could reverse the alterations in FOXA2 and MUC5AC expression -by IL-13 and BV. However, LY294002 did not affect IL-13- and BV-induced changes in SPDEF expression. These findings indicate that BV inhibits MUC5AC production through the regulation of SPDEF and FOXA2. The inhibition of MUC5AC production through FOXA2 is mediated via the suppression of PI3K/AKT activation by BV. BV may be helpful in the prevention of mucus metaplasia in asthma.
Collapse
|
16
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
17
|
Lee JW, Chun W, Lee HJ, Min JH, Kim SM, Seo JY, Ahn KS, Oh SR. The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases. Cells 2021; 10:897. [PMID: 33919784 PMCID: PMC8070705 DOI: 10.3390/cells10040897] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages play an important role in the innate and adaptive immune responses of organ systems, including the lungs, to particles and pathogens. Cumulative results show that macrophages contribute to the development and progression of acute or chronic inflammatory responses through the secretion of inflammatory cytokines/chemokines and the activation of transcription factors in the pathogenesis of inflammatory lung diseases, such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), ARDS related to COVID-19 (coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)), allergic asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). This review summarizes the functions of macrophages and their associated underlying mechanisms in the development of ALI, ARDS, COVID-19-related ARDS, allergic asthma, COPD, and IPF and briefly introduces the acute and chronic experimental animal models. Thus, this review suggests an effective therapeutic approach that focuses on the regulation of macrophage function in the context of inflammatory lung diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Ji-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| |
Collapse
|
18
|
Kariyawasam HH. Chronic rhinosinusitis with nasal polyps: mechanistic insights from targeting IL-4 and IL-13 via IL-4Rα inhibition with dupilumab. Expert Rev Clin Immunol 2020; 16:1115-1125. [PMID: 33148074 DOI: 10.1080/1744666x.2021.1847083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a complex immunological upper airway disease . CRSwNP, particularly in Caucasians, often has a more distinct T2 inflammatory endotype. IL-4 and IL-13 are key upstream cytokines that help establish and sustain T2 inflammation as well as strongly influencing tissue remodeling. They have a shared signaling receptor IL-4Rα. An attractive and novel therapeutic approach is by way of blocking IL-4 and IL-13 simultaneously via inhibiting IL-4Rα. Dupilumab is a murine derived fully human monoclonal inhibitory antibody directed against IL-4Rα which thereby prevents IL-4/IL-13 cell signaling. Following successful Phase 3 studies dupilumab has become the first licensed biologic for treating CRSwNP. Areas covered: This review covers the essential immunology of CRSwNP in the context of IL-4 and IL-13 signaling via IL-4Rα. The potential mechanisms by which therapeutic improvements occur with dupilumab are evaluated. IL-4, IL-13, dupilumab and rhinosinusitis were used as the search terms in PubMed and Google Scholar through to August 2020. Expert commentary: Dupilumab has the potential to transform the care for patients with CRSwNP. It is essential that further studies are conducted promptly to identify disease-specific biomarkers and clinical traits to guide clinicians on best patient selection thereby ensuring optimal dupilumab outcomes.
Collapse
Affiliation(s)
- Harsha H Kariyawasam
- Rhinology Section, Specialist Allergy and Clinical Immunology, Royal National ENT Hospital, London University College London Hospital NHS Foundation Trust, University College London , London, UK
| |
Collapse
|
19
|
Kutuk MO, Tufan E, Gokcen C, Kilicaslan F, Karadag M, Mutluer T, Yektas C, Coban N, Kandemir H, Buber A, Coskun S, Acikbas U, Guler G, Topal Z, Celik F, Altintas E, Giray A, Aka Y, Kutuk O. Cytokine expression profiles in Autism spectrum disorder: A multi-center study from Turkey. Cytokine 2020; 133:155152. [DOI: 10.1016/j.cyto.2020.155152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022]
|
20
|
Lei H, Sun Y, Quan S. IL-37 relieves allergic inflammation by inhibiting the CCL11 signaling pathway in a mouse model of allergic rhinitis. Exp Ther Med 2020; 20:3114-3121. [PMID: 32855679 PMCID: PMC7444388 DOI: 10.3892/etm.2020.9078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic rhinitis (AR) is the allergic inflammation of immune cells in the nasal mucosa, caused by an abnormal T-cell response. Interleukin (IL)-37, a unique member of the IL-1 family with broad anti-inflammatory roles in various autoimmune diseases, participates in the immune regulation of AR. However, the regulatory mechanism of IL-37 in AR has remained elusive. In the present study, a mouse model of AR was established by treating mice with ovalbumin (OVA). Following systemic administration of IL-37, the effects of the cytokine on allergic symptoms were evaluated. The nasal mucosal infiltration of eosinophils was assessed by histopathological observation. The serum and nasal lavage fluid concentrations of immunoglobulin (Ig)E, IgG1, IgG2a, interferon (IFN)-γ, IL-4, IL-13, IL-17a and C-C motif cytokine ligand (CCL)11 were determined by ELISA. Treatment with OVA resulted in allergic symptoms, including enhanced eosinophil infiltration in the nasal mucosa, increased thickness of the nasal mucosa and increased levels of IgE, IgG1, IgG2a, IL-4, IL-13, IL-17a and CCL11, but the level of IFN-γ was indicated to decrease. After IL-37 treatment, the frequency of nasal rubbing and sneezing was reduced compared with that in the OVA group. IL-37 administration also decreased the number of eosinophils in the nasal mucosa and the thickness of the nasal mucosa, as well as the serum and nasal lavage fluid levels of IgE, IgG1, IgG2a, IL-4, IL-13, IL-17a and CCL11, but the level of IFN-γ decreased. In addition, the OVA-induced increases in histamine and substance P levels were reversed by IL-37 administration. CCL11 expression levels were correlated with the expression levels of IFN-γ, IL-4, IL-13, IL-17a, histamine and substance P. In conclusion, IL-37 alleviated the OVA-induced allergic symptoms and allergic inflammatory response by reducing the serum cytokine levels via decreasing CCL11 expression levels in mice.
Collapse
Affiliation(s)
- Huijia Lei
- Department of Otorhinolaryngology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Yiqing Sun
- Department of Otorhinolaryngology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Shiming Quan
- Department of Otorhinolaryngology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| |
Collapse
|
21
|
Aryl Hydrocarbon Receptor Activation Downregulates IL-33 Expression in Keratinocytes via Ovo-Like 1. J Clin Med 2020; 9:jcm9030891. [PMID: 32214018 PMCID: PMC7141508 DOI: 10.3390/jcm9030891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Background: IL-33, one of the IL-1 superfamily cytokines, has been shown to be associated with pruritus and inflammation in atopic dermatitis (AD). Furthermore, IL-33 production derived from keratinocytes reportedly has a crucial role in the development of AD; however, the mechanism of IL-33 expression has not been fully understood. Methods: We analyzed IL-33 expression in normal human epidermal keratinocytes (NHEKs) treated with IL-4. Results: IL-4 induced the upregulation of IL-33 expression in NHEKs. Based on the findings 1) that ovo-like 1 (OVOL1), a susceptible gene of AD, upregulates filaggrin (FLG) and loricrin (LOR) expression in NHEKs and 2) that reduced expression of FLG and LOR leads to production of IL-1 superfamily cytokines, we examined the involvement of OVOL1 in IL-33 expression in NHEKs. Knockdown of OVOL1 induced upregulation of IL-33 expression. Moreover, because Glyteer, an activator of aryl hydrocarbon receptor (AHR), reportedly upregulates OVOL1 expression, we examined whether treatment with Glyteer inhibited IL-33 expression in NHEKs. Treatment with Glyteer inhibited IL-4-induced upregulation of IL-33 expression, which was canceled by knockdown of either AHR or OVOL1. Conclusions: Activation of the AHR-OVOL1 axis inhibits IL-4-induced IL-33 expression, which could be beneficial for the treatment of AD.
