1
|
Shorey-Kendrick LE, McEvoy CT, Milner K, Harris J, Brownsberger J, Tepper RS, Park B, Gao L, Vu A, Morris CD, Spindel ER. Improvements in lung function following vitamin C supplementation to pregnant smokers are associated with buccal DNA methylation at 5 years of age. Clin Epigenetics 2024; 16:35. [PMID: 38413986 PMCID: PMC10900729 DOI: 10.1186/s13148-024-01644-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND We previously reported in the "Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function" randomized clinical trial (RCT) that vitamin C (500 mg/day) supplementation to pregnant smokers is associated with improved respiratory outcomes that persist through 5 years of age. The objective of this study was to assess whether buccal cell DNA methylation (DNAm), as a surrogate for airway epithelium, is associated with vitamin C supplementation, improved lung function, and decreased occurrence of wheeze. METHODS We conducted epigenome-wide association studies (EWAS) using Infinium MethylationEPIC arrays and buccal DNAm from 158 subjects (80 placebo; 78 vitamin C) with pulmonary function testing (PFT) performed at the 5-year visit. EWAS were performed on (1) vitamin C treatment, (2) forced expiratory flow between 25 and 75% of expired volume (FEF25-75), and (3) offspring wheeze. Models were adjusted for sex, race, study site, gestational age at randomization (≤ OR > 18 weeks), proportion of epithelial cells, and latent covariates in addition to child length at PFT in EWAS for FEF25-75. We considered FDR p < 0.05 as genome-wide significant and nominal p < 0.001 as candidates for downstream analyses. Buccal DNAm measured in a subset of subjects at birth and near 1 year of age was used to determine whether DNAm signatures originated in utero, or emerged with age. RESULTS Vitamin C treatment was associated with 457 FDR significant (q < 0.05) differentially methylated CpGs (DMCs; 236 hypermethylated; 221 hypomethylated) and 53 differentially methylated regions (DMRs; 26 hyper; 27 hypo) at 5 years of age. FEF25-75 was associated with one FDR significant DMC (cg05814800), 1,468 candidate DMCs (p < 0.001), and 44 DMRs. Current wheeze was associated with 0 FDR-DMCs, 782 candidate DMCs, and 19 DMRs (p < 0.001). In 365/457 vitamin C FDR significant DMCs at 5 years of age, there was no significant interaction between time and treatment. CONCLUSIONS Vitamin C supplementation to pregnant smokers is associated with buccal DNA methylation in offspring at 5 years of age, and most methylation signatures appear to be persistent from the prenatal period. Buccal methylation at 5 years was also associated with current lung function and occurrence of wheeze, and these functionally associated loci are enriched for vitamin C associated loci. Clinical trial registration ClinicalTrials.gov, NCT01723696 and NCT03203603.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Cindy T McEvoy
- Department of Pediatrics, Pape Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kristin Milner
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Julia Harris
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Julie Brownsberger
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Robert S Tepper
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Byung Park
- Biostatistics Shared Resources, Knight Cancer Institute, Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Portland State University School of Public Health, Portland, OR, USA
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Portland State University School of Public Health, Portland, OR, USA
| | - Annette Vu
- Oregon Clinical & Translational Research Institute, Oregon Health and Science; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Cynthia D Morris
- Oregon Clinical & Translational Research Institute, Oregon Health and Science; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| |
Collapse
|
2
|
Bhat S, Rotti H, Prasad K, Kabekkodu SP, Saadi AV, Shenoy SP, Joshi KS, Nesari TM, Shengule SA, Dedge AP, Gadgil MS, Dhumal VR, Salvi S, Satyamoorthy K. Genome-wide DNA methylation profiling after Ayurveda intervention to bronchial asthmatics identifies differential methylation in several transcription factors with immune process related function. J Ayurveda Integr Med 2023; 14:100692. [PMID: 37018893 PMCID: PMC10122039 DOI: 10.1016/j.jaim.2023.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/13/2022] [Accepted: 02/01/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The Indian traditional medicinal system, Ayurveda, describes several lifestyle practices, processes and medicines as an intervention to treat asthma. Rasayana therapy is one of them and although these treatment modules show improvement in bronchial asthma, their mechanism of action, particularly the effect on DNA methylation, is largely understudied. OBJECTIVES Our study aimed at identifying the contribution of DNA methylation changes in modulating bronchial asthma phenotype upon Ayurveda intervention. MATERIALS AND METHODS In this study, genome-wide methylation profiling in peripheral blood DNA of healthy controls and bronchial asthmatics before (BT) and after (AT) Ayurveda treatment was performed using array-based profiling of reference-independent methylation status (aPRIMES) coupled to microarray technique. RESULTS We identified 4820 treatment-associated DNA methylation signatures (TADS) and 11,643 asthma-associated DNA methylation signatures (AADS), differentially methylated [FDR (≤0.1) adjusted p-values] in AT and HC groups respectively, compared to BT group. Neurotrophin TRK receptor signaling pathway was significantly enriched for differentially methylated genes in bronchial asthmatics, compared to AT and HC subjects. Additionally, we identified over 100 differentially methylated immune-related genes located in the promoter/5'-UTR regions of TADS and AADS. Various immediate-early response and immune regulatory genes with functions such as transcription factor activity (FOXD1, FOXD2, GATA6, HOXA3, HOXA5, MZF1, NFATC1, NKX2-2, NKX2-3, RUNX1, KLF11), G-protein coupled receptor activity (CXCR4, PTGER4), G-protein coupled receptor binding (UCN), DNA binding (JARID2, EBF2, SOX9), SNARE binding (CAPN10), transmembrane signaling receptor activity (GP1BB), integrin binding (ITGA6), calcium ion binding (PCDHGA12), actin binding (TRPM7, PANX1, TPM1), receptor tyrosine kinase binding (PIK3R2), receptor activity (GDNF), histone methyltransferase activity (MLL5), and catalytic activity (TSTA3) were found to show consistent methylation status between AT and HC group in microarray data. CONCLUSIONS Our study reports the DNA methylation-regulated genes in bronchial asthmatics showing improvement in symptoms after Ayurveda intervention. DNA methylation regulation in the identified genes and pathways represents the Ayurveda intervention responsive genes and may be further explored as diagnostic, prognostic, and therapeutic biomarkers for bronchial asthma in peripheral blood.
Collapse
Affiliation(s)
- Smitha Bhat
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Harish Rotti
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abdul Vahab Saadi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sushma P Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kalpana S Joshi
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Tanuja M Nesari
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Sushant A Shengule
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Amrish P Dedge
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Maithili S Gadgil
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Vikram R Dhumal
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Sundeep Salvi
- Department of Pulmonary Medicine, Chest Research Foundation, Pune, Maharashtra, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Brar T, Marino MJ, Lal D. Unified Airway Disease: Genetics and Epigenetics. Otolaryngol Clin North Am 2023; 56:23-38. [DOI: 10.1016/j.otc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022; 77:3267-3292. [PMID: 35842745 DOI: 10.1111/all.15445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Parronchi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Nauwelaerts SJD, De Cremer K, Bustos Sierra N, Gand M, Van Geel D, Delvoye M, Vandermassen E, Vercauteren J, Stroobants C, Bernard A, Saenen ND, Nawrot TS, Roosens NHC, De Keersmaecker SCJ. Assessment of the Feasibility of a Future Integrated Larger-Scale Epidemiological Study to Evaluate Health Risks of Air Pollution Episodes in Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148531. [PMID: 35886381 PMCID: PMC9323067 DOI: 10.3390/ijerph19148531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 02/07/2023]
Abstract
Air pollution exposure can lead to exacerbation of respiratory disorders in children. Using sensitive biomarkers helps to assess the impact of air pollution on children’s respiratory health and combining protein, genetic and epigenetic biomarkers gives insights on their interrelatedness. Most studies do not contain such an integrated approach and investigate these biomarkers individually in blood, although its collection in children is challenging. Our study aimed at assessing the feasibility of conducting future integrated larger-scale studies evaluating respiratory health risks of air pollution episodes in children, based on a qualitative analysis of the technical and logistic aspects of a small-scale field study involving 42 children. This included the preparation, collection and storage of non-invasive samples (urine, saliva), the measurement of general and respiratory health parameters and the measurement of specific biomarkers (genetic, protein, epigenetic) of respiratory health and air pollution exposure. Bottlenecks were identified and modifications were proposed to expand this integrated study to a higher number of children, time points and locations. This would allow for non-invasive assessment of the impact of air pollution exposure on the respiratory health of children in future larger-scale studies, which is critical for the development of policies or measures at the population level.
Collapse
Affiliation(s)
- Sarah J. D. Nauwelaerts
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
- Centre for Toxicology and Applied Pharmacology, University Catholique de Louvain, 1200 Brussels, Belgium;
| | - Koen De Cremer
- Platform Chromatography and Mass Spectrometry, Sciensano, 1050 Brussels, Belgium;
| | | | - Mathieu Gand
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
| | - Dirk Van Geel
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
| | - Maud Delvoye
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
| | - Els Vandermassen
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
| | - Jordy Vercauteren
- Unit Air, Vlaamse Milieumaatschappij, 2000 Antwerpen, Belgium; (J.V.); (C.S.)
| | | | - Alfred Bernard
- Centre for Toxicology and Applied Pharmacology, University Catholique de Louvain, 1200 Brussels, Belgium;
| | - Nelly D. Saenen
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (N.D.S.); (T.S.N.)
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (N.D.S.); (T.S.N.)
- Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
| | - Sigrid C. J. De Keersmaecker
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
- Correspondence:
| |
Collapse
|
6
|
Sharma S, Yang IV, Schwartz DA. Epigenetic regulation of immune function in asthma. J Allergy Clin Immunol 2022; 150:259-265. [PMID: 35717251 PMCID: PMC9378596 DOI: 10.1016/j.jaci.2022.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022]
Abstract
Asthma is a common complex respiratory disease characterized by chronic airway inflammation and partially reversible airflow obstruction resulting from genetic and environmental determinants. Because epigenetic marks influence gene expression and can be modified by both environmental exposures and genetic variation, they are increasingly recognized as relevant to the pathogenesis of asthma and may be a key link between environmental exposures and asthma susceptibility. Unlike changes to DNA sequence, epigenetic signatures are dynamic and reversible, creating an opportunity for not only therapeutic targets but may serve as biomarkers to follow disease course and identify molecular subtypes in heterogeneous diseases such as asthma. In this review, we will examine the relationship between asthma and 3 key epigenetic processes that modify gene expression: DNA methylation, modification of histone tails, and noncoding RNAs. In addition to presenting a comprehensive assessment of the existing epigenetic studies focusing on immune regulation in asthma, we will discuss future directions for epigenetic investigation in allergic airway disease.
