1
|
Shi R, Yu R, Lian F, Zheng Y, Feng S, Li C, Zheng X. Targeting HSP47 for cancer treatment. Anticancer Drugs 2024; 35:623-637. [PMID: 38718070 DOI: 10.1097/cad.0000000000001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Heat shock protein 47 (HSP47) serves as an endoplasmic reticulum residing collagen-specific chaperone and plays an important role in collagen biosynthesis and structural assembly. HSP47 is encoded by the SERPINH1 gene, which is located on chromosome 11q13.5, one of the most frequently amplified regions in human cancers. The expression of HSP47 is regulated by multiple cellular factors, including cytokines, transcription factors, microRNAs, and circular RNAs. HSP47 is frequently upregulated in a variety of cancers and plays an important role in tumor progression. HSP47 promotes tumor stemness, angiogenesis, growth, epithelial-mesenchymal transition, and metastatic capacity. HSP47 also regulates the efficacy of tumor therapies, such as chemotherapy, radiotherapy, and immunotherapy. Inhibition of HSP47 expression has antitumor effects, suggesting that targeting HSP47 is a feasible strategy for cancer treatment. In this review, we highlight the function and expression of regulatory mechanisms of HSP47 in cancer progression and point out the potential development of therapeutic strategies in targeting HSP47 in the future.
Collapse
Affiliation(s)
- Run Shi
- School of Medicine, Pingdingshan University, Pingdingshan, China
| | | | | | | | | | | | | |
Collapse
|
2
|
Coulombe B, Chapleau A, Macintosh J, Durcan TM, Poitras C, Moursli YA, Faubert D, Pinard M, Bernard G. Towards a Treatment for Leukodystrophy Using Cell-Based Interception and Precision Medicine. Biomolecules 2024; 14:857. [PMID: 39062571 PMCID: PMC11274857 DOI: 10.3390/biom14070857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cell-based interception and precision medicine is a novel approach aimed at improving healthcare through the early detection and treatment of diseased cells. Here, we describe our recent progress towards developing cell-based interception and precision medicine to detect, understand, and advance the development of novel therapeutic approaches through a single-cell omics and drug screening platform, as part of a multi-laboratory collaborative effort, for a group of neurodegenerative disorders named leukodystrophies. Our strategy aims at the identification of diseased cells as early as possible to intercept progression of the disease prior to severe clinical impairment and irreversible tissue damage.
Collapse
Affiliation(s)
- Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (C.P.); (Y.A.M.); (M.P.)
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1A8, Canada
| | - Alexandra Chapleau
- Department of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montréal, QC H9X 3V9, Canada; (A.C.); (J.M.); (G.B.)
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montréal, QC H9X 3V9, Canada;
| | - Julia Macintosh
- Department of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montréal, QC H9X 3V9, Canada; (A.C.); (J.M.); (G.B.)
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montréal, QC H9X 3V9, Canada;
| | - Christian Poitras
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (C.P.); (Y.A.M.); (M.P.)
| | - Yena A. Moursli
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (C.P.); (Y.A.M.); (M.P.)
| | - Denis Faubert
- Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
| | - Maxime Pinard
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; (C.P.); (Y.A.M.); (M.P.)
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montréal, QC H9X 3V9, Canada; (A.C.); (J.M.); (G.B.)
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Department Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
3
|
Yu YT, Lin HR, Chen XY, Sun ML, Wei CM, Xue MF, Gao YH, Tang WB, Zheng CY, Li S, Wang HB. Dendrobium officinale phenolic extract maintains proteostasis by regulating autophagy in a Caenorhabditis elegans model of Alzheimer's disease. Fitoterapia 2024; 175:105924. [PMID: 38537886 DOI: 10.1016/j.fitote.2024.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and accumulating evidence suggested that proteostatic imbalance is a key feature of the disease. Traditional Chinese medicine exhibits a multi-target therapeutic effect, making it highly suitable for addressing protein homeostasis imbalance in AD. Dendrobium officinale is a traditional Chinese herbs commonly used as tonic agent in China. In this study, we investigated protection effects of D. officinale phenolic extract (SH-F) and examined its underlying mechanisms by using transgenic Caenorhabditis elegans models. We found that treatment with SH-F (50 μg/mL) alleviated Aβ and tau protein toxicity in worms, and also reduced aggregation of polyglutamine proteins to help maintain proteostasis. RNA sequencing results showed that SH-F treatment significantly affected the proteolytic process and autophagy-lysosomal pathway. Furthermore, we confirmed that SH-F showing maintainance of proteostasis was dependent on bec-1 by qRT-PCR analysis and RNAi methods. Finally, we identified active components of SH-F by LC-MS method, and found the five major compounds including koaburaside, tyramine dihydroferulate, N-p-trans-coumaroyltyramine, naringenin and isolariciresinol are the main bioactive components responsible for the anti-AD activity of SH-F. Our findings provide new insights to develop a treatment strategy for AD by targeting proteostasis, and SH-F could be an alternative drug for the treatment of AD.
Collapse
Affiliation(s)
- Ying-Ting Yu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Hong-Ru Lin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xin-Yan Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Meng-Lu Sun
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Cong-Min Wei
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Meng-Fan Xue
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yi-Huai Gao
- Fujian Key Laboratory of Natural Bioactive Substance Enterprises, Ningde, Fujian Province, China.
| | - Wen-Bo Tang
- Fujian Key Laboratory of Natural Bioactive Substance Enterprises, Ningde, Fujian Province, China.
| | - Chun-Yuan Zheng
- Fujian Key Laboratory of Natural Bioactive Substance Enterprises, Ningde, Fujian Province, China.
| | - Shan Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Hong-Bing Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| |
Collapse
|
4
|
Mubarak SJ, Gupta S, Vedagiri H. Scaffold Hopping and Screening for Potent Small Molecule Agonists for GRP94: Implications to Alleviate ER Stress-Associated Pathogenesis. Mol Biotechnol 2024; 66:737-755. [PMID: 36763304 DOI: 10.1007/s12033-023-00685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Disparity in the activity of Endoplasmic reticulum (ER) leads to degenerative diseases, mainly associated with protein misfolding and aggregation leading to cellular dysfunction and damage, ultimately contributing to ER stress. ER stress activates the complex network of Unfolded Protein Response (UPR) signaling pathways mediated by transmembrane proteins IRE1, ATF6, and PERK. In addition to UPR, many ER chaperones have evolved to optimize the output of properly folded secretory and membrane proteins. Glucose-regulated protein 94 (GRP94), an ER chaperone of heat shock protein HSP90 family, directs protein folding through interaction with other components of the ER protein folding machinery and assists in ER-associated degradation (ERAD). Activation of GRP94 would increase the efficacy of protein folding machinery and regulate the UPR pathway toward homeostasis. The present study aims to screen for novel agonists for GRP94 based on Core hopping, pharmacophore hypothesis, 3D-QSAR, and virtual screening with small-molecule compound libraries in order to improve the efficiency of native protein folding by enhancing GRP94 chaperone activity, therefore to reduce protein misfolding and aggregation. In this study, we have employed the strategy of small molecule-dependent ER programming to enhance the chaperone activity of GRP94 through scaffold hopping-based screening approach to identify specific GRP94 agonists. New scaffolds generated by altering the cores of NECA, the known GRP94 agonist, were validated by employing pharmacophore hypothesis testing, 3D-QSAR modeling, and molecular dynamics simulations. This facilitated the identification of small molecules to improve the efficiency of native protein folding by enhancing GRP94 activity. High-throughput virtual screening of the selected pharmacophore hypothesis against Selleckchem and ZINC databases retrieved a total of 2,27,081 compounds. Further analysis on docking and ADMET properties revealed Epimedin A, Narcissoside, Eriocitrin 1,2,3,4,6-O-Pentagalloylglucose, Secoisolariciresinol diglucoside, ZINC92952357, ZINC67650204, and ZINC72457930 as potential lead molecules. The stability and interaction of these small molecules were far better than the known agonist, NECA indicating their efficacy in selectively alleviating ER stress-associated pathogenesis. These results substantiate the fact that small molecule-dependent ER reprogramming would activate the ER chaperones and therefore reduce the protein misfolding as well as aggregation associated with ER stress in order to restore cellular homeostasis.
Collapse
Affiliation(s)
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Hemamalini Vedagiri
- Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
5
|
Williams D, Glasstetter LM, Jong TT, Kapoor A, Zhu S, Zhu Y, Gehrlein A, Vocadlo DJ, Jagasia R, Marugan JJ, Sidransky E, Henderson MJ, Chen Y. Development of quantitative high-throughput screening assays to identify, validate, and optimize small-molecule stabilizers of misfolded β-glucocerebrosidase with therapeutic potential for Gaucher disease and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586364. [PMID: 38712038 PMCID: PMC11071283 DOI: 10.1101/2024.03.22.586364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small pro-luminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and non-inhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: the fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 provided direct visualization of GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy, by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically-relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of new chemical matter targeting GCase, ultimately leading to a viable therapeutic for two protein-misfolding diseases.
Collapse
Affiliation(s)
- Darian Williams
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Logan M. Glasstetter
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tiffany T. Jong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Abhijeet Kapoor
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Sha Zhu
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Yanping Zhu
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Alexandra Gehrlein
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - David J. Vocadlo
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Juan J. Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Ellen Sidransky
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mark J. Henderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yu Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
6
|
Melikov A, Novák P. Heat Shock Protein Network: the Mode of Action, the Role in Protein Folding and Human Pathologies. Folia Biol (Praha) 2024; 70:152-165. [PMID: 39644110 DOI: 10.14712/fb2024070030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Protein folding is an extremely complicated process, which has been extensively tackled during the last decades. In vivo, a certain molecular machinery is responsible for assisting the correct folding of proteins and maintaining protein homeostasis: the members of this machinery are the heat shock proteins (HSPs), which belong among molecular chaperones. Mutations in HSPs are associated with several inherited diseases, and members of this group were also proved to be involved in neurodegenerative pathologies (e.g., Alzheimer and Parkinson diseases), cancer, viral infections, and antibiotic resistance of bacteria. Therefore, it is critical to understand the principles of HSP functioning and their exact role in human physiology and pathology. This review attempts to briefly describe the main chaperone families and the interplay between individual chaperones, as well as their general and specific functions in the context of cell physiology and human diseases.