Collapse
|
22
|
Biologics for chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2020; 145:725-739. [DOI: 10.1016/j.jaci.2020.01.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
|
23
|
Wang X, Sun J, Tan J, Fang P, Chen J, Yuan W, Chen H, Liu Y. Effect of sIL-13Rα2-Fc on the progression of rat tail intervertebral disc degeneration. J Orthop Surg Res 2019; 14:386. [PMID: 31775818 PMCID: PMC6880576 DOI: 10.1186/s13018-019-1361-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The incidence of degenerative disc disease caused by intervertebral disc injury is increasing annually, seriously affecting the quality of life of patients and increasing the disease burden on society. The mechanisms of intervertebral disc degeneration include changes in extracellular matrix (ECM) deposition and tissue fibrosis. sIL-13Rα2-Fc potently inhibits interleukin (IL)-13, as well as blocks related cell signaling pathways and inhibits fibrosis in certain tissues. However, it is unknown whether sIL-13Rα2-Fc inhibits fibrosis in injured intervertebral discs and slows the process of degeneration. We hypothesized that sIL-13Rα2-Fc delays the progression of intervertebral disc degeneration by inhibiting intervertebral disc fibrosis and improving ECM deposition. METHODS A rat tail intervertebral disc degeneration model was established. Pathological changes in rat intervertebral disc tissue were observed by hematoxylin and eosin staining and Masson staining. Glycosaminoglycan (GAG), chondroitin sulfate (CS), keratan sulfate (KS), and hyaluronic acid (HA) contents were quantitatively analyzed by enzyme-linked immunosorbent assay. Type I and type II collagen expression levels were analyzed by reverse transcription-PCR and western blotting. RESULTS Hematoxylin and eosin staining and Masson staining revealed annulus fibrosus rupture, disordered arrangement, decreased nucleus pulposus tissue, and decreased collagen fiber in the rat intervertebral disc tissue. Following treatment with sIL-13Rα2-Fc, pathological changes in the rat intervertebral disc were reduced. Rat intervertebral disc tissue showed decreased GAG, CS-KS, and (HA) contents, increased type I collagen levels, and decreased type II collagen levels in degenerated intervertebral discs. sIL-13Rα2-Fc intervention increased the contents of GAG, CS, KS, and HA; inhibited the expression of type I collagen; and promoted the expression of type II collagen. CONCLUSION These results demonstrate that intervertebral disc degeneration is associated with tissue fibrosis. sIL-13Rα2-Fc can regulate type I and type II collagen expression levels by increasing GAG, CS, KS, and HA contents, thereby slowing the progression of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedics, First Clinical Medical College of Lanzhou University, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China. .,Changzheng Orthopedics Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Junhao Sun
- Department of Orthopedics, First Clinical Medical College of Lanzhou University, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jianshi Tan
- Department of Orthopedics, First Clinical Medical College of Lanzhou University, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Pengzhong Fang
- Department of Orthopedics, First Clinical Medical College of Lanzhou University, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jinlei Chen
- Department of Orthopedics, First Clinical Medical College of Lanzhou University, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Wen Yuan
- Changzheng Orthopedics Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Huajiang Chen
- Changzheng Orthopedics Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yang Liu
- Changzheng Orthopedics Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
24
|
Wu DM, Zheng ZH, Wang S, Wen X, Han XR, Wang YJ, Shen M, Fan SH, Zhang ZF, Shan Q, Li MQ, Hu B, Zheng YL, Chen GQ, Lu J. Retracted: The role of HOTAIR-induced downregulation of microRNA-126 and interleukin-13 in the development of bronchial hyperresponsiveness in neonates. J Cell Physiol 2019; 234:16400-16411. [PMID: 30790266 DOI: 10.1002/jcp.28309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Long noncoding RNAs, including HOTAIR, are involved in the pathogenesis of a wide range of diseases. This study aimed to explore the mechanism underlying the involvement of HOTAIR in neonatal bronchial hyperresponsiveness (BHR). A total of 105 newborns were recruited in this study to collect their peripheral blood mononuclear cell and serum samples, which were then divided into different genotype groups based on the genotypes of rs4759314, rs874945, and rs7958904. The real-time polymerase chain reaction, western blot analysis, computational analyses, and luciferase assays were performed to establish the regulatory relationships between the HOTAIR, microRNA-126 (miR-126), and interleukin-13 (IL-13). The level of HOTAIR, miR-126, and IL-13 among rs4759314 AA, AG, and GG groups, as well as among rs874945 GG, AG, and AA groups was similar. However, the level of HOTAIR was increased in the rs7958904 GG group, accompanied by a decreased level of miR-126 and IL-13. In addition, the level of airway responsiveness was comparable among rs4759314 AA, AG, and GG groups, as well as among rs874945 GG, AG, and AA groups. However, the airway responsiveness in the groups rs7958904 CG and CC was much stronger than that of the GG group. We also demonstrated that, by directly binding to miR-126, HOTAIR reduced the expression of miR-126, which in turn decreased the expression of IL-13. In summary, we demonstrated the role of HOTAIR-induced downregulation of miR-126 and IL-13 in the development of BHR in neonates.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zi-Hui Zheng
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Gui-Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu, School of Life Science, College of Health Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
25
|
Wang T, Wang W, Wang Q, Xie R, Landay A, Chen D. The E3 ubiquitin ligase CHIP in normal cell function and in disease conditions. Ann N Y Acad Sci 2019; 1460:3-10. [PMID: 31414713 DOI: 10.1111/nyas.14206] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/30/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
In eukaryotic cells, ubiquitination and proteasomal degradation is an essential mechanism for regulating protein functions. For example, critical signaling proteins play their roles by controlling different cellular functions. Once a signaling protein has been activated, its activity needs to be quickly downregulated by different mechanisms, including ubiquitination/proteasome regulation. Failure to regulate the activity or expression levels of these proteins may cause human diseases. Protein ubiquitination involves a cascade of biochemical processes and requires three types of ubiquitin enzymes: E1 activating enzyme, E2 conjugating enzyme, and E3 ligase. Among these enzymes, E3 ubiquitin ligases play a specific role in recognizing specific protein substrates. There are several structurally diverse groups of E3 ubiquitin ligases in eukaryotic cells, and one type of these E3 ligases is the U-box ubiquitin ligases. Carboxyl terminus of HSP70-interacting protein (CHIP) is a member of a family of U-box E3 ligases. It plays critical roles in multiple organs and tissues in the body. In this review article, we provide an update on some of the most recent discoveries about CHIP in normal physiological function and in disease.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois.,Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wenbo Wang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Qishan Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Rong Xie
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Alan Landay
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
26
|
Beng H, Su H, Wang S, Kuai Y, Hu J, Zhang R, Liu F, Tan W. Differential effects of inhaled R- and S-terbutaline in ovalbumin-induced asthmatic mice. Int Immunopharmacol 2019; 73:581-589. [PMID: 31234092 DOI: 10.1016/j.intimp.2019.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
Inhaled terbutaline is commercially available β2-agonist which consists of equivalent amount of R- and S-enantiomer. In this study, we aimed to investigate the effects of single enantiomers of terbutaline and its racemate in an ovalbumin (OVA)-induced mouse model of asthma via. seven days inhalation and the potential mechanisms involved. In a standard experimental asthma model, BALB/c mice were sensitized and challenged with OVA. R-terbutaline (R-ter), S-terbutaline (S-ter) or racemic terbutaline (rac-ter) was given via. nose-only inhalation for one week. Airway responsiveness to methacholine was measured by the plethysmography in conscious mice. Eosinophils counts in blood and bronchoalveolar (BAL) fluid were determined. The OVA-sIgE in plasma and inflammatory cytokines and mediators in BAL fluid or lung tissue were analyzed by ELISA, qRT-PCR or western blotting. Airway inflammation and remodeling were evaluated with hematoxylin and eosin (HE), periodic acid-Schiff (PAS), and Masson staining. Drug distribution and deposition after inhalation were determined by LC-MS/MS. Our data showed that R-ter efficiently ameliorated asthma responses, including airway hyperresponsiveness, eosinophils influx and IL-5 in BALF, plasma OVA-sIgE and significantly reduced pulmonary inflammation, peribronchial smooth muscle layer thickness, goblet cell hyperplasia, and deposition of collagen fibers, as well as downregulation of p38 MAPK phosphorylation and NF-κB expression. Racemic mixture exhibited diminished effects while S-ter enhanced airway responsiveness to methacholine and exerted pro-asthmatic effects.
