1
|
Zhang J, Dong C, Chen Z, Hua R, Li Z, Lin Y, Wang Y, Feng T, Dai J. Hedgehog pathway inhibitor HhAntag suppresses virus infection via the GLI-S1PR axis. Cell Signal 2025; 132:111807. [PMID: 40239727 DOI: 10.1016/j.cellsig.2025.111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/23/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
The interplay between various signaling pathways, including tumor development, immune response, and viral infection, suggests potential mutual regulation within biological systems. To explore this, we screened 85 inhibitors targeting the Notch, Hedgehog, and Wnt signaling pathways to identify the potential antiviral candidates. Using two reporter viruses (VSV-GFP and DENV-Luc), we identified novel inhibitors with antiviral properties. Notably, the Hedgehog pathway inhibitor HhAntag exhibited broad-spectrum antiviral activity, significantly reducing the replication of viruses such as VSV, DENV, ZIKV, and SFTSV. The inhibitory effects of HhAntag were consistent with the downregulation of its target protein, GLI1; while overexpression of GLI1 promoted viral infection. HhAntag did not interfere with viral attachment, entry, or early transcription but specifically inhibited viral protein translation. Additionally, RNA-seq analysis revealed reduced expression of sphingosine-1-phosphate (S1P) signaling pathway receptors, S1PR1 and S1PR5, following HhAntag treatment. HhAntag suppresses virus infection via the GLI-S1PR axis. This study revealed the interplay between tumor-associated Hedgehog (Hh) pathway and viral infection and highlights the potential of HhAntag as a broad-spectrum antiviral drug.
Collapse
Affiliation(s)
- Jinyu Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Children's Hospital of Soochow University, Institute of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; Central Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Children's Hospital of Soochow University, Institute of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Runbin Hua
- Jiangsu Key Laboratory of Infection and Immunity, Children's Hospital of Soochow University, Institute of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zhuozheng Li
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China
| | - Yuzhuo Lin
- The Second Clinical Medical School of Nanjing Medical University, Nanjing 211166, China
| | - Yuqing Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215000, China.
| | - Tingting Feng
- Central Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, Children's Hospital of Soochow University, Institute of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Zhou J, Zhang H, Wu G, Zhang Y, Aweya JJ, Tayyab M, Zhu J, Zhang Y, Yao D. The Na +-K +-ATPase alpha subunit is an entry receptor for white spot syndrome virus. mBio 2025; 16:e0378724. [PMID: 39964166 PMCID: PMC11898654 DOI: 10.1128/mbio.03787-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
White spot syndrome virus (WSSV) is a debilitating viral pathogen that poses a significant threat to the global crustacean farming industry. It has a wide host tropism because it uses several receptors to facilitate its attachment and entry. Thus far, not all the receptors have been identified. Here, we employed a BioID-based screening method to identify the Na+-K+-ATPase alpha subunit (PvATP1A) as a potential receptor in Penaeus vannamei. Although during the early stages of WSSV infection, PvATP1A was induced and underwent oligomerization, clustering, and internalization, knockdown of PvATP1A inhibited viral entry and replication. PvATP1A interacted with the WSSV envelope protein VP28 through its multiple extracellular regions, whereas synthetic PvATP1A extracellular region peptides blocked WSSV entry and replication. We showed that PvATP1A did not affect WSSV attachment but facilitated internalization via caveolin-mediated endocytosis and macropinocytosis. These findings provide a robust receptor screening approach that identified PvATP1A as an entry receptor for WSSV, presenting a novel target for the development of anti-WSSV therapeutics. IMPORTANCE Cell surface receptors are crucial for mediating virus entry into host cells. Identification and characterization of virus receptors are fundamental yet challenging aspects of virology research. In this study, a BioID-based screening method was employed to identify the Na+-K+-ATPase alpha subunit (PvATP1A) as a potential receptor for white spot syndrome virus (WSSV) in the shrimp Penaeus vannamei. We demonstrated that PvATP1A interacted with the WSSV envelope protein VP28 via its multiple extracellular regions, thereby promoting viral internalization through caveolin-mediated endocytosis and macropinocytosis. Importantly, compared with previously identified WSSV receptors such as β-integrin, glucose transporter 1 (Glut1), and polymeric immunoglobulin receptor (pIgR), PvATP1A demonstrated significantly enhanced viral entry, indicating that PvATP1A is a crucial entry receptor of WSSV. This study not only presents a robust approach for screening virus receptors but also identifies PvATP1A as a promising target for the development of anti-WSSV therapeutics.