Collapse
Affiliation(s)
- Sunita Sharma
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo.
| | - Ivana V Yang
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo; Divisions of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - David A Schwartz
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| |
Collapse
|
7
|
Ekpruke CD, Silveyra P. Sex Differences in Airway Remodeling and Inflammation: Clinical and Biological Factors. FRONTIERS IN ALLERGY 2022; 3:875295. [PMID: 35769576 PMCID: PMC9234861 DOI: 10.3389/falgy.2022.875295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is characterized by an increase in the contraction and inflammation of airway muscles, resulting in airflow obstruction. The prevalence of asthma is lower in females than in males until the start of puberty, and higher in adult women than men. This sex disparity and switch at the onset of puberty has been an object of debate among many researchers. Hence, in this review, we have summarized these observations to pinpoint areas needing more research work and to provide better sex-specific diagnosis and management of asthma. While some researchers have attributed it to the anatomical and physiological differences in the male and female respiratory systems, the influences of hormonal interplay after puberty have also been stressed. Other hormones such as leptin have been linked to the sex differences in asthma in both obese and non-obese patients. Recently, many scientists have also demonstrated the influence of the sex-specific genomic framework as a key player, and others have linked it to environmental, social lifestyle, and occupational exposures. The majority of studies concluded that adult men are less susceptible to developing asthma than women and that women display more severe forms of the disease. Therefore, the understanding of the roles played by sex- and gender-specific factors, and the biological mechanisms involved will help develop novel and more accurate diagnostic and therapeutic plans for sex-specific asthma management.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Patricia Silveyra
| |
Collapse
|
8
|
Legaki E, Arsenis C, Taka S, Papadopoulos NG. DNA methylation biomarkers in asthma and rhinitis: Are we there yet? Clin Transl Allergy 2022; 12:e12131. [PMID: 35344303 PMCID: PMC8967268 DOI: 10.1002/clt2.12131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
The study of epigenetics has improved our understanding of mechanisms underpinning gene‐environment interactions and is providing new insights in the pathophysiology of respiratory allergic diseases. We reviewed the literature on DNA methylation patterns across different tissues in asthma and/or rhinitis and attempted to elucidate differentially methylated loci that could be used to characterize asthma or rhinitis. Although nasal and bronchial epithelia are similar in their histological structure and cellular composition, genetic and epigenetic regulation may differ across tissues. Advanced methods have enabled comprehensive, high‐throughput methylation profiling of different tissues (bronchial or nasal epithelial cells, whole blood or isolated mononuclear cells), in subjects with respiratory conditions, aiming to elucidate gene regulation mechanisms and identify new biomarkers. Several genes and CpGs have been suggested as asthma biomarkers, though research on allergic rhinitis is still lacking. The most common differentially methylated loci presented in both blood and nasal samples are ACOT7, EPX, KCNH2, SIGLEC8, TNIK, FOXP1, ATPAF2, ZNF862, ADORA3, ARID3A, IL5RA, METRNL and ZFPM1. Overall, there is substantial variation among studies, (i.e. sample sizes, age groups and disease phenotype). Greater variability of analysis method detailed phenotypic characterization and age stratification should be taken into account in future studies.
Collapse
Affiliation(s)
- Evangelia Legaki
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Christos Arsenis
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Nikolaos G. Papadopoulos
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
9
|
Wang C, Wang J, Zheng X, Zhang J, Zhang J, Qiao G, Liu H, Zhao H, Bai J, Zhang H, Zhang Z. Epigenetic regulation is involved in traffic-related PM 2.5 aggravating allergic airway inflammation in rats. Clin Immunol 2021; 234:108914. [PMID: 34954131 DOI: 10.1016/j.clim.2021.108914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
Increasing fine particulate matter (PM2.5) and epigenetic modifications are closely associated with the pathogenesis of asthma, but the definite mechanism remains unclear. The traffic-related PM2.5 exposure aggravated pulmonary inflammation and changed the methylation level of interferon gamma (Ifng) and interleukin (Il)4 genes, and then altered levels of affiliated cytokines of IFN-γ and IL-4 in rats with allergic airway inflammation. It also increased the level of miR146a and decreased the level of miR31. In addition, transcription factors of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 6 (Stat6) rose; forkhead box P3 (Foxp3) and signal transducer and activator of transcription 4 (Stat4) lowered. The traffic-related PM2.5 altered epigenetic modifications in allergic airway inflammation of rats leading to inflammation exacerbation through impaired regulatory T (Treg) cells function and T-helper type 1 (Th1)/Th2 cells imbalance, which provided a new target for the treatment and control of asthma.
Collapse
Affiliation(s)
- Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jing Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Xin Zheng
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jiaqi Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jingwei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Guoguo Qiao
- Teaching Experiment Center, School of Public Health, Shanxi Medical University, China
| | - Haifang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Huichao Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China.
| |
Collapse
|
10
|
Gutierrez MJ, Perez GF, Gomez JL, Rodriguez-Martinez CE, Castro-Rodriguez JA, Nino G. Genes, environment, and developmental timing: New insights from translational approaches to understand early origins of respiratory diseases. Pediatr Pulmonol 2021; 56:3157-3165. [PMID: 34388306 PMCID: PMC8858026 DOI: 10.1002/ppul.25598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Over the past decade, "omics" approaches have advanced our understanding of the molecular programming of the airways in humans. Several studies have identified potential molecular mechanisms that contribute to early life epigenetic reprogramming, including DNA methylation, histone modifications, microRNAs, and the homeostasis of the respiratory mucosa (epithelial function and microbiota). Current evidence supports the notion that early infancy is characterized by heightened susceptibility to airway genetic reprogramming in response to the first exposures in life, some of which can have life-long consequences. Here, we summarize and analyze the latest insights from studies that support a novel epigenetic paradigm centered on human maturational and developmental programs including three cardinal elements: genes, environment, and developmental timing. The combination of these factors is likely responsible for the functional trajectory of the respiratory system at the molecular, functional, and clinical levels.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Geovanny F Perez
- Division of Pediatric Pulmonology, Oishei Children's Hospital, University at Buffalo, Buffalo, New York, USA
| | - Jose L Gomez
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carlos E Rodriguez-Martinez
- Department of Pediatrics, Universidad Nacional de Colombia, Bogota, Colombia.,Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia
| | - Jose A Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington D.C., USA
| |
Collapse
|
11
|
Role of Epigenetics in the Pathogenesis, Treatment, Prediction, and Cellular Transformation of Asthma. Mediators Inflamm 2021; 2021:9412929. [PMID: 34566492 PMCID: PMC8457970 DOI: 10.1155/2021/9412929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Asthma is a mysterious disease with heterogeneity in etiology, pathogenesis, and clinical phenotypes. Although ongoing studies have provided a better understanding of asthma, its natural history, progression, pathogenesis, diversified phenotypes, and even the exact epigenetic linkage between childhood asthma and adult-onset/old age asthma remain elusive in many aspects. Asthma heritability has been established through genetic studies, but genetics is not the only influencing factor in asthma. The increasing incidence and some unsolved queries suggest that there may be other elements related to asthma heredity. Epigenetic mechanisms link genetic and environmental factors with developmental trajectories in asthma. This review provides an overview of asthma epigenetics and its components, including several epigenetic studies on asthma, and discusses the epigenetic linkage between childhood asthma and adult-onset/old age asthma. Studies involving asthma epigenetics present valuable novel approaches to solve issues related to asthma. Asthma epigenetic research guides us towards gene therapy and personalized T cell therapy, directs the discovery of new therapeutic agents, predicts long-term outcomes in severe cases, and is also involved in the cellular transformation of childhood asthma to adult-onset/old age asthma.
Collapse
|
12
|
Yan Q, Forno E, Cardenas A, Qi C, Han YY, Acosta-Pérez E, Kim S, Zhang R, Boutaoui N, Canino G, Vonk JM, Xu CJ, Chen W, Marsland A, Oken E, Gold DR, Koppelman GH, Celedón JC. Exposure to violence, chronic stress, nasal DNA methylation, and atopic asthma in children. Pediatr Pulmonol 2021; 56:1896-1905. [PMID: 33751861 PMCID: PMC8217314 DOI: 10.1002/ppul.25372] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Exposure to violence (ETV) or chronic stress may influence asthma through unclear mechanisms. METHODS Epigenome-wide association study (EWAS) of ETV or chronic stress measures and DNA methylation in nasal epithelium from 487 Puerto Ricans aged 9-20 years who participated in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study [EVA-PR]). We assessed four measures of ETV and chronic stress in children (ETV scale, gun violence, and perceived stress) and their mothers (perceived stress). Each EWAS was conducted using linear regression, with CpGs as dependent variables and the stress/violence measure as a predictor, adjusting for age, sex, the top five principal components, and SVA latent factors. We then selected the top 100 CpGs (by p value) associated with each stress/violence measure in EVA-PR and conducted a meta-analysis of the selected CpGs and atopic asthma using data from EVA-PR and two additional cohorts (Project Viva and PIAMA). RESULTS Three CpGs (in SNN, PTPRN2, and LINC01164) were associated with maternal perceived stress or gun violence (p = 1.28-3.36 × 10-7 ), but not with atopic asthma, in EVA-PR. In a meta-analysis of three cohorts, which included the top CpGs associated with stress/violence measures in EVA-PR, 12 CpGs (in STARD3NL, SLC35F4, TSR3, CDC42SE2, KLHL25, PLCB1, BUD13, OR2B3, GALR1, TMEM196, TEAD4, and ANAPC13) were associated with atopic asthma at FDR-p < .05. CONCLUSIONS Pending confirmation in longitudinal studies, our findings suggest that nasal epithelial methylation markers associated with measures of ETV and chronic stress may be linked to atopic asthma in children and adolescents.
Collapse
Affiliation(s)
- Qi Yan
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, University of California, Berkeley, California, USA.,Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, The Netherlands.,University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Soyeon Kim
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rong Zhang
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nadia Boutaoui
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Judith M Vonk
- University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands.,Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cheng-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, The Netherlands.,University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, The Netherlands.,University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Combined prenatal Lactobacillus reuteri and ω-3 supplementation synergistically modulates DNA methylation in neonatal T helper cells. Clin Epigenetics 2021; 13:135. [PMID: 34193262 PMCID: PMC8247185 DOI: 10.1186/s13148-021-01115-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Background Environmental exposures may alter DNA methylation patterns of T helper cells. As T helper cells are instrumental for allergy development, changes in methylation patterns may constitute a mechanism of action for allergy preventive interventions. While epigenetic effects of separate perinatal probiotic or ω-3 fatty acid supplementation have been studied previously, the combined treatment has not been assessed. We aimed to investigate epigenome-wide DNA methylation patterns from a sub-group of children in an on-going randomised double-blind placebo-controlled allergy prevention trial using pre- and postnatal combined Lactobacillus reuteri and ω-3 fatty acid treatment. To this end, > 866000 CpG sites (MethylationEPIC 850K array) in cord blood CD4+ T cells were examined in samples from all four study arms (double-treatment: n = 18, single treatments: probiotics n = 16, ω-3 n = 15, and double placebo: n = 14). Statistical and bioinformatic analyses identified treatment-associated differentially methylated CpGs and genes, which were used to identify putatively treatment-induced network modules. Pathway analyses inferred biological relevance, and comparisons were made to an independent allergy data set. Results Comparing the active treatments to the double placebo group, most differentially methylated CpGs and genes were hypermethylated, possibly suggesting induction of transcriptional inhibition. The double-treated group showed the largest number of differentially methylated CpGs, of which many were unique, suggesting synergy between interventions. Clusters within the double-treated network module consisted of immune-related pathways, including T cell receptor signalling, and antigen processing and presentation, with similar pathways revealed for the single-treatment modules. CpGs derived from differential methylation and network module analyses were enriched in an independent allergy data set, particularly in the double-treatment group, proposing treatment-induced DNA methylation changes as relevant for allergy development. Conclusion Prenatal L. reuteri and/or ω-3 fatty acid treatment results in hypermethylation and affects immune- and allergy-related pathways in neonatal T helper cells, with potentially synergistic effects between the interventions and relevance for allergic disease. Further studies need to address these findings on a transcriptional level, and whether the results associate to allergy development in the children. Understanding the role of DNA methylation in regulating effects of perinatal probiotic and ω-3 interventions may provide essential knowledge in the development of efficacious allergy preventive strategies. Trial registration ClinicalTrials.gov, ClinicalTrials.gov-ID: NCT01542970. Registered 27th of February 2012—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT01542970. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01115-4.