Collapse
Affiliation(s)
- Aleksandr Melikov
- BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic
- BIOCEV, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Novák
- BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic.
- BIOCEV, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
7
|
Keyzor I, Shohet S, Castelli J, Sitaraman S, Veleva-Rotse B, Weimer JM, Fox B, Willer T, Tuske S, Crathorne L, Belzar KJ. Therapeutic Role of Pharmacological Chaperones in Lysosomal Storage Disorders: A Review of the Evidence and Informed Approach to Reclassification. Biomolecules 2023; 13:1227. [PMID: 37627292 PMCID: PMC10452329 DOI: 10.3390/biom13081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The treatment landscape for lysosomal storage disorders (LSDs) is rapidly evolving. An increase in the number of preclinical and clinical studies in the last decade has demonstrated that pharmacological chaperones are a feasible alternative to enzyme replacement therapy (ERT) for individuals with LSDs. A systematic search was performed to retrieve and critically assess the evidence from preclinical and clinical applications of pharmacological chaperones in the treatment of LSDs and to elucidate the mechanisms by which they could be effective in clinical practice. Publications were screened according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) reporting guidelines. Fifty-two articles evaluating 12 small molecules for the treatment of seven LSDs are included in this review. Overall, a substantial amount of preclinical and clinical data support the potential of pharmacological chaperones as treatments for Fabry disease, Gaucher disease, and Pompe disease. Most of the available clinical evidence evaluated migalastat for the treatment of Fabry disease. There was a lack of consistency in the terminology used to describe pharmacological chaperones in the literature. Therefore, the new small molecule chaperone (SMC) classification system is proposed to inform a standardized approach for new, emerging small molecule therapies in LSDs.
Collapse
Affiliation(s)
- Ian Keyzor
- Amicus Therapeutics Ltd., Marlow SL7 1HZ, UK
| | | | | | | | | | | | - Brian Fox
- Amicus Therapeutics Inc., Princeton, NJ 08542, USA
| | - Tobias Willer
- Amicus Therapeutics Inc., Philadelphia, PA 19104, USA
| | - Steve Tuske
- Amicus Therapeutics Inc., Philadelphia, PA 19104, USA
| | - Louise Crathorne
- Prescript Communications Ltd., Letchworth Garden City SG6 3TA, UK
| | - Klara J. Belzar
- Prescript Communications Ltd., Letchworth Garden City SG6 3TA, UK
| |
Collapse
|
8
|
Pinard M, Dastpeyman S, Poitras C, Bernard G, Gauthier MS, Coulombe B. Riluzole partially restores RNA polymerase III complex assembly in cells expressing the leukodystrophy-causative variant POLR3B R103H. Mol Brain 2022; 15:98. [PMID: 36451185 PMCID: PMC9710144 DOI: 10.1186/s13041-022-00974-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/16/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanism of assembly of RNA polymerase III (Pol III), the 17-subunit enzyme that synthesizes tRNAs, 5 S rRNA, and other small-nuclear (sn) RNAs in eukaryotes, is not clearly understood. The recent discovery of the HSP90 co-chaperone PAQosome (Particle for Arrangement of Quaternary structure) revealed a function for this machinery in the biogenesis of nuclear RNA polymerases. However, the connection between Pol III subunits and the PAQosome during the assembly process remains unexplored. Here, we report the development of a mass spectrometry-based assay that allows the characterization of Pol III assembly. This assay was used to dissect the stages of Pol III assembly, to start defining the function of the PAQosome in this process, to dissect the assembly defects driven by the leukodystrophy-causative R103H substitution in POLR3B, and to discover that riluzole, an FDA-approved drug for alleviation of ALS symptoms, partly corrects these assembly defects. Together, these results shed new light on the mechanism and regulation of human nuclear Pol III biogenesis.
Collapse
Affiliation(s)
- Maxime Pinard
- grid.511547.30000 0001 2106 1695Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec Canada
| | - Samaneh Dastpeyman
- grid.511547.30000 0001 2106 1695Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec Canada
| | - Christian Poitras
- grid.511547.30000 0001 2106 1695Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec Canada
| | - Geneviève Bernard
- grid.63984.300000 0000 9064 4811Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Pediatrics, McGill University, Montreal, Canada ,grid.63984.300000 0000 9064 4811Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Canada
| | - Marie-Soleil Gauthier
- grid.511547.30000 0001 2106 1695Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec Canada
| | - Benoit Coulombe
- grid.511547.30000 0001 2106 1695Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec Canada ,grid.14848.310000 0001 2292 3357Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec Canada
| |
Collapse
|
9
|
Huang L, Zhang Z. CSPα in neurodegenerative diseases. Front Aging Neurosci 2022; 14:1043384. [DOI: 10.3389/fnagi.2022.1043384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Adult-onset neuronal ceroid lipofuscinosis (ANCL) is a rare neurodegenerative disease characterized by epilepsy, cognitive degeneration, and motor disorders caused by mutations in the DNAJC5 gene. In addition to being associated with ANCL disease, the cysteine string proteins α (CSPα) encoded by the DNAJC5 gene have been implicated in several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. However, the pathogenic mechanism responsible for these neurodegenerative diseases has not yet been elucidated. Therefore, this study examines the functional properties of the CSPα protein and the related mechanisms of neurodegenerative diseases.
Collapse
|
10
|
Wimalarathne MM, Wilkerson-Vidal QC, Hunt EC, Love-Rutledge ST. The case for FAT10 as a novel target in fatty liver diseases. Front Pharmacol 2022; 13:972320. [PMID: 36386217 PMCID: PMC9665838 DOI: 10.3389/fphar.2022.972320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022] Open
Abstract
Human leukocyte antigen F locus adjacent transcript 10 (FAT10) is a ubiquitin-like protein that targets proteins for degradation. TNFα and IFNγ upregulate FAT10, which increases susceptibility to inflammation-driven diseases like nonalcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). It is well established that inflammation contributes to fatty liver disease, but how inflammation contributes to upregulation and what genes are involved is still poorly understood. New evidence shows that FAT10 plays a role in mitophagy, autophagy, insulin signaling, insulin resistance, and inflammation which may be directly associated with fatty liver disease development. This review will summarize the current literature regarding FAT10 role in developing liver diseases and potential therapeutic targets for nonalcoholic/alcoholic fatty liver disease and hepatocellular carcinoma.
Collapse
|
11
|
Ahmad A, Uversky VN, Khan RH. Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases. Int J Biol Macromol 2022; 220:703-720. [PMID: 35998851 DOI: 10.1016/j.ijbiomac.2022.08.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/05/2022]
Abstract
Recent evidence has shown that the processes of liquid-liquid phase separation (LLPS) or liquid-liquid phase transitions (LLPTs) are a crucial and prevalent phenomenon that underlies the biogenesis of numerous membrane-less organelles (MLOs) and biomolecular condensates within the cells. Findings show that processes associated with LLPS play an essential role in physiology and disease. In this review, we discuss the physical and biomolecular factors that contribute to the development of LLPS, the associated functions, as well as their consequences for cell physiology and neurological disorders. Additionally, the finding of mis-regulated proteins, which have long been linked to aggregates in neuropathology, are also known to induce LLPS/LLPTs, prompting a lot of interest in understanding the connection between aberrant phase separation and disorder conditions. Moreover, the methods used in recent and ongoing studies in this field are also explored, as is the possibility that these findings will encourage new lines of inquiry into the molecular causes of neurodegenerative diseases.
Collapse
Affiliation(s)
- Azeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P. 202002, India.
| |
Collapse
|
12
|
Warmack RA, Pang EZ, Peluso E, Lowenson JD, Ong JY, Torres JZ, Clarke SG. Human Protein-l-isoaspartate O-Methyltransferase Domain-Containing Protein 1 (PCMTD1) Associates with Cullin-RING Ligase Proteins. Biochemistry 2022; 61:879-894. [PMID: 35486881 PMCID: PMC9875861 DOI: 10.1021/acs.biochem.2c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The spontaneous l-isoaspartate protein modification has been observed to negatively affect protein function. However, this modification can be reversed in many proteins in reactions initiated by the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (PCMT1). It has been hypothesized that an additional mechanism exists in which l-isoaspartate-damaged proteins are recognized and proteolytically degraded. Herein, we describe the protein-l-isoaspartate O-methyltransferase domain-containing protein 1 (PCMTD1) as a putative E3 ubiquitin ligase substrate adaptor protein. The N-terminal domain of PCMTD1 contains l-isoaspartate and S-adenosylmethionine (AdoMet) binding motifs similar to those in PCMT1. This protein also has a C-terminal domain containing suppressor of cytokine signaling (SOCS) box ubiquitin ligase recruitment motifs found in substrate receptor proteins of the Cullin-RING E3 ubiquitin ligases. We demonstrate specific PCMTD1 binding to the canonical methyltransferase cofactor S-adenosylmethionine (AdoMet). Strikingly, while PCMTD1 is able to bind AdoMet, it does not demonstrate any l-isoaspartyl methyltransferase activity under the conditions tested here. However, this protein is able to associate with the Cullin-RING proteins Elongins B and C and Cul5 in vitro and in human cells. The previously uncharacterized PCMTD1 protein may therefore provide an alternate maintenance pathway for modified proteins in mammalian cells by acting as an E3 ubiquitin ligase adaptor protein.
Collapse
Affiliation(s)
- Rebeccah A Warmack
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Eric Z Pang
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Esther Peluso
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jonathan D Lowenson
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Joseph Y Ong
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Noble AJ, Purcell RV, Adams AT, Lam YK, Ring PM, Anderson JR, Osborne AJ. A Final Frontier in Environment-Genome Interactions? Integrated, Multi-Omic Approaches to Predictions of Non-Communicable Disease Risk. Front Genet 2022; 13:831866. [PMID: 35211161 PMCID: PMC8861380 DOI: 10.3389/fgene.2022.831866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
Epidemiological and associative research from humans and animals identifies correlations between the environment and health impacts. The environment-health inter-relationship is effected through an individual's underlying genetic variation and mediated by mechanisms that include the changes to gene regulation that are associated with the diversity of phenotypes we exhibit. However, the causal relationships have yet to be established, in part because the associations are reduced to individual interactions and the combinatorial effects are rarely studied. This problem is exacerbated by the fact that our genomes are highly dynamic; they integrate information across multiple levels (from linear sequence, to structural organisation, to temporal variation) each of which is open to and responds to environmental influence. To unravel the complexities of the genomic basis of human disease, and in particular non-communicable diseases that are also influenced by the environment (e.g., obesity, type II diabetes, cancer, multiple sclerosis, some neurodegenerative diseases, inflammatory bowel disease, rheumatoid arthritis) it is imperative that we fully integrate multiple layers of genomic data. Here we review current progress in integrated genomic data analysis, and discuss cases where data integration would lead to significant advances in our ability to predict how the environment may impact on our health. We also outline limitations which should form the basis of future research questions. In so doing, this review will lay the foundations for future research into the impact of the environment on our health.
