1
|
Kang S, Jeon S, Baek H, Hwang S, Kim S, Youn SH, Kim JW, Jun SH, Kang NG. Lactobacillus-derived artificial extracellular vesicles for skin rejuvenation and prevention of photo-aging. Biomater Sci 2025; 13:2026-2035. [PMID: 40013489 DOI: 10.1039/d4bm01644k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Extracellular vesicles (EVs) are small membrane-bound sacs released by cells that play crucial roles in intercellular communication. They transport biomolecules between cells and have both diagnostic and therapeutic potential. Artificial EVs, designed to mimic natural EVs, have been developed using various methods. In this study, Lactobacillus plantarum was used to create Lactobacillus-derived artificial EVs (LAEs) for skin rejuvenation and anti-aging. LAEs demonstrated monodispersity and effectively improved adverse gene expression and wound healing in fibroblasts. They also modulated aging-related genes and improved skin conditions in humans. Their simplicity, promptness, and lack of animal-derived sources make LAEs a promising alternative to natural EVs. LAEs have the potential to overcome the technical limitations of artificial EVs and advance EVs or exosome-based technologies for comprehensive skin rejuvenation.
Collapse
Affiliation(s)
- Seongsu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea.
| | - Saetbyeol Jeon
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Hwira Baek
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Sunghwan Hwang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea.
| | - Seulgi Kim
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Sung Hun Youn
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea.
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Seung-Hyun Jun
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea.
| | - Nae-Gyu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea.
| |
Collapse
|
2
|
Shah AB, Shim SH. Human microbiota peptides: important roles in human health. Nat Prod Rep 2025; 42:151-194. [PMID: 39545326 DOI: 10.1039/d4np00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Covering: 1974 to 2024Human microbiota consist of a diverse array of microorganisms, such as bacteria, Eukarya, archaea, and viruses, which populate various parts of the human body and live in a cooperatively beneficial relationship with the host. They play a crucial role in supporting the functional balance of the microbiome. The coevolutionary progression has led to the development of specialized metabolites that have the potential to substitute traditional antibiotics in combating global health challenges. Although there has been a lot of research on the human microbiota, there is a considerable lack of understanding regarding the wide range of peptides that these microbial populations produce. Particularly noteworthy are the antibiotics that are uniquely produced by the human microbiome, especially by bacteria, to protect against invasive infections. This review seeks to fill this knowledge gap by providing a thorough understanding of various peptides, along with their in-depth biological importance in terms of human disorders. Advancements in genomics and the understanding of molecular mechanisms that control the interactions between microbiota and hosts have made it easier to find peptides that come from the human microbiome. We hope that this review will serve as a basis for developing new therapeutic approaches and personalized healthcare strategies. Additionally, it emphasizes the significance of these microbiota in the field of natural product discovery and development.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Zhang Y, Li K, Ru Y, Ma Y. Biofilm Compositions and Bacterial Diversity on Kitchen Towels in Daily Use. Microorganisms 2025; 13:97. [PMID: 39858865 PMCID: PMC11767729 DOI: 10.3390/microorganisms13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Towels with complex woven structures are susceptible to biofilm formation during daily use. The composition of biofilms formed on towels used under real-life conditions has yet to be studied. Thus, we investigated the color changes, structural integrity, and biofilm development on towels used continuously for 10 weeks by 12 volunteers in specific kitchen environments. Apparent biofilms composed of bacteria and extracellular polymeric substances (EPSs) were found on all used towels. The bacteria concentrations ranged from 4 to 7 log CFU/g. Proteins were the most abundant EPS, followed by polysaccharides and eDNA. A high-throughput sequencing method was employed to investigate the bacterial diversity on the towels. The predominant bacterial genera differed from towel to towel. Kocuria, Rothia, Psychrobacter, Enhydrobacter, and Pseudomonas are genera of relatively high abundance that may originate from the human body and foods. In addition, correlations among environmental factors, major bacterial genera, physical properties, and biofilm formation of the towels were analyzed, which could provide a scientific reference for maintaining towel hygiene.
Collapse
Affiliation(s)
| | | | | | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (K.L.); (Y.R.)
| |
Collapse
|
4
|
Abdank L, Loncaric I, Braun SD, Müller E, Monecke S, Ehricht R, Krametter-Frötscher R. Characterizing Methicillin-Resistant Staphylococcus spp. and Extended-Spectrum Cephalosporin-Resistant Escherichia coli in Cattle. Animals (Basel) 2024; 14:3383. [PMID: 39682349 DOI: 10.3390/ani14233383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
In the field of cattle medicine in Austria, to date, few studies have investigated the presence of methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamase-producing Escherichia coli in Austria. For this reason, milk and nasal samples were examined for the presence of methicillin-resistant Staphylococcus aureus as well as fecal samples for extended-spectrum cephalosporin-resistant Escherichia coli. The nasal and fecal swabs were collected during the veterinary treatment of calf pneumonia and calf diarrhea. For the milk samples, the first milk jets were milked into a pre-milking cup and then the teats were cleaned and disinfected before the samples were taken. The cows were selected during the veterinary visits to the farms when treatment was necessary due to mastitis. Depending on the severity of the mastitis (acute mastitis or subclinical mastitis), antibiotics and non-steroidal anti-inflammatory drugs were given immediately (acute disease) or after completion of the antibiogram (subclinical disease). Isolates were characterized by a polyphasic approach including susceptibility pheno- and genotyping and microarray-based assays. No methicillin-resistant Staphylococcus aureus was found in the milk samples, but one nasal swab was positive for methicillin-resistant Staphylococcus aureus. Twenty-two Escherichia coli isolates were detected among the fecal samples. All the Escherichia coli isolates were resistant to ceftazidime. In all the Escherichia coli isolates, genes from the blaCTX family were detected with other bla genes or alone; the most frequently observed β-lactamase gene was blaCTX-M-1/15 (n = 20). In total, 63.6% (n = 14) of the isolates exhibited a multidrug-resistant phenotype and one E. coli isolate (4.5%) harbored the AmpC gene. Precisely because the presence of data regarding extended-spectrum cephalosporin-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus in calves and cows in Austria is rare, this study further expands our understanding of antimicrobial resistance in Austrian cattle, which is highly relevant for successful antibiotic therapy in sick cattle.
Collapse
Affiliation(s)
- Lisa Abdank
- Clinical Centre for Ruminant and Camelid Medicine, University of Veterinary Medicine, 1210 Vienna, Austria
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sascha D Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| | | |
Collapse
|
5
|
Rabenhorst SHB, Ferrasi AC, Barboza MMDO, Melo VMM. Microbial composition of gastric lesions: differences based on Helicobacter pylori virulence profile. Sci Rep 2024; 14:28890. [PMID: 39572621 PMCID: PMC11582621 DOI: 10.1038/s41598-024-80394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Helicobacter pylori infection is a major risk factor for gastric adenocarcinomas. In the case of the intestinal subtype, chronic gastritis and intestinal metaplasia are well-known sequential steps in carcinogenesis. H. pylori has high genetic diversity that can modulate virulence and pathogenicity in the human host as a cag Pathogenicity Island (cagPAI). However, bacterial gene combinations do not always explain the clinical presentation of the disease, indicating that other factors associated with H. pylori may play a role in the development of gastric disease. In this context, we characterized the microbial composition of patients with chronic gastritis (inactive and active), intestinal metaplasia, and gastric cancer as well as their potential association with H. pylori. To this end, 16 S rRNA metagenomic analysis was performed on gastric mucosa samples from patients with different types of lesions and normal gastric tissues. Our main finding was that H. pylori virulence status can contribute to significant differences in the constitution of the gastric microbiota between the sequential steps of the carcinogenesis cascade. Differential microbiota was observed in inactive and active gastritis dependent of the H. pylori presence and status (p = 0.000575). Pseudomonades, the most abundant order in the gastritis, was associated the presence of non-virulent H. pylori in the active gastritis. Notably, there are indicator genera according to H. pylori status that are poorly associated with diseases and provide additional evidence that the microbiota, in addition to H. pylori, is relevant to gastric carcinogenesis.
Collapse
Affiliation(s)
- Silvia Helena Barem Rabenhorst
- Genetic Molecular Laboratory, Pathology and Forensic Medicine Department, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Adriana Camargo Ferrasi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, Botucatu, Brazil.
| | | | - Vânia Maria Maciel Melo
- Microbial Ecology and Biotechnology Laboratory, Department of Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
6
|
Arantes AB, Rosa RT, de Oliveira NS, Bianchini LF, Rached RN, Johann ACBR, Weber SH, Murakami FS, Maluf DF, Rosa EAR. Facial disbiosis and UV filters. Arch Dermatol Res 2024; 316:739. [PMID: 39499337 DOI: 10.1007/s00403-024-03501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Acne is a multifactorial inflammatory disease with a robust microbial component and numerous correlations with dysbiosis states. Furthermore, various factors are recognized as triggers for skin dysbiosis, including the use of certain cosmetics. Based on these arguments, we hypothesized that using photoprotective formulations could trigger dysbiosis and the occurrence of acne manifestations. To verify this assumption, six volunteers between 19 and 23 years of age, meeting all the inclusion criteria, received two applications a day of a non-commercial sunscreen formulation developed with the sun filters ethylhexyl methoxycinnamate, ethylhexyl salicylate, methyl anthranilate, and octocrylene dispersed in a base gel, with an estimated protection factor of 28.8. The pure base gel was used as a control. The samples were applied to an area delimited by a standard template (15 cm2) in an amount corresponding to 30 mg (2 mg cm2) for ten days. At two points in time, pre- and post-sample applications, the facial skin surface was swabbed to collect extracted DNA and processed to verify divergent degrees of 16 S RNA coding sequences. The data obtained allowed us to determine the abundance of different bacterial entities at the genus and species levels. The results showed that critical species of the acne process, such as Cutibacterium acnes and Staphylococcus epidermidis, seem to tolerate the evaluated formulation well and are not significantly affected by the formulation, suggesting no interference of its use concerning dysbiosis induction. These findings refute the idea that photoprotectors may cause skin dysbiosis in men.
Collapse
Affiliation(s)
- Angela Bonjorno Arantes
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Rosimeire Takaki Rosa
- School of Medicine and Life Sciences. Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Nicoly Subtil de Oliveira
- School of Medicine and Life Sciences, Graduate Program on Animal Science, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Luiz Fernando Bianchini
- School of Medicine and Life Sciences. Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Rodrigo Nunes Rached
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Aline Cristina Batista Rodrigues Johann
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Saulo Henrique Weber
- School of Medicine and Life Sciences, Graduate Program on Animal Science, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Fábio Seigi Murakami
- Faculty of Pharmacy. Graduate Program on Pharmaceutical Sciences, Federal University of Paraná, 652 Prof. Lothario Meissner Av. Zip 80210-170, Curitiba, Brazil
| | - Daniela Florencio Maluf
- Faculty of Pharmacy. Graduate Program on Pharmaceutical Sciences, Federal University of Paraná, 652 Prof. Lothario Meissner Av. Zip 80210-170, Curitiba, Brazil
| | - Edvaldo Antonio Ribeiro Rosa
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil.
- School of Medicine and Life Sciences. Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil.