Collapse
|
14
|
Nemani SSP, Vermeulen CJ, Pech M, Faiz A, Oliver BGG, van den Berge M, Burgess JK, Kopp MV, Weckmann M. COL4A3 expression in asthmatic epithelium depends on intronic methylation and ZNF263 binding. ERJ Open Res 2021; 7:00802-2020. [PMID: 34109240 PMCID: PMC8181658 DOI: 10.1183/23120541.00802-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Background Reduction of COL4A3, one of the six isoforms of collagen 4, in asthmatic airways results in increased inflammation and angiogenesis, implicating it as a central part of asthma pathogenesis. However, to date, the path underlying these diminished COL4A3 levels has been elusive. This study investigated a possible mechanism underlying the reduction of COL4A3 expression. Methods Bronchial biopsies of 76 patients with asthma and 83 controls were subjected to RNA-sequencing and DNA methylation bead arrays to identify expression and methylation changes. The binding of ZNF263 was analysed by chromatin-immunoprecipitation sequencing coupled with quantitative (q)PCR. Effects of ZNF263 silencing, using small interfering RNA, on the COL4A3 expression were studied using qPCR. Results COL4A3 expression was significantly reduced in bronchial biopsies compared to healthy controls, whereas DNA methylation levels at cg11797365 were increased. COL4A3 expression levels were significantly low in asthmatics without inhaled corticosteroid (ICS) use, whereas the expression was not statistically different between asthmatics using ICS and controls. Methylation levels at cg11797365 in vitro were increased upon consecutive rhinovirus infections. Conclusion Our data indicate an epigenetic modification as a contributing factor for the loss of COL4A3 expression in asthmatic airway epithelium. An epigenetic modification interrupts ZNF263 binding, which may contribute to the loss of COL4A3 expression in asthmatic airway epitheliumhttps://bit.ly/39cZbyn
Collapse
Affiliation(s)
- Sai Sneha Priya Nemani
- Division of Paediatric Pneumology and Allergology, University Medical Centre Schleswig-Holstein, Airway Research Centre North, member of the German Centre for Lung Research (DZL), Lübeck, Germany
| | - Cornelis Joseph Vermeulen
- Dept of Pulmonary Diseases, University Medical Centre Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, The Netherlands
| | - Martin Pech
- Division of Paediatric Pneumology and Allergology, University Medical Centre Schleswig-Holstein, Airway Research Centre North, member of the German Centre for Lung Research (DZL), Lübeck, Germany
| | - Alen Faiz
- Dept of Pulmonary Diseases, University Medical Centre Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, The Netherlands.,Dept of Pathology and Medical Biology, University Medical Centre Groningen, GRIAC, University of Groningen, Groningen, The Netherlands.,Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Brian George G Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Maarten van den Berge
- Dept of Pulmonary Diseases, University Medical Centre Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, The Netherlands
| | - Janette Kay Burgess
- Dept of Pathology and Medical Biology, University Medical Centre Groningen, GRIAC, University of Groningen, Groningen, The Netherlands.,Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Discipline of Pharmacology, Faculty of Medicine, The University of Sydney, NSW, Australia
| | - Matthias V Kopp
- Division of Paediatric Pneumology and Allergology, University Medical Centre Schleswig-Holstein, Airway Research Centre North, member of the German Centre for Lung Research (DZL), Lübeck, Germany.,Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Weckmann
- Division of Paediatric Pneumology and Allergology, University Medical Centre Schleswig-Holstein, Airway Research Centre North, member of the German Centre for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
15
|
Saikumar Jayalatha AK, Hesse L, Ketelaar ME, Koppelman GH, Nawijn MC. The central role of IL-33/IL-1RL1 pathway in asthma: From pathogenesis to intervention. Pharmacol Ther 2021; 225:107847. [PMID: 33819560 DOI: 10.1016/j.pharmthera.2021.107847] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, and its cognate receptor, Interleukin-1 receptor like-1 (IL-1RL1 or ST2), are susceptibility genes for childhood asthma. In response to cellular damage, IL-33 is released from barrier tissues as an 'alarmin' to activate the innate immune response. IL-33 drives type 2 responses by inducing signalling through its receptor IL-1RL1 in several immune and structural cells, thereby leading to type 2 cytokine and chemokine production. IL-1RL1 gene transcript encodes different isoforms generated through alternative splicing. Its soluble isoform, IL-1RL1-a or sST2, acts as a decoy receptor by sequestering IL-33, thereby inhibiting IL1RL1-b/IL-33 signalling. IL-33 and its receptor IL-1RL1 are therefore considered as putative biomarkers or targets for pharmacological intervention in asthma. This review will provide an overview of the genetics and biology of the IL-33/IL-1RL1 pathway in the context of asthma pathogenesis. It will discuss the potential and complexities of targeting the cytokine or its receptor, how genetics or biomarkers may inform precision medicine for asthma targeting this pathway, and the possible positioning of therapeutics targeting IL-33 or its receptor in the expanding landscape of novel biologicals applied in asthma management.
Collapse
Affiliation(s)
- A K Saikumar Jayalatha
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - L Hesse
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - M E Ketelaar
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - G H Koppelman
- University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - M C Nawijn
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands.
| |
Collapse
|
16
|
Sheikhpour M, Maleki M, Ebrahimi Vargoorani M, Amiri V. A review of epigenetic changes in asthma: methylation and acetylation. Clin Epigenetics 2021; 13:65. [PMID: 33781317 PMCID: PMC8008616 DOI: 10.1186/s13148-021-01049-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
Several studies show that childhood and adulthood asthma and its symptoms can be modulated through epigenetic modifications. Epigenetic changes are inheritable modifications that can modify the gene expression without changing the DNA sequence. The most common epigenetic alternations consist of DNA methylation and histone modifications. How these changes lead to asthmatic phenotype or promote the asthma features, in particular by immune pathways regulation, is an understudied topic. Since external effects, like exposure to tobacco smoke, air pollution, and drugs, influence both asthma development and the epigenome, elucidating the role of epigenetic changes in asthma is of great importance. This review presents available evidence on the epigenetic process that drives asthma genes and pathways, with a particular focus on DNA methylation, histone methylation, and acetylation. We gathered and assessed studies conducted in this field over the past two decades. Our study examined asthma in different aspects and also shed light on the limitations and the important factors involved in the outcomes of the studies. To date, most of the studies in this area have been carried out on DNA methylation. Therefore, the need for diagnostic and therapeutic applications through this molecular process calls for more research on the histone modifications in this disease.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Mobina Maleki
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ebrahimi Vargoorani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, College of Basic Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Amiri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
17
|
Yan Q, Forno E, Cardenas A, Qi C, Han YY, Acosta-Pérez E, Kim S, Zhang R, Boutaoui N, Canino G, Vonk JM, Xu CJ, Chen W, Oken E, Gold DR, Koppelman GH, Celedón JC. Exposure to violence, chronic stress, nasal DNA methylation, and atopic asthma in children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33173928 DOI: 10.1101/2020.11.03.20225250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Exposure to violence (ETV) or stress may cause asthma through unclear mechanisms. Methods Epigenome-wide association study (EWAS) of DNA methylation in nasal epithelium and four ETV or chronic stress measures in 487 Puerto Ricans aged 9-20 years who participated in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study [EVA-PR]). We assessed measures of ETV or chronic stress in children (ETV scale, gun violence, and perceived stress) and their mothers (perceived stress). Each EWAS was conducted using linear regression, with CpGs as dependent variables and the stress/violence measure as a predictor, adjusting for age, sex, the top five principal components, and SVA latent factors. We then selected the top 100 CpGs (by P-value) associated with each stress/violence measure in EVA-PR and conducted a meta-analysis of the selected CpGs and atopic asthma using data from EVA-PR and two additional cohorts (Project Viva and PIAMA). Results In the EWAS of stress/violence in EVA-PR, gun violence was associated with methylation of cg18961589 in LINC01164 (β=0.03, P =1.28×10 -7 ), and maternal stress was associated with methylation of cg03402351 in SNN (β=0.04, P =1.69×10 -7 ) and cg19064846 in PTPRN2 (β=0.03, P =3.36×10 -7 ). In a meta-analysis of three cohorts, which included the top CpGs associated with stress/violence in EVA-PR, CpGs in STARD3NL, SLC35F4, TSR3, CDC42SE2, KLHL25, PLCB1, BUD13, OR2B3, GALR1, TMEM196, TEAD4 and ANAPC13 were associated with atopic asthma at FDR- P < 0.05. Conclusions ETV and chronic stress may increase the risk of atopic asthma through DNA methylation in airway epithelium, though this needs confirmation in future longitudinal studies.
Collapse
|
18
|
Men S, Yu Y. Prospects for Use of Single-Cell Sequencing to Assess DNA Methylation in Asthma. Med Sci Monit 2020; 26:e925514. [PMID: 33009362 PMCID: PMC7539641 DOI: 10.12659/msm.925514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Asthma is a complex disease with an increasing prevalence rate caused by the interaction of multiple genetically inherited and environmental factors. Epigenetics link genetic susceptibility and environmental factors. DNA methylation is an epigenetic modification that plays a crucial role in the regulation of growth and development, gene expression, and disease. Relatively little is known about DNA methylation in asthma, with few studies to date using single-cell sequencing to analyze the molecular mechanism by which DNA methylation regulates asthma. Cells with similar phenotypes may be heterogeneous in function and transcription, as may their genetic information. Although multi-omics methods, such as studies of the genome, transcriptome, and epigenome, can be used to evaluate biological processes, these methods are applicable only to groups of cells or tissues and provide averages that may obscure direct correlations among multiple layers of data. Single-cell sequencing technology can clarify the methylation and expression of genes in different populations of cells, in contrast to traditional multi-omics sequencing, which can determine only average values of cell populations. Single-cell sequence can therefore better reflect the pathogenesis of asthma, as it can clarify the function and regulatory mechanism of DNA methylation in asthma, and detect new genes and molecular markers that may become therapeutic targets in this disease.
Collapse
|
19
|
Bae DJ, Jun JA, Chang HS, Park JS, Park CS. Epigenetic Changes in Asthma: Role of DNA CpG Methylation. Tuberc Respir Dis (Seoul) 2020; 83:1-13. [PMID: 31905427 PMCID: PMC6953489 DOI: 10.4046/trd.2018.0088] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
For the past three decades, more than a thousand of genetic studies have been performed to find out the genetic variants responsible for the risk of asthma. Until now, all of the discovered single nucleotide polymorphisms have explained genetic effects less than initially expected. Thus, clarification of environmental factors has been brought up to overcome the 'missing' heritability. The most exciting solution is epigenesis because it intervenes at the junction between the genome and the environment. Epigenesis is an alteration of genetic expression without changes of DNA sequence caused by environmental factors such as nutrients, allergens, cigarette smoke, air pollutants, use of drugs and infectious agents during pre- and post-natal periods and even in adulthood. Three major forms of epigenesis are composed of DNA methylation, histone modifications, and specific microRNA. Recently, several studies have been published on epigenesis in asthma and allergy as a powerful tool for research of genetic heritability in asthma albeit epigenetic changes are at the starting point to obtain the data on specific phenotypes of asthma. In this presentation, we mainly review the potential role of DNA CpG methylation in the risk of asthma and its sub-phenotypes including nonsteroidal anti-inflammatory exacerbated respiratory diseases.
Collapse
Affiliation(s)
- Da Jeong Bae
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Ji Ae Jun
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Hun Soo Chang
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, Korea
| | - Jong Sook Park
- Division of Allergy and Respiratory Medicine, Genome Research Center, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Choon Sik Park
- Division of Allergy and Respiratory Medicine, Genome Research Center, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
20
|
Solazzo G, Ferrante G, La Grutta S. DNA Methylation in Nasal Epithelium: Strengths and Limitations of an Emergent Biomarker for Childhood Asthma. Front Pediatr 2020; 8:256. [PMID: 32500051 PMCID: PMC7243704 DOI: 10.3389/fped.2020.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
Asthma is one of the most widespread chronic respiratory conditions. This disease primarily develops in childhood and is influenced by different factors, mainly genetics and environmental factors. DNA methylation is an epigenetic mechanism which may represent a bridge between these two factors, providing a tool to comprehend the interaction between genetics and environment. Most epidemiological studies in this field have been conducted using blood samples, although DNA methylation marks in blood may not be reliable for drawing exhaustive conclusions about DNA methylation in the airways. Because of the role of nasal epithelium in asthma and the tissue specificity of DNA methylation, studying the relationship between DNA methylation and childhood asthma might reveal crucial information about this widespread respiratory disease. The purpose of this review is to describe current findings in this field of research. We will present a viewpoint of selected studies, consider strengths and limitations, and propose future research in this area.