Collapse
Affiliation(s)
- Huimin Beng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hao Su
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shanping Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yihe Kuai
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junhua Hu
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Rui Zhang
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Liu
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen Tan
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
27
|
Perkins TN, Oczypok EA, Dutz RE, Donnell ML, Myerburg MM, Oury TD. The receptor for advanced glycation end products is a critical mediator of type 2 cytokine signaling in the lungs. J Allergy Clin Immunol 2019; 144:796-808.e12. [PMID: 30940519 DOI: 10.1016/j.jaci.2019.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Asthma is estimated to effect more than 300 million persons worldwide, leading to nearly 250,000 deaths annually. The majority of patients with mild-to-severe asthma have what is deemed "type-2 high" asthma, which is driven by the prototypical type 2 cytokines IL-4, IL-5, and IL-13. Studies have indicated that the receptor for advanced glycation end products (RAGE) is a critical molecule in the pathogenesis of experimental asthma/allergic airway inflammation. More specifically, RAGE expressed on stromal cells, rather than hematopoietic cells, is critical to induction of asthma/allergic airway inflammation by driving type 2 inflammatory responses. However, the role of RAGE in directly mediating type 2 cytokine signaling has never been investigated. OBJECTIVE The goal of this study was to test the hypothesis that RAGE mediates type 2 cytokine-induced signal transduction, airway inflammation, and mucus metaplasia in the lungs. METHODS Wild-type (WT) and RAGE knockout (RAGE-/-) mice, were intranasally administered rIL-5/rIL-13 or rIL-4 alone, and signal transducer and activator of transcription 6 (STAT6) signaling, airway inflammation, and mucus metaplasia were assessed. A RAGE small-molecule antagonist was used to determine the effects of pharmacologically inhibiting RAGE on type 2 cytokine-induced effects. RESULTS Administration of type 2 cytokines induced pronounced airway inflammation and mucus metaplasia in WT mice, which was nearly completely abrogated in RAGE-/- mice. In addition, treatment with a RAGE-specific antagonist diminished the effects of type 2 cytokines in WT mice and in primary human bronchial epithelial cell cultures. Genetic ablation or pharmacologic inhibition of RAGE blocks the effects of IL-13 and IL-4 by inhibiting sustained STAT6 activation and downstream target gene expression in mice and in human bronchial epithelial cells. CONCLUSIONS This study is the first to indicate that RAGE is a critical component of type 2 cytokine signal transduction mechanisms, which is a driving force behind type 2-high asthma.
Collapse
Affiliation(s)
- Timothy N Perkins
- Department of Pathology, University of Pittsburgh, School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pa; Department of Pediatrics, Division of Pulmonary, Allergy, and Clinical Immunology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pa.
| | - Elizabeth A Oczypok
- Department of Medicine, University of Pittsburgh, School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Regina E Dutz
- Department of Pathology, University of Pittsburgh, School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Mason L Donnell
- Department of Pathology, University of Pittsburgh, School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Michael M Myerburg
- Department of Medicine, University of Pittsburgh, School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh, School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pa.
| |
Collapse
|
28
|
Genetic, Inflammatory, and Epithelial Cell Differentiation Factors Control Expression of Human Calpain-14. G3-GENES GENOMES GENETICS 2019; 9:729-736. [PMID: 30626591 PMCID: PMC6404614 DOI: 10.1534/g3.118.200901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, food-driven allergic disease resulting in eosinophilic esophageal inflammation. We recently found that EoE susceptibility is associated with genetic variants in the promoter of CAPN14, a gene with reported esophagus-specific expression. CAPN14 is dynamically up-regulated as a function of EoE disease activity and after exposure of epithelial cells to interleukin-13 (IL-13). Herein, we aimed to explore molecular modulation of CAPN14 expression. We identified three putative binding sites for the IL-13-activated transcription factor STAT6 in the promoter and first intron of CAPN14. Luciferase reporter assays revealed that the two most distal STAT6 elements were required for the ∼10-fold increase in promoter activity subsequent to stimulation with IL-13 or IL-4, and also for the genotype-dependent reduction in IL-13-induced promoter activity. One of the STAT6 elements in the promoter was necessary for IL-13-mediated induction of CAPN14 promoter activity while the other STAT6 promoter element was necessary for full induction. Chromatin immunoprecipitation in IL-13 stimulated esophageal epithelial cells was used to further support STAT6 binding to the promoter of CAPN14 at these STAT6 binding sites. The highest CAPN14 and calpain-14 expression occurred with IL-13 or IL-4 stimulation of esophageal epithelial cells under culture conditions that allow the cells to differentiate into a stratified epithelium. This work corroborates a candidate molecular mechanism for EoE disease etiology in which the risk variant at 2p23 dampens CAPN14 expression in differentiated esophageal epithelial cells following IL-13/STAT6 induction of CAPN14 promoter activity.
Collapse
|
29
|
Ma B, Wu Y, Chen B, Yao Y, Wang Y, Bai H, Li C, Yang Y, Chen Y. Cyanidin-3-O-β-glucoside attenuates allergic airway inflammation by modulating the IL-4Rα-STAT6 signaling pathway in a murine asthma model. Int Immunopharmacol 2019; 69:1-10. [PMID: 30660871 DOI: 10.1016/j.intimp.2019.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/01/2019] [Accepted: 01/05/2019] [Indexed: 12/20/2022]
Abstract
Cyanidin-3-O-β-glucoside (Cy-3-g), a typical and abundant monomer of anthocyanins, exhibits a variety of biological activities, such as anti-atherosclerosis, anti-obesity, and anticancer effects. However, to date little is known about its effects on asthma. This study aimed to investigate the efficacy of dietary Cy-3-g on allergic asthma in an animal model. BALB/c mice were sensitized and challenged with ovalbumin (OVA) to induce allergic asthma. The pathological changes of the lung tissues, type 2 helper (Th2)-associated cytokine production in bronchoalveolar lavage fluid (BALF), and the interleukin 4 receptor alpha (IL-4Rα)-signal transducer and activator of transcription 6 (STAT6) signaling pathway activities were assessed. We found that Cy-3-g significantly inhibited OVA-induced inflammatory cell infiltration and mucus hyper-production in lung tissues, reduced the production of interleukin 4 (IL-4), interleukin 5 (IL-5) and interleukin 13 (IL-13) in BALF. Furthermore, Cy-3-g effectively suppressed OVA-induced up-regulation of the IL-4Rα-STAT6 signaling pathway activity of the lung tissues. These results demonstrated that dietary Cy-3-g could attenuate allergic airway inflammation in a murine asthma model, and Cy-3-g might be used as an agent for asthma prevention and/or treatment in the future.