- School of Medicine and Life Sciences, Graduate Program on Animal Science, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil.
| |
Collapse
|
7
|
Zhang M, Deng L, Jia J, Cao Z, Li Y, Zhang J, He X, Lei S, Hu X, Kang X. The Different Influence of Cutibacterium acnes and Staphylococcus epidermidis in the Lumbar Disc : An in Vivo Study in Rabbits. Spine (Phila Pa 1976) 2024; 49:1488-1496. [PMID: 39146212 DOI: 10.1097/brs.0000000000005117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/30/2024] [Indexed: 08/17/2024]
Abstract
STUDY DESIGN Animal laboratory study. OBJECTIVE This study investigated the effects of Cutibacteriumacnes and Staphylococcusepidermidis on the lumbar discs of rabbits, as well as the outcomes of combined infection. SUMMARY OF BACKGROUND DATA Many studies have indicated that bacterial infections are associated with lumbar disc degeneration (LDD). The most commonly cultured bacteria from disc tissues are C. acnes and S. epidermidis . METHODS New Zealand white rabbits (n=40) were randomly divided into control, C. acnes , S. epidermidis , and C. acnes plus S. epidermidis ( i.e. , combined) groups. All groups except the control were injected with 25 μL of saline at L4-L5 and 25 μL of bacteria (1×10 7 CFU/mL) at L5-L6. All injections were performed under x-ray guidance. Weight measurements, haematological evaluations, and magnetic resonance imaging were performed after 4, 8, and 12 weeks. Histological examination and gene expression detection were performed 12 weeks after surgery. RESULTS Inflammatory factors in the blood and weight did not differ among the groups after 4, 8, and 12 weeks ( P >0.05). However, after 4 weeks, LDD occurred in the C. acnes group, and discitis occurred in the S. epidermidis and combined groups, all of which worsened after 8 weeks. After 12 weeks, the nucleus pulposus (NP) protruded and compressed the spinal cord in the C. acnes group, and tissue staining showed decreased NP tissue and cartilaginous endplate fracture. In the S. epidermidis and combined groups, the discitis was more confined, but tissue staining revealed a significant decrease in NP tissue, and loss of the normal disc structure. CONCLUSIONS In the early stage of infection in rabbits, C. acnes caused LDD, and S. epidermidis caused discitis. Coinfection with C. acnes and S. epidermidis caused discitis but was more limited in scope than infection with S. epidermidis alone.
Collapse
Affiliation(s)
- Mingtao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| | | | - Jingwen Jia
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| | - Zhenyu Cao
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| | - Yalong Li
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou
| | - Junfu Zhang
- Department of Magnetic Resonance Imaging, The people's Hospital of Linxia, Gansu, China
| | - Xuegang He
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| | - Shuanhu Lei
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| | - Xuchang Hu
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| | - Xuewen Kang
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| |
Collapse
|
8
|
Alaneme KK, Fagbayi SB, Nwanna EE, Ojo OM. Biochemical, toxicological, and microbiological assessment of calcined poultry manure for potential use as bone scaffold material. Heliyon 2024; 10:e38378. [PMID: 39391474 PMCID: PMC11466637 DOI: 10.1016/j.heliyon.2024.e38378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
The biosafety of thermally calcined poultry manure as a hydroxyapatite source for potential use as bone-making material was investigated in this study. In vitro assays were used to determine the sensitivity of the antioxidant properties to the thermal calcination temperature used to process the poultry manure (750, 800, and 850 °C ). The effect of the extract of both calcined poultry manure (local) and analytical grade hydroxyapatite (foreign) at various concentrations of 100%-25 % inclusion at (100 mg/kg) body weight intubation for 21 days on kidney, liver, and serum of animal model used was assessed. The results show that the thermally calcined poultry manure-derived hydroxyapatite generally possessed good antioxidant properties with the poultry manure treated at 750 °C having the most promising antioxidant properties compared to those treated at 800 and 850 °C , and hence a more likely improved anti-toxicity potential. The various blends of the analytical high-grade hydroxyapatite and thermally calcined poultry manure hydroxyapatite samples are safe compared to the normal control rats with regards hepatic function and renal function parameters with the equal blend of analytical high grade and thermally calcined poultry manure-derived hydroxyapatite (1:1) possessing the lowest activity concentrations. In addition, the enzymatic (glutathione peroxidase) and non-enzymatic (reduced glutathione) antioxidant concentrations of the experimental animals administered the varied compositions of the analytical high grade and thermally calcined poultry manure-derived hydroxyapatite, were lower when compared to normal control rats. The microbiological evaluation suggests that the calcined poultry manure inclusion at various concentrations could not pose a negative effect on various pathology in the liver, kidney, and blood.
Collapse
Affiliation(s)
- Kenneth Kanayo Alaneme
- Materials Design and Structural Integrity Group, Department of Metallurgical and Materials Engineering, The Federal University of Technology Akure, P.M.B. 704, Ondo State, Nigeria
- Centre for Nanoengineering and Advanced Materials, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering & the Built Environment, University of Johannesburg, South Africa
| | - Sandra Boluwatife Fagbayi
- Materials Design and Structural Integrity Group, Department of Metallurgical and Materials Engineering, The Federal University of Technology Akure, P.M.B. 704, Ondo State, Nigeria
| | - Esther Emem Nwanna
- Department of Biochemistry, The Federal University of Technology Akure, P.M.B. 704, Ondo State, Nigeria
| | - Ochuko Mary Ojo
- Department of Civil and Environmental Engineering, The Federal University of Technology Akure, P.M.B. 704, Ondo State, Nigeria
| |
Collapse
|
9
|
Pearson T, Kramer S, Panisello Yagüe D, Nangkuu E, Medina-Rodriguez S, Wood C, Hepp C, Camplain R, Mihaljevic J, Milner T. Staphylococcus aureus infection disparities among Hispanics and non-Hispanics in Yuma, Arizona. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2024; 4:e135. [PMID: 39346659 PMCID: PMC11427975 DOI: 10.1017/ash.2024.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 10/01/2024]
Abstract
Staphylococcus aureus infection patterns in Yuma, Arizona show a 2.25x higher infection rate in non-Hispanics. Males had higher infection rates in most age classes. These disparities in infection are mostly consistent with previously observed patterns in colonization, suggesting that sex and ethnicity do not differentially impact colonization and infection.
Collapse
Affiliation(s)
- Talima Pearson
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | - Emmanuel Nangkuu
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Colin Wood
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Crystal Hepp
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Ricky Camplain
- Center for Health Equity Research, Northern Arizona University, Flagstaff, AZ, USA
| | - Joseph Mihaljevic
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | | |
Collapse
|
10
|
Pellegrini A, Pietrocola G. Recruitment of Vitronectin by Bacterial Pathogens: A Comprehensive Overview. Microorganisms 2024; 12:1385. [PMID: 39065153 PMCID: PMC11278874 DOI: 10.3390/microorganisms12071385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The key factor that enables pathogenic bacteria to establish successful infections lies largely in their ability to escape the host's immune response and adhere to host surfaces. Vitronectin (Vn) is a multidomain glycoprotein ubiquitously present in blood and the extracellular matrix of several tissues, where it plays important roles as a regulator of membrane attack complex (MAC) formation and as a mediator of cell adhesion. Vn has emerged as an intriguing target for several microorganisms. Vn binding by bacterial receptors confers protection from lysis resulting from MAC deposition. Furthermore, through its Arg-Gly-Asp (RGD) motif, Vn can bind several host cell integrins. Therefore, Vn recruited to the bacterial cell functions as a molecular bridge between bacteria and host surfaces, where it triggers several host signaling events that could promote bacterial internalization. Each bacterium uses different receptors that recognize specific Vn domains. In this review, we update the current knowledge of Vn receptors of major bacterial pathogens, emphasizing the role they may play in the host upon Vn binding. Focusing on the structural properties of bacterial proteins, we provide details on the residues involved in their interaction with Vn. Furthermore, we discuss the possible involvement of Vn adsorption on biomaterials in promoting bacterial adhesion on abiotic surfaces and infection.
Collapse
Affiliation(s)
| | - Giampiero Pietrocola
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy;
| |
Collapse
|
11
|
Lee SH, Glover T, Lavey N, Fu X, Donohue M, Karunasena E. Modified in-vitro AATCC-100 procedure to measure viable bacteria from wound dressings. PLoS One 2024; 19:e0298829. [PMID: 38512908 PMCID: PMC10956864 DOI: 10.1371/journal.pone.0298829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024] Open
Abstract
Chronic wounds are reoccurring healthcare problems in the United States and cost up to $50 billion annually. Improper wound care results in complications such as wound debridement, surgical amputation, and increased morbidity/ mortality due to opportunistic infections. To eliminate wound infections, many antimicrobial dressings are developed and submitted to FDA for evaluation. AATCC-100 is a standard method widely used to evaluate cloth wound dressings. This method, requires enrichment, followed by culturing to measure the concentration of culturable organisms; a caveat to this method could result in neglected viable but nonculturable (VBNC) bacteria and overestimate the antimicrobial properties of wound dressings. Therefore, the objectives of this study were to assess this accepted protocol with quantitative real-time polymerase chain reaction (qRT-PCR), to measure time dependent antimicrobial efficacy of wound dressing, and to examine for potential viable bacteria but non-culturable as compared with traditional plating methods. The test organisms included opportunistic pathogens: Pseudomonas aeruginosa (ATCC 15692) and Staphylococcus aureus (ATCC 43300). To mimic a wound dressing environment, samples of commercially available wound dressings (McKesson Inc.) with silver ion (positive control) and dressings without silver ion (positive control) were assessed under sterile conditions. All samples were examined by the original protocol (the extended AATCC-100 method) and qRT-PCR. The expression of specific housekeeping genes was measured (proC for P. aeruginosa and 16s rRNA for S. aureus). Based on these tests, log reduction of experimental conditions was compared to identify time dependent and precise antimicrobial properties from wound dressing samples. These results showed antimicrobial properties of wound dressings diminished as incubation days are increased for both methods from day 1 PCR result of 4.31 ± 0.54 and day 1 plating result of 6.31 ± 3.04 to day 3 PCR result of 1.22 ± 0.97 and day 3 plating result of 5.89 ± 2.41. These results show that data from qRT-PCR generally produced lower standard deviation than that of culture methods, hence shown to be more precise. Complementary parallel analysis of samples using both methods better characterized antimicrobial properties of the tested samples.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America
- US Department of Energy, Oak Ridge Institute for Science and Education, Office of Science, Oak Ridge, TN, United States of America
| | - Thomas Glover
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America
- US Department of Energy, Oak Ridge Institute for Science and Education, Office of Science, Oak Ridge, TN, United States of America
| | - Nathan Lavey
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America
- US Department of Energy, Oak Ridge Institute for Science and Education, Office of Science, Oak Ridge, TN, United States of America
| | - Xiao Fu
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America
- US Department of Energy, Oak Ridge Institute for Science and Education, Office of Science, Oak Ridge, TN, United States of America
| | - Marc Donohue
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Enusha Karunasena
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America
| |
Collapse
|
12
|
Torres Salazar BO, Dema T, Schilling NA, Janek D, Bornikoel J, Berscheid A, Elsherbini AMA, Krauss S, Jaag SJ, Lämmerhofer M, Li M, Alqahtani N, Horsburgh MJ, Weber T, Beltrán-Beleña JM, Brötz-Oesterhelt H, Grond S, Krismer B, Peschel A. Commensal production of a broad-spectrum and short-lived antimicrobial peptide polyene eliminates nasal Staphylococcus aureus. Nat Microbiol 2024; 9:200-213. [PMID: 38110697 PMCID: PMC11310079 DOI: 10.1038/s41564-023-01544-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/03/2023] [Indexed: 12/20/2023]
Abstract
Antagonistic bacterial interactions often rely on antimicrobial bacteriocins, which attack only a narrow range of target bacteria. However, antimicrobials with broader activity may be advantageous. Here we identify an antimicrobial called epifadin, which is produced by nasal Staphylococcus epidermidis IVK83. It has an unprecedented architecture consisting of a non-ribosomally synthesized peptide, a polyketide component and a terminal modified amino acid moiety. Epifadin combines a wide antimicrobial target spectrum with a short life span of only a few hours. It is highly unstable under in vivo-like conditions, potentially as a means to limit collateral damage of bacterial mutualists. However, Staphylococcus aureus is eliminated by epifadin-producing S. epidermidis during co-cultivation in vitro and in vivo, indicating that epifadin-producing commensals could help prevent nasal S. aureus carriage. These insights into a microbiome-derived, previously unknown antimicrobial compound class suggest that limiting the half-life of an antimicrobial may help to balance its beneficial and detrimental activities.
Collapse
Affiliation(s)
- Benjamin O Torres Salazar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Taulant Dema
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Nadine A Schilling
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Daniela Janek
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Jan Bornikoel
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anne Berscheid
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Ahmed M A Elsherbini
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Sophia Krauss
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Simon J Jaag
- Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Norah Alqahtani
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Malcolm J Horsburgh
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - José Manuel Beltrán-Beleña
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Stephanie Grond
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany.
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany.