Collapse
Affiliation(s)
- Giulia Solazzo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Giuliana Ferrante
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Stefania La Grutta
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| |
Collapse
|
21
|
Feng Z, Zhan M, Meng R, Wang X, Xu Q. 5-Aza-2'-deoxycytidine enhances lipopolysaccharide-induced inflammatory cytokine expression in human dental pulp cells by regulating TRAF6 methylation. Bioengineered 2019; 10:197-206. [PMID: 31117883 PMCID: PMC6550546 DOI: 10.1080/21655979.2019.1621135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dental pulp inflammation is a common bacterially driven inflammation characterized by the local accumulation of inflammatory mediators in human dental pulp. DNA methylation is a crucial epigenetic modification that that plays a fundamental role in gene transcription, and its role in inflammation-related diseases has recently attracted attention. However, its role in dental pulp inflammation is poorly understood. This study is aimed to elucidate the role of DNA methylation in lipopolysaccharide (LPS)-induced inflammatory reaction in human dental pulp cells (hDPCs). hDPCs were pretreated with DNA methylation inhibitor 5-aza-2ʹ-deoxycytidine (5-Aza-CdR) and a cytokine antibody array was used to detect LPS-induced cytokine expression. The results indicated that 5-Aza-CdR significantly increased the expression of several pro-inflammatory cytokines in LPS-treated cells, including IL-6, IL-8, GM-CSF, MCP-2 and RANTES. The increased expression levels of IL-6 and IL-8 were further verified by qRT-PCR and ELISA. Furthermore, pretreatment with 5-Aza-CdR resulted in upregulation of p-IKKα/β, p-IκBα, p-p65 and p-ERK in the NK-κB and MAPK pathways. In addition, the 5mC level of the TRAF6 promoter was significantly decreased following 5-Aza-CdR pretreatment in the LPS-stimulated hDPCs. The findings indicate that 5-Aza-CdR significantly enhances the expression of proinflammatory cytokines and activates the NF-κB and MAPK signaling pathways by eliciting a decline in the 5mc level in the TRAF6 promoter in hDPCs, suggesting that DNA methylation may play an important role in dental pulp inflammation. This study highlights the important role of DNA methylation in the immunity defense of dental pulp infection.
Collapse
Affiliation(s)
- Zhihui Feng
- a Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Minkang Zhan
- a Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Runsha Meng
- a Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Xinxuan Wang
- a Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Qiong Xu
- a Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Asthma is one of the most common chronic respiratory diseases linked with increased morbidity and healthcare utilization. The underlying pathophysiological processes and causal relationships of asthma with epigenetic mechanisms are partially understood. Here we review human studies of epigenetic mechanisms in asthma, with a special focus on DNA methylation. RECENT FINDINGS Epigenetic studies of childhood asthma have identified specific methylation signatures associated with allergic inflammation in the airway and immune cells, demonstrating a regulatory role for methylation in asthma pathogenesis. Despite these novel findings, additional research in the role of epigenetic mechanisms underlying asthma endotypes is needed. Similarly, studies of histone modifications are also lacking in asthma. Future studies of epigenetic mechanisms in asthma will benefit from data integration in well phenotyped cohorts. This review provides an overview of the current literature on epigenetic studies in human asthma, with special emphasis on methylation and childhood asthma.
Collapse
Affiliation(s)
- Jose L Gomez
- Pulmonary, Critical Care and Sleep, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
23
|
Hudon Thibeault AA, Laprise C. Cell-Specific DNA Methylation Signatures in Asthma. Genes (Basel) 2019; 10:E932. [PMID: 31731604 PMCID: PMC6896152 DOI: 10.3390/genes10110932] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Asthma is a complex trait, often associated with atopy. The genetic contribution has been evidenced by familial occurrence. Genome-wide association studies allowed for associating numerous genes with asthma, as well as identifying new loci that have a minor contribution to its phenotype. Considering the role of environmental exposure on asthma development, an increasing amount of literature has been published on epigenetic modifications associated with this pathology and especially on DNA methylation, in an attempt to better understand its missing heritability. These studies have been conducted in different tissues, but mainly in blood or its peripheral mononuclear cells. However, there is growing evidence that epigenetic changes that occur in one cell type cannot be directly translated into another one. In this review, we compare alterations in DNA methylation from different cells of the immune system and of the respiratory tract. The cell types in which data are obtained influences the global status of alteration of DNA methylation in asthmatic individuals compared to control (an increased or a decreased DNA methylation). Given that several genes were cell-type-specific, there is a great need for comparative studies on DNA methylation from different cells, but from the same individuals in order to better understand the role of epigenetics in asthma pathophysiology.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| |
Collapse
|
24
|
Cardenas A, Sordillo JE, Rifas-Shiman SL, Chung W, Liang L, Coull BA, Hivert MF, Lai PS, Forno E, Celedón JC, Litonjua AA, Brennan KJ, DeMeo DL, Baccarelli AA, Oken E, Gold DR. The nasal methylome as a biomarker of asthma and airway inflammation in children. Nat Commun 2019; 10:3095. [PMID: 31300640 PMCID: PMC6625976 DOI: 10.1038/s41467-019-11058-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
The nasal cellular epigenome may serve as biomarker of airway disease and environmental response. Here we collect nasal swabs from the anterior nares of 547 children (mean-age 12.9 y), and measure DNA methylation (DNAm) with the Infinium MethylationEPIC BeadChip. We perform nasal Epigenome-Wide Association analyses (EWAS) of current asthma, allergen sensitization, allergic rhinitis, fractional exhaled nitric oxide (FeNO) and lung function. We find multiple differentially methylated CpGs (FDR < 0.05) and Regions (DMRs; ≥ 5-CpGs and FDR < 0.05) for asthma (285-CpGs), FeNO (8,372-CpGs; 191-DMRs), total IgE (3-CpGs; 3-DMRs), environment IgE (17-CpGs; 4-DMRs), allergic asthma (1,235-CpGs; 7-DMRs) and bronchodilator response (130-CpGs). Discovered DMRs annotated to genes implicated in allergic asthma, Th2 activation and eosinophilia (EPX, IL4, IL13) and genes previously associated with asthma and IgE in EWAS of blood (ACOT7, SLC25A25). Asthma, IgE and FeNO were associated with nasal epigenetic age acceleration. The nasal epigenome is a sensitive biomarker of asthma, allergy and airway inflammation. Epigenetic differences in nasal epithelium have been proposed as a biomarker for lower airway disease and asthma. Here, in epigenome-wide association studies for asthma and other airway traits using nasal swabs, the authors identify differentially methylated CpGs that highlight genes involved in TH2 response.
Collapse
Affiliation(s)
- Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA.
| | - Joanne E Sordillo
- Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Wonil Chung
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Marie-France Hivert
- Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA.,Diabetes Unit, Massachusetts General Hospital, Boston, 02114, MA, USA
| | - Peggy S Lai
- Massachusetts General Hospital, Pulmonary/Critical Care, Boston, MA, 02114, USA
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kasey J Brennan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Dawn L DeMeo
- Department of Medicine, Brigham and Women's Hospital, Channing Division of Network Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Emily Oken
- Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Diane R Gold
- Department of Medicine, Brigham and Women's Hospital, Channing Division of Network Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
25
|
Popovic M, Fiano V, Fasanelli F, Trevisan M, Grasso C, Assumma MB, Gillio-Tos A, Polidoro S, De Marco L, Rusconi F, Merletti F, Zugna D, Richiardi L. Differentially methylated DNA regions in early childhood wheezing: An epigenome-wide study using saliva. Pediatr Allergy Immunol 2019; 30:305-314. [PMID: 30681197 DOI: 10.1111/pai.13023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Epigenetics may play a role in wheezing and asthma development. We aimed to examine infant saliva DNA methylation in association with early childhood wheezing. METHODS A case-control study was nested within the NINFEA birth cohort with 68 cases matched to 68 controls by sex, age (between 6 and 18 months, median: 10.3 months) and season at saliva sampling. Using a bumphunting region-based approach, we examined associations between saliva methylome measured using Illumina Infinium HumanMethylation450k array and wheezing between 6 and 18 months of age. We tested our main findings in independent publicly available data sets of childhood respiratory allergy and atopic asthma, with DNA methylation measured in different tissues and at different ages. RESULTS We identified one wheezing-associated differentially methylated region (DMR) spanning ten sequential CpG sites in the promoter-regulatory region of PM20D1 gene (family-wise error rate < 0.05). The observed associations were enhanced in children born to atopic mothers. In the publicly available data sets, hypermethylation in the same region of PM20D1 was consistently found at different ages and in all analysed tissues (cord blood, blood, saliva and nasal epithelia) of children with respiratory allergy/atopic asthma compared with controls. CONCLUSION This study suggests that PM20D1 hypermethylation is associated with early childhood wheezing. Directionally consistent epigenetic alteration observed in cord blood and other tissues at older ages in children with respiratory allergy and atopic asthma provides suggestive evidence that a long-term epigenetic modification, likely operating from birth, may be involved in childhood atopic phenotypes.
Collapse
Affiliation(s)
- Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS) and CPO Piemonte, Turin, Italy
| | - Valentina Fiano
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS) and CPO Piemonte, Turin, Italy
| | - Francesca Fasanelli
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS) and CPO Piemonte, Turin, Italy
| | - Morena Trevisan
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS) and CPO Piemonte, Turin, Italy
| | - Chiara Grasso
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS) and CPO Piemonte, Turin, Italy
| | | | - Anna Gillio-Tos
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS) and CPO Piemonte, Turin, Italy
| | | | - Laura De Marco
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS) and CPO Piemonte, Turin, Italy
| | - Franca Rusconi
- Unit of Epidemiology, "Anna Meyer" Children's University Hospital, Florence, Italy
| | - Franco Merletti
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS) and CPO Piemonte, Turin, Italy
| | - Daniela Zugna
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS) and CPO Piemonte, Turin, Italy
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS) and CPO Piemonte, Turin, Italy
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Epigenetic marks are emerging as mediators of genetics and the environment on complex disease phenotypes, including childhood asthma and allergy. RECENT FINDINGS Epigenome-wide association studies over the past year have added to the growing body of evidence supporting significant associations of epigenetic regulation of gene expression and asthma and allergy. Studies in children have identified signatures of eosinophils in peripheral blood, Th2 cell transcription factors and cytokines in peripheral blood mononuclear cells, and epithelial dysfunction in the respiratory epithelium. Importantly, studies at birth have begun to decipher the contribution of epigenetic marks to asthma inception. Few studies have also begun to address the contribution of genetics and the environment to these associations. SUMMARY Next generation of epigenome-wide association studies that will deal with confounders, study the influence of the genetics and environment, and incorporate multiple datasets to provide better interpretation of the findings are on the horizon. Identification of key epigenetic marks that are shaped by genetics and the environment, and impact transcription of specific genes will help us have a better understanding of etiology, heterogeneity and severity of asthma, and will also empower us to develop biologically driven therapeutics and biomarkers for secondary prevention of this disease.