Collapse
Affiliation(s)
- Junyi Zhou
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Huimin Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Gaochun Wu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Yinghao Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Muhammad Tayyab
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Jinghua Zhu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| |
Collapse
|
3
|
Nyberg WA, Wang CH, Ark J, Liu C, Clouden S, Qualls A, Caryotakis S, Wells E, Simon K, Garza C, Bernard PL, Lopez-Ichikawa M, Li Z, Seo J, Kimmerly GR, Muldoon JJ, Chen PA, Li M, Liang HE, Kersten K, Rosales A, Kuhn N, Ye CJ, Gardner JM, Molofsky A, Ricardo-Gonzalez RR, Asokan A, Eyquem J. In vivo engineering of murine T cells using the evolved adeno-associated virus variant Ark313. Immunity 2025; 58:499-512.e7. [PMID: 39909036 DOI: 10.1016/j.immuni.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/31/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
Genetic engineering of T cells in mouse models is essential for investigating immune mechanisms. We aimed to develop an approach to manipulate T cells in vivo using an evolved adeno-associated virus (AAV) capsid named Ark313. Delivery of a transient transgene expression cassette was feasible using Ark313, and this serotype outperformed natural serotypes. A single intravenous injection of a Cre recombinase-expressing Ark313 in the Ai9 fluorescent reporter mouse model achieved permanent genetic modifications of T cells. Ark313 facilitated in vivo gene editing in both tissue-resident and splenic T cells and validation of immunotherapy targets in solid tumor models. Ark313 delivered large DNA donor templates to T cells in vivo and integrated transgenes in primary CD4+ and CD8+ T cells, including naive T cells. Ark313-mediated transgene delivery presents an efficient approach to target mouse T cells in vivo and a resource for the interrogation of T cell biology and for immunotherapy applications.
Collapse
Affiliation(s)
- William A Nyberg
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.
| | - Charlotte H Wang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan Ark
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chang Liu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Sylvanie Clouden
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anita Qualls
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sofia Caryotakis
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elina Wells
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine Simon
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Celeste Garza
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pierre-Louis Bernard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Maya Lopez-Ichikawa
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Jin Seo
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Gabriella R Kimmerly
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joseph J Muldoon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Peixin Amy Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mingcheng Li
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Hong-Erh Liang
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelly Kersten
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan Rosales
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Nicholas Kuhn
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chun Jimmie Ye
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Arc Institute, Palo Alto, CA 94304, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - James M Gardner
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ari Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roberto R Ricardo-Gonzalez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| | - Aravind Asokan
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| | - Justin Eyquem
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
McCallister TX, Lim CKW, Singh M, Zhang S, Ahsan NS, Terpstra WM, Xiong AY, Zeballos C MA, Powell JE, Drnevich J, Kang Y, Gaj T. A high-fidelity CRISPR-Cas13 system improves abnormalities associated with C9ORF72-linked ALS/FTD. Nat Commun 2025; 16:460. [PMID: 39779681 PMCID: PMC11711314 DOI: 10.1038/s41467-024-55548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
An abnormal expansion of a GGGGCC (G4C2) hexanucleotide repeat in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two debilitating neurodegenerative disorders driven in part by gain-of-function mechanisms involving transcribed forms of the repeat expansion. By utilizing a Cas13 variant with reduced collateral effects, we develop here a high-fidelity RNA-targeting CRISPR-based system for C9ORF72-linked ALS/FTD. When delivered to the brain of a transgenic rodent model, this Cas13-based platform curbed the expression of the G4C2 repeat-containing RNA without affecting normal C9ORF72 levels, which in turn decreased the formation of RNA foci, reduced the production of a dipeptide repeat protein, and reversed transcriptional deficits. This high-fidelity system possessed improved transcriptome-wide specificity compared to its native form and mediated targeting in motor neuron-like cells derived from a patient with ALS. These results lay the foundation for the implementation of RNA-targeting CRISPR technologies for C9ORF72-linked ALS/FTD.