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Souza SSR, Smith JT, Bruce SA, Gibson R, Martin IW, Andam CP. Multi-host infection and phylogenetically diverse lineages shape the recombination and gene pool dynamics of Staphylococcus aureus. BMC Microbiol 2023; 23:235. [PMID: 37626313 PMCID: PMC10463932 DOI: 10.1186/s12866-023-02985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Staphylococcus aureus can infect and adapt to multiple host species. However, our understanding of the genetic and evolutionary drivers of its generalist lifestyle remains inadequate. This is particularly important when considering local populations of S. aureus, where close physical proximity between bacterial lineages and between host species may facilitate frequent and repeated interactions between them. Here, we aim to elucidate the genomic differences between human- and animal-derived S. aureus from 437 isolates sampled from disease cases in the northeast region of the United States. RESULTS Multi-locus sequence typing revealed the existence of 75 previously recognized sequence types (ST). Our population genomic analyses revealed heterogeneity in the accessory genome content of three dominant S. aureus lineages (ST5, ST8, ST30). Genes related to antimicrobial resistance, virulence, and plasmid types were differentially distributed among isolates according to host (human versus non-human) and among the three major STs. Across the entire population, we identified a total of 1,912 recombination events that occurred in 765 genes. The frequency and impact of homologous recombination were comparable between human- and animal-derived isolates. Low-frequency STs were major donors of recombined DNA, regardless of the identity of their host. The most frequently recombined genes (clfB, aroA, sraP) function in host infection and virulence, which were also frequently shared between the rare lineages. CONCLUSIONS Taken together, these results show that frequent but variable patterns of recombination among co-circulating S. aureus lineages, including the low-frequency lineages, that traverse host barriers shape the structure of local gene pool and the reservoir of host-associated genetic variants. Our study provides important insights to the genetic and evolutionary factors that contribute to the ability of S. aureus to colonize and cause disease in multiple host species. Our study highlights the importance of continuous surveillance of S. aureus circulating in different ecological host niches and the need to systematically sample from them. These findings will inform development of effective measures to control S. aureus colonization, infection, and transmission across the One Health continuum.
Collapse
Affiliation(s)
- Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| | - Joshua T Smith
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Spencer A Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Robert Gibson
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, USA
| | - Isabella W Martin
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, USA
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
14
|
Wang Y, Zhang P, Wu J, Chen S, Jin Y, Long J, Duan G, Yang H. Transmission of livestock-associated methicillin-resistant Staphylococcus aureus between animals, environment, and humans in the farm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86521-86539. [PMID: 37418185 DOI: 10.1007/s11356-023-28532-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Staphylococcus aureus (S. aureus) is a fearsome bacterial pathogen that can colonize and infect humans and animals. Depending on the different sources, MRSA is classified as hospital-associated methicillin-resistant S. aureus (HA-MRSA), community-associated MRSA (CA-MRSA), and livestock-associated MRSA (LA-MRSA). LA-MRSA is initially associated with livestock, and clonal complexes (CCs) were almost always 398. However, the continued development of animal husbandry, globalization, and the widespread use of antibiotics have increased the spread of LA-MRSA among humans, livestock, and the environment, and other clonal complexes such as CC9, CC5, and CC8 have gradually emerged in various countries. This may be due to frequent host switching between humans and animals, as well as between animals. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements (MGEs) such as phages, pathogenicity islands, and plasmids as well as further host-specific mutations allowing it to expand into new host populations. This review aimed to provide an overview of the transmission characteristics of S. aureus in humans, animals, and farm environments, and also to describe the main prevalent clones of LA-MRSA and the changes in MGEs during host switching.
Collapse
Affiliation(s)
- Ying Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Peihua Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jian Wu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Bayan R, Tauseef I, Hussain M, Ahmed MS, Haider A, Khalil AA, Islam SU, Subhan F. Fish collagen peptides' modulating effect on human skin microbiota against pathogenic Staphylococcus aureus. Future Microbiol 2023; 18:795-807. [PMID: 37650688 DOI: 10.2217/fmb-2022-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Aim: The current research aims to design effective strategies to enhance the body's immune system against pathogenic bacteria. Methods: Skin commensals were isolated, identified and cultured in fish collagen peptides (FCPs). Results: After culturing in FCP, the skin commensals were used in a dose-dependent manner for Staphylococcus aureus in a dual-culture test, which showed significant growth inhibition of the pathogenic bacteria, which concluded that FCP induced the immune defense system of skin microbiota against pathogenic strains. Conclusion: Results have validated that fish collagen peptide plays a vital role in the growth of selected human skin flora and induces more defensive immunity against pathogenic S. aureus bacteria in dual-culture experimentation.
Collapse
Affiliation(s)
- Rasol Bayan
- Department of Microbiology, Hazara University Mansehra, Mansehra, 21300, Pakistan
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University Mansehra, Mansehra, 21300, Pakistan
| | - Mubashir Hussain
- Department of Microbiology, Kohat University of Science & Technology (KUST), Kohat, 26010, Pakistan
| | - Muhammad S Ahmed
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, 46000, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, 46000, Pakistan
| | - Atif Ak Khalil
- Department of Pharmacognosy, Lahore College for Women University, Lahore, 54600, Pakistan
| | - Salman U Islam
- Department of Pharmacy, CECOS University, Peshawar, 25000, Pakistan
| | - Fazli Subhan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, 46000, Pakistan
| |
Collapse
|
16
|
Duan XC, Li XX, Li XM, Wang S, Zhang FQ, Qian P. Exploiting Broad-Spectrum Chimeric Lysin to Cooperate with Mupirocin against Staphylococcus aureus-Induced Skin Infections and Delay the Development of Mupirocin Resistance. Microbiol Spectr 2023; 11:e0505022. [PMID: 37125939 PMCID: PMC10269905 DOI: 10.1128/spectrum.05050-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Staphylococcus aureus often leads to severe skin infections. However, S. aureus is facing a crisis of antibiotic resistance. The combination of phage and antibiotics is effective for drug-resistant S. aureus infections. Therefore, it is worth exploiting novel antibacterial agents to cooperate with antibiotics against S. aureus infections. Herein, a novel chimeric lysin ClyQ was constructed, which was composed of a cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain from S. aureus phage lysin LysGH15 and cell wall-binding domain (CBD) from Enterococcus faecalis phage lysin PlyV12. ClyQ had an exceptionally broad host range targeting streptococci, staphylococci, E. faecalis, and E. rhusiopathiae. ClyQ combined with mupirocin (2.64 log reduction) was more effective at treating S. aureus skin infections than ClyQ (0.46 log reduction) and mupirocin (2.23 log reduction) alone. Of equal importance, none of S. aureus ATCC 29213 or S3 exposed to ClyQ developed resistance, and the combination of ClyQ and mupirocin delayed the development of mupirocin resistance. Collectively, chimeric lysin ClyQ enriches the reservoirs for treating S. aureus infections. Our findings may provide a way to alleviate the current antibiotic resistance crisis. IMPORTANCE Staphylococcus aureus, as an Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) pathogen, can escape the elimination of existing antibiotics. At present, phages and phage lysins against S. aureus infections are considered alternative antibacterial agents. However, the development of broad-spectrum chimeric phage lysins to cooperate with antibiotics against S. aureus infections remains at its initial stage. In this study, we found that the broad-host-range chimeric lysin ClyQ can synergize with mupirocin to treat S. aureus skin infections. Furthermore, the development of S. aureus resistance to mupirocin is delayed by the combination of ClyQ and mupirocin in vitro. Our results bring research attention toward the development of chimeric lysin that cooperates with antibiotics to overcome bacterial infections.
Collapse
Affiliation(s)
- Xiao-chao Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xin-xin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiang-min Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Fen-qiang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
17
|
Martins-Silva P, Dias CDP, Vilar LC, de Queiroz Silva S, Rossi CC, Giambiagi-deMarval M. Dispersion and persistence of antimicrobial resistance genes among Staphylococcus spp. and Mammaliicoccus spp. isolated along a swine manure treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34709-34719. [PMID: 36515883 DOI: 10.1007/s11356-022-24725-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Staphylococcus spp. and Mammaliicoccus spp. colonize the skin and mucosa of humans and other animals and are responsible for several opportunistic infections. Staphylococci antibiotic resistance may be present in the environment due to the spread of treated and untreated manure from the livestock industry due to antibiotic use to disease control or growth promoter. In this work, we analyzed the species distribution and antimicrobial susceptibility of Staphylococcus and Mammaliicoccus species along different sites of a swine manure treatment plant from Southeastern Brazil. Bacterial colonies were obtained on mannitol salt agar, selected after catalase test and Gram staining, and finally identified by mass spectrometry and sequencing of the tuf gene. According to the results, S.cohnii and S. simulans were the most prevalent species. Antibiotic resistance test revealed that several strains were resistant to multiple drugs, with high levels of chloramphenicol resistance (98%), followed by erythromycin (79%), tetracycline (73%), gentamicin (46%), ciprofloxacin (42%), cefoxitin (18%), sulfamethoxazole + trimethoprim (12%), and linezolid (4%). In addition, gene detection by PCR showed that all strains carried at least 2 resistance genes and one of them carried all 11 genes investigated. Using the GTG5-PCR approach, a high genetic similarity was observed between some strains that were isolated from different points of the treatment plant. Although some were seemingly identical, differences in their resistance phenotype and genotype suggest horizontal gene transfer. The presence of resistant bacteria and resistance genes along the treatment system highlights the potential risk of contamination by people in direct contact with these animals and the soil since the effluent is used as a biofertilizer in the surrounding environment.
Collapse
Affiliation(s)
- Priscila Martins-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Camila de Paula Dias
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Lucas Cecílio Vilar
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ciro César Rossi
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcia Giambiagi-deMarval
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
18
|
Silva SL, Araújo FSM, Silva POA, Silva EVA, Bezerra MMSL, Diniz AF, Oliveira DM, Jesus HO, Nascimento Junior BB, Medeiros LADM, Oliveira Filho AA. Evaluation of the antimicrobial effect of the Origanum vulgare L essential oil on strains of Klebsiella pneumoniae. BRAZ J BIOL 2023; 83:e269317. [PMID: 36722663 DOI: 10.1590/1519-6984.269317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Bacteria may be the initial cause of certain pathologies as well as a secondary agent responsible for the development of complications such as pressure ulcer infections. Pressure ulcers are a persistent health problem, especially in immunocompromised patients, and associated with infection by opportunistic microorganisms with antimicrobial resistance, such as Klebsiella pneumoniae, highlight the need for the development of new antimicrobial approaches. Thus, the aim of this study was to evaluate the antibacterial and anti-adherent activity of Origanum vulgare L. (oregano) essential oil against Klebsiella pneumoniae strains, as well as the effect of its association with synthetic antimicrobials. To this end, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) analyses were performed on microdilution plates. The assay of the Minimum Inhibitory Adherence Concentration (MIAC), with test tubes. As well as, the association study through the infusion disc method containing ampicillin (AMP), gentamicin (GEN), ciprofloxacin (CIP) and ceftriaxone (CEF). Therefore, it was possible to obtain that the essential oil of oregano presents antimicrobial and bactericidal activity, with MIC ranging between 128μg/mL and 256 μg/mL and MBC between 256 μg/mL and 512 μg/mL, on the tested K. pneumoniae strains. When used in association with ampicillin and gentamicin, oregano essential oil showed synergistic effect for some strains. Therefore, it is observed that the tested essential oil can act as a promising antibacterial in the treatment of diseases caused by K. pneumoniae.