Collapse
Affiliation(s)
- Baihui Ma
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China
| | - Yinfan Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China
| | - Binlin Chen
- The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yanling Yao
- Department of Nutrition, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yanyan Wang
- Department of Food-borne Disease and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Haolei Bai
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China.
| | - Yanqiu Chen
- Department of Otolaryngology, Guangzhou Women and Children Medical Centre, Guangzhou, China.
| |
Collapse
|
30
|
Yan N, Xu J, Zhao C, Wu Y, Gao F, Li C, Zhou W, Xiao T, Zhou X, Shao Q, Xia S. Human umbilical cord-derived mesenchymal stem cells ameliorate the enteropathy of food allergies in mice. Exp Ther Med 2018; 16:4445-4456. [PMID: 30546392 PMCID: PMC6256969 DOI: 10.3892/etm.2018.6763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Food allergy prevalence has steadily increased worldwide over the past decades and immunotherapeutic treatment strategies are gaining attention. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) exhibit similar immune regulatory properties to bone marrow-derived MSCs. hUC-MCSs can be prepared with fewer ethical constraints and are potential candidates for allergic disorder therapies. The current study aimed to investigate potential antiallergic properties of hUC-MSCs in mice with ovalbumin (OVA)-induced food allergy. Administration of hUC-MSCs cells intraperitoneally combined with oral gavage of the culture medium significantly alleviated OVA-induced diarrhea symptoms. Additionally, this treatment significantly decreased IgE levels and the percentage of T helper 2 cells in the blood, which were increased in mice with OVA-induced food allergy. The mRNA levels of the inflammatory cytokines interleukin-4 and tumor necrosis factor-α, and inflammatory cell infiltration in mouse colons were significantly decreased in hUC-MSCs-treated animals compared with mice with OVA-induced food allergy. Goblet cells were detected in colons of allergy-induced mice and their numbers were reduced following treatment with hUC-MSCs. In addition, treatment with hUC-MSCs reestablished the gut flora. The results revealed that hUC-MSCs may have a potential application in food allergy therapy.
Collapse
Affiliation(s)
- Nannan Yan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jie Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Chuanxiang Zhao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yi Wu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Fengwei Gao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ci Li
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenhui Zhou
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tengfei Xiao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaoming Zhou
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
31
|
Yang Y, Cheng S, Liang G, Honggang L, Wu H. Celastrol inhibits cancer metastasis by suppressing M2-like polarization of macrophages. Biochem Biophys Res Commun 2018; 503:414-419. [DOI: 10.1016/j.bbrc.2018.03.224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/26/2022]
|
32
|
Lv J, Xiong Y, Li W, Cui X, Cheng X, Leng Q, He R. IL-37 inhibits IL-4/IL-13-induced CCL11 production and lung eosinophilia in murine allergic asthma. Allergy 2018; 73:1642-1652. [PMID: 29319845 DOI: 10.1111/all.13395] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND IL-37 is emerging as an anti-inflammatory cytokine, particularly in innate inflammation. However, the role of IL-37 in Th2-mediated allergic lung inflammation remains uncertain. We sought to determine the role and the underlying mechanisms of IL-37 in the development of house dust mites (HDM)-induced murine asthma model. METHODS We examined the effect of IL-37 administration during the sensitization or challenge phase on Th2-mediated allergic asthma induced by inhaled HDM. Cellular source of CCL11 and distribution of IL-37 receptors, IL-18Rα and IL-1R8, were determined in HDM-exposed lungs. Finally, we examined the effect of IL-37 on CCL11 production and STAT6 activation in different primary lung structural cell types upon IL-4/IL-13 stimulation. RESULTS IL-37 had no effect on HDM sensitization, but when administrated during the challenge phase, significantly attenuated pulmonary eosinophilia, CCL11 production, and airway hyper-reactivity (AHR). Interestingly, IL-37 treatment had no significant effects on lung infiltrating T cells and Th2 cytokine production. Intranasal co-administration of CCL11 reversed the inhibiting effect of IL-37 on HDM-induced pulmonary eosinophilia and AHR. Furthermore, we demonstrated that CCL11 was primarily expressed by fibroblasts and airway smooth muscle cells (AMSC), while IL-37 receptors by tracheobronchial epithelial cells (TEC). In vitro study showed that IL-37 inhibited IL-4/IL-13-induced STAT6 activation and CCL11 production by fibroblasts and AMSC, which was dependent on its direct action on TEC. Moreover, cell contact was required for the inhibitory effect of IL-37-treated TEC. CONCLUSIONS IL-37 attenuates HDM-induced asthma, possibly by inhibiting IL-4/IL-13-induced CCL11 production by fibroblasts and AMSC via its direct act on TEC.
Collapse
Affiliation(s)
- J. Lv
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
- Institute for Immunology; Tsinghua University-Peking University Joint Center for Life Sciences; Tsinghua University School of Medicine; Beijing China
| | - Y. Xiong
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
| | - W. Li
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
| | - X. Cui
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
| | - X. Cheng
- Department of Medical Microbiology and Parasitology; School of Basic Medical Sciences; Fudan University; Shanghai China
| | - Q. Leng
- CAS Key Laboratory of Molecular Virology & Immunology; Institute Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai China
| | - R. He
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
- Department of Laboratory Animal Science; Fudan University; Shanghai China
- State Key Laboratory of Medical Neurobiology; Institutes of Brain Science; Fudan University; Shanghai China
| |
Collapse
|
33
|
Lee HK, Koh S, Lo DC, Marchuk DA. Neuronal IL-4Rα modulates neuronal apoptosis and cell viability during the acute phases of cerebral ischemia. FEBS J 2018; 285:2785-2798. [PMID: 29756681 DOI: 10.1111/febs.14498] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/15/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
Ischemic stroke caused by an embolus or local thrombosis results in neural tissue damage (an infarct) in the territory of the occluded cerebral artery. Decades of studies have increased our understanding of the molecular events during cerebral infarction; however, translation of these discoveries to druggable targets for ischemic stroke treatment has been largely disappointing. Interleukin-4 (IL-4) is a multifunctional cytokine that exerts its cellular activities via the interleukin-4 receptor α (IL-4Rα). This cytokine receptor complex is associated with diverse immune and inflammatory responses. Recent studies have suggested a role of the cytokine IL-4 in long-term ischemic stroke recovery, involving immune cell activity. In contrast, the role of the receptor, IL-4Rα especially in the acute phase of infarction is unclear. In this study, we determined that IL-4Rα is expressed on neurons and that during the early phases of cerebral infarction (24 h) levels of this receptor are increased to regulate cellular apoptosis factors through activation of STAT6. In this context, we show a neuroprotective role for IL-4Rα in an in vivo surgical model of cerebral ischemia and in ex vivo brain slice explants, using both genetic knockout of this receptor and RNAi-mediated gene knockdown. IL-4Rα may therefore represent a novel target and pathway for therapeutic development in ischemic stroke.