Collapse
Affiliation(s)
- Tristan X McCallister
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Colin K W Lim
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mayuri Singh
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sijia Zhang
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Najah S Ahsan
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - William M Terpstra
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alisha Y Xiong
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - M Alejandra Zeballos C
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jackson E Powell
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yifei Kang
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thomas Gaj
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Loeb EJ, Havlik PL, Elmore ZC, Rosales A, Fergione SM, Gonzalez TJ, Smith TJ, Benkert AR, Fiflis DN, Asokan A. Capsid-mediated control of adeno-associated viral transcription determines host range. Cell Rep 2024; 43:113902. [PMID: 38431840 PMCID: PMC11150003 DOI: 10.1016/j.celrep.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Adeno-associated virus (AAV) is a member of the genus Dependoparvovirus, which infects a wide range of vertebrate species. Here, we observe that, unlike most primate AAV isolates, avian AAV is transcriptionally silenced in human cells. By swapping the VP1 N terminus from primate AAVs (e.g., AAV8) onto non-mammalian isolates (e.g., avian AAV), we identify a minimal component of the AAV capsid that controls viral transcription and unlocks robust transduction in both human cells and mouse tissue. This effect is accompanied by increased AAV genome chromatin accessibility and altered histone methylation. Proximity ligation analysis reveals that host factors are selectively recruited by the VP1 N terminus of AAV8 but not avian AAV. Notably, these include AAV essential factors implicated in the nuclear factor κB pathway, chromatin condensation, and histone methylation. We postulate that the AAV capsid has evolved mechanisms to recruit host factors to its genome, allowing transcriptional activation in a species-specific manner.
Collapse
Affiliation(s)
- Ezra J Loeb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Patrick L Havlik
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zachary C Elmore
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alan Rosales
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia M Fergione
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Timothy J Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Abigail R Benkert
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - David N Fiflis
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Chen H, Zhao P, Zhang C, Ming X, Zhang C, Jung YS, Qian Y. Veratramine inhibits porcine epidemic diarrhea virus entry through macropinocytosis by suppressing PI3K/Akt pathway. Virus Res 2024; 339:199260. [PMID: 37923169 PMCID: PMC10661853 DOI: 10.1016/j.virusres.2023.199260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Porcine epidemic diarrhea (PED) is a contagious intestinal disease caused by α-coronavirus porcine epidemic diarrhea virus (PEDV). At present, no effective vaccine is available to prevent the disease. Therefore, research for novel antivirals is important. This study aimed to identify the antiviral mechanism of Veratramine (VAM), which actively inhibits PEDV replication with a 50 % inhibitory concentration (IC50) of ∼5 µM. Upon VAM treatment, both PEDV-nucleocapsid (N) protein level and virus titer decreased significantly. The time-of-addition assay results showed that VAM could inhibit PEDV replication by blocking viral entry. Importantly, VAM could inhibit PEDV-induced phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) activity and further suppress micropinocytosis, which is required for PEDV entry. In addition, PI3K inhibitor LY294002 showed anti-PEDV activity by blocking viral entry as well. Taken together, VAM possessed anti-PEDV properties against the entry stage of PEDV by inhibiting the macropinocytosis pathway by suppressing the PI3K/Akt pathway. VAM could be considered as a lead compound for the development of anti-PEDV drugs and may be used during the viral entry stage of PEDV infection.
Collapse
Affiliation(s)
- Huan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Caisheng Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Ming
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China.
| |
Collapse
|
7
|
Mills JT, Minogue SC, Snowden JS, Arden WKC, Rowlands DJ, Stonehouse NJ, Wobus CE, Herod MR. Amino acid substitutions in norovirus VP1 dictate host dissemination via variations in cellular attachment. J Virol 2023; 97:e0171923. [PMID: 38032199 PMCID: PMC10734460 DOI: 10.1128/jvi.01719-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE All viruses initiate infection by utilizing receptors to attach to target host cells. These virus-receptor interactions can therefore dictate viral replication and pathogenesis. Understanding the nature of virus-receptor interactions could also be important for the development of novel therapies. Noroviruses are non-enveloped icosahedral viruses of medical importance. They are a common cause of acute gastroenteritis with no approved vaccine or therapy and are a tractable model for studying fundamental virus biology. In this study, we utilized the murine norovirus model system to show that variation in a single amino acid of the major capsid protein alone can affect viral infectivity through improved attachment to suspension cells. Modulating plasma membrane mobility reduced infectivity, suggesting an importance of membrane mobility for receptor recruitment and/or receptor conformation. Furthermore, different substitutions at this site altered viral tissue distribution in a murine model, illustrating how in-host capsid evolution could influence viral infectivity and/or immune evasion.