Collapse
Affiliation(s)
- S L Silva
- Universidade Federal da Paraíba - UFPB, Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos - PPgDITM, João Pessoa, PB, Brasil
| | - F S M Araújo
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural, Departamento de Odontologia, Patos, PB, Brasil
| | - P O A Silva
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural, Departamento de Odontologia, Patos, PB, Brasil
| | - E V A Silva
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural, Departamento de Odontologia, Patos, PB, Brasil
| | - M M S L Bezerra
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural, Departamento de Odontologia, Patos, PB, Brasil
| | - A F Diniz
- Universidade Federal de Campina Grande-UFCG, Centro de Saúde e Tecnologia Rural, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - D M Oliveira
- Universidade Estadual do Sudoeste da Bahia - UESB, Programa de Pós-graduação em Química - PGQUIM, Jequié, BA, Brasil
| | - H O Jesus
- Universidade Estadual do Sudoeste da Bahia - UESB, Programa de Pós-graduação em Química - PGQUIM, Jequié, BA, Brasil
| | - B B Nascimento Junior
- Universidade Estadual do Sudoeste da Bahia - UESB, Programa de Pós-graduação em Química - PGQUIM, Jequié, BA, Brasil
| | - L A D M Medeiros
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural, Departamento de Odontologia, Patos, PB, Brasil
| | - A A Oliveira Filho
- Universidade Federal da Paraíba - UFPB, Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos - PPgDITM, João Pessoa, PB, Brasil
| |
Collapse
|
19
|
Ajeeb TT, Gonzalez E, Solomons NW, Koski KG. Human milk microbial species are associated with infant head-circumference during early and late lactation in Guatemalan mother-infant dyads. Front Microbiol 2022; 13:908845. [PMID: 36466698 PMCID: PMC9709448 DOI: 10.3389/fmicb.2022.908845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Human milk contains abundant commensal bacteria that colonize and establish the infant's gut microbiome but the association between the milk microbiome and head circumference during infancy has not been explored. For this cross-sectional study, head-circumference-for-age-z-scores (HCAZ) of vaginally delivered breastfed infants were collected from 62 unrelated Mam-Mayan mothers living in eight remote rural communities in the Western Highlands of Guatemala during two stages of lactation, 'early' (6-46 days postpartum, n = 29) or 'late' (109-184 days postpartum, n = 33). At each stage of lactation, infants were divided into HCAZ ≥ -1 SD (early: n = 18; late: n = 14) and HCAZ < -1 SD (early: n = 11; late: n = 19). Milk microbiome communities were assessed using 16S ribosomal RNA gene sequencing and DESeq2 was used to compare the differential abundance (DA) of human milk microbiota with infant HCAZ subgroups at both stages of lactations. A total of 503 ESVs annotated 256 putative species across the 64 human milk samples. Alpha-diversity using Chao index uncovered a difference in microbial community richness between HCAZ ≥ -1 SD and HCAZ < -1 SD groups at late lactation (p = 0.045) but not at early lactation. In contrast, Canonical Analysis of Principal Coordinates identified significant differences between HCAZ ≥ -1 SD and HCAZ < -1 SD at both stages of lactation (p = 0.003); moreover, 26 milk microbial taxa differed in relative abundance (FDR < 0.05) between HCAZ ≥ -1 SD and HCAZ < -1 SD, with 13 differentially abundant at each lactation stage. Most species in the HCAZ ≥ -1 SD group were Streptococcus species from the Firmicutes phylum which are considered human colonizers associated with human milk whereas the HCAZ < -1 SD group at late lactation had more differentially abundant taxa associated with environmentally and 'potentially opportunistic' species belonging to the Actinobacteria genus. These findings suggest possible associations between brain growth of breastfed infants and the milk microbiome during lactation. Importantly, these data provide the first evidence of cross talk between the human milk microbiome and the infant brain that requires further investigation.
Collapse
Affiliation(s)
- Tamara T. Ajeeb
- School of Human Nutrition, McGill University, Montréal, QC, Canada
- Department of Clinical Nutrition, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
| | - Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | | |
Collapse
|
20
|
Ghssein G, Ezzeddine Z. The Key Element Role of Metallophores in the Pathogenicity and Virulence of Staphylococcus aureus: A Review. BIOLOGY 2022; 11:1525. [PMID: 36290427 PMCID: PMC9598555 DOI: 10.3390/biology11101525] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
The ubiquitous bacterium Staphylococcus aureus causes many diseases that sometimes can be fatal due to its high pathogenicity. The latter is caused by the ability of this pathogen to secrete secondary metabolites, enabling it to colonize inside the host causing infection through various processes. Metallophores are secondary metabolites that enable bacteria to sequester metal ions from the surrounding environment since the availability of metal ions is crucial for bacterial metabolism and virulence. The uptake of iron and other metal ions such as nickel and zinc is one of these essential mechanisms that gives this germ its virulence properties and allow it to overcome the host immune system. Additionally, extensive interactions occur between this pathogen and other bacteria as they compete for resources. Staphylococcus aureus has high-affinity metal import pathways including metal ions acquisition, recruitment and metal-chelate complex import. These characteristics give this bacterium the ability to intake metallophores synthesized by other bacteria, thus enabling it to compete with other microorganisms for the limited nutrients. In scarce host conditions, free metal ions are extremely low because they are confined to storage and metabolic molecules, so metal ions are sequestered by metallophores produced by this bacterium. Both siderophores (iron chelating molecules) and staphylopine (wide- spectrum metallophore) are secreted by Staphylococcus aureus giving it infectious properties. The genetic regulation of the synthesis and export together with the import of metal loaded metallophores are well established and are all covered in this review.
Collapse
Affiliation(s)
- Ghassan Ghssein
- Department of Laboratory Sciences, Faculty of Public Health, Islamic University of Lebanon, Khalde P.O. Box 30014, Lebanon
| | - Zeinab Ezzeddine
- Department of Laboratory Sciences, Faculty of Public Health, Islamic University of Lebanon, Khalde P.O. Box 30014, Lebanon
| |
Collapse
|
21
|
Keim KC, George IK, Reynolds L, Smith AC. The Clinical Significance of Staphylococcus aureus Small Colony Variants. Lab Med 2022; 54:227-234. [PMID: 36226897 DOI: 10.1093/labmed/lmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
A burdensome, atypical phenotype of Staphylococcus aureus (SA) called S aureus small colony variant (SA-SCV) has been identified, which is induced as a result of a combination of environmental stressors, including polymicrobial interactions. The SA-SCVs exhibit altered phenotypes as a result of metabolic dormancy caused by electron transport deficiency, leading to increased biofilm production and alterations to antimicrobial susceptibility. The SA-SCVs typically exhibit altered colony morphology and biochemical reactions compared with wild-type SA, making them difficult to detect via routine diagnostics. The SA-SCVs have been found to contribute to chronic or recurrent infections, including skin and soft-tissue infections, foreign-body associated infection, cystic fibrosis, and sepsis. There is evidence that SA-SCVs contribute to patient morbidity and mortality as a result of diagnostic difficulties and limited treatment options. New detection methods may need to be developed that can be incorporated into routine diagnostics, which would allow for better assessment of specimens and introduce new considerations for treatment.
Collapse
Affiliation(s)
- Klara C Keim
- Department of Immunology and Microbiology, School of Medicine, Anschutz Medical Campus, University of Colorado , Aurora, CO , USA
| | - Isaiah K George
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| | - Landrye Reynolds
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| | - Allie C Smith
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| |
Collapse
|
22
|
Njenga J, Nyasinga J, Munshi Z, Muraya A, Omuse G, Ngugi C, Revathi G. Genomic characterization of two community-acquired methicillin-resistant Staphylococcus aureus with novel sequence types in Kenya. Front Med (Lausanne) 2022; 9:966283. [PMID: 36226152 PMCID: PMC9548584 DOI: 10.3389/fmed.2022.966283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is a clinically important bacteria with high antimicrobial resistance (AMR) challenge globally. The emergence of methicillin-resistant Staphylococcus aureus (MRSA) clones with unique sequence types have been identified in the community showing evidence that the epidemiology of MRSA globally is changing and requires continual surveillance. We utilized whole genome sequencing to characterize two community acquired-MRSA (CA-MRSA) strains isolated from wound swabs from community-onset infections in two health facilities in Kenya. The two strains belonged to multilocus sequence type (MLST) sequence type (ST) 7460, and ST 7635. The resistance genes detected showed that the novel STs are carriers of clinically relevant resistance genes. Linezolid and mupirocin resistance was observed, yet mupirocin is not commonly used in the country. Mutations within resistance genes were also detected and the pathogenicity toward the human host matched various pathogenic global S. aureus families, e.g., S. aureus subsp. aureus USA300. Multidrug efflux transporters, important in antimicrobial resistance including restriction enzymes type I and type IV were detected. Plasmids identified showed similarities with the plasmids in other clinically significant non-staphylococcal species, such as Pseudomonas aeruginosa, Escherichia coli, Morganella morganii, and Enterococcus faecium. Both STs belong to clonal complex 8 (CC8) which is the most successful MRSA clone in Kenya. Spa type t30 to which ST 7635 belongs has not been reported in the country. The results of this study further highlight the need for epidemiological studies to reveal circulating strains and antimicrobial resistance spread between hospitals and the community. The genomic research highlights resistance to anti-staphylococcal broad-spectrum antimicrobials not used frequently in the country, jeopardizing successful MRSA treatment since most health facilities do not perform genotypic resistance tests for routine patient management. Preliminary insights into unidentified STs of CA-MRSA in Kenya show the need for molecular epidemiological surveillance studies to further understand the diversity of S. aureus in Africa.
Collapse
Affiliation(s)
- John Njenga
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
- Department of Medical Microbiology, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Justin Nyasinga
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
- Department of Biomedical Sciences and Technology, Technical University of Kenya, Nairobi, Kenya
- Pan African University – Institute of Science, Technology, and Innovation (PAUSTI), Nairobi, Kenya
| | - Zubair Munshi
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Angela Muraya
- United States Army Medical Research Directorate Africa, Nairobi, Kenya
| | - Geoffrey Omuse
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Caroline Ngugi
- Department of Medical Microbiology, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
- *Correspondence: Gunturu Revathi,
| |
Collapse
|
23
|
Uskoković V, Wu VM. Altering Microbiomes with Hydroxyapatite Nanoparticles: A Metagenomic Analysis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5824. [PMID: 36079205 PMCID: PMC9456825 DOI: 10.3390/ma15175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAp), the most abundant biological material among mammals, has been recently demonstrated to possess moderate antibacterial properties. Metagenomics provides a series of tools for analyzing the simultaneous interaction of materials with larger communities of microbes, which may aid in optimizing the antibacterial activity of a material such as HAp. Here, a microbiome intrinsic to the sample of sandy soil collected from the base of an African Natal plum (Carissa macrocarpa) shrub surrounding the children's sandbox at the Arrowhead Park in Irvine, California was challenged with HAp nanoparticles and analyzed with next-generation sequencing for hypervariable 16S ribosomal DNA base pair homologies. HAp nanoparticles overwhelmingly reduced the presence of Gram-negative phyla, classes, orders, families, genera and species, and consequently elevated the relative presence of their Gram-positive counterparts. Thermodynamic, electrostatic and chemical bonding arguments were combined in a model proposed to explain this selective affinity. The ability of amphiphilic surface protrusions of lipoteichoic acid in Gram-positive bacteria and mycolic acid in mycobacteria to increase the dispersibility of the bacterial cells and assist in their resistance to capture by the solid phase is highlighted. Within the Gram-negative group, the variability of the distal, O-antigen portion of the membrane lipopolysaccharide was shown to be excessive and the variability of its proximal, lipid A portion insufficient to explain the selectivity based on chemical sequence arguments. Instead, flagella-driven motility proves to be a factor favoring the evasion of binding to HAp. HAp displayed a preference toward binding to less pathogenic bacteria than those causative of disease in humans, while taxa having a positive agricultural effect were largely captured by HAp, indicating an evolutionary advantage this may have given it as a biological material. The capacity to selectively sequester Gram-negative microorganisms and correspondingly alter the composition of the microbiome may open up a new avenue in environmental and biomedical applications of HAp.
Collapse
Affiliation(s)
- Vuk Uskoković
- TardigradeNano LLC, Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | | |
Collapse
|
24
|
Li X, Yang F, Yan H, Shi Y, Chang X, Zhang M, Zhang Y, Zhang M. Microbiota profiling on itchy scalp with undetermined origin. Arch Microbiol 2022; 204:446. [PMID: 35778621 DOI: 10.1007/s00203-022-03077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
Scalp pruritus is a common skin problem that remains therapeutic challenge. The relationships between the dysbiosis of microbiota and skin diseases have caught attention recently. However, there are few reports about microbiota on itchy scalp. This study investigated scalp microbial characteristics of subjects with mild scalp pruritus of undetermined origin and preliminarily screened physiological factors and bacteria potentially related to pruritus. The pruritus severity of 17 qualified females was evaluated by Visual Analogue Scale (VAS). Microbiota collection was done at both itchy (n = 20) and non-itchy sites (n = 27) at occiput and crown of the same subject and Illumina sequencing was performed at the V3-V4 hypervariable regions of 16S rRNA. The corresponding sebum content, hydration, pH, trans-epidermal water loss, erythema index and porphyrin numbers were also measured by skin tester. We identified 3044 amplicon sequence variants from 821 genera. The itchy and non-itchy sites had different microbiota structures (p = 0.045, by multivariate analysis of variance), while there were large inter- and intra-individual variations. Both sites had Staphylococcus, Cutibacterium and Lawsonella as predominant genera, which were not significantly related to pruritus. The use of three genera Lactobacillus, Morganella and Pseudomonas, could well distinguish non-itchy from itchy groups, whereas different composition patterns existed inside each group. Our investigation indicated that though the bacterial community structure on itchy scalp was individual specific, there was difference between itchy and non-itchy sites. The study provides new insights into microbiota profiling on itchy scalp, which will help microbiota-targeted therapeutic experiment or products design for scalp pruritus.