Collapse
Affiliation(s)
- Alexandra J. Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel V. Purcell
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Alex T. Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Ying K. Lam
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Paulina M. Ring
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jessica R. Anderson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Amy J. Osborne
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
14
|
Louka XP, Sklirou AD, Le Goff G, Lopes P, Papanagnou ED, Manola MS, Benayahu Y, Ouazzani J, Trougakos IP. Isolation of an Extract from the Soft Coral Symbiotic Microorganism Salinispora arenicola Exerting Cytoprotective and Anti-Aging Effects. Curr Issues Mol Biol 2021; 44:14-30. [PMID: 35723381 PMCID: PMC8928968 DOI: 10.3390/cimb44010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/10/2023] Open
Abstract
Cells have developed a highly integrated system responsible for proteome stability, namely the proteostasis network (PN). As loss of proteostasis is a hallmark of aging and age-related diseases, the activation of PN modules can likely extend healthspan. Here, we present data on the bioactivity of an extract (SA223-S2BM) purified from the strain Salinispora arenicola TM223-S2 that was isolated from the soft coral Scleronephthya lewinsohni; this coral was collected at a depth of 65 m from the mesophotic Red Sea ecosystem EAPC (south Eilat, Israel). Treatment of human cells with SA223-S2BM activated proteostatic modules, decreased oxidative load, and conferred protection against oxidative and genotoxic stress. Furthermore, SA223-S2BM enhanced proteasome and lysosomal-cathepsins activities in Drosophila flies and exhibited skin protective effects as evidenced by effective inhibition of the skin aging-related enzymes, elastase and tyrosinase. We suggest that the SA223-S2BM extract constitutes a likely promising source for prioritizing molecules with anti-aging properties.
Collapse
Affiliation(s)
- Xanthippi P. Louka
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (X.P.L.); (A.D.S.); (E.-D.P.); (M.S.M.)
| | - Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (X.P.L.); (A.D.S.); (E.-D.P.); (M.S.M.)
| | - Géraldine Le Goff
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91190 Gif-sur-Yvette, France; (G.L.G.); (P.L.); (J.O.)
| | - Philippe Lopes
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91190 Gif-sur-Yvette, France; (G.L.G.); (P.L.); (J.O.)
| | - Eleni-Dimitra Papanagnou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (X.P.L.); (A.D.S.); (E.-D.P.); (M.S.M.)
| | - Maria S. Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (X.P.L.); (A.D.S.); (E.-D.P.); (M.S.M.)
| | - Yehuda Benayahu
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
| | - Jamal Ouazzani
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91190 Gif-sur-Yvette, France; (G.L.G.); (P.L.); (J.O.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (X.P.L.); (A.D.S.); (E.-D.P.); (M.S.M.)
| |
Collapse
|
15
|
Ekimova IV, Pazi MB, Belan DV, Polonik SG, Pastukhov YF. The Chaperone Inducer U133 Eliminates Anhedonia and Prevents Neurodegeneration in Monoaminergic Emotiogenic Brain Structures in a Preclinical Model of Parkinson’s Disease in Aged Rats. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021050148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Bhatia TN, Clark RN, Needham PG, Miner KM, Jamenis AS, Eckhoff EA, Abraham N, Hu X, Wipf P, Luk KC, Brodsky JL, Leak RK. Heat Shock Protein 70 as a Sex-Skewed Regulator of α-Synucleinopathy. Neurotherapeutics 2021; 18:2541-2564. [PMID: 34528172 PMCID: PMC8804008 DOI: 10.1007/s13311-021-01114-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 01/01/2023] Open
Abstract
The role of molecular chaperones, such as heat shock protein 70 (Hsp70), is not typically studied as a function of biological sex, but by addressing this gap we might improve our understanding of proteinopathic disorders that predominate in one sex. Therefore, we exposed male or female primary hippocampal cultures to preformed α-synuclein fibrils in a model of early-stage Lewy pathology. We first discovered that two mechanistically distinct inhibitors of Hsp70 function increased phospho-α-synuclein+ inclusions more robustly in male-derived neurons. Because Hsp70 is released into extracellular compartments and may restrict cell-to-cell transmission/amplification of α-synucleinopathy, we then tested the effects of low-endotoxin, exogenous Hsp70 (eHsp70) in primary hippocampal cultures. eHsp70 was taken up by and reduced α-synuclein+ inclusions in cells of both sexes, but pharmacological suppression of Hsp70 function attenuated the inhibitory effect of eHsp70 on perinuclear inclusions only in male neurons. In 20-month-old male mice infused with α-synuclein fibrils in the olfactory bulb, daily intranasal eHsp70 delivery also reduced inclusion numbers and the time to locate buried food. eHsp70 penetrated the limbic system and spinal cord of male mice within 3 h but was cleared within 72 h. Unexpectedly, no evidence of eHsp70 uptake from nose into brain was observed in females. A trend towards higher expression of inducible Hsp70-but not constitutive Hsp70 or Hsp40-was observed in amygdala tissues from male subjects with Lewy body disorders compared to unaffected male controls, supporting the importance of this chaperone in human disease. Women expressed higher amygdalar Hsp70 levels compared to men, regardless of disease status. Together, these data provide a new link between biological sex and a key chaperone that orchestrates proteostasis.
Collapse
Affiliation(s)
- Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Patrick G Needham
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Elizabeth A Eckhoff
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Dept. of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- Dept. of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey L Brodsky
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Powers ET, Gierasch LM. The Proteome Folding Problem and Cellular Proteostasis. J Mol Biol 2021; 433:167197. [PMID: 34391802 DOI: 10.1016/j.jmb.2021.167197] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
Stunning advances have been achieved in addressing the protein folding problem, providing deeper understanding of the mechanisms by which proteins navigate energy landscapes to reach their native states and enabling powerful algorithms to connect sequence to structure. However, the realities of the in vivo protein folding problem remain a challenge to reckon with. Here, we discuss the concept of the "proteome folding problem"-the problem of how organisms build and maintain a functional proteome-by admitting that folding energy landscapes are characterized by many misfolded states and that cells must deploy a network of chaperones and degradation enzymes to minimize deleterious impacts of these off-pathway species. The resulting proteostasis network is an inextricable part of in vivo protein folding and must be understood in detail if we are to solve the proteome folding problem. We discuss how the development of computational models for the proteostasis network's actions and the relationship to the biophysical properties of the proteome has begun to offer new insights and capabilities.
Collapse
Affiliation(s)
- Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Lila M Gierasch
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
18
|
Gomez-Paredes C, Mason MA, Taxy BA, Papadopoulou AS, Paganetti P, Bates GP. The heat shock response, determined by QuantiGene multiplex, is impaired in HD mouse models and not caused by HSF1 reduction. Sci Rep 2021; 11:9117. [PMID: 33907289 PMCID: PMC8079691 DOI: 10.1038/s41598-021-88715-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder, caused by a CAG/polyglutamine repeat expansion, that results in the aggregation of the huntingtin protein, culminating in the deposition of inclusion bodies in HD patient brains. We have previously shown that the heat shock response becomes impaired with disease progression in mouse models of HD. The disruption of this inducible arm of the proteostasis network is likely to exacerbate the pathogenesis of this protein-folding disease. To allow a rapid and more comprehensive analysis of the heat shock response, we have developed, and validated, a 16-plex QuantiGene assay that allows the expression of Hsf1 and nine heat shock genes, to be measured directly, and simultaneously, from mouse tissue. We used this QuantiGene assay to show that, following pharmacological activation in vivo, the heat shock response impairment in tibialis anterior, brain hemispheres and striatum was comparable between zQ175 and R6/2 mice. In contrast, although a heat shock impairment could be detected in R6/2 cortex, this was not apparent in the cortex from zQ175 mice. Whilst the mechanism underlying this impairment remains unknown, our data indicated that it is not caused by a reduction in HSF1 levels, as had been reported.
Collapse
Affiliation(s)
- Casandra Gomez-Paredes
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Michael A Mason
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Bridget A Taxy
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Aikaterini S Papadopoulou
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Paolo Paganetti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale and Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
19
|
Mallela A, Nariya MK, Deeds EJ. Crosstalk and ultrasensitivity in protein degradation pathways. PLoS Comput Biol 2020; 16:e1008492. [PMID: 33370258 PMCID: PMC7793289 DOI: 10.1371/journal.pcbi.1008492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/08/2021] [Accepted: 11/05/2020] [Indexed: 12/05/2022] Open
Abstract
Protein turnover is vital to cellular homeostasis. Many proteins are degraded efficiently only after they have been post-translationally “tagged” with a polyubiquitin chain. Ubiquitylation is a form of Post-Translational Modification (PTM): addition of a ubiquitin to the chain is catalyzed by E3 ligases, and removal of ubiquitin is catalyzed by a De-UBiquitylating enzyme (DUB). Nearly four decades ago, Goldbeter and Koshland discovered that reversible PTM cycles function like on-off switches when the substrates are at saturating concentrations. Although this finding has had profound implications for the understanding of switch-like behavior in biochemical networks, the general behavior of PTM cycles subject to synthesis and degradation has not been studied. Using a mathematical modeling approach, we found that simply introducing protein turnover to a standard modification cycle has profound effects, including significantly reducing the switch-like nature of the response. Our findings suggest that many classic results on PTM cycles may not hold in vivo where protein turnover is ubiquitous. We also found that proteins sharing an E3 ligase can have closely related changes in their expression levels. These results imply that it may be difficult to interpret experimental results obtained from either overexpressing or knocking down protein levels, since changes in protein expression can be coupled via E3 ligase crosstalk. Understanding crosstalk and competition for E3 ligases will be key in ultimately developing a global picture of protein homeostasis. Previous work has shown that substrates of Post-Translational Modification (PTM) cycles can have coupled responses if those substrates share enzymes. This implies that modifications leading to substrate degradation (e.g. ubiquitylation by an E3 ligase) could introduce coupling in concentrations of substrates sharing a ligase. Using mathematical models, we found adding protein turnover to a PTM cycle diminishes both sensitivity and ultrasensitivity, particularly in models admitting long ubiquitin chains. We also found that proteins sharing an E3 ligase can indeed have coupled changes in both expression and sensitivity to signals. These results imply that accounting for crosstalk in protein degradation networks is crucial for the interpretation of results from a wide variety of common experimental perturbations to living systems.