Collapse
Affiliation(s)
- Jake T. Mills
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Susanna C. Minogue
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S. Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Wynter K. C. Arden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David J. Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Morgan R. Herod
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
8
|
Hoffmann MD, Zdechlik AC, He Y, Nedrud D, Aslanidi G, Gordon W, Schmidt D. Multiparametric domain insertional profiling of adeno-associated virus VP1. Mol Ther Methods Clin Dev 2023; 31:101143. [PMID: 38027057 PMCID: PMC10661864 DOI: 10.1016/j.omtm.2023.101143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Abstract
Several evolved properties of adeno-associated virus (AAV), such as broad tropism and immunogenicity in humans, are barriers to AAV-based gene therapy. Most efforts to re-engineer these properties have focused on variable regions near AAV's 3-fold protrusions and capsid protein termini. To comprehensively survey AAV capsids for engineerable hotspots, we determined multiple AAV fitness phenotypes upon insertion of six structured protein domains into the entire AAV-DJ capsid protein VP1. This is the largest and most comprehensive AAV domain insertion dataset to date. Our data revealed a surprising robustness of AAV capsids to accommodate large domain insertions. Insertion permissibility depended strongly on insertion position, domain type, and measured fitness phenotype, which clustered into contiguous structural units that we could link to distinct roles in AAV assembly, stability, and infectivity. We also identified engineerable hotspots of AAV that facilitate the covalent attachment of binding scaffolds, which may represent an alternative approach to re-direct AAV tropism.
Collapse
Affiliation(s)
- Mareike D. Hoffmann
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alina C. Zdechlik
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yungui He
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Nedrud
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Wendy Gordon
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Gushchina LV, Bradley AJ, Vetter TA, Lay JW, Rohan NL, Frair EC, Wein N, Flanigan KM. Persistence of exon 2 skipping and dystrophin expression at 18 months after U7snRNA-mediated therapy in the Dup2 mouse model. Mol Ther Methods Clin Dev 2023; 31:101144. [PMID: 38027058 PMCID: PMC10679948 DOI: 10.1016/j.omtm.2023.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive X-linked disease caused by mutations in the DMD gene that prevent the expression of a functional dystrophin protein. Exon duplications represent 6%-11% of mutations, and duplications of exon 2 (Dup2) are the most common (∼11%) of duplication mutations. An exon-skipping strategy for Dup2 mutations presents a large therapeutic window. Skipping one exon copy results in full-length dystrophin expression, whereas skipping of both copies (Del2) activates an internal ribosomal entry site (IRES) in exon 5, inducing the expression of a highly functional truncated dystrophin isoform. We have previously confirmed the therapeutic efficacy of AAV9.U7snRNA-mediated skipping in the Dup2 mouse model and showed the absence of off-target splicing effects and lack of toxicity in mice and nonhuman primates. Here, we report long-term dystrophin expression data following the treatment of 3-month-old Dup2 mice with the scAAV9.U7.ACCA vector. Significant exon 2 skipping and robust dystrophin expression in the muscles and hearts of treated mice persist at 18 months after treatment, along with the partial rescue of muscle function. These data extend our previous findings and show that scAAV9.U7.ACCA provides long-term protection by restoring the disrupted dystrophin reading frame in the context of exon 2 duplications.
Collapse
Affiliation(s)
- Liubov V. Gushchina
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Adrienne J. Bradley
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Tatyana A. Vetter
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Jacob W. Lay
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Natalie L. Rohan
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Emma C. Frair
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Nicolas Wein
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Kevin M. Flanigan
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Smith TJ, Fusco RM, Elmore ZC, Asokan A. Interplay between Furin and Sialoglycans in Modulating Adeno-Associated Viral Cell Entry. J Virol 2023; 97:e0009323. [PMID: 37097176 PMCID: PMC10231208 DOI: 10.1128/jvi.00093-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
Adeno-associated viruses (AAVs) are small, helper-dependent, single-stranded DNA viruses that exploit a broad spectrum of host factors for cell entry. During the course of infection, several AAV serotypes have been shown to transit through the trans-Golgi network within the host cell. In the current study, we investigated whether the Golgi-localized, calcium-dependent protease furin influences AAV transduction. While CRISPR/Cas9-mediated knockout (KO) of the Furin gene minimally affected the transduction efficiency of most recombinant AAV serotypes tested, we observed a striking increase in transgene expression (~2 log orders) for the African green monkey isolate AAV4. Interrogation of different steps in the infectious pathway revealed that AAV4 binding, uptake, and transcript levels are increased in furin KO cells, but postentry steps such as uncoating or nuclear entry remain unaffected. Recombinant furin does not cleave AAV4 capsid proteins nor alter cellular expression levels of essential factors such as AAVR or GPR108. Interestingly, fluorescent lectin screening revealed a marked increase in 2,3-O-linked sialoglycan staining on the surface and perinuclear space of furin KO cells. The essential nature of increased sialoglycan expression in furin KO cells in enhancing AAV4 transduction was further corroborated by (i) increased transduction by the closely related isolates AAVrh.32.33 and sea lion AAV and (ii) selective blockade or removal of cellular 2,3-O-linked sialoglycans by specific lectins or neuraminidase, respectively. Based on the overall findings, we postulate that furin likely plays a key role in regulating expression of cellular sialoglycans, which in turn can influence permissivity to AAVs and possibly other viruses. IMPORTANCE Adeno-associated viruses (AAVs) are a proven recombinant vector platform for gene therapy and have demonstrated success in the clinic. Continuing to improve our knowledge of AAV-host cell interactions is critical for improving the safety and efficacy. The current study dissects the interplay between furin, a common intracellular protease, and certain cell surface sialoglycans that serve as viral attachment factors for cell entry. Based on the findings, we postulate that differential expression of furin in host cells and tissues is likely to influence gene expression by certain recombinant AAV serotypes.