Collapse
Affiliation(s)
- Xuejing Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fang Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haosong Yan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Shi
- Henkel (China) Investment Co., Ltd, Shanghai, 200438, China
| | - Xiaowei Chang
- Henkel (China) Investment Co., Ltd, Shanghai, 200438, China
| | - Mengmeng Zhang
- Henkel (China) Investment Co., Ltd, Shanghai, 200438, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
25
|
Enterotoxin- and Antibiotic-Resistance-Encoding Genes Are Present in Both Coagulase-Positive and Coagulase-Negative Foodborne Staphylococcus Strains. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Food poisoning by staphylococcal enterotoxins (SE) is a major cause of foodborne illness, often associated with coagulase-positive staphylococci (CPS). The increase in the number of methicillin-resistant Staphylococcus aureus (MRSA) strains is another major problem associated with CPS. However, reports of the association of SE and methicillin-resistant Staphylococcus with coagulase-negative staphylococci (CNS) are beginning to re-emerge. In this context, the aim of this study is to investigate the presence of staphylococcal enterotoxin genes and to characterize the phenotypic and genotypic antimicrobial resistance in 66 isolates of Staphylococcus spp. (47 CNS and 19 CPS) recovered from ready-to-eat (RTE) street food sold in Maputo, Mozambique. Seven virulence genes encoding SE (sea, seb, sec, sed and see) and two toxins (hlb and sak) were screened by multiplex PCR (MPCR). Antimicrobial resistance against 12 antibiotics was evaluated by the disk diffusion method. The presence of genes encoding resistance to penicillin, methicillin, vancomycin and erythromycin (blaZ, mecA, vancA, vancB, ermA, ermB and ermC) were also screened by PCR. At least one of the seven virulence genes assessed in this study was detected in 57.9% and 51% of CPS and CNS isolates, respectively. In CPS isolates, the most frequent gene was hlb (47.4%), followed by sec (15.8%) and sea, seb and sed genes with 5.3% each. In CNS isolates, the most frequent gene was sec (36.2%) followed by sak (17%), hlb (14.9%), sed (12.8%) and seb (6.4%). Five of the twelve CPS in which virulence genes were detected were also antibiotic-resistant. All the CNS isolates harboring virulence genes (n = 27, 57.4%) were antimicrobial-resistant. The prevalence of multidrug resistance was higher (59.6%) in CNS than in CPS (26.3%) isolates. Regarding the presence of antibiotic-resistance genes, blaZ (penicillin-resistant) was the most frequent in both CPS (42.1%) and CNS (87.2%), followed by the mecA (encoding methicillin resistance) and vancA genes (vancomycin-resistant), which represented 36.8% and 31.6% in CPS isolates and 46.8% in CNS isolates, respectively. The prevalence of vancomycin-resistant staphylococci has been increasing worldwide and, to our knowledge, this is the first study to report the occurrence of vancomycin-resistant staphylococci in Mozambique. These results emphasize the need to investigate CNS isolates in parallel with CPS, as both constitute public health hazards, given their potential to produce SE and spread antimicrobial resistance genes.
Collapse
|
26
|
Frazão DF, Martins-Gomes C, Steck JL, Keller J, Delgado F, Gonçalves JC, Bunzel M, Pintado CMBS, Díaz TS, Silva AM. Labdanum Resin from Cistus ladanifer L.: A Natural and Sustainable Ingredient for Skin Care Cosmetics with Relevant Cosmeceutical Bioactivities. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111477. [PMID: 35684251 PMCID: PMC9183103 DOI: 10.3390/plants11111477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/01/2023]
Abstract
Labdanum resin from Cistus ladanifer L. (Cistaceae) is an abundant natural resource in the Iberian Peninsula worth being explored in a sustainable manner. It is already used in the cosmetic industry; mainly by the fragrances/perfumery sector. However, given the highest market share and traditional uses, labdanum resin also has the potential to be used and valued as a cosmetic ingredient for skincare. Aiming to evaluate this potential, labdanum methanolic absolute and fractions purified by column chromatography were characterized by UPLC-DAD-ESI-MS and then evaluated for UV-protection, antioxidant, anti-elastase, anti-inflammatory, and antimicrobial activities. Labdanum absolute represented ~70% of the resin; diterpenoid and flavonoid fractions represented ~75% and 15% of the absolute, respectively. Labdane-type diterpenoids and methylated flavonoids were the main compounds in labdanum absolute and in diterpenoid and flavonoid fractions, respectively. Labdanum absolute showed a spectrophotometric sun protection factor (SPF) near 5, which is mainly due to flavonoids, as the flavonoids’ SPF was 13. Low antioxidant activity was observed, with ABTS radical scavenging being the most significant (0.142 ± 0.017, 0.379 ± 0.039 and 0.010 ± 0.003 mgTE/mgExt, for the absolute and flavonoid and terpene fractions, respectively). Anti-aging and anti-inflammatory activity are reported here for the first time, by the inhibition of elastase activity (22% and 13%, by absolute and flavonoid extract at 1 mg/mL), and by the inhibition of nitric oxide production in LPS-induced RAW 264.7 cells (84% to 98%, at 15 µg/mL extracts, flavonoid fraction the most active), respectively. Antimicrobial activity, against relevant skin and cosmetic product microorganisms, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Escherichia coli, revealed that only S. aureus was susceptible to labdanum absolute (MIC: 1.2 mg/mL) and its fractions (MIC: <0.3 mg/mL). In conclusion, labdanum resin showed potential to be used in sunscreen cosmetics, anti-inflammatory skincare cosmeceuticals or medicines but has low potential as a cosmetic product preservative given the low antioxidant and low-spectrum antimicrobial activities.
Collapse
Affiliation(s)
- David F. Frazão
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.); (C.M.B.S.P.)
| | - Carlos Martins-Gomes
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
| | - Jan L. Steck
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany; (J.L.S.); (J.K.); (M.B.)
| | - Judith Keller
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany; (J.L.S.); (J.K.); (M.B.)
| | - Fernanda Delgado
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.); (C.M.B.S.P.)
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), Quinta da Senhora de Mércules, 6001-909 Castelo Branco, Portugal
| | - José C. Gonçalves
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.); (C.M.B.S.P.)
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), Quinta da Senhora de Mércules, 6001-909 Castelo Branco, Portugal
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany; (J.L.S.); (J.K.); (M.B.)
| | - Cristina M. B. S. Pintado
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.); (C.M.B.S.P.)
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), Quinta da Senhora de Mércules, 6001-909 Castelo Branco, Portugal
| | - Teresa Sosa Díaz
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain;
| | - Amélia M. Silva
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
27
|
A One Health Approach Molecular Analysis of Staphylococcus aureus Reveals Distinct Lineages in Isolates from Miranda Donkeys (Equus asinus) and Their Handlers. Antibiotics (Basel) 2022; 11:antibiotics11030374. [PMID: 35326837 PMCID: PMC8944429 DOI: 10.3390/antibiotics11030374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Donkeys (Equus asinus) are in decline in Europe. Occupational exposure to farm animals has been associated with increased staphylococci carriage. We aimed to isolate S. aureus and coagulase-negative staphylococci (CoNS) from donkeys and handlers and characterize the antimicrobial resistance profiles and genetic lineages of S. aureus strains. Oral and nasal swab samples were collected from 49 Miranda donkeys and 23 handlers from 15 different farms. Staphylococci species were identified by MALDI-TOF MS. The presence of antimicrobial resistance genes and virulence factors was investigated by PCR. Molecular typing was performed in S. aureus isolates. From the 49 donkey samples, 4 S. aureus (8.2%) and 21 CoNS (42.9%) were isolated. Ten handlers (43.5%) were carriers of S. aureus and 4 (17.4%) carried CoNS. The CoNS isolates showed resistance to several classes of antimicrobials encoded by the mecA, aph (3′)-IIIa, ant (4′)-Ia, tetM, tetK, lnuA, ermB, ermC, dfrA and dfrG genes. S. aureus isolates were resistant to penicillin, aminoglicosides and tetracycline harboring the blaZ, aph (3′)-IIIa, tetL, tetM and tetK genes. All S. aureus isolates from donkeys belonged to ST49 and spa-type t208 while the strains isolated from the handlers were ascribed to 3 STs and 7 spa-types. However, human isolates were from different STs than the donkey isolates. Donkeys are mainly colonized by methicillin-resistant S. sciuri. S. aureus transmission between donkeys and their handlers appears not to have occurred since the isolates belonged to different genetic lineages.
Collapse
|
28
|
Hutchins M, Bovill RA, Stephens PJ, Brazier JA, Osborn HMI. Glycosides of Nadifloxacin-Synthesis and Antibacterial Activities against Methicillin-Resistant Staphylococcus aureus. Molecules 2022; 27:1504. [PMID: 35268604 PMCID: PMC8912027 DOI: 10.3390/molecules27051504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
The increase in the number of bacteria that are resistant to multiple antibiotics poses a serious clinical problem that threatens the health of humans worldwide. Nadifloxacin (1) is a highly potent antibacterial agent with broad-spectrum activity. However, its poor aqueous solubility has limited its use to topical applications. To increase its solubility, it was glycosylated herein to form a range of trans-linked (3a-e) and cis-linked (7a,b) glycosides, each of which was prepared and purified to afford single anomers. The seven glycoside derivatives (3a-e, 7a,b) were examined for potency against eight strains of S. aureus, four of which were methicillin-resistant. Although less potent than free nadifloxacin (1), the α-L-arabinofuransoside (3a) was effective against all strains that were tested (minimum inhibitory concentrations of 1-8 μg/mL compared to 0.1-0.25 μg/mL for nadifloxacin), demonstrating the potential of this glycoside as an antibacterial agent. Estimation of Log P as well as observations made during preparation of these compounds reveal that the solubilities of the glycosides were greatly improved compared with nadifloxacin (1), raising the prospect of its use in oral applications.
Collapse
Affiliation(s)
- Mark Hutchins
- ThermoFisher Scientific, Wade Road, Basingstoke RG24 8PW, Hampshire, UK
| | - Richard A. Bovill
- ThermoFisher Scientific, Wade Road, Basingstoke RG24 8PW, Hampshire, UK
| | - Peter J. Stephens
- ThermoFisher Scientific, Wade Road, Basingstoke RG24 8PW, Hampshire, UK
| | - John A. Brazier
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, Berkshire, UK
| | - Helen M. I. Osborn
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, Berkshire, UK
| |
Collapse
|
29
|
Chen Y, Moran JC, Campbell-Lee S, Horsburgh MJ. Transcriptomic Responses and Survival Mechanisms of Staphylococci to the Antimicrobial Skin Lipid Sphingosine. Antimicrob Agents Chemother 2022; 66:e0056921. [PMID: 34902269 PMCID: PMC8846397 DOI: 10.1128/aac.00569-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
Sphingosines are antimicrobial lipids that form part of the innate barrier to skin colonization by microbes. Sphingosine deficiencies can result in increased epithelial infections by bacteria including Staphylococcus aureus. Recent studies have focused on the potential use of sphingosine resistance or its potential mechanisms. We used RNA-Seq to identify the common d-sphingosine transcriptomic response of the transient skin colonizer S. aureus and the dominant skin coloniser S. epidermidis. A common d-sphingosine stimulon was identified that included downregulation of the SaeSR two-component system (TCS) regulon and upregulation of both the VraSR TCS and CtsR stress regulons. We show that the PstSCAB phosphate transporter, and VraSR offer intrinsic resistance to d-sphingosine. Further, we demonstrate increased sphingosine resistance in these staphylococci evolves readily through mutations in genes encoding the FarE-FarR efflux/regulator proteins. The ease of selecting mutants with resistance to sphingosine may impact upon staphylococcal colonization of skin where the lipid is present and have implications with topical therapeutic applications.