Collapse
Affiliation(s)
- Abhishek Mallela
- Department of Mathematics, University of California Davis, Davis, California, United States of America
| | - Maulik K. Nariya
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric J. Deeds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Al-Hajm AYS, Ozgun E. Effects of acrylamide on protein degradation pathways in human liver-derived cells and the efficacy of N-acetylcysteine and curcumin. Drug Chem Toxicol 2020; 45:1536-1543. [PMID: 33198515 DOI: 10.1080/01480545.2020.1846548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acrylamide is a harmful chemical, and its metabolism occurs mainly in the liver. Acrylamide can form adducts on proteins. Protein homeostasis is vital for metabolic and secretory functions of the liver. No study has investigated the effect of acrylamide on the ubiquitin-proteasome system (UPS). Also, the effect of acrylamide on autophagy and its regulation is not fully known. We aimed to investigate the effects of acrylamide on the UPS, autophagy, mammalian target of rapamycin (mTOR), and heat shock protein 70 (HSP70) in HepG2 cells as well as to examine the effects of N-acetylcysteine and curcumin on these parameters in acrylamide-treated cells. HepG2 cells were initially treated with variable concentrations of acrylamide (0.01-0.1-1-10 mM) for 24 hours. Then, HepG2 cells were treated with 5 mM N-acetylcysteine and 6.79 µM curcumin in the presence of 10 mM acrylamide for 24 hours. Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Ubiquitinated protein, mTOR, microtubule-associated proteins 1 A/1B light chain 3B-II (LC3B-II), and HSP70 levels were measured by immunoblotting. Acrylamide at 10 mM concentration, without any significant change at lower concentrations, caused an increase in ubiquitinated protein, LC3B-II, and HSP70 levels and a decrease in mTOR phosphorylation. Furthermore, 5 mM N-acetylcysteine caused a decrease in ubiquitinated protein and HSP70 levels; however, 6.79 µM curcumin did not affect 10 mM in acrylamide-treated cells. Our study showed that acrylamide at high concentration inhibits UPS and mTOR, activates autophagy, and increases HSP70 levels in HepG2 cells, and N-acetylcysteine reduces UPS inhibition and HSP70 levels in acrylamide-treated cells.
Collapse
Affiliation(s)
| | - Eray Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
21
|
Neves-Carvalho A, Duarte-Silva S, Teixeira-Castro A, Maciel P. Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1099-1119. [PMID: 32962458 DOI: 10.1080/14728222.2020.1827394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Six of the most frequent dominantly inherited spinocerebellar ataxias (SCAs) worldwide - SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 - are caused by an expansion of a polyglutamine (polyQ) tract in the corresponding proteins. While the identification of the causative mutation has advanced knowledge on the pathogenesis of polyQ SCAs, effective therapeutics able to mitigate the severe clinical manifestation of these highly incapacitating disorders are not yet available. AREAS COVERED This review provides a comprehensive and critical perspective on well-established and emerging therapeutic targets for polyQ SCAs; it aims to inspire prospective drug discovery efforts. EXPERT OPINION The landscape of polyQ SCAs therapeutic targets and strategies includes (1) the mutant genes and proteins themselves, (2) enhancement of endogenous protein quality control responses, (3) abnormal protein-protein interactions of the mutant proteins, (4) disturbed neuronal function, (5) mitochondrial function, energy availability and oxidative stress, and (6) glial dysfunction, growth factor or hormone imbalances. Challenges include gaining a clearer definition of therapeutic targets for the drugs in clinical development, the discovery of novel drug-like molecules for challenging key targets, and the attainment of a stronger translation of preclinical findings to the clinic.
Collapse
Affiliation(s)
- Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| |
Collapse
|
22
|
Huang L, Zhao Z, Wen J, Ling W, Miao Y, Wu J. Cellular senescence: A pathogenic mechanism of pelvic organ prolapse (Review). Mol Med Rep 2020; 22:2155-2162. [PMID: 32705234 PMCID: PMC7411359 DOI: 10.3892/mmr.2020.11339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/22/2020] [Indexed: 02/05/2023] Open
Abstract
Pelvic organ prolapse (POP) is a common symptom of pelvic floor disorders which is characterized by the descent of the uterus, bladder or bowel from their normal anatomical position towards or through the vagina. Among the older population, the incidence of POP increases with age. It is becoming necessary to recognize that POP is a degenerative disease that is correlated with age. In recent years, studies have been performed to improve understanding of the cellular and molecular mechanisms concerning senescent fibroblasts in pelvic tissues, which contribute to the loss of structure supporting the pelvic organs. These mechanisms can be classified into gene and mitochondrial dysfunctions, intrinsic senescence processes, protein imbalance and alterations in stem cells. The present review provides an integrated overview of the current research and concepts regarding POP, in addition to discussing how fibroblasts can be targeted to evade the negative impact of senescence on POP. However, it is probable that other mechanisms that can also cause POP exist during cell senescence, which necessitates further research and provides new directions in the development of novel medical treatment, stem cell therapy and non-surgical interventions for POP.
Collapse
Affiliation(s)
- Liwei Huang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jirui Wen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wang Ling
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yali Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
23
|
Gonzalez-Freire M, Diaz-Ruiz A, Hauser D, Martinez-Romero J, Ferrucci L, Bernier M, de Cabo R. The road ahead for health and lifespan interventions. Ageing Res Rev 2020; 59:101037. [PMID: 32109604 DOI: 10.1016/j.arr.2020.101037] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/21/2020] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Aging is a modifiable risk factor for most chronic diseases and an inevitable process in humans. The development of pharmacological interventions aimed at delaying or preventing the onset of chronic conditions and other age-related diseases has been at the forefront of the aging field. Preclinical findings have demonstrated that species, sex and strain confer significant heterogeneity on reaching the desired health- and lifespan-promoting pharmacological responses in model organisms. Translating the safety and efficacy of these interventions to humans and the lack of reliable biomarkers that serve as predictors of health outcomes remain a challenge. Here, we will survey current pharmacological interventions that promote lifespan extension and/or increased healthspan in animals and humans, and review the various anti-aging interventions selected for inclusion in the NIA's Interventions Testing Program as well as the ClinicalTrials.gov database that target aging or age-related diseases in humans.
Collapse
Affiliation(s)
- Marta Gonzalez-Freire
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA; Cardiovascular and Metabolic Diseases Group, Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain.
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA; Nutritional Interventions Group, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - David Hauser
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Jorge Martinez-Romero
- Molecular Oncology and Nutritional Genomics of Cancer Group, Precision Nutrition and Cancer Program, IMDEA Food, CEI, UAM/CSIC, Madrid, Spain
| | - Luigi Ferrucci
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| |
Collapse
|
24
|
Ozgun GS, Ozgun E. The cytotoxic concentration of rosmarinic acid increases MG132-induced cytotoxicity, proteasome inhibition, autophagy, cellular stresses, and apoptosis in HepG2 cells. Hum Exp Toxicol 2020; 39:514-523. [PMID: 31876192 DOI: 10.1177/0960327119896614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Rosmarinic acid (RA) is a natural polyphenolic compound derived from many common herbal plants. Although it is known that RA has many important biological activities, its effect on proteasome inhibitor-induced changes in cancer treatment or its effects on any experimental proteasome inhibition model is unknown. The aim of the study was to investigate the effect of RA on MG132-induced cytotoxicity, proteasome inhibition, autophagy, cellular stresses, and apoptosis in HepG2 cells. HepG2 cells were treated with 10, 100, and 1000 µM RA in the presence of MG132 for 24 h; 10 and 100 µM RA did not affect but 1000 µM RA decreased cell viability in HepG2 cells. MG132 caused a significant decrease in cell viability and phosphorylation of mammalian target of rapamycin and a significant increase in levels of polyubiquitinated protein, microtubule-associated proteins 1A/1B light chain 3B-II (LC3B-II), heat shock protein 70 (HSP70), binding immunoglobulin protein (BiP), activating transcription factor 4 (ATF4), protein carbonyl, and cleaved poly(adenosine diphosphate-ribose) polymerase 1 (PARP1); 10 and 100 µM RA did not significantly change these effects of MG132 in HepG2 cells; 1000 µM RA caused a significant decrease in cell viability and a significant increase in polyubiquitinated protein, LC3B-II, HSP70, BiP, ATF4, protein carbonyl, and cleaved PARP1 levels in MG132-treated cells. Our study showed that only 1000 µM RA increased MG132-induced cytotoxicity, proteasome inhibition, autophagy, cellular stresses, and apoptosis in HepG2 cells. According to our results, cytotoxic concentration of RA can potentiate the effects of MG132 in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- G S Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| | - E Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
25
|
Proteomics analysis of lipid droplets indicates involvement of membrane trafficking proteins in lipid droplet breakdown in the oleaginous diatom Fistulifera solaris. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Abstract
Proteasomes are multienzyme complexes that maintain protein homeostasis (proteostasis) and important cellular functions through the degradation of misfolded, redundant, and damaged proteins. It is well established that aging is associated with the accumulation of damaged and misfolded proteins. This phenomenon is paralleled by declined proteasome activity. When the accumulation of redundant proteins exceed degradation, undesirable signaling and/or aggregation occurs and are the hallmarks of neurodegenerative diseases and many cancers. Thus, increasing proteasome activity has been recognized as a new approach to delay the onset or ameliorate the symptoms of neurodegenerative and other proteotoxic disorders. Enhancement of proteasome activity has many therapeutic potentials but is still a relatively unexplored field. In this perspective, we review current approaches, genetic manipulation, posttranslational modification, and small molecule proteasome agonists used to increase proteasome activity, challenges facing the field, and applications beyond aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Evert Njomen
- Department of Chemistry, and Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jetze J. Tepe
- Department of Chemistry, and Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
27
|
Brünnert D, Kraus M, Stühmer T, Kirner S, Heiden R, Goyal P, Driessen C, Bargou RC, Chatterjee M. Novel cell line models to study mechanisms and overcoming strategies of proteasome inhibitor resistance in multiple myeloma. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1666-1676. [PMID: 30954557 DOI: 10.1016/j.bbadis.2019.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Experimental data on resistance mechanisms of multiple myeloma (MM) to ixazomib (IXA), a second-generation proteasome inhibitor (PI), are currently lacking. We generated MM cell lines with a 10-fold higher resistance to IXA as their sensitive counterparts, and observed cross-resistance towards the PIs carfilzomib (CFZ) and bortezomib (BTZ). Analyses of the IXA-binding proteasome subunits PSMB5 and PSMB1 show increased PSMB5 expression and activity in all IXA-resistant MM cells, and upregulated PSMB1 expression in IXA-resistant AMO1 cells. In addition, sequence analysis of PSMB5 revealed a p.Thr21Ala mutation in IXA-resistant MM1.S cells, and a p.Ala50Val mutation in IXA-resistant L363 cells, whereas IXA-resistant AMO1 cells lack PSMB5 mutations. IXA-resistant cells retain their sensitivity to therapeutic agents that mediate cytotoxic effects via induction of proteotoxic stress. Induction of ER stress and apoptosis by the p97 inhibitor CB-5083 was strongly enhanced in combination with the PI3Kα inhibitor BYL-719 or the HDAC inhibitor panobinostat suggesting potential therapeutic strategies to circumvent IXA resistance in MM. Taken together, our newly established IXA-resistant cell lines provide first insights into resistance mechanisms and overcoming treatment strategies, and represent suitable models to further study IXA resistance in MM.