Collapse
|
27
|
Peng C, Van Meel ER, Cardenas A, Rifas-Shiman SL, Sonawane AR, Glass KR, Gold DR, Platts-Mills TA, Lin X, Oken E, Hivert MF, Baccarelli AA, De Jong NW, Felix JF, Jaddoe VW, Duijts L, Litonjua AA, DeMeo DL. Epigenome-wide association study reveals methylation pathways associated with childhood allergic sensitization. Epigenetics 2019; 14:445-466. [PMID: 30876376 DOI: 10.1080/15592294.2019.1590085] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epigenetic mechanisms integrate both genetic variability and environmental exposures. However, comprehensive epigenome-wide analysis has not been performed across major childhood allergic phenotypes. We examined the association of epigenome-wide DNA methylation in mid-childhood peripheral blood (Illumina HumanMethyl450K) with mid-childhood atopic sensitization, environmental/inhalant and food allergen sensitization in 739 children in two birth cohorts (Project Viva-Boston, and the Generation R Study-Rotterdam). We performed covariate-adjusted epigenome-wide association meta-analysis and employed pathway and regional analyses of results. Seven-hundred and five methylation sites (505 genes) were significantly cross-sectionally associated with mid-childhood atopic sensitization, 1411 (905 genes) for environmental and 45 (36 genes) for food allergen sensitization (FDR<0.05). We observed differential methylation across multiple genes for all three phenotypes, including genes implicated previously in innate immunity (DICER1), eosinophilic esophagitis and sinusitis (SIGLEC8), the atopic march (AP5B1) and asthma (EPX, IL4, IL5RA, PRG2, SIGLEC8, CLU). In addition, most of the associated methylation marks for all three phenotypes occur in putative transcription factor binding motifs. Pathway analysis identified multiple methylation sites associated with atopic sensitization and environmental allergen sensitization located in/near genes involved in asthma, mTOR signaling, and inositol phosphate metabolism. We identified multiple differentially methylated regions associated with atopic sensitization (8 regions) and environmental allergen sensitization (26 regions). A number of nominally significant methylation sites in the cord blood analysis were epigenome-wide significant in the mid-childhood analysis, and we observed significant methylation - time interactions among a subset of sites examined. Our findings provide insights into epigenetic regulatory pathways as markers of childhood allergic sensitization.
Collapse
Affiliation(s)
- Cheng Peng
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Evelien R Van Meel
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,c Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Andres Cardenas
- d Division of Environmental Health Science , University of California, Berkeley, School of Public Health , Berkeley , CA , USA
| | - Sheryl L Rifas-Shiman
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA
| | - Abhijeet R Sonawane
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Kimberly R Glass
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,f Department of Biostatistics , Harvard T.H Chan School of Public Health , Boston , MA , USA
| | - Diane R Gold
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,g Department of Environmental Health , Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Thomas A Platts-Mills
- h Division of Allergy and Clinical Immunology , University of Virginia School of Medicine , Charlottesville , VA , USA
| | - Xihong Lin
- f Department of Biostatistics , Harvard T.H Chan School of Public Health , Boston , MA , USA.,i Department of Statistics , Harvard University , Cambridge , MA , USA
| | - Emily Oken
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA
| | - Marie-France Hivert
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA.,j Diabetes Unit , Massachusetts General Hospital , Boston , MA , USA
| | - Andrea A Baccarelli
- k Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , New York , NY , USA
| | - Nicolette W De Jong
- l Department of Internal Medicine, Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Janine F Felix
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,m Department of Epidemiology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,n Department of Pediatrics, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Vincent W Jaddoe
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,m Department of Epidemiology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,n Department of Pediatrics, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Liesbeth Duijts
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,c Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,o Department of Pediatrics, Division of Neonatology , Erasmus MC, University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Augusto A Litonjua
- p Department of Pediatrics, Division of Pulmonary Medicine , University of Rochester Medical Center , Rochester , NY , USA
| | - Dawn L DeMeo
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,q Division of Pulmonary and Critical Care, Harvard Medical School , Department of Medicine, Brigham and Women's Hospital , Boston , MA , USA
| |
Collapse
|
28
|
Epigenetic age acceleration is associated with allergy and asthma in children in Project Viva. J Allergy Clin Immunol 2019; 143:2263-2270.e14. [PMID: 30738172 DOI: 10.1016/j.jaci.2019.01.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Epigenetic clocks have been suggested to capture one feature of the complexity between aging and the epigenome. However, little is known about the epigenetic clock in childhood allergy and asthma. OBJECTIVE We sought to examine associations of DNA methylation age (DNAmAge) and epigenetic age acceleration with childhood allergy and asthma. METHODS We calculated DNAmAge and age acceleration at birth, early childhood, and midchildhood based on the IlluminaHumanMethylation450BeadChip in Project Viva. We evaluated epigenetic clock associations with allergy and asthma using covariate-adjusted linear and logistic regressions. We attempted to replicate our findings in the Genetics of Asthma in Costa Rica Study. RESULTS At midchildhood (mean age, 7.8 years) in Project Viva, DNAmAge and age acceleration were cross-sectionally associated with greater total serum IgE levels and greater odds of atopic sensitization. Every 1-year increase in intrinsic epigenetic age acceleration was associated with a 1.22 (95% CI, 1.07-1.39), 1.17 (95% CI, 1.03-1.34), and 1.29 (95% CI, 1.12-1.49) greater odds of atopic sensitization and environmental and food allergen sensitization. DNAmAge and extrinsic epigenetic age acceleration were also cross-sectionally associated with current asthma at midchildhood. DNAmAge and age acceleration at birth and early childhood were not associated with midchildhood allergy or asthma. The midchildhood association between age acceleration and atopic sensitization were replicated in an independent data set. CONCLUSIONS Because the epigenetic clock might reflect immune and developmental components of biological aging, our study suggests pathways through which molecular epigenetic mechanisms of immunity, development, and maturation can interact along the age axis and associate with childhood allergy and asthma by midchildhood.
Collapse
|
29
|
Forno E, Celedón JC. Epigenomics and Transcriptomics in the Prediction and Diagnosis of Childhood Asthma: Are We There Yet? Front Pediatr 2019; 7:115. [PMID: 31001502 PMCID: PMC6454089 DOI: 10.3389/fped.2019.00115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 01/15/2023] Open
Abstract
Asthma is the most common non-communicable chronic disease of childhood. Despite its high prevalence, to date we lack methods that are both efficient and accurate in diagnosing asthma. Most traditional approaches have been based on garnering clinical evidence, such as risk factors and exposures. Given the high heritability of asthma, more recent approaches have looked at genetic polymorphisms as potential "risk factors." However, genetic variants explain only a small proportion of asthma risk, and have been less than optimal at predicting risk for individual subjects. Epigenomic studies offer significant advantages over previous approaches. Epigenetic regulation is highly tissue-specific, and can induce both short- and long-term changes in gene expression. Such changes can start in utero, can vary throughout the life span, and in some instances can be passed on from one generation to another. Most importantly, the epigenome can be modified by environmental factors and exposures, and thus epigenetic and transcriptomic profiling may yield the most accurate risk estimates for a given patient by incorporating environmental (and treatment) effects throughout the lifespan. Here we will review the most recent advances in the use of epigenetic and transcriptomic analysis for the early diagnosis of asthma and atopy, as well as challenges and future directions in the field as it moves forward. We will particularly focus on DNA methylation, the most studied mechanism of epigenetic regulation.
Collapse
Affiliation(s)
- Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Forno E, Wang T, Qi C, Yan Q, Xu CJ, Boutaoui N, Han YY, Weeks DE, Jiang Y, Rosser F, Vonk JM, Brouwer S, Acosta-Perez E, Colón-Semidey A, Alvarez M, Canino G, Koppelman GH, Chen W, Celedón JC. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. THE LANCET RESPIRATORY MEDICINE 2018; 7:336-346. [PMID: 30584054 DOI: 10.1016/s2213-2600(18)30466-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epigenetic mechanisms could alter the airway epithelial barrier and ultimately lead to atopic diseases such as asthma. We aimed to identify DNA methylation profiles that are associated with-and could accurately classify-atopy and atopic asthma in school-aged children. METHODS We did a genome-wide study of DNA methylation in nasal epithelium and atopy or atopic asthma in 483 Puerto Rican children aged 9-20 years, recruited using multistage probability sampling. Atopy was defined as at least one positive IgE (≥0·35 IU/mL) to common aeroallergens, and asthma was defined as a physician's diagnosis plus wheeze in the previous year. Significant (false discovery rate p<0·01) methylation signals were correlated with gene expression, and top CpGs were validated by pyrosequencing. We then replicated our top methylation findings in a cohort of 72 predominantly African American children, and in 432 children from a European birth cohort. Next, we tested classification models based on nasal methylation for atopy or atopic asthma in all cohorts. FINDINGS DNA methylation profiles were markedly different between children with (n=312) and without (n=171) atopy in the Puerto Rico discovery cohort, recruited from Feb 12, 2014, until May 8, 2017. After adjustment for covariates and multiple testing, we found 8664 differentially methylated CpGs by atopy, with false discovery rate-adjusted p values ranging from 9·58 × 10-17 to 2·18 × 10-22 for the top 30 CpGs. These CpGs were in or near genes relevant to epithelial barrier function, including CDHR3 and CDH26, and in other genes related to airway epithelial integrity and immune regulation, such as FBXL7, NTRK1, and SLC9A3. Moreover, 28 of the top 30 CpGs replicated in the same direction in both independent cohorts. Classification models of atopy based on nasal methylation performed well in the Puerto Rico cohort (area under the curve [AUC] 0·93-0·94 and accuracy 85-88%) and in both replication cohorts (AUC 0·74-0·92, accuracy 68-82%). The models also performed well for atopic asthma in the Puerto Rico cohort (AUC 0·95-1·00, accuracy 88%) and the replication cohorts (AUC 0·82-0·88, accuracy 86%). INTERPRETATION We identified specific methylation profiles in airway epithelium that are associated with atopy and atopic asthma in children, and a nasal methylation panel that could classify children by atopy or atopic asthma. Our findings support the feasibility of using the nasal methylome for future clinical applications, such as predicting the development of asthma among wheezing infants. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
- Erick Forno
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ting Wang
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Qi Yan
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cheng-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nadia Boutaoui
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yueh-Ying Han
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel E Weeks
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yale Jiang
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; School of Medicine, Tsinghua University, Beijing, China
| | - Franziska Rosser
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith M Vonk
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sharon Brouwer
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Edna Acosta-Perez
- Behavioral Sciences Research Institute of Puerto Rico, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Angel Colón-Semidey
- Department of Pediatrics, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - María Alvarez
- Department of Pediatrics, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute of Puerto Rico, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wei Chen
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Brugha R, Lowe R, Henderson AJ, Holloway JW, Rakyan V, Wozniak E, Mahmud N, Seymour K, Grigg J, Shaheen SO. DNA methylation profiles between airway epithelium and proxy tissues in children. Acta Paediatr 2017; 106:2011-2016. [PMID: 28833606 DOI: 10.1111/apa.14027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/24/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022]
Abstract
AIM Epidemiological studies of deoxyribonucleic acid (DNA) methylation in airway disease have largely been conducted using blood or buccal samples. However, given tissue specificity of DNA methylation, these surrogate tissues may not allow reliable inferences about methylation in the lung. We sought to compare the pattern of DNA methylation in blood, buccal and nasal epithelial cells to that in airway epithelial cells from children. METHODS Samples of blood, and buccal, nasal and airway epithelium were obtained from six children undergoing elective anaesthesia for adenotonsillectomy. DNA methylation was assessed at 450 000 5'-C-phosphate-G-3' (CpG) sites using the Illumina HumanMethylation450 array. RESULTS Eighteen samples from all sites were suitable for analysis. Hierarchical clustering demonstrated that the methylation profile in nasal epithelium was most representative of that in airway epithelium; the profile in buccal cells was moderately similar and that in blood was least similar. CONCLUSION DNA methylation in blood poorly reflects methylation in airway epithelium. Future epidemiological studies of DNA methylation and airway diseases should consider measurement of methylation either in buccal cells or, preferably, in nasal epithelial cells.