Collapse
Affiliation(s)
- Yiyun Chen
- Staphylococcus Research Group, Institute of Infection Biology, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Josephine C. Moran
- Staphylococcus Research Group, Institute of Infection Biology, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Stuart Campbell-Lee
- Staphylococcus Research Group, Institute of Infection Biology, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Malcolm J. Horsburgh
- Staphylococcus Research Group, Institute of Infection Biology, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
30
|
Levofloxacin loaded clove essential oil nanoscale emulsion as an efficient system against Pseudomonas aeruginosa biofilm. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Salgado BAB, Waters EM, Moran JC, Kadioglu A, Horsburgh MJ. Selection of Staphylococcus aureus in a murine nasopharyngeal colonization model. Front Cell Infect Microbiol 2022; 12:874138. [PMID: 35992161 PMCID: PMC9386156 DOI: 10.3389/fcimb.2022.874138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus nasal colonization is a risk factor for infection. A large proportion of the population are identified as potential S. aureus carriers yet we only partially understand the repertoire of genetic factors that promote long-term nasal colonization. Here we present a murine model of nasopharyngeal colonization that requires a low S. aureus inoculum and is amenable to experimental evolution approaches. We used this model to experimentally evolve S. aureus using successive passages in the nasopharynx to identify those genetic loci under selection. After 3 cycles of colonization, mutations were identified in mannitol, sorbitol, arginine, nitrite and lactate metabolism genes promoting key pathways in nasal colonization. Stress responses were identified as being under selective pressure, with mutations in DNA repair genes including dnaJ and recF and key stress response genes clpL, rpoB and ahpF. Peptidoglycan synthesis pathway genes also revealed mutations indicating potential selection for alteration of the cell surface. The murine model used here is versatile to question colonization, persistence and evolution studies. We studied the human pathogen Staphylococcus aureus in our search to determine factors that contribute to its ability to live in the human nose and throat. The anterior nares and nasopharynx are considered primary habitats but we do not understand how the pathogen adapts as it moves from one person to the next. We first determined sustained survival of the pathogen over multiple days in the nasopharynx that might act as a good model for human persistence due to the low numbers of bacteria needed for it to establish. By using successive rounds of colonization of the nasopharynx across different mice we revealed that multiple genetic changes in the S. aureus occurred. These changes were found in genes associated with the cell surface and metabolism and might indicate adaptation to the niche. One gene showed an accumulation of multiple mutations supporting a key contribution in adaptation but the role of the protein it encodes is not yet known. The contribution of these genes and genetic changes are unclear but indicate an area for future research to better understand how this common human pathogen is so successful at human colonization and survival.
Collapse
|
32
|
Staphylococcus aureus with inducible clindamycin resistance and methicillin resistance in a tertiary hospital in Nepal. Trop Med Health 2021; 49:99. [PMID: 34961568 PMCID: PMC8711148 DOI: 10.1186/s41182-021-00392-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Background Staphylococcus aureus is a global public health issue in both community and hospital settings. Management of methicillin-resistant S. aureus (MRSA) infections are tough owing to its resistance to many antibiotics. Macrolide-lincosamide-streptogramin B (MLSB) antibiotics are commonly used for the management of MRSA. This study was aimed to determine the occurrence of inducible clindamycin- and methicillin-resistant S. aureus at a tertiary care hospital in Kathmandu, Nepal. Methods A total of 1027 clinical samples were processed following standard laboratory procedures and antibiotic susceptibility testing of S. aureus was performed by disc diffusion method. MRSA isolates were detected phenotypically using cefoxitin disc, and inducible clindamycin resistance was detected phenotypically using the D-zone test. Results Of 1027 samples, 321 (31.2%) were culture positive, of which 38 (11.8%) were S. aureus. All S. aureus isolates were susceptible to vancomycin, and 25 (67%) of S. aureus isolates were multidrug-resistant. Similarly, 15 (39.5%) of S. aureus were MRSA and 14 (36.5%) were inducible clindamycin-resistant phenotypes. Conclusion Inducible clindamycin and methicillin resistance were common in S. aureus. This emphasizes that the methicillin resistance test and the D-zone test should be incorporated into the routine antibiotic susceptibility testing in hospital settings.
Collapse
|
33
|
Bohinc K, Abram A, Zore A, Štukelj R, Lenarčič A, Vidrih R, Škapin AS. Biophysical Properties of Foamed and Solid Polymers Used in Orthotics and Prosthetics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6877. [PMID: 34832279 PMCID: PMC8619838 DOI: 10.3390/ma14226877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022]
Abstract
Orthotic and prosthetic materials should have good mechanical and antibacterial properties. Therefore, in our study, we consider four common foamed closed-cells and two solid polymeric materials regarding their mechanical behaviour and tendency for bacterial adhesion. For all materials, the surface roughness, hydrophobicity, zeta potential, tensile properties, hardness and CIE color parameters were measured. We found that foamed polymeric materials have higher roughness, higher hydrophobicity, lower Young's modulus, lower maximum tensile strength and lower hardness than solid materials. Bacterial adhesion test measurements based on observation by scanning electron microscopy show much a lower adhesion extent of S. aureus on solid materials than on foamed materials. The measured biophysical properties could be the key data for users to select the optimal materials.
Collapse
Affiliation(s)
- Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (A.Z.); (R.Š.); (A.L.)
| | - Anže Abram
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
| | - Anamarija Zore
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (A.Z.); (R.Š.); (A.L.)
| | - Roman Štukelj
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (A.Z.); (R.Š.); (A.L.)
| | - Ana Lenarčič
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (A.Z.); (R.Š.); (A.L.)
| | - Rajko Vidrih
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Andrijana Sever Škapin
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia;
- Faculty of Polymer Technology-FTPO, Ozare 19, 2380 Slovenj Gradec, Slovenia
| |
Collapse
|
34
|
Simonetti O, Rizzetto G, Radi G, Molinelli E, Cirioni O, Giacometti A, Offidani A. New Perspectives on Old and New Therapies of Staphylococcal Skin Infections: The Role of Biofilm Targeting in Wound Healing. Antibiotics (Basel) 2021; 10:antibiotics10111377. [PMID: 34827315 PMCID: PMC8615132 DOI: 10.3390/antibiotics10111377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/31/2022] Open
Abstract
Among the most common complications of both chronic wound and surgical sites are staphylococcal skin infections, which slow down the wound healing process due to various virulence factors, including the ability to produce biofilms. Furthermore, staphylococcal skin infections are often caused by methicillin-resistant Staphylococcus aureus (MRSA) and become a therapeutic challenge. The aim of this narrative review is to collect the latest evidence on old and new anti-staphylococcal therapies, assessing their anti-biofilm properties and their effect on skin wound healing. We considered antibiotics, quorum sensing inhibitors, antimicrobial peptides, topical dressings, and antimicrobial photo-dynamic therapy. According to our review of the literature, targeting of biofilm is an important therapeutic choice in acute and chronic infected skin wounds both to overcome antibiotic resistance and to achieve better wound healing.
Collapse
Affiliation(s)
- Oriana Simonetti
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
- Correspondence: ; Tel.: +39-0-715-963-494
| | - Giulio Rizzetto
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Giulia Radi
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| |
Collapse
|
35
|
Dias KDC, Barbugli PA, Vergani CE. Insights into the activation of oral keratinocyte cell death by Candida albicans and Staphylococcus aureus biofilms. BIOFOULING 2021; 37:975-983. [PMID: 34708675 DOI: 10.1080/08927014.2021.1994959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Polymicrobial biofilms comprising Candida albicans and Staphylococcus aureus can increase the frequency and severity of oral diseases. This study assessed oral keratinocyte cell death, apoptosis and/or necrosis, promoted by soluble factors from single and dual biofilms of S. aureus and C. albicans. The soluble factors were obtained from the 16-h biofilm growth media. Cell viability was assessed by MTT and cell membrane damage by LDH. SEM was used for morphology changes. Assessment of apoptosis and necrosis was performed using annexin V and propidium iodide and caspases -2, -3, -6, -8 and -9. Statistical analysis was conducted with ANOVA and Tukey tests (α = 5%). Dual biofilms promoted the greatest harmful effect on oral cells, with a viability rate of 31.76%, damage to cell membranes and LDH released. Dual biofilms also induced higher percentages of necrotic cells (24.95%). Apoptosis was associated with caspases -2, -3, -6 and -8 activation.
Collapse
Affiliation(s)
- Kassia de Carvalho Dias
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
36
|
Gostev V, Leyn S, Kruglov A, Likholetova D, Kalinogorskaya O, Baykina M, Dmitrieva N, Grigorievskaya Z, Priputnevich T, Lyubasovskaya L, Gordeev A, Sidorenko S. Global Expansion of Linezolid-Resistant Coagulase-Negative Staphylococci. Front Microbiol 2021; 12:661798. [PMID: 34589061 PMCID: PMC8473885 DOI: 10.3389/fmicb.2021.661798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) for a long time were considered avirulent constituents of the human and warm-blooded animal microbiota. However, at present, S. epidermidis, S. haemolyticus, and S. hominis are recognized as opportunistic pathogens. Although linezolid is not registered for the treatment of CoNS infections, it is widely used off-label, promoting emergence of resistance. Bioinformatic analysis based on maximum-likelihood phylogeny and Bayesian clustering of the CoNS genomes obtained in the current study and downloaded from public databases revealed the existence of international linezolid-resistant lineages, each of which probably had a common predecessor. Linezolid-resistant S. epidermidis sequence-type (ST) 2 from Russia, France, and Germany formed a compact group of closely related genomes with a median pairwise single nucleotide polymorphism (SNP) difference of fewer than 53 SNPs, and a common ancestor of this lineage appeared in 1998 (1986-2006) before introduction of linezolid in practice. Another compact group of linezolid-resistant S. epidermidis was represented by ST22 isolates from France and Russia with a median pairwise SNP difference of 40; a common ancestor of this lineage appeared in 2011 (2008-2013). Linezolid-resistant S. hominis ST2 from Russia, Germany, and Brazil also formed a group with a high-level genome identity with median 25.5 core-SNP differences; the appearance of the common progenitor dates to 2003 (1996-2012). Linezolid-resistant S. hominis isolates from Russia demonstrated associated resistance to teicoplanin. Analysis of a midpoint-rooted phylogenetic tree of the group confirmed the genetic proximity of Russian and German isolates; Brazilian isolates were phylogenetically distant. repUS5-like plasmids harboring cfr were detected in S. hominis and S. haemolyticus.