Collapse
Affiliation(s)
- Daniela Brünnert
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany.
| | - Marianne Kraus
- Kantonsspital St. Gallen, Clinic for Oncology/Hematology, St. Gallen, Switzerland
| | - Thorsten Stühmer
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany
| | - Stefanie Kirner
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany
| | - Robin Heiden
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany
| | - Pankaj Goyal
- Central University of Rajasthan, Department of Biotechnology, School of Life Sciences, Bandar Sindri, Kishangarh, India
| | - Christoph Driessen
- Kantonsspital St. Gallen, Clinic for Oncology/Hematology, St. Gallen, Switzerland
| | - Ralf C Bargou
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany
| | - Manik Chatterjee
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany
| |
Collapse
|
28
|
Trcka F, Durech M, Vankova P, Chmelik J, Martinkova V, Hausner J, Kadek A, Marcoux J, Klumpler T, Vojtesek B, Muller P, Man P. Human Stress-inducible Hsp70 Has a High Propensity to Form ATP-dependent Antiparallel Dimers That Are Differentially Regulated by Cochaperone Binding. Mol Cell Proteomics 2019; 18:320-337. [PMID: 30459217 PMCID: PMC6356074 DOI: 10.1074/mcp.ra118.001044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/09/2018] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic protein homeostasis (proteostasis) is largely dependent on the action of highly conserved Hsp70 molecular chaperones. Recent evidence indicates that, apart from conserved molecular allostery, Hsp70 proteins have retained and adapted the ability to assemble as functionally relevant ATP-bound dimers throughout evolution. Here, we have compared the ATP-dependent dimerization of DnaK, human stress-inducible Hsp70, Hsc70 and BiP Hsp70 proteins, showing that their dimerization propensities differ, with stress-inducible Hsp70 being predominantly dimeric in the presence of ATP. Structural analyses using hydrogen/deuterium exchange mass spectrometry, native electrospray ionization mass spectrometry and small-angle X-ray scattering revealed that stress-inducible Hsp70 assembles in solution as an antiparallel dimer with the intermolecular interface closely resembling the ATP-bound dimer interfaces captured in DnaK and BiP crystal structures. ATP-dependent dimerization of stress-inducible Hsp70 is necessary for its efficient interaction with Hsp40, as shown by experiments with dimerization-deficient mutants. Moreover, dimerization of ATP-bound Hsp70 is required for its participation in high molecular weight protein complexes detected ex vivo, supporting its functional role in vivo As human cytosolic Hsp70 can interact with tetratricopeptide repeat (TPR) domain containing cochaperones, we tested the interaction of Hsp70 ATP-dependent dimers with Chip and Tomm34 cochaperones. Although Chip associates with intact Hsp70 dimers to form a larger complex, binding of Tomm34 disrupts the Hsp70 dimer and this event plays an important role in Hsp70 activity regulation. In summary, this study provides structural evidence of robust ATP-dependent antiparallel dimerization of human inducible Hsp70 protein and suggests a novel role of TPR domain cochaperones in multichaperone complexes involving Hsp70 ATP-bound dimers.
Collapse
Affiliation(s)
- Filip Trcka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Michal Durech
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Pavla Vankova
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Josef Chmelik
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Veronika Martinkova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Jiri Hausner
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Alan Kadek
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tomas Klumpler
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Petr Muller
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic;.
| | - Petr Man
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic;.
| |
Collapse
|
29
|
Brunquell J, Raynes R, Bowers P, Morris S, Snyder A, Lugano D, Deonarine A, Westerheide SD. CCAR-1 is a negative regulator of the heat-shock response in Caenorhabditis elegans. Aging Cell 2018; 17:e12813. [PMID: 30003683 PMCID: PMC6156500 DOI: 10.1111/acel.12813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
Defects in protein quality control during aging are central to many human diseases, and strategies are needed to better understand mechanisms of controlling the quality of the proteome. The heat-shock response (HSR) is a conserved survival mechanism mediated by the transcription factor HSF1 which functions to maintain proteostasis. In mammalian cells, HSF1 is regulated by a variety of factors including the prolongevity factor SIRT1. SIRT1 promotes the DNA-bound state of HSF1 through deacetylation of the DNA-binding domain of HSF1, thereby enhancing the HSR. SIRT1 is also regulated by various factors, including negative regulation by the cell-cycle and apoptosis regulator CCAR2. CCAR2 negatively regulates the HSR, possibly through its inhibitory interaction with SIRT1. We were interested in studying conservation of the SIRT1/CCAR2 regulatory interaction in Caenorhabditis elegans, and in utilizing this model organism to observe the effects of modulating sirtuin activity on the HSR, longevity, and proteostasis. The HSR is highly conserved in C. elegans and is mediated by the HSF1 homolog, HSF-1. We have uncovered that negative regulation of the HSR by CCAR2 is conserved in C. elegans and is mediated by the CCAR2 ortholog, CCAR-1. This negative regulation requires the SIRT1 homolog SIR-2.1. In addition, knockdown of CCAR-1 via ccar-1 RNAi works through SIR-2.1 to enhance stress resistance, motility, longevity, and proteostasis. This work therefore highlights the benefits of enhancing sirtuin activity to promote the HSR at the level of the whole organism.
Collapse
Affiliation(s)
- Jessica Brunquell
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Rachel Raynes
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Philip Bowers
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Stephanie Morris
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Alana Snyder
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Doreen Lugano
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Andrew Deonarine
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Sandy D. Westerheide
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
30
|
Abstract
A half century of studying protein folding in vitro and modeling it in silico has not provided us with a reliable computational method to predict the native conformations of proteins de novo, let alone identify the intermediates on their folding pathways. In this Opinion article, we suggest that the reason for this impasse is the over-reliance on current physical models of protein folding that are based on the assumption that proteins are able to fold spontaneously without assistance. These models arose from studies conducted in vitro on a biased sample of smaller, easier-to-isolate proteins, whose native structures appear to be thermodynamically stable. Meanwhile, the vast empirical data on the majority of larger proteins suggests that once these proteins are completely denatured in vitro, they cannot fold into native conformations without assistance. Moreover, they tend to lose their native conformations spontaneously and irreversibly in vitro, and therefore such conformations must be metastable. We propose a model of protein folding that is based on the notion that the folding of all proteins in the cell is mediated by the actions of the "protein folding machine" that includes the ribosome, various chaperones, and other components involved in co-translational or post-translational formation, maintenance and repair of protein native conformations in vivo. The most important and universal component of the protein folding machine consists of the ribosome in complex with the welcoming committee chaperones. The concerted actions of molecular machinery in the ribosome peptidyl transferase center, in the exit tunnel, and at the surface of the ribosome result in the application of mechanical and other forces to the nascent peptide, reducing its conformational entropy and possibly creating strain in the peptide backbone. The resulting high-energy conformation of the nascent peptide allows it to fold very fast and to overcome high kinetic barriers along the folding pathway. The early folding intermediates in vivo are stabilized by interactions with the ribosome and welcoming committee chaperones and would not be able to exist in vitro in the absence of such cellular components. In vitro experiments that unfold proteins by heat or chemical treatment produce denaturation ensembles that are very different from folding intermediates in vivo and therefore have very limited use in reconstructing the in vivo folding pathways. We conclude that computational modeling of protein folding should deemphasize the notion of unassisted thermodynamically controlled folding, and should focus instead on the step-by-step reverse engineering of the folding process as it actually occurs in vivo. REVIEWERS This article was reviewed by Eugene Koonin and Frank Eisenhaber.
Collapse
|
31
|
Rigoli L, Bramanti P, Di Bella C, De Luca F. Genetic and clinical aspects of Wolfram syndrome 1, a severe neurodegenerative disease. Pediatr Res 2018; 83:921-929. [PMID: 29774890 DOI: 10.1038/pr.2018.17] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/31/2017] [Indexed: 12/14/2022]
Abstract
Wolfram syndrome 1 (WS1) is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, deafness, and other abnormalities. WS1 usually results in death before the age of 50 years. The pathogenesis of WS1 is ascribed to mutations of human WFS1 gene on chromosome 4p encoding a transmembrane protein called wolframin, which has physiological functions in membrane trafficking, secretion, processing, and/or regulation of ER calcium homeostasis. Different types of WFS1 mutations have been identified, and some of these have been associated with a dominant, severe type of WS. Mutations of CISD2 gene cause autosomal recessive Wolfram syndrome 2 (WS2) characterized by the absence of diabetes insipidus and psychiatric disorders, and by bleeding upper intestinal ulcer and defective platelet aggregation. Other WFS1-related disorders such as DFNA6/14/38 nonsyndromic low-frequency sensorineural hearing loss and Wolfram syndrome-like disease with autosomal dominant transmission have been described. WS1 is a devastating disease for the patients and their families. Thus, early diagnosis is imperative to enable proper prognostication, prevent complications, and reduce the transmission to further progeny. Although there is currently no effective therapy, potential new drugs have been introduced, attempting to improve the progression of this fatal disease.