Collapse
Affiliation(s)
- Timothy J. Smith
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert M. Fusco
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Zachary C. Elmore
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Aravind Asokan
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
11
|
Hoffmann MD, Zdechlik AC, He Y, Nedrud D, Aslanidi G, Gordon W, Schmidt D. Multiparametric domain insertional profiling of Adeno-Associated Virus VP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537549. [PMID: 37131661 PMCID: PMC10153220 DOI: 10.1101/2023.04.19.537549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Evolved properties of Adeno-Associated Virus (AAV), such as broad tropism and immunogenicity in humans, are barriers to AAV-based gene therapy. Previous efforts to re-engineer these properties have focused on variable regions near AAV’s 3-fold protrusions and capsid protein termini. To comprehensively survey AAV capsids for engineerable hotspots, we determined multiple AAV fitness phenotypes upon insertion of large, structured protein domains into the entire AAV-DJ capsid protein VP1. This is the largest and most comprehensive AAV domain insertion dataset to date. Our data revealed a surprising robustness of AAV capsids to accommodate large domain insertions. There was strong positional, domain-type, and fitness phenotype dependence of insertion permissibility, which clustered into correlated structural units that we could link to distinct roles in AAV assembly, stability, and infectivity. We also identified new engineerable hotspots of AAV that facilitate the covalent attachment of binding scaffolds, which may represent an alternative approach to re-direct AAV tropism.
Collapse
|
12
|
Guo D, Yu X, Wang D, Li Z, Zhou Y, Xu G, Yuan B, Qin Y, Chen M. SLC35B2 Acts in a Dual Role in the Host Sulfation Required for EV71 Infection. J Virol 2022; 96:e0204221. [PMID: 35420441 PMCID: PMC9093107 DOI: 10.1128/jvi.02042-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
As an important neurotropic enterovirus, enterovirus 71 (EV71) is occasionally associated with severe neurological diseases and high mortality rates in infants and young children. Understanding the interaction between host factors and EV71 will play a vital role in developing antivirals and optimizing vaccines. Here, we performed a genome-wide CRISPR-Cas9 knockout screen and revealed that scavenger receptor class B member 2 (SCARB2), solute carrier family 35 member B2 (SLC35B2), and beta-1,3-glucuronyltransferase 3 (B3GAT3) are essential in facilitating EV71 replication. Subsequently, the exploration of molecular mechanisms suggested that the knockout of SLC35B2 or B3GAT3, not SCARB2, led to a remarkable decrease in the binding of EV71 to cells and internalization into cells. Furthermore, we found that the infection efficiency for EV71 was positively correlated with the level of host cell sulfation, not simply with the amount of heparan sulfate, suggesting that an unidentified sulfated protein(s) must contribute to EV71 infection. In support of this idea, we screened possible sulfated proteins among the proteinous receptors for EV71 and confirmed that SCARB2 could uniquely interact with both tyrosyl protein sulfotransferases in humans. We then performed mass spectrometric analysis of SCARB2, identifying five sites with tyrosine sulfation. The function verification test indicated that there were more than five tyrosine-sulfated sites on SCARB2. Finally, we constructed a model for EV71 entry in which both heparan sulfate and SCARB2 are regulated by SLC35B2 and act cooperatively to support viral binding, internalization, and uncoating. Taken together, this is the first time that we performed the pooled CRISPR-Cas9 genetic screening to investigate the interplay of host cells and EV71. Furthermore, we found that a novel host factor, SLC35B2, played a dual role in regulating the overall sulfation comprising heparan sulfate sulfation