Collapse
Affiliation(s)
- Han Kyu Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Sehwon Koh
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Donald C Lo
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
34
|
March1 E3 Ubiquitin Ligase Modulates Features of Allergic Asthma in an Ovalbumin-Induced Mouse Model of Lung Inflammation. J Immunol Res 2018; 2018:3823910. [PMID: 29854835 PMCID: PMC5960577 DOI: 10.1155/2018/3823910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/08/2018] [Indexed: 01/13/2023] Open
Abstract
Membrane-associated RING-CH-1 (March1) is a member of the March family of E3 ubiquitin ligases. March1 downregulates cell surface expression of MHC II and CD86 by targeting them to lysosomal degradation. Given the key roles of MHC class II and CD86 in T cell activation and to get further insights into the development of allergic inflammation, we asked whether March1 deficiency exacerbates or attenuates features of allergic asthma in mice. Herein, we used an acute model of allergy to compare the asthmatic phenotype of March1-deficient and -sufficient mice immunized with ovalbumin (OVA) and later challenged by intranasal instillation of OVA in the lungs. We found that eosinophilic inflammation in airways and lung tissue was similar between WT and March1-/- allergic mice, whereas neutrophilic inflammation was significant only in March1-/- mice. Airway hyperresponsiveness as well as levels of IFN-γ, IL-13, IL-6, and IL-10 was lower in the lungs of asthmatic March1-/- mice compared to WT, whereas lung levels of TNF-α, IL-4, and IL-5 were not significantly different. Interestingly, in the serum, levels of total and ova-specific IgE were reduced in March1-deficient mice as compared to WT mice. Taken together, our results demonstrate a role of March1 E3 ubiquitin ligase in modulating allergic responses.
Collapse
|
35
|
Dickinson JD, Sweeter JM, Warren KJ, Ahmad IM, De Deken X, Zimmerman MC, Brody SL. Autophagy regulates DUOX1 localization and superoxide production in airway epithelial cells during chronic IL-13 stimulation. Redox Biol 2018; 14:272-284. [PMID: 28982074 PMCID: PMC5635347 DOI: 10.1016/j.redox.2017.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022] Open
Abstract
The airway epithelium is a broad interface with the environment, mandating well-orchestrated responses to properly modulate inflammation. Classically, autophagy is a homeostatic pathway triggered in response to external cellular stresses, and is elevated in chronic airway diseases. Recent findings highlight the additional role of autophagy in vesicle trafficking and protein secretion, implicating autophagy pathways in complex cellular responses in disease. Th2 cytokines, IL-13 and IL-4, are increased in asthma and other airway diseases contributing to chronic inflammation. Previously, we observed that IL-13 increases reactive oxygen species (ROS) in airway epithelial cells in an autophagy-dependent fashion. Here, we tested our hypothesis that autophagy is required for IL-13-mediated superoxide production via the NADPH oxidase DUOX1. Using a mouse model of Th2-mediated inflammation induced by OVA-allergen, we observed elevated lung amounts of IL-13 and IL-4 accompanied by increased autophagosome levels, determined by LC3BII protein levels and immunostaining. ROS levels were elevated and DUOX1 expression was increased 70-fold in OVA-challenged lungs. To address the role of autophagy and ROS in the airway epithelium, we treated primary human tracheobronchial epithelial cells with IL-13 or IL-4. Prolonged, 7-day treatment increased autophagosome formation and degradation, while brief activation had no effect. Under parallel culture conditions, IL-13 and IL-4 increased intracellular superoxide levels as determined by electron paramagnetic resonance (EPR) spectroscopy. Prolonged IL-13 activation increased DUOX1, localized at the apical membrane. Silencing DUOX1 by siRNA attenuated IL-13-mediated increases in superoxide, but did not reduce autophagy activities. Notably, depletion of autophagy regulatory protein ATG5 significantly reduced superoxide without diminishing total DUOX1 levels. Depletion of ATG5, however, diminished DUOX1 localization at the apical membrane. The findings suggest non-canonical autophagy activity regulates DUOX1-dependent localization required for intracellular superoxide production during Th2 inflammation. Thus, in chronic Th2 inflammatory airway disease, autophagy proteins may be responsible for persistent intracellular superoxide production.
Collapse
Affiliation(s)
- John D Dickinson
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Jenea M Sweeter
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kristi J Warren
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iman M Ahmad
- Department of Medical Imaging and Therapeutic Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université libre de Bruxelles, Brussels, Belgium
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
36
|
Zaffini R, Gotte G, Menegazzi M. Asthma and poly(ADP-ribose) polymerase inhibition: a new therapeutic approach. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:281-293. [PMID: 29483769 PMCID: PMC5813949 DOI: 10.2147/dddt.s150846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Asthma is a chronic lung disease affecting people of all ages worldwide, and it frequently begins in childhood. Because of its chronic nature, it is characterized by pathological manifestations, including airway inflammation, remodeling, and goblet cell hyperplasia. Current therapies for asthma, including corticosteroids and beta-2 adrenergic agonists, are directed toward relieving the symptoms of the asthmatic response, with poor effectiveness against the underlying causes of the disease. Asthma initiation and progression depends on the T helper (Th) 2 type immune response carried out by a complex interplay of cytokines, such as interleukin (IL) 4, IL5, and IL13, and the signal transducer and activator of transcription 6. Much of the data resulting from different laboratories support the role of poly(ADP-ribose) polymerase (PARP) 1 and PARP14 activation in asthma. Indeed, PARP enzymes play key roles in the regulation and progression of the inflammatory asthma process because they affect the expression of genes and chemokines involved in the immune response. Consistently, PARP inhibition achievable either upon genetic ablation or by using pharmacological agents has shown a range of therapeutic effects against the disease. Indeed, in the last two decades, several preclinical studies highlighted the protective effects of PARP inhibition in various animal models of asthma. PARP inhibitors showed the ability to reduce the overall lung inflammation acting with a specific effect on immune cell recruitment and through the modulation of asthma-associated cytokines production. PARP inhibition has been shown to affect the Th1–Th2 balance and, at least in some aspects, the airway remodeling. In this review, we summarize and discuss the steps that led PARP inhibition to become a possible future therapeutic strategy against allergic asthma.
Collapse
Affiliation(s)
- Raffaela Zaffini
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
37
|
Wan S, Sun X, Wu F, Yu Z, Wang L, Lin D, Li Z, Wu Z, Sun X. Chi3l3: a potential key orchestrator of eosinophil recruitment in meningitis induced by Angiostrongylus cantonensis. J Neuroinflammation 2018; 15:31. [PMID: 29391024 PMCID: PMC5796390 DOI: 10.1186/s12974-018-1071-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/18/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Angiostrongylus cantonensis, an important foodborne parasite, can induce serious eosinophilic meningitis in non-permissive hosts, such as mouse and human. However, the characteristics and mechanisms of the infection are still poorly understood. This study sought to determine the key molecules and its underlying mechanism in inducing brain eosinophilic infiltration caused by Angiostrongylus cantonensis. METHODS Mathematical models were established for prediction of significantly changing genes and the functional associated protein with RNA-seq data in Angiostrongylus cantonensis infection. The expression level of Chi3l3, the predicted key molecule, was verified using Western blotting and real-time quantitative PCR. Critical cell source of Chi3l3 and its relationship with eosinophils were identified with flow cytometry, immunohistochemistry, and further verified by macrophage depletion using liposomal clodronate. The role of soluble antigens of Angiostrongylus cantonensis in eosinophilic response was identified with mice airway allergy model by intranasal administration of Alternaria alternate. The relationship between Chi3l3 and IL-13 was identified with flow cytometry, Western blotting, and Seahorse Bioscience extracellular flux analyzer. RESULTS We analyzed the skewed cytokine pattern in brains of Angiostrongylus cantonensis-infected mice and found Chi3l3 to be an important molecule, which increased sharply during the infection. The percentage of inflammatory macrophages, the main source of Chi3l3, also increased, in line with eosinophils percentage in the brain. Network analysis and mathematical modeling predirect a functional association between Chi3l3 and IL-13. Further experiments verified that the soluble antigen of Angiostrongylus cantonensis induce brain eosinophilic meningitis via aggravating a positive feedback loop between IL-13 and Chi3l3. CONCLUSIONS We present evidences in favor of a key role for macrophave-derived Chi3l3 molecule in the infection of Angiostrongylus cantonensis, which aggravates eosinophilic meningitis induced by Angiostrongylus cantonensis via a IL-13-mediated positive feedback loop. These reported results constitute a starting point for future research of angiostrongyliasis pathogenesis and imply that targeting chitinases and chitinase-like-proteins may be clinically beneficial in Angiostrongylus cantonensis-induced eosinophilic meningitis.