Collapse
Affiliation(s)
- Luciana Rigoli
- Department of Pediatrics, University Hospital, Messina, Italy
| | | | - Chiara Di Bella
- Department of Pediatrics, University Hospital, Messina, Italy
| | - Filippo De Luca
- Department of Pediatrics, University Hospital, Messina, Italy
| |
Collapse
|
32
|
State-of-the-Art Fluorescence Fluctuation-Based Spectroscopic Techniques for the Study of Protein Aggregation. Int J Mol Sci 2018; 19:ijms19040964. [PMID: 29570669 PMCID: PMC5979297 DOI: 10.3390/ijms19040964] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/17/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are devastating proteinopathies with misfolded protein aggregates accumulating in neuronal cells. Inclusion bodies of protein aggregates are frequently observed in the neuronal cells of patients. Investigation of the underlying causes of neurodegeneration requires the establishment and selection of appropriate methodologies for detailed investigation of the state and conformation of protein aggregates. In the current review, we present an overview of the principles and application of several methodologies used for the elucidation of protein aggregation, specifically ones based on determination of fluctuations of fluorescence. The discussed methods include fluorescence correlation spectroscopy (FCS), imaging FCS, image correlation spectroscopy (ICS), photobleaching ICS (pbICS), number and brightness (N&B) analysis, super-resolution optical fluctuation imaging (SOFI), and transient state (TRAST) monitoring spectroscopy. Some of these methodologies are classical protein aggregation analyses, while others are not yet widely used. Collectively, the methods presented here should help the future development of research not only into protein aggregation but also neurodegenerative diseases.
Collapse
|
33
|
A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat Commun 2018; 9:1097. [PMID: 29545515 PMCID: PMC5854577 DOI: 10.1038/s41467-018-03509-0] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Protein accumulation and aggregation with a concomitant loss of proteostasis often contribute to neurodegenerative diseases, and the ubiquitin–proteasome system plays a major role in protein degradation and proteostasis. Here, we show that three different proteins from Alzheimer’s, Parkinson’s, and Huntington’s disease that misfold and oligomerize into a shared three-dimensional structure potently impair the proteasome. This study indicates that the shared conformation allows these oligomers to bind and inhibit the proteasome with low nanomolar affinity, impairing ubiquitin-dependent and ubiquitin-independent proteasome function in brain lysates. Detailed mechanistic analysis demonstrates that these oligomers inhibit the 20S proteasome through allosteric impairment of the substrate gate in the 20S core particle, preventing the 19S regulatory particle from injecting substrates into the degradation chamber. These results provide a novel molecular model for oligomer-driven impairment of proteasome function that is relevant to a variety of neurodegenerative diseases, irrespective of the specific misfolded protein that is involved. Disruption of the ubiquitin proteasome system (UPS) is often associated with neurodegenerative diseases. Here the authors demonstrate the existence of a general mechanism of proteasomal impairment triggered by a specific protein oligomer structure, irrespective of its protein constituent.
Collapse
|
34
|
Tolerance of chronic HDACi treatment for neurological, visceral and lung Niemann-Pick Type C disease in mice. Sci Rep 2018; 8:3875. [PMID: 29497113 PMCID: PMC5832807 DOI: 10.1038/s41598-018-22162-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/15/2018] [Indexed: 01/24/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors are of significant interest as drugs. However, their use to treat neurological disorders has raised concern because HDACs are required for brain function. We have previously shown that a triple combination formulation (TCF) of the pan HDACi vorinostat (Vo), 2-hydroxypropyl-beta-cyclodextrin (HPBCD) and polyethylene glycol (PEG) 400 improves pharmacokinetic exposure and entry of Vo into the brain. TCF treatment significantly delayed both neurodegeneration and death in the Npc1nmf164 murine model of Niemann-Pick Type C (NPC) disease. The TCF induces no metabolic toxicity, but its risk to normal brain functions and potential utility in treating lung disease, a major NPC clinical complication, remain unknown. Here we report that TCF administered in healthy mice for 8–10 months was not detrimental to the brain or neuromuscular functions based on quantitative analyses of Purkinje neurons, neuroinflammation, neurocognitive/muscular disease symptom progression, cerebellar/hippocampal nerve fiber-staining, and Hdac gene-expression. The TCF also improved delivery of Vo to lungs and reduced accumulation of foamy macrophages in Npc1nmf164 mice, with no injury. Together, these data support feasibility of tolerable, chronic administration of an HDACi formulation that treats murine NPC neurological disease and lung pathology, a frequent cause of death in this and possibly additional disorders.
Collapse
|
35
|
Benussi A, Cotelli MS, Padovani A, Borroni B. Recent neuroimaging, neurophysiological, and neuropathological advances for the understanding of NPC. F1000Res 2018; 7:194. [PMID: 29511534 PMCID: PMC5814740 DOI: 10.12688/f1000research.12361.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Niemann–Pick disease type C (NPC) is a rare autosomal recessive lysosomal storage disorder with extensive biological, molecular, and clinical heterogeneity. Recently, numerous studies have tried to shed light on the pathophysiology of the disease, highlighting possible disease pathways common to other neurodegenerative disorders, such as Alzheimer’s disease and frontotemporal dementia, and identifying possible candidate biomarkers for disease staging and response to treatment. Miglustat, which reversibly inhibits glycosphingolipid synthesis, has been licensed in the European Union and elsewhere for the treatment of NPC in both children and adults. A number of ongoing clinical trials might hold promise for the development of new treatments for NPC. The objective of the present work is to review and evaluate recent literature data in order to highlight the latest neuroimaging, neurophysiological, and neuropathological advances for the understanding of NPC pathophysiology. Furthermore, ongoing developments in disease-modifying treatments will be briefly discussed.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia BS, Italy
| | | | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia BS, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia BS, Italy
| |
Collapse
|
36
|
Brunquell J, Morris S, Snyder A, Westerheide SD. Coffee extract and caffeine enhance the heat shock response and promote proteostasis in an HSF-1-dependent manner in Caenorhabditis elegans. Cell Stress Chaperones 2018; 23:65-75. [PMID: 28674941 PMCID: PMC5741582 DOI: 10.1007/s12192-017-0824-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 01/05/2023] Open
Abstract
As the population ages, there is a critical need to uncover strategies to combat diseases of aging. Studies in the soil-dwelling nematode Caenorhabditis elegans have demonstrated the protective effects of coffee extract and caffeine in promoting the induction of conserved longevity pathways including the insulin-like signaling pathway and the oxidative stress response. We were interested in determining the effects of coffee and caffeine treatment on the regulation of the heat shock response. The heat shock response is a highly conserved cellular response that functions as a cytoprotective mechanism during stress, mediated by the heat shock transcription factor HSF-1. In the worm, HSF-1 not only promotes protection against stress but is also essential for development and longevity. Induction of the heat shock response has been suggested to be beneficial for diseases of protein conformation by preventing protein misfolding and aggregation, and as such has been proposed as a therapeutic target for age-associated neurodegenerative disorders. In this study, we demonstrate that coffee is a potent, dose-dependent, inducer of the heat shock response. Treatment with a moderate dose of pure caffeine was also able to induce the heat shock response, indicating caffeine as an important component within coffee for producing this response. The effects that we observe with both coffee and pure caffeine on the heat shock response are both dependent on HSF-1. In a C. elegans Huntington's disease model, worms treated with caffeine were protected from polyglutamine aggregates and toxicity, an effect that was also HSF-1-dependent. In conclusion, these results demonstrate caffeinated coffee, and pure caffeine, as protective substances that promote proteostasis through induction of the heat shock response.
Collapse
Affiliation(s)
- Jessica Brunquell
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Stephanie Morris
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Alana Snyder
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Sandy D Westerheide
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA.
| |
Collapse
|
37
|
Gámez A, Yuste-Checa P, Brasil S, Briso-Montiano Á, Desviat L, Ugarte M, Pérez-Cerdá C, Pérez B. Protein misfolding diseases: Prospects of pharmacological treatment. Clin Genet 2017; 93:450-458. [DOI: 10.1111/cge.13088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Affiliation(s)
- A. Gámez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - P. Yuste-Checa
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - S. Brasil
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - Á. Briso-Montiano
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - L.R. Desviat
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - M. Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - C. Pérez-Cerdá
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| | - B. Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria IdiPAZ; Madrid Spain
| |
Collapse
|
38
|
Mohamed FE, Al-Gazali L, Al-Jasmi F, Ali BR. Pharmaceutical Chaperones and Proteostasis Regulators in the Therapy of Lysosomal Storage Disorders: Current Perspective and Future Promises. Front Pharmacol 2017; 8:448. [PMID: 28736525 PMCID: PMC5500627 DOI: 10.3389/fphar.2017.00448] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 02/05/2023] Open
Abstract
Different approaches have been utilized or proposed for the treatment of lysosomal storage disorders (LSDs) including enzyme replacement and hematopoietic stem cell transplant therapies, both aiming to compensate for the enzymatic loss of the underlying mutated lysosomal enzymes. However, these approaches have their own limitations and therefore the vast majority of LSDs are either still untreatable or their treatments are inadequate. Missense mutations affecting enzyme stability, folding and cellular trafficking are common in LSDs resulting often in low protein half-life, premature degradation, aggregation and retention of the mutant proteins in the endoplasmic reticulum. Small molecular weight compounds such as pharmaceutical chaperones (PCs) and proteostasis regulators have been in recent years to be promising approaches for overcoming some of these protein processing defects. These compounds are thought to enhance lysosomal enzyme activity by specific binding to the mutated enzyme or by manipulating components of the proteostasis pathways promoting protein stability, folding and trafficking and thus enhancing and restoring some of the enzymatic activity of the mutated protein in lysosomes. Multiple compounds have already been approved for clinical use to treat multiple LSDs like migalastat in the treatment of Fabry disease and others are currently under research or in clinical trials such as Ambroxol hydrochloride and Pyrimethamine. In this review, we are presenting a general overview of LSDs, their molecular and cellular bases, and focusing on recent advances on targeting and manipulation proteostasis, including the use of PCs and proteostasis regulators, as therapeutic targets for some LSDs. In addition, we present the successes, limitations and future perspectives in this field.