and protein tyrosine sulfation, which are critical for EV71 entry. IMPORTANCE As the most important nonpolio neurotropic enterovirus lacking specific treatments, EV71 can transmit to the central nervous system, leading to severe and fatal neurological complications in infants and young children. The identification of new factors that facilitate or inhibit EV71 replication is crucial to uncover the mechanisms of viral infection and pathogenesis. To date, only a few host factors involved in EV71 infection have been characterized. Herein, we conducted a genome-wide CRISPR-Cas9 functional knockout (GeCKO) screen for the first time to study EV71 in HeLa cells. The screening results are presented as a ranked list of candidates, including 518 hits in the positive selection that facilitate EV71 replication and 1,044 hits in the negative selection that may be essential for cell growth and survival or for suppressing EV71 infection. We subsequently concentrated on the top three hits in the positive selection: SCARB2, SLC35B2, and B3GAT3. The knockout of any of these three genes confers strong resistance against EV71 infection. We confirmed that EV71 infection is codependent on two receptors, heparan sulfate and SCARB2. We also identified a host entry factor, SLC35B2, indirectly facilitating EV71 infection through regulation of the host cell sulfation, and determined a novel posttranslational modification, protein tyrosine sulfation existing in SCARB2. This study revealed that EV71 infectivity exhibits a significant positive correlation with the level of cellular sulfation regulated by SLC35B2. Due to the sulfation pathway being required for many distinct viruses, including but not limited to EV71 and respiratory syncytial virus (RSV), which were tested in this study, SLC35B2 represents a target of broad-spectrum antiviral therapy.
Collapse
Affiliation(s)
- Dong Guo
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinghai Yu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guodong Xu
- Wuhan Canvest Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Bing Yuan
- Wuhan Canvest Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Saruuldalai E, Park J, Kang D, Shin SP, Im WR, Lee HH, Jang JJ, Park JL, Kim SY, Hwang JA, Kim YD, Lee JH, Park EJ, Lee YS, Kim IH, Lee SJ, Lee YS. A host non-coding RNA, nc886, plays a pro-viral role by promoting virus trafficking to the nucleus. Mol Ther Oncolytics 2022; 24:683-694. [PMID: 35284627 PMCID: PMC8904404 DOI: 10.1016/j.omto.2022.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/15/2022] [Indexed: 12/01/2022] Open
Abstract
Elucidation of the interplay between viruses and host cells is crucial for taming viruses to benefit human health. Cancer therapy using adenovirus, called oncolytic virotherapy, is a promising treatment option but is not robust in all patients. In addition, inefficient replication of human adenovirus in mouse hampered the development of an in vivo model for preclinical evaluation of therapeutically engineered adenovirus. nc886 is a human non-coding RNA that suppresses Protein Kinase R (PKR), an antiviral protein. In this study, we have found that nc886 greatly promotes adenoviral gene expression and replication. Remarkably, the stimulatory effect of nc886 is not dependent on its function to inhibit PKR. Rather, nc886 facilitates the nuclear entry of adenovirus via modulating the kinesin pathway. nc886 is not conserved in mouse and, when xenogeneically expressed in mouse cells, promotes adenovirus replication. Our investigation has discovered a novel mechanism of how a host ncRNA plays a pro-adenoviral role. Given that nc886 expression is silenced in a subset of cancer cells, our study highlights that oncolytic virotherapy might be inefficient in those cells. Furthermore, our findings open future possibilities of harnessing nc886 to improve the efficacy of oncolytic adenovirus and to construct nc886-expressing transgenic mice as an animal model.