Collapse
Affiliation(s)
- Shuo Wan
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan Road.2, Guangzhou, Guangdong 510080 China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080 China
| | - Xiaoqiang Sun
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080 China
- Institute of Human Disease Genomics, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080 China
| | - Feng Wu
- Department of Clinical Laboratory, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080 China
| | - Zilong Yu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan Road.2, Guangzhou, Guangdong 510080 China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080 China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan Road.2, Guangzhou, Guangdong 510080 China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080 China
| | - Datao Lin
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan Road.2, Guangzhou, Guangdong 510080 China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080 China
| | - Zhengyu Li
- Department of neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000 China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan Road.2, Guangzhou, Guangdong 510080 China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080 China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan Road.2, Guangzhou, Guangdong 510080 China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080 China
| |
Collapse
|
38
|
Heffler E, Allegra A, Pioggia G, Picardi G, Musolino C, Gangemi S. MicroRNA Profiling in Asthma: Potential Biomarkers and Therapeutic Targets. Am J Respir Cell Mol Biol 2017; 57:642-650. [PMID: 28489455 DOI: 10.1165/rcmb.2016-0231tr] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Asthma is a heterogeneous chronic inflammatory disorder in which different endotypes contribute to define clinical inflammatory phenotypes. MicroRNAs (miRNAs) are a group of minute, endogenous 22-25 nt RNA elements that join to particular mRNAs to reduce translation and increase messenger RNA degradation. miRNAs operate in post-transcriptional control and regulate physiological and pathological processes in several illnesses. The purpose of this work is to review and discuss the current knowledge about the function of miRNAs in asthma, focusing particularly on their biological properties, pathophysiologic actions, and possible use as markers and treatments for asthma.
Collapse
Affiliation(s)
- Enrico Heffler
- 1 Personalized Medicine Asthma and Allergy Clinic, Humanitas Research Hospital, and.,2 Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alessandro Allegra
- 3 Division of Hematology, Department of General Surgery and Oncology, University of Messina
| | - Giovanni Pioggia
- 4 Institute of Applied Sciences and Intelligent Systems-Messina Unit, and
| | - Giuseppe Picardi
- 5 Respiratory Diseases and Allergy, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Caterina Musolino
- 3 Division of Hematology, Department of General Surgery and Oncology, University of Messina
| | - Sebastiano Gangemi
- 4 Institute of Applied Sciences and Intelligent Systems-Messina Unit, and.,6 School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital "G. Martino," Messina, Italy; and
| |
Collapse
|
39
|
Lee Y, Yoon H, Hwang SM, Shin MK, Lee JH, Oh M, Im SH, Song J, Lim HS. Targeted Inhibition of the NCOA1/STAT6 Protein–Protein Interaction. J Am Chem Soc 2017; 139:16056-16059. [DOI: 10.1021/jacs.7b08972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yeongju Lee
- Department
of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Heeseok Yoon
- New
Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Sung-Min Hwang
- Division of Integrative Biosciences & Biotechnology, POSTECH, Pohang 37673, South Korea
| | - Min-Kyung Shin
- Department
of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Ji Hoon Lee
- New
Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Misook Oh
- Department
of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Sin-Hyeog Im
- Division of Integrative Biosciences & Biotechnology, POSTECH, Pohang 37673, South Korea
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, South Korea
| | - Jaeyoung Song
- New
Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Hyun-Suk Lim
- Department
of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
40
|
High expression of IL-4R enhances proliferation and invasion of hepatocellular carcinoma cells. Int J Biol Markers 2017; 32:e384-e390. [PMID: 28665449 DOI: 10.5301/ijbm.5000280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE In this study, we aimed to investigate the expression and function of interleukin-4 receptor (IL-4R) in hepatocellular carcinoma (HCC). METHODS We collected 40 pairs of human HCC and adjacent normal tissue specimens and examined the expression levels of IL-4R. After IL-4R knockdown in HCC cell lines, cell proliferation and invasion ability were examined. Cell cycle and apoptosis were analyzed by flow cytometry. The activity of multiple signaling pathways was examined by Western blot. RESULTS IL-4R was overexpressed in HCC tumors compared with adjacent normal control tissues and was associated with tumor differentiation status. IL-4R knockdown resulted in enhanced apoptosis, impaired proliferation and reduced invasion of HCC cells. Furthermore, IL-4R knockdown abolished IL-4-induced activation of the Janus Kinase 1 (JAK1)/signal transducer and activator of transcription 6 (STAT6) and JUN N-terminal kinase (JNK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways. CONCLUSIONS IL-4R plays an important role in regulating HCC cell survival and metastasis, and regulates the activity of the JAK1/STAT6 and JNK/ERK1/2 signaling pathways. We therefore suggest that IL-4/IL-4R may be a new therapeutic target for HCC.
Collapse
|
41
|
Sethi GS, Dharwal V, Naura AS. Poly(ADP-Ribose)Polymerase-1 in Lung Inflammatory Disorders: A Review. Front Immunol 2017; 8:1172. [PMID: 28974953 PMCID: PMC5610677 DOI: 10.3389/fimmu.2017.01172] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
Asthma, acute lung injury (ALI), and chronic obstructive pulmonary disease (COPD) are lung inflammatory disorders with a common outcome, that is, difficulty in breathing. Corticosteroids, a class of potent anti-inflammatory drugs, have shown less success in the treatment/management of these disorders, particularly ALI and COPD; thus, alternative therapies are needed. Poly(ADP-ribose)polymerases (PARPs) are the post-translational modifying enzymes with a primary role in DNA repair. During the last two decades, several studies have reported the critical role played by PARPs in a good of inflammatory disorders. In the current review, the studies that address the role of PARPs in asthma, ALI, and COPD have been discussed. Among the different members of the family, PARP-1 emerges as a key player in the orchestration of lung inflammation in asthma and ALI. In addition, PARP activation seems to be associated with the progression of COPD. Furthermore, PARP-14 seems to play a crucial role in asthma. STAT-6 and GATA-3 are reported to be central players in PARP-1-mediated eosinophilic inflammation in asthma. Interestingly, oxidative stress-PARP-1-NF-κB axis appears to be tightly linked with inflammatory response in all three-lung diseases despite their distinct pathophysiologies. The present review sheds light on PARP-1-regulated factors, which may be common or differential players in asthma/ALI/COPD and put forward our prospective for future studies.