Collapse
Affiliation(s)
- Vladimir Gostev
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia.,Department of Medical Microbiology, North-Western State Medical University Named After I. I. Mechnikov, Saint Petersburg, Russia
| | - Semen Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Alexander Kruglov
- Laboratory of Clinical Microbiology, National Agency for Clinical Pharmacology and Pharmacy, Moscow, Russia
| | - Daria Likholetova
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia.,Saint Petersburg State University, Saint Petersburg, Russia
| | - Olga Kalinogorskaya
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia
| | - Marina Baykina
- Laboratory of Clinical Microbiology, National Agency for Clinical Pharmacology and Pharmacy, Moscow, Russia
| | - Natalia Dmitrieva
- Department of Microbiology, N. N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Zlata Grigorievskaya
- Department of Microbiology, N. N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Tatiana Priputnevich
- Department of Microbiology, Clinical Pharmacology and Epidemiology, National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Lyudmila Lyubasovskaya
- Department of Microbiology, Clinical Pharmacology and Epidemiology, National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Alexey Gordeev
- Department of Microbiology, Clinical Pharmacology and Epidemiology, National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Sergey Sidorenko
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia.,Department of Medical Microbiology, North-Western State Medical University Named After I. I. Mechnikov, Saint Petersburg, Russia
| |
Collapse
|
37
|
Development of a Conserved Chimeric Vaccine for Induction of Strong Immune Response against Staphylococcus aureus Using Immunoinformatics Approaches. Vaccines (Basel) 2021; 9:vaccines9091038. [PMID: 34579274 PMCID: PMC8470666 DOI: 10.3390/vaccines9091038] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus is one of the most notorious Gram-positive bacteria with a very high mortality rate. The WHO has listed S. aureus as one of the ESKAPE pathogens requiring urgent research and development efforts to fight against it. Yet there is a major layback in the advancement of effective vaccines against this multidrug-resistant pathogen. SdrD and SdrE proteins are attractive immunogen candidates as they are conserved among all the strains and contribute specifically to bacterial adherence to the host cells. Furthermore, these proteins are predicted to be highly antigenic and essential for pathogen survival. Therefore, in this study, using the immunoinformatics approach, a novel vaccine candidate was constructed using highly immunogenic conserved T-cell and B-cell epitopes along with specific linkers, adjuvants, and consequently modeled for docking with human Toll-like receptor 2. Additionally, physicochemical properties, secondary structure, disulphide engineering, and population coverage analysis were also analyzed for the vaccine. The constructed vaccine showed good results of worldwide population coverage and a promising immune response. For evaluation of the stability of the vaccine-TLR-2 docked complex, a molecular dynamics simulation was performed. The constructed vaccine was subjected to in silico immune simulations by C-ImmSim and Immune simulation significantly provided high levels of immunoglobulins, T-helper cells, T-cytotoxic cells, and INF-γ. Lastly, upon cloning, the vaccine protein was reverse transcribed into a DNA sequence and cloned into a pET28a (+) vector to ensure translational potency and microbial expression. The overall results of the study showed that the designed novel chimeric vaccine can simultaneously elicit humoral and cell-mediated immune responses and is a reliable construct for subsequent in vivo and in vitro studies against the pathogen.
Collapse
|
38
|
Plota M, Sazakli E, Giormezis N, Gkartziou F, Kolonitsiou F, Leotsinidis M, Antimisiaris SG, Spiliopoulou I. In Vitro Anti-Biofilm Activity of Bacteriophage K (ATCC 19685-B1) and Daptomycin against Staphylococci. Microorganisms 2021; 9:1853. [PMID: 34576751 PMCID: PMC8468654 DOI: 10.3390/microorganisms9091853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of the present study was to investigate anti-staphylococcal activity of daptomycin and bacteriophage K, alone or in combination, against biofilm-producers and non-producers S. aureus and S. epidermidis strains, under biofilm forming and cells' proliferation conditions. Daptomycin and bacteriophage K (ATCC 19685B1), in different concentrations, were tested against 10 Staphylococcus aureus and 10 S. epidermidis, characterized by phenotypes and genotypes. The quantitative microtiter plate (crystal violet, CV), methylthiazoltetrazolium (MTT), and growth curve (GC) assays were performed. No statistically significant difference was found between species, whereas daptomycin alone performed better using medium and high concentrations of the drug and bacteriophage K was more active against strains with higher susceptibility, by CV and MTT assays. Best results were achieved using both agents combined in high concentrations. Bacteriophage K was effective within 3.8 and 2.4 h, depending on the concentration used, by the GC assay. Combination of daptomycin with bacteriophage K was more effective against staphylococci, depending on the concentrations used and strains' susceptibility. Further studies are needed to evaluate if this approach might be a choice for prevention or therapy of biofilm-associated infections.
Collapse
Affiliation(s)
- Maria Plota
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece; (M.P.); (F.K.)
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Eleni Sazakli
- Laboratory of Public Health, School of Medicine, University of Patras, 26504 Patras, Greece; (E.S.); (M.L.)
| | - Nikolaos Giormezis
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Foteini Gkartziou
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Platani, 26504 Patras, Greece; (F.G.); (S.G.A.)
| | - Fevronia Kolonitsiou
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece; (M.P.); (F.K.)
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Michalis Leotsinidis
- Laboratory of Public Health, School of Medicine, University of Patras, 26504 Patras, Greece; (E.S.); (M.L.)
| | - Sophia G. Antimisiaris
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Platani, 26504 Patras, Greece; (F.G.); (S.G.A.)
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Iris Spiliopoulou
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| |
Collapse
|
39
|
Wetzels SU, Strachan CR, Conrady B, Wagner M, Burgener IA, Virányi Z, Selberherr E. Wolves, dogs and humans in regular contact can mutually impact each other's skin microbiota. Sci Rep 2021; 11:17106. [PMID: 34429455 PMCID: PMC8385068 DOI: 10.1038/s41598-021-96160-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
In contrast to humans and dogs, the skin microbiota of wolves is yet to be described. Here, we investigated the skin microbiota of dogs and wolves kept in outdoor packs at the Wolf Science Center (WSC) via 16S rRNA gene amplicon sequencing. Skin swab samples were also collected from human care takers and their pet dogs. When comparing the three canine groups, representing different degrees of human contact to the care takers and each other, the pet dogs showed the highest level of diversity. Additionally, while human skin was dominated by a few abundant phylotypes, the skin microbiota of the care takers who had particularly close contact with the WSC animals was more similar to the microbiota of dogs and wolves compared to the humans who had less contact with these animals. Our results suggest that domestication may have an impact on the diversity of the skin microbiota, and that the canine skin microbiota can be shared with humans, depending on the level of interaction.
Collapse
Affiliation(s)
- Stefanie Urimare Wetzels
- Institute for Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Cameron R Strachan
- FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Tulln, Austria
| | - Beate Conrady
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark
- Complexity Science Hub Vienna, Josefstädter Straße 39, 1080, Vienna, Austria
| | - Martin Wagner
- Institute for Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Iwan Anton Burgener
- Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Zsófia Virányi
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, and Wolf Science Center, Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Evelyne Selberherr
- Institute for Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Torres Salazar BO, Heilbronner S, Peschel A, Krismer B. Secondary Metabolites Governing Microbiome Interaction of Staphylococcal Pathogens and Commensals. Microb Physiol 2021; 31:198-216. [PMID: 34325424 DOI: 10.1159/000517082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022]
Abstract
Various Staphylococcus species colonize skin and upper airways of warm-blooded animals. They compete successfully with many other microorganisms under the hostile and nutrient-poor conditions of these habitats using mechanisms that we are only beginning to appreciate. Small-molecule mediators, whose biosynthesis requires complex enzymatic cascades, so-called secondary metabolites, have emerged as crucial components of staphylococcal microbiome interactions. Such mediators belong to a large variety of compound classes and several of them have attractive properties for future drug development. They include, for instance, bacteriocins such as lanthipeptides, thiopeptides, and fibupeptides that inhibit bacterial competitor species; signaling molecules such as thiolactone peptides that induce or inhibit sensory cascades in other bacteria; or metallophores such as staphyloferrins and staphylopine that scavenge scant transition metal ions. For some secondary metabolites such as the aureusimines, the exact function remains to be elucidated. How secondary metabolites shape the fitness of Staphylococcus species in the complex context of other microbial and host defense factors remains a challenging field of future research. A detailed understanding will help to harness staphylococcal secondary metabolites for excluding the pathogenic species Staphylococcus aureus from the nasal microbiomes of at-risk patients, and it will be instrumental for the development of advanced anti-infective interventions.
Collapse
Affiliation(s)
- Benjamin O Torres Salazar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Simon Heilbronner
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
41
|
Mitiku A, Aklilu A, Biresaw G, Gize A. Prevalence and Associated Factors of Methicillin Resistance Staphylococcus aureus (MRSA) Among Urinary Tract Infection Suspected Patients Attending at Arba Minch General Hospital, Southern Ethiopia. Infect Drug Resist 2021; 14:2133-2142. [PMID: 34135603 PMCID: PMC8200170 DOI: 10.2147/idr.s306648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Urinary tract infection (UTI) is a very frequent infection both in the community and hospital patients, and the emergence of methicillin-resistant Staphylococcus aureus (MRSA) in the community setting and infections with this pathogen become a prevalent problem among UTI patients. Therefore, the aim of this study was to determine prevalence and associated factors of methicillin resistance staphylococcus aureus (MRSA) among urinary tract infection suspected patients attending at Arba Minch General Hospital. METHODS Facility-based cross-sectional study was done at Arba Minch General Hospital from July to October 2020. Midstream urine specimen was collected from outpatients, cultured and biochemical tests were performed to identify the intended pathogen, finally the antibiotic susceptibility pattern of MRSA was done and possible associated factors were determined. The cleaned data were entered and analyzed using SPSS version 21. RESULTS Four hundred and twenty two (422) adult outpatients were enrolled in this study, of which males accounted for 238 (56.4%) of the participants. The mean and standard deviation age of the participants was 27.4 (SD 27.4 ± 15.6) years. A total of 54 S. aureus isolates were recovered from urine specimen. The prevalence of MRSA among the isolated S. aureus was 23/54 (42.59% (95% CI (35.0, 47.0)). Participants who had previous exposure to UTI (p < 0.002), presence of chronic disease (p < 0.029), and hospitalization (p < 0.006) were statically associated with the prevalence of MRSA. From all the MRSA isolates, 53.7% were resistant against Nitrofurantoin. CONCLUSION This study revealed that MRSA could be prevalent in isolates from patients suspected of urinary tract infection and exhibiting different resistance pattern for antibiotics commonly used for treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Asaye Mitiku
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Dilla University, Dilla, Ethiopia
| | - Addis Aklilu
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Gelila Biresaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Addisu Gize
- Department of Microbiology, St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| |
Collapse
|
42
|
Liu K, Mao W, Liu B, Li T, Wang X, Pei L, Cao J, Wang F. Prostaglandin E2 promotes Staphylococcus aureus infection via EP4 receptor in bovine endometrium. Microb Pathog 2021; 158:105019. [PMID: 34107344 DOI: 10.1016/j.micpath.2021.105019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Prostaglandin E2 (PGE2) enhances Staphylococcus aureus infection but its mechanism is not well understood. Here, we examined the effect of PGE2 on Staphylococcal Protein A (SPA) expression in bovine endometrium and determined the role of select PGE2 receptors (i.e., EP2 and EP4) in adhesion and internalization of S. aureus. S. aureus isolate SA113 was used for in vitro infection of bovine endometrial tissues and epithelial cells, with treatment conditions consisting of untreated control, SA113 treatment, SA113 + PGE2, SA113 + PGE2 + EP2 receptor antagonist (AH-6809), and SA113 + PGE2 + EP4 receptor antagonist (AH-23848). Immunofluorescence assay revealed that PGE2 could promote SPA expression in S. aureus-infected bovine endometrial tissues. PGE2 also enhanced the adhesion and internalization of S. aureus in bovine endometrial cells. The addition of EP4 antagonist, but not the EP2 antagonist, abrogated the ability of PGE2 to promote S. aureus SPA expression, adhesion, and internalization in endometrial cells. Our findings suggest that S. aureus infection in the endometrium is enhanced by PGE2 through the EP4 receptor. This result is essential for the development of new approach to treating S. aureus infection, such as the application of EP4 antagonist as an adjunct drug treatment.
Collapse
Affiliation(s)
- Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China; Laboratory of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Xinfei Wang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Le Pei
- Veterinary Research Institute, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, China.
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Fenglong Wang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
43
|
Lebeuf M, Turgeon N, Faubert C, Robillard J, Paradis É, Duchaine C. Managing the bacterial contamination risk in an axenic mice animal facility. Can J Microbiol 2021; 67:657-666. [PMID: 33844954 DOI: 10.1139/cjm-2020-0519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A gap exists between good laboratory practices with axenic animals and the procedures applied. This work examined the efficacy of sodium dichloroisocyanurate (MB-10) and potassium peroxymonosulfate (Virkon™) disinfectants, as well as the appropriate soaking time for materials used with the ISOcage Biosafety Station™. We also compared the microbial load in cage systems hosting mice over 2 weeks in axenic rooms (ARs) and in typical specific-pathogen-free (SPF) non-axenic rooms (NARs) to identify resistant microorganisms, targeted for longer soaking disinfection, and evaluated the necessary procedures for reducing the microbial load in AR. Staphylococcus was the most frequently isolated genus (in both ARs and NARs). An average of three spore-forming microorganisms per cage were counted from AR. The disinfection time to reach 1 log reduction for Bacillus atrophaeus spores varied from 138 s (100 ppm MB-10) to 290 (Virkon™) to <20 s for S. epidermidis (100 ppm MB-10). AR management protocols lead to a microbial load that is 1000 times lower than that found in NARs. Data comparing the microbial load in SPF and axenic facilities can be used to improve the effectiveness of their microbial control procedures.