Collapse
|
14
|
Kimura C, Oh SW, Fujita T, Watanabe T. Adsorptive Inhibition of Enveloped Viruses and Nonenveloped Cardioviruses by Antiviral Lignin Produced from Sugarcane Bagasse via Microwave Glycerolysis. Biomacromolecules 2022; 23:789-797. [PMID: 35034439 DOI: 10.1021/acs.biomac.1c01209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antiviral lignin was produced by acidic microwave glycerolysis of sugarcane bagasse. The lignin exhibited antiviral activity against nonenveloped (encephalomyocarditis virus (EMCV) and Theiler's murine encephalomyelitis virus (TMEV)) and enveloped (vesicular stomatitis virus (VSV), Sindbis virus (SINV), and Newcastle disease virus (NDV)) viruses. A series of lignins with different antiviral activities were prepared by reacting bagasse at 140, 160, 180, and 200 °C to analyze the antiviral mechanism. No difference in ζ-potential was observed among the lignin preparations; however, the lignin prepared at 200 °C (FR200) showed the strongest anti-EMCV activity, smallest hydrodynamic diameter, highest hydrophilicity, and highest affinity for EMCV. FR200 inhibited viral propagation through contact with the virion at the attachment stage to host cells, and the EMCV RNA was intact after treatment. Therefore, the lignin inhibits viral entry to host cells through interactions with the capsid surface. The nonvolatile antiviral substance is potentially useful for preventing the spread of viruses in human living and livestock breeding environments.
Collapse
Affiliation(s)
- Chihiro Kimura
- Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Seong-Wook Oh
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto 606-8507, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto 606-8507, Japan
| | - Takashi Watanabe
- Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
15
|
Hamann MV, Beschorner N, Vu XK, Hauber I, Lange UC, Traenkle B, Kaiser PD, Foth D, Schneider C, Büning H, Rothbauer U, Hauber J. Improved targeting of human CD4+ T cells by nanobody-modified AAV2 gene therapy vectors. PLoS One 2021; 16:e0261269. [PMID: 34928979 PMCID: PMC8687595 DOI: 10.1371/journal.pone.0261269] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) are considered non-pathogenic in humans, and thus have been developed into powerful vector platforms for in vivo gene therapy. Although the various AAV serotypes display broad tropism, frequently infecting multiple tissues and cell types, vectors for specific and efficient targeting of human CD4+ T lymphocytes are largely missing. In fact, a substantial translational bottleneck exists in the field of therapeutic gene transfer that would require in vivo delivery into peripheral disease-related lymphocytes for subsequent genome editing. To solve this issue, capsid modification for retargeting AAV tropism, and in turn improving vector potency, is considered a promising strategy. Here, we genetically modified the minor AAV2 capsid proteins, VP1 and VP2, with a set of novel nanobodies with high-affinity for the human CD4 receptor. These novel vector variants demonstrated improved targeting of human CD4+ cells, including primary human peripheral blood mononuclear cells (PBMC) and purified human CD4+ T lymphocytes. Thus, the technical approach presented here provides a promising strategy for developing specific gene therapy vectors, particularly targeting disease-related peripheral blood CD4+ leukocytes.
Collapse
Affiliation(s)
- Martin V. Hamann
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| | - Niklas Beschorner
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| | - Xuan-Khang Vu
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - Ilona Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Ulrike C. Lange
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bjoern Traenkle
- Natural and Medical Science Institute at the University Tübingen (NMI), Reutlingen, Germany
| | - Philipp D. Kaiser
- Natural and Medical Science Institute at the University Tübingen (NMI), Reutlingen, Germany
| | - Daniel Foth
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Hildegard Büning
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - Ulrich Rothbauer
- Natural and Medical Science Institute at the University Tübingen (NMI), Reutlingen, Germany
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Reutlingen, Germany
| | - Joachim Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| |
Collapse
|
16
|
Effects of Altering HSPG Binding and Capsid Hydrophilicity on Retinal Transduction by AAV. J Virol 2021; 95:JVI.02440-20. [PMID: 33658343 PMCID: PMC8139652 DOI: 10.1128/jvi.02440-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated viruses (AAVs) have recently emerged as the leading vector for retinal gene therapy. However, AAV vectors which are capable of achieving clinically relevant levels of transgene expression and widespread retinal transduction are still an unmet need. Using rationally designed AAV2-based capsid variants, we investigate the role of capsid hydrophilicity and hydrophobicity as it relates to retinal transduction. We show that hydrophilic, single amino acid (aa) mutations (V387R, W502H, E530K, L583R) in AAV2 negatively impact retinal transduction when heparan sulfate proteoglycan (HSPG) binding remains intact. Conversely, addition of hydrophobic point mutations to an HSPG binding deficient capsid (AAV2ΔHS) lead to increased retinal transduction in both mouse and macaque. Our top performing vector, AAV2(4pMut)ΔHS, achieved robust rod and cone photoreceptor (PR) transduction in macaque, especially in the fovea, and demonstrates the ability to spread laterally beyond the borders of the subretinal injection (SRI) bleb. This study both evaluates biophysical properties of AAV capsids that influence retinal transduction, and assesses the transduction and tropism of a novel capsid variant in a clinically relevant animal model.ImportanceRationally guided engineering of AAV capsids aims to create new generations of vectors with enhanced potential for human gene therapy. By applying rational design principles to AAV2-based capsids, we evaluated the influence of hydrophilic and hydrophobic amino acid (aa) mutations on retinal transduction as it relates to vector administration route. Through this approach we identified a largely deleterious relationship between hydrophilic aa mutations and canonical HSPG binding by AAV2-based capsids. Conversely, the inclusion of hydrophobic aa substitutions on a HSPG binding deficient capsid (AAV2ΔHS), generated a vector capable of robust rod and cone photoreceptor (PR) transduction. This vector AAV2(4pMut)ΔHS also demonstrates a remarkable ability to spread laterally beyond the initial subretinal injection (SRI) bleb, making it an ideal candidate for the treatment of retinal diseases which require a large area of transduction.