Collapse
Affiliation(s)
| | - Vivek Dharwal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, India
| |
Collapse
|
42
|
Chen X, Ji N, Qin N, Tang SA, Wang R, Qiu Y, Duan H, Kong D, Jin M. 1,6-O,O-Diacetylbritannilactone Inhibits Eotaxin-1 and ALOX15 Expression Through Inactivation of STAT6 in A549 Cells. Inflammation 2017; 40:1967-1974. [DOI: 10.1007/s10753-017-0637-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Devos FC, Pollaris L, Cremer J, Seys S, Hoshino T, Ceuppens J, Talavera K, Nemery B, Hoet PHM, Vanoirbeek JAJ. IL-13 is a central mediator of chemical-induced airway hyperreactivity in mice. PLoS One 2017; 12:e0180690. [PMID: 28704401 PMCID: PMC5509233 DOI: 10.1371/journal.pone.0180690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While the importance of the Th2 cytokine IL-13 as a central mediator of airway hyperreactivity (AHR) has been described in allergic protein-induced asthma, this has never been investigated in chemical-induced asthma. OBJECTIVE We examined the importance of IL-13 in a mouse model of chemical-induced AHR, using toluene-2,4-diisocyanate (TDI). METHODS In a first set-up, wild type (WT) and IL-13 knockout (KO) C57Bl/6 mice were dermally treated on days 1 and 8 with 1% TDI or vehicle (acetone/olive oil) on both ears. On day 15, mice received an intranasal instillation with 0.1% TDI or vehicle. In a second set-up, WT mice sensitized with 1% TDI or vehicle, received i.v. either anti-IL-13 or control antibody prior to the intranasal challenge. RESULTS TDI-sensitized and TDI-challenged WT mice showed AHR to methacholine, in contrast to TDI-sensitized and TDI-challenged IL-13 KO mice, which also showed lower levels of total serum IgE. TDI-sensitized and TDI-challenged IL-13 KO mice had lower numbers of T-cells in the auricular lymph nodes. TDI-treated WT mice, receiving anti-IL-13, showed no AHR, in contrast to those receiving control antibody, despite increased levels of IgE. Anti-IL-13 treatment in TDI-treated WT mice resulted in lower levels of serum IL-13, but did not induce changes in T- and B-cell numbers, and in the cytokine production profile. CONCLUSION AND CLINICAL RELEVANCE We conclude that IL-13 plays a critical role in the effector phase of chemical-induced, immune-mediated AHR. This implicates that anti-IL-13 treatment could have a beneficial effect in patients with this asthma phenotype.
Collapse
Affiliation(s)
- Fien C. Devos
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Lore Pollaris
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Sven Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Tomoaki Hoshino
- Division of Respirology, Neurology and Rheumatology, Department of Medicine 1, Kurume University School of Medicine, Kurume, Japan
| | - Jan Ceuppens
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Peter H. M. Hoet
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Jeroen A. J. Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
44
|
Becerra-Díaz M, Wills-Karp M, Heller NM. New perspectives on the regulation of type II inflammation in asthma. F1000Res 2017; 6:1014. [PMID: 28721208 PMCID: PMC5497827 DOI: 10.12688/f1000research.11198.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the lungs which has been thought to arise as a result of inappropriately directed T helper type-2 (Th2) immune responses of the lungs to otherwise innocuous inhaled antigens. Current asthma therapeutics are directed towards the amelioration of downstream consequences of type-2 immune responses (i.e. β-agonists) or broad-spectrum immunosuppression (i.e. corticosteroids). However, few approaches to date have been focused on the primary prevention of immune deviation. Advances in molecular phenotyping reveal heterogeneity within the asthmatic population with multiple endotypes whose varying expression depends on the interplay between numerous environmental factors and the inheritance of a broad range of susceptibility genes. The most common endotype is one described as "type-2-high" (i.e. high levels of interleukin [IL]-13, eosinophilia, and periostin). The identification of multiple endotypes has provided a potential explanation for the observations that therapies directed at typical Th2 cytokines (IL-4, IL-5, and IL-13) and their receptors have often fallen short when they were tested in a diverse group of asthmatic patients without first stratifying based on disease endotype or severity. However, despite the incorporation of endotype-dependent stratification schemes into clinical trial designs, variation in drug responses are still apparent, suggesting that additional genetic/environmental factors may be contributing to the diversity in drug efficacy. Herein, we will review recent advances in our understanding of the complex pathways involved in the initiation and regulation of type-2-mediated immune responses and their modulation by host factors (genetics, metabolic status, and the microbiome). Particular consideration will be given to how this knowledge could pave the way for further refinement of disease endotypes and/or the development of novel therapeutic strategies for the treatment of asthma .
Collapse
Affiliation(s)
- Mireya Becerra-Díaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Nicola M. Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
45
|
Abstract
The carboxyl terminal of Hsp70-interacting protein (CHIP) is an E3 ubiquitin ligase that plays a pivotal role in the protein quality control system by shifting the balance of the folding-refolding machinery toward the degradative pathway. However, the precise mechanisms by which nonnative proteins are selected for degradation by CHIP either directly or indirectly via chaperone Hsp70 or Hsp90 are still not clear. In this review, we aim to provide a comprehensive model of the mechanism by which CHIP degrades its substrate in a chaperone-dependent or direct manner. In addition, through tight regulation of the protein level of its substrates, CHIP plays important roles in many physiological and pathological conditions, including cancers, neurological disorders, cardiac diseases, bone metabolism, immunity, and so on. Nonetheless, the precise mechanisms underlying the regulation of the immune system by CHIP are still poorly understood despite accumulating developments in our understanding of the regulatory roles of CHIP in both innate and adaptive immune responses. In this review, we also aim to provide a view of CHIP-mediated regulation of immune responses and the signaling pathways involved in the model described. Finally, we discuss the roles of CHIP in immune-related diseases.
Collapse
Affiliation(s)
- Shaohua Zhan
- a Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences , National Key Laboratory of Medical Molecular Biology & Department of Immunology , Dongcheng District , Beijing , China
| | - Tianxiao Wang
- b Key Laboratory of Carcinogenesis and Translational Research, Department of Head and Neck Surgery , Peking University Cancer Hospital & Institute , Beijing , China
| | - Wei Ge
- a Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences , National Key Laboratory of Medical Molecular Biology & Department of Immunology , Dongcheng District , Beijing , China
| |
Collapse
|
46
|
Stevenson C, Jiang D, Schaefer N, Ito Y, Berman R, Sanchez A, Chu HW. MUC18 regulates IL-13-mediated airway inflammatory response. Inflamm Res 2017; 66:691-700. [PMID: 28451734 DOI: 10.1007/s00011-017-1050-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/06/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate the effects of MUC18 on IL-13-mediated airway inflammatory responses in human airway epithelial cells and in mice. MATERIALS Primary normal human tracheobronchial epithelial (HTBE) cells, wild-type (WT) and Muc18 knockout (KO) mice, and mouse tracheal epithelial cells (mTECs) were utilized. TREATMENT Cultured HTBE cells treated with MUC18 siRNA or MUC18 expressing lentivirus were incubated with IL-13 (10 ng/mL) for 24 h. Mice were intranasally instilled with 500 ng of IL-13 for 3 days. mTECs were treated with IL-13 (10 ng/mL) for 3 days. METHODS PCR was used to measure mRNA expression. Western Blot and ELISAs were used to quantify protein expression. Cytospins of bronchoalveolar lavage (BAL) cells were used to obtain leukocyte differentials. RESULTS MUC18 siRNA reduced IL-13-mediated eotaxin-3 (183 ± 44 vs. 380 ± 59 pg/mL, p < 0.05), while MUC18 overexpression increased IL-13-mediated eotaxin-3 (95 ± 3 vs. 58 ± 3 pg/mL, p < 0.05) in HTBE cells. IL-13-treated Muc18 KO mice had a lower percentage of neutrophils in BAL than WT mice (25 ± 3 vs. 35 ± 3%, p = 0.0565). CONCLUSIONS These results implicate MUC18 as a potential enhancer of airway inflammation in a type 2 cytokine (e.g., IL-13) milieu.