Collapse
Affiliation(s)
- Fedah E. Mohamed
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates UniversityAl-Ain, United Arab Emirates
| |
Collapse
|
39
|
Bose S, Cho J. Targeting chaperones, heat shock factor-1, and unfolded protein response: Promising therapeutic approaches for neurodegenerative disorders. Ageing Res Rev 2017; 35:155-175. [PMID: 27702699 DOI: 10.1016/j.arr.2016.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Protein misfolding, which is known to cause several serious diseases, is an emerging field that addresses multiple therapeutic areas. Misfolding of a disease-specific protein in the central nervous system ultimately results in the formation of toxic aggregates that may accumulate in the brain, leading to neuronal cell death and dysfunction, and associated clinical manifestations. A large number of neurodegenerative diseases in humans, including Alzheimer's, Parkinson's, Huntington's, and prion diseases, are primarily caused by protein misfolding and aggregation. Notably, the cellular system is equipped with a protein quality control system encompassing chaperones, ubiquitin proteasome system, and autophagy, as a defense mechanism that monitors protein folding and eliminates inappropriately folded proteins. As the intrinsic molecular mechanisms of protein misfolding become more clearly understood, the novel therapeutic approaches in this arena are gaining considerable interest. The present review will describe the chaperones network and different approaches as the therapeutic targets for neurodegenerative diseases. Current and emerging therapeutic approaches to combat neurodegenerative diseases, addressing the roles of molecular, chemical, and pharmacological chaperones, as well as heat shock factor-1 and the unfolded protein response, are also discussed in detail.
Collapse
Affiliation(s)
- Shambhunath Bose
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
40
|
Hegde RN, Subramanian A, Pothukuchi P, Parashuraman S, Luini A. Rare ER protein misfolding-mistrafficking disorders: Therapeutic developments. Tissue Cell 2017; 49:175-185. [PMID: 28222887 DOI: 10.1016/j.tice.2017.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 12/16/2022]
Abstract
The presence of a functional protein at the appropriate location in the cell is the result of the processes of transcription, translation, folding and trafficking to the correct destination. There are numerous diseases that are caused by protein misfolding, mainly due to mutations in the respective gene. The consequences of this misfolding may be that proteins effectively lose their function, either by being removed by the cellular quality control machinery or by accumulating at the incorrect intracellular or extracellular location. A number of mutations that lead to protein misfolding and affect trafficking to the final destination, e.g. Cystic fibrosis, Wilson's disease, and Progressive Familial Intrahepatic 1 cholestasis, result in proteins that retain partial function if their folding and trafficking is restored either by molecular or pharmacological means. In this review, we discuss several mutant proteins within this class of misfolding diseases and provide an update on the status of molecular and therapeutic developments and potential therapeutic strategies being developed to counter these diseases.
Collapse
Affiliation(s)
| | - Advait Subramanian
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | | | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy; Istituto di Ricovero e Cura a Carattere Scientifico SDN, Naples, Italy
| |
Collapse
|
41
|
Goloubinoff P. Editorial: The HSP70 Molecular Chaperone Machines. Front Mol Biosci 2017; 4:1. [PMID: 28174697 PMCID: PMC5258742 DOI: 10.3389/fmolb.2017.00001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
42
|
Nrf2 mitigates LRRK2- and α-synuclein-induced neurodegeneration by modulating proteostasis. Proc Natl Acad Sci U S A 2016; 114:1165-1170. [PMID: 28028237 DOI: 10.1073/pnas.1522872114] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) and α-synuclein lead to Parkinson's disease (PD). Disruption of protein homeostasis is an emerging theme in PD pathogenesis, making mechanisms to reduce the accumulation of misfolded proteins an attractive therapeutic strategy. We determined if activating nuclear factor erythroid 2-related factor (Nrf2), a potential therapeutic target for neurodegeneration, could reduce PD-associated neuron toxicity by modulating the protein homeostasis network. Using a longitudinal imaging platform, we visualized the metabolism and location of mutant LRRK2 and α-synuclein in living neurons at the single-cell level. Nrf2 reduced PD-associated protein toxicity by a cell-autonomous mechanism that was time-dependent. Furthermore, Nrf2 activated distinct mechanisms to handle different misfolded proteins. Nrf2 decreased steady-state levels of α-synuclein in part by increasing α-synuclein degradation. In contrast, Nrf2 sequestered misfolded diffuse LRRK2 into more insoluble and homogeneous inclusion bodies. By identifying the stress response strategies activated by Nrf2, we also highlight endogenous coping responses that might be therapeutically bolstered to treat PD.
Collapse
|
43
|
Caenorhabditis elegans AGXT-1 is a mitochondrial and temperature-adapted ortholog of peroxisomal human AGT1: New insights into between-species divergence in glyoxylate metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1195-1205. [PMID: 27179589 DOI: 10.1016/j.bbapap.2016.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 11/23/2022]
|
44
|
Cybulsky AV, Guillemette J, Papillon J. Ste20-like kinase, SLK, activates the heat shock factor 1 - Hsp70 pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2147-55. [PMID: 27216364 DOI: 10.1016/j.bbamcr.2016.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
Expression and activation of SLK increases during renal ischemia-reperfusion injury. When highly expressed, SLK signals via c-Jun N-terminal kinase and p38 to induce apoptosis, and it exacerbates apoptosis induced by ischemia-reperfusion injury. Overexpression of SLK in glomerular epithelial cells (GECs)/podocytes in vivo induces injury and proteinuria. In response to various stresses, cells enhance expression of chaperones or heat shock proteins (e.g. Hsp70), which are involved in the folding and maturation of newly synthesized proteins, and can refold denatured or misfolded proteins. We address the interaction of SLK with the heat shock factor 1 (HSF1)-Hsp70 pathway. Increased expression of SLK in GECs (following transfection) induced HSF1 transcriptional activity. Moreover, HSF1 transcriptional activity was increased by in vitro ischemia-reperfusion injury (chemical anoxia/recovery) and heat shock, and in both instances was amplified further by SLK overexpression. HSF1 binds to promoters of target genes, such as Hsp70 and induces their transcription. By analogy to HSF1, SLK stimulated Hsp70 expression. Hsp70 was also enhanced by anoxia/recovery and was further amplified by SLK overexpression. Induction of HSF1 and Hsp70 was dependent on the kinase activity of SLK, and was mediated via polo-like kinase-1. Transfection of constitutively active HSF1 enhanced Hsp70 expression and inhibited SLK-induced apoptosis. Conversely, the proapoptotic action of SLK was augmented by HSF1 shRNA, or the Hsp70 inhibitor, pifithrin-μ. In conclusion, increased expression/activity of SLK activates the HSF1-Hsp70 pathway. Hsp70 attenuates the primary proapoptotic effect of SLK. Modulation of chaperone expression may potentially be harnessed as cytoprotective therapy in renal cell injury.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada.
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Kroncke BM, Duran AM, Mendenhall JL, Meiler J, Blume JD, Sanders CR. Documentation of an Imperative To Improve Methods for Predicting Membrane Protein Stability. Biochemistry 2016; 55:5002-9. [PMID: 27564391 PMCID: PMC5024705 DOI: 10.1021/acs.biochem.6b00537] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
There
is a compelling and growing need to accurately predict the
impact of amino acid mutations on protein stability for problems in
personalized medicine and other applications. Here the ability of
10 computational tools to accurately predict mutation-induced perturbation
of folding stability (ΔΔG) for membrane
proteins of known structure was assessed. All methods for predicting
ΔΔG values performed significantly worse
when applied to membrane proteins than when applied to soluble proteins,
yielding estimated concordance, Pearson, and Spearman correlation
coefficients of <0.4 for membrane proteins. Rosetta and PROVEAN
showed a modest ability to classify mutations as destabilizing (ΔΔG < −0.5 kcal/mol), with a 7 in 10 chance of correctly
discriminating a randomly chosen destabilizing variant from a randomly
chosen stabilizing variant. However, even this performance is significantly
worse than for soluble proteins. This study highlights the need for
further development of reliable and reproducible methods for predicting
thermodynamic folding stability in membrane proteins.
Collapse
Affiliation(s)
- Brett M Kroncke
- Department of Biochemistry, ‡Center for Structural Biology, §Departments of Chemistry, Pharmacology, and Bioinformatics, and ∥Department of Biostatistics, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - Amanda M Duran
- Department of Biochemistry, ‡Center for Structural Biology, §Departments of Chemistry, Pharmacology, and Bioinformatics, and ∥Department of Biostatistics, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - Jeffrey L Mendenhall
- Department of Biochemistry, ‡Center for Structural Biology, §Departments of Chemistry, Pharmacology, and Bioinformatics, and ∥Department of Biostatistics, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - Jens Meiler
- Department of Biochemistry, ‡Center for Structural Biology, §Departments of Chemistry, Pharmacology, and Bioinformatics, and ∥Department of Biostatistics, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - Jeffrey D Blume
- Department of Biochemistry, ‡Center for Structural Biology, §Departments of Chemistry, Pharmacology, and Bioinformatics, and ∥Department of Biostatistics, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - Charles R Sanders
- Department of Biochemistry, ‡Center for Structural Biology, §Departments of Chemistry, Pharmacology, and Bioinformatics, and ∥Department of Biostatistics, Vanderbilt University , Nashville, Tennessee 37240, United States
| |
Collapse
|
46
|
Plate L, Cooley CB, Chen JJ, Paxman RJ, Gallagher CM, Madoux F, Genereux JC, Dobbs W, Garza D, Spicer TP, Scampavia L, Brown SJ, Rosen H, Powers ET, Walter P, Hodder P, Wiseman RL, Kelly JW. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. eLife 2016; 5:e15550. [PMID: 27435961 PMCID: PMC4954754 DOI: 10.7554/elife.15550] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/22/2016] [Indexed: 12/23/2022] Open
Abstract
Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. The ER reprogramming afforded by our molecules requires activation of endogenous ATF6 and occurs independent of global ER stress. Furthermore, our molecules phenocopy the ability of genetic ATF6 activation to selectively reduce secretion and extracellular aggregation of amyloidogenic proteins. These results show that small molecule-dependent ER reprogramming, achieved through preferential activation of the ATF6 transcriptional program, is a promising strategy to ameliorate imbalances in ER function associated with degenerative protein aggregation diseases.