Collapse
Affiliation(s)
- Maria Lebeuf
- Département de biochimie, microbiologie et bioinformatique, Université Laval, Quebec city, Quebec, Canada
| | - Nathalie Turgeon
- Research center, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Cynthia Faubert
- Research animal facility, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Justin Robillard
- Research animal facility, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Éric Paradis
- Research center, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Caroline Duchaine
- Département de biochimie, microbiologie et bioinformatique, Université Laval, Quebec city, Quebec, Canada; Tier-1, Canada Research Chair on Bioaerosols, Institutuniversitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| |
Collapse
|
44
|
Alsharif SM, El-Sayed WS, Hanafy AM. Geographic distribution and prevalence of potential asymptomatic Staphylococcus spp. in the nasopharyngeal cavity of elementary school boys at Al-Madinah, KSA. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.1892991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sultan M. Alsharif
- Department of Biology, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Wael S. El-Sayed
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed M. Hanafy
- Department of Biology, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
45
|
Park S, Ronholm J. Staphylococcus aureus in Agriculture: Lessons in Evolution from a Multispecies Pathogen. Clin Microbiol Rev 2021; 34:e00182-20. [PMID: 33568553 PMCID: PMC7950364 DOI: 10.1128/cmr.00182-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a formidable bacterial pathogen that is responsible for infections in humans and various species of wild, companion, and agricultural animals. The ability of S. aureus to move between humans and livestock is due to specific characteristics of this bacterium as well as modern agricultural practices. Pathoadaptive clonal lineages of S. aureus have emerged and caused significant economic losses in the agricultural sector. While humans appear to be a primary reservoir for S. aureus, the continued expansion of the livestock industry, globalization, and ubiquitous use of antibiotics has increased the dissemination of pathoadaptive S. aureus in this environment. This review comprehensively summarizes the available literature on the epidemiology, pathophysiology, genomics, antibiotic resistance (ABR), and clinical manifestations of S. aureus infections in domesticated livestock. The availability of S. aureus whole-genome sequence data has provided insight into the mechanisms of host adaptation and host specificity. Several lineages of S. aureus are specifically adapted to a narrow host range on a short evolutionary time scale. However, on a longer evolutionary time scale, host-specific S. aureus has jumped the species barrier between livestock and humans in both directions several times. S. aureus illustrates how close contact between humans and animals in high-density environments can drive evolution. The use of antibiotics in agriculture also drives the emergence of antibiotic-resistant strains, making the possible emergence of human-adapted ABR strains from agricultural practices concerning. Addressing the concerns of ABR S. aureus, without negatively affecting agricultural productivity, is a challenging priority.
Collapse
Affiliation(s)
- Soyoun Park
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
46
|
Gonzalez E, Brereton NJB, Li C, Lopez Leyva L, Solomons NW, Agellon LB, Scott ME, Koski KG. Distinct Changes Occur in the Human Breast Milk Microbiome Between Early and Established Lactation in Breastfeeding Guatemalan Mothers. Front Microbiol 2021; 12:557180. [PMID: 33643228 PMCID: PMC7907006 DOI: 10.3389/fmicb.2021.557180] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Human breast milk contains a diverse community of bacteria, but as breast milk microbiome studies have largely focused on mothers from high income countries where few women breastfeed to 6 months, the temporal changes in the breast milk microbiome that occur during later lactation stages have not been explored. For this cross-sectional study, microbiota from breast milk samples of Mam-Mayan mothers living in eight remote rural communities in the Western Highlands of Guatemala were analyzed. All mothers delivered vaginally and breastfed their infants for 6 months. Breast milk from 76 unrelated mothers was used to compare two lactation stages, either “early” (6–46 days post-partum, n = 33) or “late” (109–184 days post-partum, n = 43). Breast milk microbial communities were assessed using 16S ribosomal RNA gene sequencing and lactation stages were compared using DESeq2 differential abundance analysis. A total of 1,505 OTUs were identified, including 287 which could be annotated as putative species. Among several maternal factors, lactation stage explained microbiome variance and inertia in ordination with the most significance (p < 0.001). Differential abundance analysis identified 137 OTUs as significantly higher in either early or late lactation. These included a general shift from Staphylococcus and Streptococcus species in early lactation to Sphingobium and Pseudomonas species in late lactation. Species enriched in early lactation included putative commensal bacteria known to colonize the infant oral and intestinal tracts whereas species enriched in late lactation had a uniform functional trait associated with aromatic compound degradation. Differentially abundant species also included several species which have not previously been reported within breast milk, such as Janthinobacterium agaricidamnosum, Novosphingobium clariflavum, Ottowia beijingensis, and Flavobacterium cucumis. These discoveries describe temporal changes to the breast milk microbiome of healthy Guatemalan mothers from early to late lactation. Collectively, these findings illustrate how studying under-represented human populations might advance our understanding of factors that modulate the human milk microbiome in low and middle income countries (LMIC).
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Canadian Centre for Computational Genomics (C3G), Department of Human Genetics, McGill University, Montréal, QC, Canada.,Microbiome Research Platform, McGill Interdisciplinary Initiative in Infection and Immunity (MI4), Genome Centre, McGill University, Montréal, QC, Canada
| | - Nicholas J B Brereton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - Chen Li
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Lilian Lopez Leyva
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Noel W Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Luis B Agellon
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Marilyn E Scott
- Institute of Parasitology, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Kristine G Koski
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC, Canada
| |
Collapse
|
47
|
Semenyuta IV, Trush MM, Kovalishyn VV, Rogalsky SP, Hodyna DM, Karpov P, Xia Z, Tetko IV, Metelytsia LO. Structure-Activity Relationship Modeling and Experimental Validation of the Imidazolium and Pyridinium Based Ionic Liquids as Potential Antibacterials of MDR Acinetobacter Baumannii and Staphylococcus Aureus. Int J Mol Sci 2021; 22:ijms22020563. [PMID: 33429999 PMCID: PMC7827895 DOI: 10.3390/ijms22020563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022] Open
Abstract
Online Chemical Modeling Environment (OCHEM) was used for QSAR analysis of a set of ionic liquids (ILs) tested against multi-drug resistant (MDR) clinical isolate Acinetobacter baumannii and Staphylococcus aureus strains. The predictive accuracy of regression models has coefficient of determination q2 = 0.66 - 0.79 with cross-validation and independent test sets. The models were used to screen a virtual chemical library of ILs, which was designed with targeted activity against MDR Acinetobacter baumannii and Staphylococcus aureus strains. Seven most promising ILs were selected, synthesized, and tested. Three ILs showed high activity against both these MDR clinical isolates.
Collapse
Affiliation(s)
- Ivan V. Semenyuta
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660 Kyiv, Ukraine; (I.V.S.); (M.M.T.); (V.V.K.); (S.P.R.); (D.M.H.); (L.O.M.)
| | - Maria M. Trush
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660 Kyiv, Ukraine; (I.V.S.); (M.M.T.); (V.V.K.); (S.P.R.); (D.M.H.); (L.O.M.)
| | - Vasyl V. Kovalishyn
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660 Kyiv, Ukraine; (I.V.S.); (M.M.T.); (V.V.K.); (S.P.R.); (D.M.H.); (L.O.M.)
| | - Sergiy P. Rogalsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660 Kyiv, Ukraine; (I.V.S.); (M.M.T.); (V.V.K.); (S.P.R.); (D.M.H.); (L.O.M.)
| | - Diana M. Hodyna
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660 Kyiv, Ukraine; (I.V.S.); (M.M.T.); (V.V.K.); (S.P.R.); (D.M.H.); (L.O.M.)
| | - Pavel Karpov
- Institute of Structural Biology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (P.K.); (Z.X.)
| | - Zhonghua Xia
- Institute of Structural Biology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (P.K.); (Z.X.)
| | - Igor V. Tetko
- Institute of Structural Biology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (P.K.); (Z.X.)
- BIGCHEM GmbH, Unterschleißheim, Valerystr. 49, D-85716 Neuherberg, Germany
- Correspondence: ; Tel.: +49-89-3187-3575
| | - Larisa O. Metelytsia
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660 Kyiv, Ukraine; (I.V.S.); (M.M.T.); (V.V.K.); (S.P.R.); (D.M.H.); (L.O.M.)
| |
Collapse
|
48
|
Odin IS, Cao S, Hughes D, Zamaratskii EV, Zarubin YP, Purygin PP, Golovanov AA, Zlotskii SS. Synthesis of New N-Acyl-1,2,3-triazole Chalcones and Determination of Their Antibacterial Activity. DOKLADY CHEMISTRY 2020. [DOI: 10.1134/s0012500820360021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Culturable Bacterial Community on Leaves of Assam Tea ( Camellia sinensis var. assamica) in Thailand and Human Probiotic Potential of Isolated Bacillus spp. Microorganisms 2020; 8:microorganisms8101585. [PMID: 33066699 PMCID: PMC7602384 DOI: 10.3390/microorganisms8101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
Assam tea plants (Camellia sinensis var. assamica) or Miang are found in plantations and forests of Northern Thailand. Leaf fermentation has been performed for centuries, but little information is available about their associated microbial community. One hundred and fifty-seven bacterial isolates were isolated from 62 Assam tea leaf samples collected from 6 provinces of Northern Thailand and classified within the phyla of Firmicutes, Actinobacteria, and Proteobacteria. Phayao and Phrae provinces exhibited the highest and the lowest bacterial diversities, respectively. The bacterial community structural pattern demonstrated significant differences between the west and the east sides. Since some Bacillus spp. have been reported to be involved in fermented Miang, Bacillus spp. isolated in this study were chosen for further elucidation. Bacillus siamensis ML122-2 exhibited a growth inhibitory effect against Staphylococcus aureus ATCC 25923 and MRSA DMST 20625, and the highest survival ability in simulated gastric and intestinal fluids (32.3 and 99.7%, respectively), autoaggregation (93.2%), cell surface hydrophobicity (50.0%), and bacterial adherence with Vero cells (75.8% of the control Lactiplantibacillusplantarum FM03-1). This B. siamensis ML122-2 is a promising probiotic to be used in the food industry and seems to have potential antibacterial properties relevant for the treatment of antibiotic-resistant infections.
Collapse
|
50
|
Educational Attainment and Staphylococcus aureus Colonization in a Hispanic Border Community: Testing Fundamental Cause Theory. mSphere 2020; 5:5/5/e00623-20. [PMID: 32999080 PMCID: PMC7529436 DOI: 10.1128/msphere.00623-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Unlike some types of S. aureus infections, S. aureus colonization is not associated with ethnicity or educational attainment and thus may be outside the influence of socioeconomic status-based resources typically mobilized to avoid or mitigate preventable health risks. This assessment of a clinically silent risk that usually precedes infections may illustrate a boundary of fundamental cause theory. This study was carried out to evaluate hypotheses generated by fundamental cause theory regarding the socioeconomic status (SES) gradient in colonization with Staphylococcus aureus among Hispanic and non-Hispanic adults living in a border community. Participants (n = 613) recruited in naturally occurring small groups at public and private sites throughout Yuma County, AZ, completed a sociodemographic survey and swabbed their palms, noses, and throats to sample microbial flora. Positive S. aureus colonization among non-Hispanic white participants was nominally higher (39.0%; 95% confidence interval [CI] = 32.4 to 46.1%) than that in Hispanics (31.3%; 95% CI = 26.4 to 36.8%), but there was no education gradient for the sample overall (incidence rate ratio = 1.00; 95% CI = 0.90 to 1.12) or within each ethnic group separately. The education gradient between Hispanic and non-Hispanic whites was statistically equivalent. Results were consistent when home ownership was used as the SES indicator. These data show that S. aureus colonization is not linked to two different SES indicators or Hispanic ethnicity. S. aureus colonization may be considered a less preventable health risk that is outside the influence of SES-based resources. IMPORTANCE Unlike some types of S. aureus infections, S. aureus colonization is not associated with ethnicity or educational attainment and thus may be outside the influence of socioeconomic status-based resources typically mobilized to avoid or mitigate preventable health risks. This assessment of a clinically silent risk that usually precedes infections may illustrate a boundary of fundamental cause theory.
Collapse
|