Collapse
Affiliation(s)
- Connor Stevenson
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Di Jiang
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Niccolette Schaefer
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Yoko Ito
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Reena Berman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Amelia Sanchez
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA.
| |
Collapse
|
47
|
Wang X, Li Y, Luo D, Wang X, Zhang Y, Liu Z, Zhong N, Wu M, Li G. Lyn regulates mucus secretion and MUC5AC via the STAT6 signaling pathway during allergic airway inflammation. Sci Rep 2017; 7:42675. [PMID: 28205598 PMCID: PMC5312001 DOI: 10.1038/srep42675] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
Hypersecretion of mucus is an important component of airway remodeling and contributes to the mucus plugs and airflow obstruction associated with severe asthma phenotypes. Lyn has been shown to down-regulate allergen-induced airway inflammation. However, the role of Lyn in mucin gene expression remains unresolved. In this study, we first demonstrate that Lyn overexpression decreased the mucus hypersecretion and levels of the muc5ac transcript in mice exposed to ovalbumin (OVA). Lyn overexpression also decreased the infiltration of inflammatory cells and the levels of IL-13 and IL-4 in OVA-challenged airways. Whereas Lyn knockdown increased the IL-4 or IL-13-induced MUC5AC transcript and protein levels in the human bronchial epithelial cell line, 16HBE, Lyn overexpression decreased IL-4- or IL-13-induced MUC5AC transcript and protein levels. Overexpression of Lyn also decreased the expression and phosphorylation of STAT6 in OVA-exposed mice, whereas Lyn knockdown increased STAT6 and MUC5AC levels in 16HBE cells. Finally, chromatin immunoprecipitation analysis confirmed that Lyn overexpression decreased the binding of STAT6 to the promoter region of Muc5ac in mice exposed to OVA. Collectively, these findings demonstrated that Lyn overexpression ameliorated airway mucus hypersecretion by down-regulating STAT6 and its binding to the MUC5AC promoter.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Inflammation &Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yin Li
- The First Clinic College, Chongqing Medical University, Chongqing 401331, China
| | - Deyu Luo
- Inflammation &Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xing Wang
- Inflammation &Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yun Zhang
- Inflammation &Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, Shenzhen Guangdong 518060, P.R. China
| | - Nanshan Zhong
- State Key Laboratories of Respiratory Disease, Ghuangzhou Medical University, Guangdong 510120, P.R. China
| | - Min Wu
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 N Columbia Rd, Grand Forks, ND 58203-9037, USA
| | - Guoping Li
- Inflammation &Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
48
|
Fatkhullina AR, Peshkova IO, Koltsova EK. The Role of Cytokines in the Development of Atherosclerosis. BIOCHEMISTRY (MOSCOW) 2017; 81:1358-1370. [PMID: 27914461 DOI: 10.1134/s0006297916110134] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atherosclerosis contributes to the development of many cardiovascular diseases, which remain the leading cause of death in developed countries. Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries. It is caused by dyslipidemia and mediated by both innate and adaptive immune responses. Inflammation is a key factor at all stages of atherosclerosis progression. Cells involved in pathogenesis of atherosclerosis were shown to be activated by soluble factors, cytokines, that strongly influence the disease development. Pro-inflammatory cytokines accelerate atherosclerosis progression, while anti-inflammatory cytokines ameliorate the disease. In this review, we discuss the latest findings on the role of cytokines in the development and progression of atherosclerosis.
Collapse
|
49
|
Di Mise A, Wang YX, Zheng YM. Role of Transcription Factors in Pulmonary Artery Smooth Muscle Cells: An Important Link to Hypoxic Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:13-32. [PMID: 29047078 DOI: 10.1007/978-3-319-63245-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia, namely a lack of oxygen in the blood, induces pulmonary vasoconstriction and vasoremodeling, which serve as essential pathologic factors leading to pulmonary hypertension (PH). The underlying molecular mechanisms are uncertain; however, pulmonary artery smooth muscle cells (PASMCs) play an essential role in hypoxia-induced pulmonary vasoconstriction, vasoremodeling, and PH. Hypoxia causes oxidative damage to DNAs, proteins, and lipids. This damage (oxidative stress) modulates the activity of ion channels and elevates the intracellular calcium concentration ([Ca2+]i, Ca2+ signaling) of PASMCs. The oxidative stress and increased Ca2+ signaling mutually interact with each other, and synergistically results in a variety of cellular responses. These responses include functional and structural abnormalities of mitochondria, sarcoplasmic reticulum, and nucleus; cell contraction, proliferation, migration, and apoptosis, as well as generation of vasoactive substances, inflammatory molecules, and growth factors that mediate the development of PH. A number of studies reveal that various transcription factors (TFs) play important roles in hypoxia-induced oxidative stress, disrupted PAMSC Ca2+ signaling and the development and progress of PH. It is believed that in the pathogenesis of PH, hypoxia facilitates these roles by mediating the expression of multiple genes. Therefore, the identification of specific genes and their transcription factors implicated in PH is necessary for the complete understanding of the underlying molecular mechanisms. Moreover, this identification may aid in the development of novel and effective therapeutic strategies for PH.
Collapse
Affiliation(s)
- Annarita Di Mise
- Department of Molecular & Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Yong-Xiao Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Yun-Min Zheng
- Department of Molecular & Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
50
|
Tyagi V, Theobald J, Barger J, Bustoros M, Bayin NS, Modrek AS, Kader M, Anderer EG, Donahue B, Fatterpekar G, Placantonakis DG. Traumatic brain injury and subsequent glioblastoma development: Review of the literature and case reports. Surg Neurol Int 2016; 7:78. [PMID: 27625888 PMCID: PMC5009580 DOI: 10.4103/2152-7806.189296] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/28/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Previous reports have proposed an association between traumatic brain injury (TBI) and subsequent glioblastoma (GBM) formation. METHODS We used literature searches and radiographic evidence from two patients to assess the possibility of a link between TBI and GBM. RESULTS Epidemiological studies are equivocal on a possible link between brain trauma and increased risk of malignant glioma formation. We present two case reports of patients with GBM arising at the site of prior brain injury. CONCLUSION The hypothesis that TBI may predispose to gliomagenesis is disputed by several large-scale epidemiological studies, but supported by some. Radiographic evidence from two cases presented here suggest that GBM formed at the site of brain injury. We propose a putative pathogenesis model that connects post-traumatic inflammation, stem and progenitor cell transformation, and gliomagenesis.
Collapse
Affiliation(s)
- Vineet Tyagi
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Theobald
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - James Barger
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - Mark Bustoros
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - N Sumru Bayin
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA; Kimmel Center for Stem Cell Biology, NYU School of Medicine, Brooklyn, New York, USA
| | - Aram S Modrek
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - Michael Kader
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - Erich G Anderer
- Division of Neurosurgery, Maimonides Medical Center, Brooklyn, New York, USA
| | - Bernadine Donahue
- Department of Radiation Oncology, NYU School of Medicine, Brooklyn, New York, USA; Maimonides Cancer Center, Brooklyn, New York, USA
| | - Girish Fatterpekar
- Department of Radiology, NYU School of Medicine, Brooklyn, New York, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA; Kimmel Center for Stem Cell Biology, NYU School of Medicine, Brooklyn, New York, USA; Brain Tumor Center, NYU School of Medicine, Brooklyn, New York, USA
| |
Collapse
|