Collapse
Affiliation(s)
- Rossa Brugha
- National Heart and Lung Institute; Imperial College London; London UK
| | - Robert Lowe
- Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - A. John Henderson
- School of Social and Community Medicine; University of Bristol; Bristol UK
| | - John W. Holloway
- Human Development and Health; Faculty of Medicine; University of Southampton; Southampton UK
| | - Vardhman Rakyan
- Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Eva Wozniak
- Genome Centre; Barts and The London School of Medicine and Dentistry; London UK
| | - Nadiya Mahmud
- Genome Centre; Barts and The London School of Medicine and Dentistry; London UK
| | - Kay Seymour
- Ear, Nose and Throat Surgery; Barts Health NHS Trust; London UK
| | - Jonathan Grigg
- Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Seif O. Shaheen
- Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| |
Collapse
|
32
|
Yang IV, Lozupone CA, Schwartz DA. The environment, epigenome, and asthma. J Allergy Clin Immunol 2017; 140:14-23. [PMID: 28673400 DOI: 10.1016/j.jaci.2017.05.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/21/2022]
Abstract
Asthma prevalence has been on the increase, especially in North America compared with other continents. However, the prevalence of asthma differs worldwide, and in many countries the prevalence is stable or decreasing. This highlights the influence of environmental exposures, such as allergens, air pollution, and the environmental microbiome, on disease etiology and pathogenesis. The epigenome might provide the unifying mechanism that translates the influence of environmental exposures to changes in gene expression, respiratory epithelial function, and immune cell skewing that are hallmarks of asthma. In this review we will introduce the concept of the environmental epigenome in asthmatic patients, summarize previous publications of relevance to this field, and discuss future directions.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; National Jewish Health, Denver, Colo; Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo.
| | - Catherine A Lozupone
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - David A Schwartz
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; National Jewish Health, Denver, Colo; Department of Immunology, University of Colorado, Denver, Colo
| |
Collapse
|
33
|
Lovinsky-Desir S, Jung KH, Jezioro JR, Torrone DZ, de Planell-Saguer M, Yan B, Perera FP, Rundle AG, Perzanowski MS, Chillrud SN, Miller RL. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter. Clin Epigenetics 2017. [PMID: 28630656 PMCID: PMC5470266 DOI: 10.1186/s13148-017-0364-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Physical activity is associated with improvement in lung function; however, pollution exposure during physical activity can lead to a transient reduction in lung function. This paradoxical relationship may be linked to altered T regulatory (Treg) cell activity, which increases with exercise and suppresses airway inflammation, but decreases in association with exposure to air pollution. To clarify these relationships, we investigated buccal cell DNA methylation of the forkhead box p3 (FOXP3) gene promoter, a proposed biomarker of Treg activity. We hypothesized that active urban children would have lower FOXP3 promoter methylation, associated with better lung function compared to non-active children. We also hypothesized that this relationship would be attenuated by high exposure to the air pollutant black carbon (BC). Methods We performed a cross-sectional study of 135 children ages 9–14 who live in New York City. Activity was measured across 6 days. BC exposure was assessed by personal monitors worn for two 24-h periods, followed by lung function assessment. Buccal swabs were collected for DNA methylation analysis of three regions (six CpG sites) in the FOXP3 promoter. Results In multivariable regression models, overall, there was no significant relationship between physical activity and FOXP3 promoter methylation (p > 0.05). However, in stratified analyses, among children with higher BC exposure (≥1200 ng/m3), physical activity was associated with 2.37% lower methylation in promoter 2 (CpGs −77, −65, and −58) (βestimate = −2.37%, p < 0.01) but not among those with lower BC exposure (βestimate = 0.54%, p > 0.05). Differences across strata were statistically significant (pinteraction = 0.04). Among all children, after controlling for BC concentration, promoter 2 methylation was associated with reduced FEV1/FVC (βestimate = −0.40%, p < 0.01) and reduced FEF25–75% (βestimate = −1.46%, p < 0.01). Conclusions Physical activity in urban children appeared associated with lower FOXP3 promoter methylation, a possible indicator of greater Treg function, under conditions of high BC exposure. Reduced FOXP3 promoter methylation was associated with higher lung function. These findings suggest that physical activity may induce immunologic benefits, particularly for urban children with greater risk of impaired lung function due to exposure to higher air pollution. FOXP3 promoter buccal cell methylation may function as a useful biomarker of that benefit. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0364-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, 3959 Broadway CHC-745, New York, NY 10032 USA
| | - Kyung Hwa Jung
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| | - Jacqueline R Jezioro
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| | - David Z Torrone
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| | | | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9 W Palisades, New York, 10964 NY USA
| | - Frederica P Perera
- Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9 W Palisades, New York, 10964 NY USA
| | - Rachel L Miller
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA.,Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA.,Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| |
Collapse
|
34
|
Gonzalez-Cortes T, Recio-Vega R, Lantz RC, Chau BT. DNA methylation of extracellular matrix remodeling genes in children exposed to arsenic. Toxicol Appl Pharmacol 2017; 329:140-147. [PMID: 28579250 DOI: 10.1016/j.taap.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/24/2022]
Abstract
Several novel mechanistic findings regarding to arsenic's pathogenesis has been reported and some of them suggest that the etiology of some arsenic induced diseases are due in part to heritable changes to the genome via epigenetic processes such as DNA methylation, histone maintenance, and mRNA expression. Recently, we reported that arsenic exposure during in utero and early life was associated with impairment in the lung function and abnormal receptor for advanced glycation endproducts (RAGE), matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) sputum levels. Based on our results and the reported arsenic impacts on DNA methylation, we designed this study in our cohort of children exposed in utero and early childhood to arsenic with the aim to associate DNA methylation of MMP9, TIMP1 and RAGE genes with its protein sputum levels and with urinary and toenail arsenic levels. The results disclosed hypermethylation in MMP9 promotor region in the most exposed children; and an increase in the RAGE sputum levels among children with the mid methylation level; there were also positive associations between MMP9 DNA methylation with arsenic toenail concentrations; RAGE DNA methylation with iAs, and %DMA; and finally between TIMP1 DNA methylation with the first arsenic methylation. A negative correlation between MMP9 sputum levels with its DNA methylation was registered. In conclusion, arsenic levels were positive associated with the DNA methylation of extracellular matrix remodeling genes;, which in turn could modifies the biological process in which they are involved causing or predisposing to lung diseases.
Collapse
Affiliation(s)
- Tania Gonzalez-Cortes
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Rogelio Recio-Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico.
| | - Robert Clark Lantz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
| | - Binh T Chau
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The goal of this review was to systematically analyze recent studies updating our knowledge on the role of epigenetic mechanisms in childhood asthma. RECENT FINDINGS A systematic literature search was conducted that identified 23 fresh articles published within the last 5 years reporting the results of human studies on the relationships between epigenetic modifications and childhood asthma or its/related phenotypes. In almost all these studies, meaningful associations between levels of epigenetic marks (DNA methylation and/or histone modifications) and pediatric asthma or its/related phenotypes have been observed. In addition, many studies identified by our screening analyzed those associations in the context of environmental factors, such as pollution, tobacco smoke, farming, or diet, showing in a huge majority a modifying effect of those exposures. SUMMARY The results of our systematic literature search provide a strong support for the role of epigenetic mechanisms in (mediating the effects of environmental exposure on) pediatric asthma. This knowledge may possibly be translated into diagnostic and/or therapeutic approaches.
Collapse
|
36
|
Yang IV, Pedersen BS, Liu AH, O'Connor GT, Pillai D, Kattan M, Misiak RT, Gruchalla R, Szefler SJ, Khurana Hershey GK, Kercsmar C, Richards A, Stevens AD, Kolakowski CA, Makhija M, Sorkness CA, Krouse RZ, Visness C, Davidson EJ, Hennessy CE, Martin RJ, Togias A, Busse WW, Schwartz DA. The nasal methylome and childhood atopic asthma. J Allergy Clin Immunol 2016; 139:1478-1488. [PMID: 27745942 DOI: 10.1016/j.jaci.2016.07.036] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 06/24/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Given the strong environmental influence on both epigenetic marks and allergic asthma in children, the epigenetic alterations in respiratory epithelia might provide insight into allergic asthma. OBJECTIVE We sought to identify DNA methylation and gene expression changes associated with childhood allergic persistent asthma. METHODS We compared genomic DNA methylation patterns and gene expression in African American children with persistent atopic asthma (n = 36) versus healthy control subjects (n = 36). Results were validated in an independent population of asthmatic children (n = 30) by using a shared healthy control population (n = 36) and in an independent population of white adult atopic asthmatic patients (n = 12) and control subjects (n = 12). RESULTS We identified 186 genes with significant methylation changes, differentially methylated regions or differentially methylated probes, after adjustment for age, sex, race/ethnicity, batch effects, inflation, and multiple comparisons. Genes differentially methylated included those with established roles in asthma and atopy and genes related to extracellular matrix, immunity, cell adhesion, epigenetic regulation, and airflow obstruction. The methylation changes were substantial (median, 9.5%; range, 2.6% to 29.5%). Hypomethylated and hypermethylated genes were associated with increased and decreased gene expression, respectively (P < 2.8 × 10-6 for differentially methylated regions and P < 7.8 × 10-10 for differentially methylated probes). Quantitative analysis in 53 differentially expressed genes demonstrated that 32 (60%) have significant methylation-expression relationships within 5 kb of the gene. Ten loci selected based on the relevance to asthma, magnitude of methylation change, and methylation-expression relationships were validated in an independent cohort of children with atopic asthma. Sixty-seven of 186 genes also have significant asthma-associated methylation changes in nasal epithelia of adult white asthmatic patients. CONCLUSIONS Epigenetic marks in respiratory epithelia are associated with allergic asthma and gene expression changes in inner-city children.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine and University of Colorado, School of Medicine, Aurora, Colo; National Jewish Health, Denver, Colo; Department of Epidemiology, Colorado School of Public Health, Aurora, Colo.
| | - Brent S Pedersen
- Department of Medicine and University of Colorado, School of Medicine, Aurora, Colo
| | | | - George T O'Connor
- Department of Medicine, Boston University School of Medicine, Boston, Mass
| | | | - Meyer Kattan
- Columbia University Medical Center, New York, NY
| | | | | | - Stanley J Szefler
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado, School of Medicine, Aurora, Colo
| | | | | | - Adam Richards
- Department of Medicine and University of Colorado, School of Medicine, Aurora, Colo
| | | | | | | | - Christine A Sorkness
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | | | | - Elizabeth J Davidson
- Department of Medicine and University of Colorado, School of Medicine, Aurora, Colo
| | - Corinne E Hennessy
- Department of Medicine and University of Colorado, School of Medicine, Aurora, Colo
| | | | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; and University of Colorado, Aurora, CO
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - David A Schwartz
- Department of Medicine and University of Colorado, School of Medicine, Aurora, Colo; National Jewish Health, Denver, Colo; Department of Immunology, University of Colorado, Aurora, Colo.
| |
Collapse
|
37
|
Moheimani F, Hsu ACY, Reid AT, Williams T, Kicic A, Stick SM, Hansbro PM, Wark PAB, Knight DA. The genetic and epigenetic landscapes of the epithelium in asthma. Respir Res 2016; 17:119. [PMID: 27658857 PMCID: PMC5034566 DOI: 10.1186/s12931-016-0434-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/17/2016] [Indexed: 12/24/2022] Open
Abstract
Asthma is a global health problem with increasing prevalence. The airway epithelium is the initial barrier against inhaled noxious agents or aeroallergens. In asthma, the airway epithelium suffers from structural and functional abnormalities and as such, is more susceptible to normally innocuous environmental stimuli. The epithelial structural and functional impairments are now recognised as a significant contributing factor to asthma pathogenesis. Both genetic and environmental risk factors play important roles in the development of asthma with an increasing number of genes associated with asthma susceptibility being expressed in airway epithelium. Epigenetic factors that regulate airway epithelial structure and function are also an attractive area for assessment of susceptibility to asthma. In this review we provide a comprehensive discussion on genetic factors; from using linkage designs and candidate gene association studies to genome-wide association studies and whole genome sequencing, and epigenetic factors; DNA methylation, histone modifications, and non-coding RNAs (especially microRNAs), in airway epithelial cells that are functionally associated with asthma pathogenesis. Our aims were to introduce potential predictors or therapeutic targets for asthma in airway epithelium. Overall, we found very small overlap in asthma susceptibility genes identified with different technologies. Some potential biomarkers are IRAKM, PCDH1, ORMDL3/GSDMB, IL-33, CDHR3 and CST1 in airway epithelial cells. Recent studies on epigenetic regulatory factors have further provided novel insights to the field, particularly their effect on regulation of some of the asthma susceptibility genes (e.g. methylation of ADAM33). Among the epigenetic regulatory mechanisms, microRNA networks have been shown to regulate a major portion of post-transcriptional gene regulation. Particularly, miR-19a may have some therapeutic potential.