Collapse
|
17
|
Jiang H, Leung C, Tahan S, Wang D. Entry by multiple picornaviruses is dependent on a pathway that includes TNK2, WASL, and NCK1. eLife 2019; 8:50276. [PMID: 31769754 PMCID: PMC6904212 DOI: 10.7554/elife.50276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Comprehensive knowledge of the host factors required for picornavirus infection would facilitate antiviral development. Here we demonstrate roles for three human genes, TNK2, WASL, and NCK1, in infection by multiple picornaviruses. CRISPR deletion of TNK2, WASL, or NCK1 reduced encephalomyocarditis virus (EMCV), coxsackievirus B3 (CVB3), poliovirus and enterovirus D68 infection, and chemical inhibitors of TNK2 and WASL decreased EMCV infection. Reduced EMCV lethality was observed in mice lacking TNK2. TNK2, WASL, and NCK1 were important in early stages of the viral lifecycle, and genetic epistasis analysis demonstrated that the three genes function in a common pathway. Mechanistically, reduced internalization of EMCV was observed in TNK2 deficient cells demonstrating that TNK2 functions in EMCV entry. Domain analysis of WASL demonstrated that its actin nucleation activity was necessary to facilitate viral infection. Together, these data support a model wherein TNK2, WASL, and NCK1 comprise a pathway important for multiple picornaviruses.
Collapse
Affiliation(s)
- Hongbing Jiang
- Department of Molecular Microbiology, Pathology and Immunology, School of Medicine, Washington University, St. Louis, United States
| | - Christian Leung
- Department of Molecular Microbiology, Pathology and Immunology, School of Medicine, Washington University, St. Louis, United States
| | - Stephen Tahan
- Department of Molecular Microbiology, Pathology and Immunology, School of Medicine, Washington University, St. Louis, United States
| | - David Wang
- Department of Molecular Microbiology, Pathology and Immunology, School of Medicine, Washington University, St. Louis, United States
| |
Collapse
|
18
|
LL-37 disrupts the Kaposi's sarcoma-associated herpesvirus envelope and inhibits infection in oral epithelial cells. Antiviral Res 2018; 158:25-33. [PMID: 30076864 DOI: 10.1016/j.antiviral.2018.07.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
Abstract
Oral epithelial cells (OECs) represent the first line of defense against viruses that are spread via saliva, including Kaposi's sarcoma-associated herpesvirus (KSHV). Infection of humans by KSHV and viral pathogenesis begins by infecting OECs. One method OECs use to limit viral infections in the oral cavity is the production of antimicrobial peptides (AMPs), or host defense peptides (HDPs). However, no studies have investigated the antiviral activities of any HDP against KSHV. The goal of this study was to determine the antiviral activity of one HDP, LL-37, against KSHV in the context of infecting OECs. Our results show that LL-37 significantly decreased KSHV's ability to infect OECs in both a structure- and dose-dependent manner. However, this activity does not stem from affecting OECs, but instead the virions themselves. We found that LL-37 exerts its antiviral activity against KSHV by disrupting the viral envelope, which can inhibit viral entry into OECs. Our data suggest that LL-37 exhibits a marked antiviral activity against KSHV during infection of oral epithelial cells, which can play an important role in host defense against oral KSHV infection. Thus, we propose that inducing LL-37 expression endogenously in oral epithelial cells, or potentially introducing as a therapy, may help restrict oral KSHV infection and ultimately KSHV-associated diseases.
Collapse
|