Collapse
Affiliation(s)
- Lars Plate
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | - Christina B Cooley
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | - John J Chen
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | - Ryan J Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
| | - Ciara M Gallagher
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - Franck Madoux
- The Scripps Research Institute Molecular Screening Center, Translational Research Institute, Jupiter, United States
- Lead Identification Division, Translational Research Institute, Jupiter, United States
| | - Joseph C Genereux
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | - Wesley Dobbs
- Proteostasis Therapeutics Inc, Cambridge, United States
| | - Dan Garza
- Proteostasis Therapeutics Inc, Cambridge, United States
| | - Timothy P Spicer
- The Scripps Research Institute Molecular Screening Center, Translational Research Institute, Jupiter, United States
- Lead Identification Division, Translational Research Institute, Jupiter, United States
| | - Louis Scampavia
- The Scripps Research Institute Molecular Screening Center, Translational Research Institute, Jupiter, United States
- Lead Identification Division, Translational Research Institute, Jupiter, United States
| | - Steven J Brown
- The Scripps Research Institute Molecular Screening Center, La Jolla, United States
| | - Hugh Rosen
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
- The Scripps Research Institute Molecular Screening Center, La Jolla, United States
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
| | - Peter Walter
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - Peter Hodder
- The Scripps Research Institute Molecular Screening Center, Translational Research Institute, Jupiter, United States
- Lead Identification Division, Translational Research Institute, Jupiter, United States
| | - R Luke Wiseman
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
47
|
Melki R. Role of Different Alpha-Synuclein Strains in Synucleinopathies, Similarities with other Neurodegenerative Diseases. JOURNAL OF PARKINSONS DISEASE 2016; 5:217-27. [PMID: 25757830 PMCID: PMC4923763 DOI: 10.3233/jpd-150543] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Misfolded protein aggregates are the hallmark of several neurodegenerative diseases in humans. The main protein constituent of these aggregates and the regions within the brain that are affected differ from one neurodegenerative disorder to another. A plethora of reports suggest that distinct diseases have in common the ability of protein aggregates to spread and amplify within the central nervous system. This review summarizes briefly what is known about the nature of the protein aggregates that are infectious and the reason they are toxic to cells. The chameleon property of polypeptides which aggregation into distinct high-molecular weight assemblies is associated to different diseases, in particular, that of alpha-synuclein which aggregation is the hallmark of distinct synucleinopathies, is discussed. Finally, strategies targeting the formation and propagation of structurally distinct alpha-synuclein assemblies associated to different synucleinopathies are presented and their therapeutic and diagnostic potential is discussed.
Collapse
Affiliation(s)
- Ronald Melki
- Correspondence to: Ronald Melki, Neuro Psi, CNRS, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France. Tel.: +33 169823503; Fax: +33 169823129;
| |
Collapse
|
48
|
Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, McCabe C, Xu J, Bjorklund N, Taglialatela G, Bennett DA, De Jager PL, Shulman JM, Bellen HJ, Lu HC. NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biol 2016; 14:e1002472. [PMID: 27254664 PMCID: PMC4890852 DOI: 10.1371/journal.pbio.1002472] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/28/2016] [Indexed: 12/02/2022] Open
Abstract
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is neuroprotective in numerous preclinical models of neurodegeneration. Here, we show that brain nmnat2 mRNA levels correlate positively with global cognitive function and negatively with AD pathology. In AD brains, NMNAT2 mRNA and protein levels are reduced. NMNAT2 shifts its solubility and colocalizes with aggregated Tau in AD brains, similar to chaperones, which aid in the clearance or refolding of misfolded proteins. Investigating the mechanism of this observation, we discover a novel chaperone function of NMNAT2, independent from its enzymatic activity. NMNAT2 complexes with heat shock protein 90 (HSP90) to refold aggregated protein substrates. NMNAT2’s refoldase activity requires a unique C-terminal ATP site, activated in the presence of HSP90. Furthermore, deleting NMNAT2 function increases the vulnerability of cortical neurons to proteotoxic stress and excitotoxicity. Interestingly, NMNAT2 acts as a chaperone to reduce proteotoxic stress, while its enzymatic activity protects neurons from excitotoxicity. Taken together, our data indicate that NMNAT2 exerts its chaperone or enzymatic function in a context-dependent manner to maintain neuronal health. This study reveals NMNAT2 to be a dual-function neuronal maintenance factor that not only generates NAD to protect neurons from excitotoxicity but also moonlights as a chaperone to combat protein toxicity. Pathological protein aggregates are found in many neurodegenerative diseases, and it has been hypothesized that these protein aggregates are toxic and cause neuronal death. Little is known about how neurons protect against pathological protein aggregates to maintain their health. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is a newly identified neuronal maintenance factor. We found that in humans, levels of NMNAT2 transcript are positively correlated with cognitive function and are negatively correlated with pathological features of neurodegenerative disease like plaques and tangles. In this study, we demonstrate that NMNAT2 can act as a chaperone to reduce protein aggregates, and this function is independent from its known function in the enzymatic synthesis of nicotinamide adenine dinucleotide (NAD). We find that NMNAT2 interacts with heat shock protein 90 (HSP90) to refold protein aggregates, and that deleting NMNAT2 in cortical neurons renders them vulnerable to protein stress or excitotoxicity. Interestingly, the chaperone function of NMNAT2 protects neurons from protein toxicity, while its enzymatic function is required to defend against excitotoxicity. Our work here suggests that NMNAT2 uses either its chaperone or enzymatic function to combat neuronal insults in a context-dependent manner. In Alzheimer disease brains, NMNAT2 levels are less than 50% of control levels, and we propose that enhancing NMNAT2 function may provide an effective therapeutic intervention to reserve cognitive function.
Collapse
Affiliation(s)
- Yousuf O. Ali
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hunter M. Allen
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Lei Yu
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dena Bakhshizadehmahmoudi
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Asante Hatcher
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristin McCabe
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Jishu Xu
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Nicole Bjorklund
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Giulio Taglialatela
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | - Philip L. De Jager
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua M. Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute (HHMI), Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Inayathullah M, Tan A, Jeyaraj R, Lam J, Cho NJ, Liu CW, Manoukian MAC, Ashkan K, Mahmoudi M, Rajadas J. Self-assembly and sequence length dependence on nanofibrils of polyglutamine peptides. Neuropeptides 2016; 57:71-83. [PMID: 26874369 DOI: 10.1016/j.npep.2016.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/11/2016] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
Abstract
Huntington's disease (HD) is recognized as a currently incurable, inherited neurodegenerative disorder caused by the accumulation of misfolded polyglutamine (polyQ) peptide aggregates in neuronal cells. Yet, the mechanism by which newly formed polyQ chains interact and assemble into toxic oligomeric structures remains a critical, unresolved issue. In order to shed further light on the matter, our group elected to investigate the folding of polyQ peptides - examining glutamine repeat lengths ranging from 3 to 44 residues. To characterize these aggregates we employed a diverse array of technologies, including: nuclear magnetic resonance; circular dichroism; Fourier transform infrared spectroscopy; fluorescence resonance energy transfer (FRET), and atomic force microscopy. The data we obtained suggest that an increase in the number of glutamine repeats above 14 residues results in disordered loop structures, with different repeat lengths demonstrating unique folding characteristics. This differential folding manifests in the formation of distinct nano-sized fibrils, and on this basis, we postulate the idea of 14 polyQ repeats representing a critical loop length for neurotoxicity - a property that we hope may prove amenable to future therapeutic intervention. Furthermore, FRET measurements on aged assemblages indicate an increase in the end-to-end distance of the peptide with time, most probably due to the intermixing of individual peptide strands within the nanofibril. Further insight into this apparent time-dependent reorganization of aggregated polyQ peptides may influence future disease modeling of polyQ-related proteinopathies, in addition to directing novel clinical innovations.
Collapse
Affiliation(s)
- Mohammed Inayathullah
- Biomaterials & Advanced Drug Delivery Laboratory (BioADD), Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA; Bioorganic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, Tamilnadu, India; Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Aaron Tan
- Biomaterials & Advanced Drug Delivery Laboratory (BioADD), Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA; UCL Medical School, University College London (UCL), London, UK; University College London Hospitals NHS Foundation Trust, London, UK.
| | - Rebecca Jeyaraj
- UCL Medical School, University College London (UCL), London, UK
| | - James Lam
- UCL Medical School, University College London (UCL), London, UK
| | - Nam-Joon Cho
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA; School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Corey W Liu
- Stanford Magnetic Resonance Laboratory, Stanford University, Palo Alto, CA, USA
| | - Martin A C Manoukian
- Department of Dermatology, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, King's College London, London, UK
| | - Morteza Mahmoudi
- Biomaterials & Advanced Drug Delivery Laboratory (BioADD), Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Jayakumar Rajadas
- Biomaterials & Advanced Drug Delivery Laboratory (BioADD), Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA; Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
50
|
Kampinga HH, Bergink S. Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol 2016; 15:748-759. [PMID: 27106072 DOI: 10.1016/s1474-4422(16)00099-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/09/2016] [Accepted: 02/24/2016] [Indexed: 01/08/2023]
Abstract
Protein aggregates are hallmarks of nearly all age-related neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and several polyglutamine diseases such as Huntington's disease and different forms of spinocerebellar ataxias (SCA; SCA1-3, SCA6, and SCA7). The collapse of cellular protein homoeostasis can be both a cause and a consequence of this protein aggregation. Boosting components of the cellular protein quality control system has been widely investigated as a strategy to counteract protein aggregates or their toxic consequences. Heat shock proteins (HSPs) play a central part in regulating protein quality control and contribute to protein aggregation and disaggregation. Therefore, HSPs are viable targets for the development of drugs aimed at reducing pathogenic protein aggregates that are thought to contribute to the development of so many neurodegenerative disorders.
Collapse
Affiliation(s)
- Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, Rijksuniversiteit Groningen, Groningen, Netherlands.
| | - Steven Bergink
- Department of Cell Biology, University Medical Center Groningen, Rijksuniversiteit Groningen, Groningen, Netherlands
| |
Collapse
|