Collapse
Affiliation(s)
- Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia. .,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Alan C-Y Hsu
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Andrew T Reid
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Teresa Williams
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Anthony Kicic
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, 6001, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, 6001, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
38
|
Lajunen TK, Jaakkola JJK, Jaakkola MS. Interleukin 6 SNP rs1800797 associates with the risk of adult-onset asthma. Genes Immun 2016; 17:193-8. [PMID: 26938664 DOI: 10.1038/gene.2016.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
Interleukin 6 (IL6) is an inflammatory cytokine that has been suggested to have an important role in the pathogenesis of asthma. IL6 single-nucleotide polymorphisms (SNPs) have been associated with levels of IL6, and with childhood and prevalent adult asthma. A recent study also suggested that IL6 SNPs associate especially with atopic asthma. However, association of IL6 SNPs with adult-onset asthma has not been studied. In a population-based study of 467 incident adult-onset asthma cases and 613 disease-free controls from South Finland, we analyzed association of 6 tagging SNPs of the IL6 locus with the risk of adult-onset asthma and with atopy. Asthma was clinically diagnosed, and atopy was defined based on Phadiatop test. IL6 SNP rs1800797 associated with the risk of adult-onset asthma in a log additive model, with adjusted odds ratio (aOR) 1.31 (95% confidence interval 1.09-1.57), and especially with the risk of atopic adult-onset asthma when compared with non-atopic controls, aOR 1.46 (95% CI 1.12-1.90). This is the first study to show an association of IL6 with adult-onset asthma, and especially with atopic adult-onset asthma.
Collapse
Affiliation(s)
- T K Lajunen
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland.,Medical Research Center Oulu (MRC Oulu), Oulu, Finland
| | - J J K Jaakkola
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland.,Medical Research Center Oulu (MRC Oulu), Oulu, Finland
| | - M S Jaakkola
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland.,Medical Research Center Oulu (MRC Oulu), Oulu, Finland
| |
Collapse
|
39
|
Somineni HK, Zhang X, Biagini Myers JM, Kovacic MB, Ulm A, Jurcak N, Ryan PH, Khurana Hershey GK, Ji H. Ten-eleven translocation 1 (TET1) methylation is associated with childhood asthma and traffic-related air pollution. J Allergy Clin Immunol 2016; 137:797-805.e5. [PMID: 26684294 PMCID: PMC4783231 DOI: 10.1016/j.jaci.2015.10.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Asthma is a complex disorder influenced by genetics and the environment. Recent findings have linked abnormal DNA methylation in T cells with asthma; however, the potential dysregulation of methylation in airway epithelial cells is unknown. Studies of mouse models of asthma have observed greater levels of 5-hydroxymethylcytosine (5-hmC) and ten-eleven translocation 1 (TET1) expression in lungs. TET proteins are known to catalyze methylation through modification of 5-methylcytosine to 5-hmC. OBJECTIVE We sought to examine the association of TET1 methylation with asthma and traffic-related air pollution (TRAP). METHODS TET1 methylation levels from DNA derived from nasal airway epithelial cells collected from 12 African American children with physician-diagnosed asthma and their nonasthmatic siblings were measured by using Illumina 450K arrays. Regions of interest were verified by means of locus-specific pyrosequencing in 35 sibling pairs and replicated in an independent population (n = 186). Exposure to TRAP in participants' early life and at current home addresses was estimated by using a land-use regression model. Methylation studies in saliva, PBMCs, and human bronchial epithelial cells were done to support our findings. RESULTS Loss of methylation at a single CpG site in the TET1 promoter (cg23602092) and increased global 5-hmC levels were significantly associated with asthma. In contrast, TRAP exposure at participants' current homes significantly increased methylation at the same site. Patterns were consistent across tissue sample types. 5-Aza-2'-deoxycytidine and diesel exhaust particle exposure in human bronchial epithelial cells was associated with altered TET1 methylation and expression and global 5-hmC levels. CONCLUSIONS Our findings suggest a possible role of TET1 methylation in asthmatic patients and response to TRAP.
Collapse
Affiliation(s)
- Hari K Somineni
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xue Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jocelyn M Biagini Myers
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Melinda Butsch Kovacic
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Ashley Ulm
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Noelle Jurcak
- School of Medicine, Johns Hopkins University, Baltimore, Md
| | - Patrick H Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | | | - Hong Ji
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
40
|
DNA methylation, bacteria and airway inflammation: latest insights. Curr Opin Allergy Clin Immunol 2015; 15:27-32. [PMID: 25479316 DOI: 10.1097/aci.0000000000000130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW DNA methylation is an epigenetic mechanism that has been implicated in the pathogenesis of chronic inflammatory diseases by regulating differentiation, proliferation, apoptosis, and activation of immune cells. Changes in the methylation status of relevant genes have been linked to the origin, perpetuation, and severity of airway diseases. The DNA methylation profile can be also modified by the action of viral and bacterial colonization. Bacteria and specially Staphylococcus aureus toxins are recognized inflammatory amplifying factors in both lower and upper airway chronic diseases. This review summarizes the existent knowledge about the role of DNA methylation changes in chronic airway diseases and the contribution of bacterial infection on this event. RECENT FINDINGS It has been demonstrated that changes in DNA methylation, either intrinsic or induced by allergen or infection, may be linked to the pathogenesis of asthma and allergy. These changes in methylation may suppress the production of anti-inflammatory mediators and increase the survival and activation of pro-inflammatory cells, as well as modify the immune response in response to bacterial infection, increasing their survival and pathogenicity within the infected organism. SUMMARY Understanding the intrinsic epigenetic mechanisms, as well as the effect of environment -for example, bacterial infection in the pathogenesis of airways diseases - will greatly improve the management and the diagnosis of these diseases.
Collapse
|
41
|
Bergougnoux A, Claustres M, De Sario A. Nasal epithelial cells: a tool to study DNA methylation in airway diseases. Epigenomics 2015; 7:119-26. [PMID: 25687471 DOI: 10.2217/epi.14.65] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A number of chronic airway diseases are characterized by high inflammation and unbalanced activation of the immune response, which lead to tissue damage and progressive reduction of the pulmonary function. Because they are exposed to various environmental stimuli, lung cells are prone to epigenomic changes. Many genes responsible for the immune response and inflammation are tightly regulated by DNA methylation, which suggests that alteration of the epigenome in lung cells may have a considerable impact on the penetrance and/or the severity of airway diseases. A major hurdle in clinical epigenomic studies is to gather appropriate biospecimens. Herein, we show that nasal epithelial cells are suitable to analyze DNA methylation in human diseases primarily affecting the lower airway tract.
Collapse
Affiliation(s)
- Anne Bergougnoux
- Laboratory Genetics of Rare Diseases, INSERM U827, Montpellier, France
| | | | | |
Collapse
|
42
|
Yang IV, Pedersen BS, Liu A, O'Connor GT, Teach SJ, Kattan M, Misiak RT, Gruchalla R, Steinbach SF, Szefler SJ, Gill MA, Calatroni A, David G, Hennessy CE, Davidson EJ, Zhang W, Gergen P, Togias A, Busse WW, Schwartz DA. DNA methylation and childhood asthma in the inner city. J Allergy Clin Immunol 2015; 136:69-80. [PMID: 25769910 PMCID: PMC4494877 DOI: 10.1016/j.jaci.2015.01.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Epigenetic marks are heritable, influenced by the environment, direct the maturation of T lymphocytes, and in mice enhance the development of allergic airway disease. Thus it is important to define epigenetic alterations in asthmatic populations. OBJECTIVE We hypothesize that epigenetic alterations in circulating PBMCs are associated with allergic asthma. METHODS We compared DNA methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy control subjects by using DNA and RNA from PBMCs. Results were validated in an independent population of asthmatic patients. RESULTS Comparing asthmatic patients (n = 97) with control subjects (n = 97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthma, including IL13, RUNX3, and specific genes relevant to T lymphocytes (TIGIT). Among asthmatic patients, 11 differentially methylated regions were associated with higher serum IgE concentrations, and 16 were associated with percent predicted FEV1. Hypomethylated and hypermethylated regions were associated with increased and decreased gene expression, respectively (P < 6 × 10(-12) for asthma and P < .01 for IgE). We further explored the relationship between DNA methylation and gene expression using an integrative analysis and identified additional candidates relevant to asthma (IL4 and ST2). Methylation marks involved in T-cell maturation (RUNX3), TH2 immunity (IL4), and oxidative stress (catalase) were validated in an independent asthmatic cohort of children living in the inner city. CONCLUSIONS Our results demonstrate that DNA methylation marks in specific gene loci are associated with asthma and suggest that epigenetic changes might play a role in establishing the immune phenotype associated with asthma.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; Departments of Pediatrics and Medicine, National Jewish Health, Denver, Colo
| | - Brent S Pedersen
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - Andrew Liu
- Departments of Pediatrics and Medicine, National Jewish Health, Denver, Colo
| | - George T O'Connor
- Department of Medicine, Boston University School of Medicine, Boston, Mass
| | | | - Meyer Kattan
- Columbia University Medical Center, New York, NY
| | | | | | | | - Stanley J Szefler
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado, School of Medicine, Aurora, Colo
| | - Michelle A Gill
- University of Texas, Southwestern Medical Center, Dallas, Tex
| | | | | | - Corinne E Hennessy
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - Elizabeth J Davidson
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Colo
| | - Peter Gergen
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - David A Schwartz
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; Departments of Pediatrics and Medicine, National Jewish Health, Denver, Colo; Department of Immunology, University of Colorado, Aurora, Colo.
| |
Collapse
|
43
|
Inducible nitric oxide synthase gene methylation and parkinsonism in manganese-exposed welders. Parkinsonism Relat Disord 2015; 21:355-60. [PMID: 25634431 DOI: 10.1016/j.parkreldis.2015.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/01/2015] [Accepted: 01/11/2015] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Neurologist-assessed parkinsonism signs are prevalent among workers exposed to manganese (Mn)-containing welding fume. Neuroinflammation may possibly play a role. Inducible nitric oxide synthase, coded by NOS2, is involved in inflammation, and particulate exposure increases the gene's expression through methylation of CpG sites in the 5' region. METHODS We assessed DNA methylation at three CpG sites in the NOS2 exon 1 from blood from 201 welders. All were non-Hispanic Caucasian men 25-65 years old who were examined by a neurologist specializing in movement disorders. We categorized the workers according to their Unified Parkinson Disease Rating Scale motor subsection 3 (UPDRS3) scores as parkinsonism cases (UPDRS3 ≥ 15; n = 49), controls (UPDRS3 < 6; n = 103), or intermediate (UPDRS3 ≥ 6 to < 15; n = 49). RESULTS While accounting for age, examiner and experimental plate, parkinsonism cases had lower mean NOS2 methylation than controls (p-value for trend = 0.04), specifically at CpG site 8329 located in an exonic splicing enhancer of NOS2 (p-value for trend = 0.07). These associations were not observed for the intermediate UPDRS3 group (both p-value for trend ≥ 0.59). CONCLUSIONS Inflammation mediated by inducible nitric oxide synthase may possibly contribute to the association between welding fume and parkinsonism, but requires verification in a longitudinal study.
Collapse
|
44
|
Campos K, Franscisconi CF, Okehie V, de Souza LC, Trombone APF, Letra A, Garlet GP, Gomez RS, Silva RM. FOXP3 DNA methylation levels as a potential biomarker in the development of periapical lesions. J Endod 2014; 41:212-8. [PMID: 25459573 DOI: 10.1016/j.joen.2014.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/18/2014] [Accepted: 10/07/2014] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Epigenetic mechanisms, such as DNA methylation, can modify gene expression patterns without changing the DNA sequence, comprising a tool that cells use to lock genes in the "off" position. Variations in the methylation profile have been correlated to a variety of human diseases. Here, we hypothesize that DNA methylation in immune response-related genes may contribute to the development of periapical lesions. METHODS The DNA methylation patterns of 22 immune response-related gene promoters were evaluated in 137 human periapical granulomas, 8 apical cysts, and 31 healthy gingival tissues from 2 independent cohorts using a pathway-specific real-time polymerase chain reaction array (EpiTect Methyl II; Qiagen Inc, Valencia, CA). Messenger RNA expression analysis by qualitative polymerase chain reaction was also performed. SABiosciences's hierarchical clustering and methylation (Qiagen, Valencia, CA) and Prism6 software (GraphPad Software, Inc, La Jolla, CA) were used for data analysis. RESULTS FOXP3 gene promoter showed the highest level of methylation in both periapical granulomas and apical cysts (P < .001), and methylation levels were inversely correlated with FOXP3 messenger RNA expression in the lesions. Furthermore, FOXP3 expression was prevalent in inactive lesions and was positively correlated with interleukin-10 and transforming growth factor beta levels. CONCLUSIONS Our results suggest that FOXP3 acts as a master switch governing the development and function of T-regulatory cells, whose functions include the inhibition of immune responses and temper inflammation. The observed differential methylation patterns of FOXP3 in periapical lesions may be crucial in determining its suppressive activity and may be involved in periapical lesion development.
Collapse
Affiliation(s)
- Kelma Campos
- Department of Oral Surgery and Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina F Franscisconi
- Department of Biological Sciences, School of Dentistry of Bauru, University of Sao Paulo, Bauru, São Paulo, Brazil
| | - Valerie Okehie
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Letícia C de Souza
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ana Paula F Trombone
- Department of Biological and Allied Health Sciences, Sacred Heart University, Bauru, Brazil
| | - Ariadne Letra
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Gustavo P Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, University of Sao Paulo, Bauru, São Paulo, Brazil
| | - Ricardo S Gomez
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Renato M Silva
- Department of Biological Sciences, School of Dentistry of Bauru, University of Sao Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|
45
|
Soliman M, North ML, Steacy LM, Thiele J, Adams DE, Ellis AK. Nasal allergen challenge studies of allergic rhinitis: a guide for the practicing clinician. Ann Allergy Asthma Immunol 2014; 113:250-6. [PMID: 25168223 DOI: 10.1016/j.anai.2014.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Mena Soliman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario
| | - Michelle L North
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario
| | - Lisa M Steacy
- Allergy Research Unit, Kingston General Hospital, Kingston, Ontario
| | - Jenny Thiele
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario
| | - Daniel E Adams
- Allergy Research Unit, Kingston General Hospital, Kingston, Ontario
| | - Anne K Ellis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario; Allergy Research Unit, Kingston General Hospital, Kingston, Ontario; Department of Medicine, Queen's University, Kingston, Ontario.
| |
Collapse
|
46
|
McErlean P, Favoreto S, Costa FF, Shen J, Quraishi J, Biyasheva A, Cooper JJ, Scholtens DM, Vanin EF, de Bonaldo MF, Xie H, Soares MB, Avila PC. Human rhinovirus infection causes different DNA methylation changes in nasal epithelial cells from healthy and asthmatic subjects. BMC Med Genomics 2014; 7:37. [PMID: 24947756 PMCID: PMC4080608 DOI: 10.1186/1755-8794-7-37] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/18/2014] [Indexed: 01/15/2023] Open
Abstract
Background Mechanisms underlying the development of virus-induced asthma exacerbations remain unclear. To investigate if epigenetic mechanisms could be involved in virus-induced asthma exacerbations, we undertook DNA methylation profiling in asthmatic and healthy nasal epithelial cells (NECs) during Human Rhinovirus (HRV) infection in vitro. Methods Global and loci-specific methylation profiles were determined via Alu element and Infinium Human Methylation 450 K microarray, respectively. Principal components analysis identified the genomic loci influenced the most by disease-status and infection. Real-time PCR and pyrosequencing were used to confirm gene expression and DNA methylation, respectively. Results HRV infection significantly increased global DNA methylation in cells from asthmatic subjects only (43.6% to 44.1%, p = 0.04). Microarray analysis revealed 389 differentially methylated loci either based on disease status, or caused by virus infection. There were disease-associated DNA methylation patterns that were not affected by HRV infection as well as HRV-induced DNA methylation changes that were unique to each group. A common methylation locus stood out in response to HRV infection in both groups, where the small nucleolar RNA, H/ACA box 12 (SNORA12) is located. Further analysis indicated that a relationship existed between SNORA12 DNA methylation and gene expression in response to HRV infection. Conclusions We describe for the first time that Human rhinovirus infection causes DNA methylation changes in airway epithelial cells that differ between asthmatic and healthy subjects. These epigenetic differences may possibly explain the mechanism by which respiratory viruses cause asthma exacerbations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Pedro C Avila
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
47
|
Environmental and genetic contribution in airway epithelial barrier in asthma pathogenesis. Curr Opin Allergy Clin Immunol 2014; 13:495-9. [PMID: 23945177 DOI: 10.1097/aci.0b013e328364e9fe] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW To examine the recent, most relevant genetic and epigenetic modifications of the epithelial barrier in response to the environmental factors, including allergens, viruses, and pollutants, susceptible to participate to asthma. RECENT FINDINGS IL-33 and TSLP gene polymorphisms are found in almost all asthma studies. Recent data have highlighted a new population of innate lymphoid cells, activated by these two cytokines, and mediating type 2 innate immunity dependent asthma. Gene variants of innate pattern recognition receptors associated with asthma have been evidenced in early viral infected high-risk birth cohorts, as well as polymorphisms in pathways involved in type I interferon (IFN) production, giving further insight into the role of viruses in asthma development. Novel epigenetic mechanisms have been evidenced in asthma and in response to the environmental pollutants, and point out genes like TSLP, which may link environmental pollution and asthma. SUMMARY Genetic data support the role of a specific set of epithelial-derived proTh2 cytokines, including IL-33 and TSLP, as well as the role of decreased type I IFN in virus-induced impaired epithelial barrier. Epigenetic modifications of epithelial genes are promising mechanisms that warrant further investigation.
Collapse
|
48
|
de Planell-Saguer M, Lovinsky-Desir S, Miller RL. Epigenetic regulation: the interface between prenatal and early-life exposure and asthma susceptibility. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:231-43. [PMID: 24323745 PMCID: PMC4148423 DOI: 10.1002/em.21836] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 05/10/2023]
Abstract
Asthma is a complex disease with genetic and environmental influences and emerging evidence suggests that epigenetic regulation is also a major contributor. Here, we focus on the developing paradigm that epigenetic dysregulation in asthma and allergy may start as early as in utero following several environmental exposures. We summarize the pathways important to the allergic immune response that are epigenetically regulated, the key environmental exposures associated with epigenetic changes in asthma genes, and newly identified epigenetic biomarkers that have been linked to clinical asthma. We conclude with a brief discussion about the potential to apply newly developing technologies in epigenetics to the diagnosis and treatment of asthma and allergy. The inherent plasticity of epigenetic regulation following environmental exposures offers opportunities for prevention using environmental remediation, measuring novel biomarkers for early identification of those at risk, and applying advances in pharmaco-epigenetics to tailor medical therapies that maximize efficacy of treatment. 'Precision Medicine' in asthma and allergy is arriving. As the field advances this may involve an individually tailored approach to the prevention, early detection, and treatment of disease based on the knowledge of an individual's epigenetic profile.
Collapse
Affiliation(s)
- Mariangels de Planell-Saguer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Rachel L. Miller
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, College of Physicians and Surgeons, New York, New York
- Correspondence to: Rachel L. Miller, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, PH8E-101B; 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
49
|
Lee HS, Barraza-Villarreal A, Hernandez-Vargas H, Sly PD, Biessy C, Ramakrishnan U, Romieu I, Herceg Z. Modulation of DNA methylation states and infant immune system by dietary supplementation with ω-3 PUFA during pregnancy in an intervention study. Am J Clin Nutr 2013; 98:480-7. [PMID: 23761484 PMCID: PMC3712555 DOI: 10.3945/ajcn.112.052241] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 04/30/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Early-life exposures to tobacco smoke and some dietary factors have been identified to induce epigenetic changes in genes involved in allergy and asthma development. Omega-3 (n-3) polyunsaturated fatty acid (PUFA) intake during pregnancy could modulate key cytokines and T helper (Th) cell maturation; however, little is known about the mechanism by which ω-3 PUFA could have a beneficial effect in preventing inflammatory disorders. OBJECTIVE We sought to test whether prenatal dietary supplementation with ω-3 PUFA during pregnancy may modulate epigenetic states in the infant immune system. DESIGN This study was based on a randomized intervention trial conducted in Mexican pregnant women supplemented daily with 400 mg docosahexaenoic acid (DHA) or a placebo from 18 to 22 wk of gestation to parturition. We applied quantitative profiling of DNA methylation states in Th1, Th2, Th17, and regulatory T-relevant genes as well as LINE1 repetitive elements of cord blood mononuclear cells (n = 261). RESULTS No significant difference in promoter methylation levels was shown between ω-3 PUFA-supplemented and control groups for the genes analyzed; however, ω-3 PUFA supplementation was associated with changes in methylation levels in LINE1 repetitive elements (P = 0.03) in infants of mothers who smoked during pregnancy. Furthermore, an association between the promoter methylation levels of IFNγ and IL13 was modulated by ω-3 PUFA supplementation (P = 0.06). CONCLUSIONS Our results indicate that maternal supplementation with ω-3 PUFA during pregnancy may modulate global methylation levels and the Th1/Th2 balance in infants. Therefore, the epigenetic mechanisms could provide attractive targets for prenatal modulation and prevention of inflammatory disorders and potentially other related diseases in childhood and adulthood.
Collapse
Affiliation(s)
- Ho-Sun Lee
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Rager JE, Bauer RN, Müller LL, Smeester L, Carson JL, Brighton LE, Fry RC, Jaspers I. DNA methylation in nasal epithelial cells from smokers: identification of ULBP3-related effects. Am J Physiol Lung Cell Mol Physiol 2013; 305:L432-8. [PMID: 23831618 DOI: 10.1152/ajplung.00116.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously demonstrated that, in nasal epithelial cells (NECs) from smokers, methylation of an antiviral gene was associated with impaired antiviral defense responses. To expand these findings and better understand biological mechanisms underlying cigarette smoke (CS)-induced modifications of host defense responses, we aimed to compare DNA methylation of genes that may play a role in antiviral response. We used a two-tiered analytical approach, where we first implemented a genome-wide strategy. NECs from smokers differed in the methylation levels of 390 genes, the majority (84%) of which showed decreased methylation in smokers. Secondly, we generated an a priori set of 161 antiviral response-related genes, of which five were differentially methylated in NEC from smokers (CCL2, FDPS, GSK3B, SOCS3, and ULBP3). Assessing these genes at the systems biology level revealed a protein interaction network associated with CS-induced epigenetic modifications involving SOCS3 and ULBP3 signaling, among others. Subsequent confirmation studies focused on SOCS3 and ULBP3, which were hypomethylated and hypermethylated, respectively. Expression of SOCS3 was increased, whereas ULBP3 expression was decreased in NECs from smokers. Addition of the demethylating agent 5-Aza-2-deoxycytidine enhanced ULBP3 expression in NECs from smokers. Furthermore, infection of differentiated NECs with influenza virus resulted in significantly lower levels of ULBP3 in cells from smokers. Taken together, our findings show that genomic DNA methylation profiles are altered in NECs from smokers and that these changes are associated with decreased antiviral host defense responses, indicating that epigenenic dysregulation of genes such as SOCS3 and ULBP3 likely impacts immune responses in the epithelium.
Collapse
Affiliation(s)
- Julia E Rager
- Center for Environmental Medicine, Asthma, and Lung Biology, Univ. of North Carolina at Chapel Hill, 104 Mason Farm Rd; CB# 7310, Chapel Hill, NC 27599-7310.
| | | | | | | | | | | | | | | |
Collapse
|