1
|
Zheng Q, Li H, Jiang Y, Yang P, Yin G, Yang L, Li S, Sun L. Fibroblast activation protein-targeted chimeric antigen-receptor-modified NK cells alleviate cardiac fibrosis. Int Immunopharmacol 2025; 157:114760. [PMID: 40319747 DOI: 10.1016/j.intimp.2025.114760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/19/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Cardiac fibrosis (CF) is a common pathophysiological process in the development of various cardiovascular diseases, during which many cardiac fibroblasts undergo myofibroblast transdifferentiation. Fibroblast activation protein (FAP) can serve as a specific target for myofibroblasts, and chimeric antigen receptor (CAR)-based therapy is a promising immunotherapy strategy. In this study, we attempted to construct CAR natural killer (NK) cells that target FAP and explored their potential therapeutic role in CF. Our results suggested FAP CAR-NK-92 cells can specifically recognize and kill FAP+ cells in vitro. In addition, compared with parental NK-92 cells, FAP CAR-NK cells cocultured with FAP HEK-293 T cells presented increased cytotoxicity, cytokine secretion, and degranulation, indicating an effect-to-target ratio dependence. Coculturing FAP CAR-NK cells with mouse cardiac fibroblast lines (MCFs) eliminated the activated fibroblasts, reduced fibrosis-related protein secretion, and significantly reversed the contractile phenotype of myofibroblasts, which is characterized by alpha-smooth muscle actin (α-SMA) and stress fiber formation. Intravenous injection of FAP CAR-NK cells in mice 7 days after Ang II/PE-induced injury significantly improved cardiac function and reduced fibrosis. In terms of the killing mechanism, the early apoptosis rate of target cells was significantly increased, the antiapoptotic protein Bcl-2 was significantly decreased, and the proapoptotic proteins Bax and Caspase 3 were markedly increased. Our findings demonstrate that FAP CAR-NK-92 cells can specifically recognize FAP+ target cells and exert potent anti-fibrotic effects both in vitro and in vivo. Therefore, FAP CAR-NK-92 cells could be considered an effective therapeutic option for CF patients.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Hao Li
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Yongliang Jiang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ping Yang
- Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Gaosheng Yin
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Lin Yang
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Shuangxiu Li
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China.
| |
Collapse
|
2
|
Akhkand SS, Soleimani M, Zomorrod MS, Kiani J. Genetically engineered K562 cells augment NK cell cytotoxicity against acute myeloid leukemia and reduce dependency on IL-15. Med Oncol 2025; 42:211. [PMID: 40372524 DOI: 10.1007/s12032-025-02769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy with limited treatment options. Enhancing natural killer (NK) cell functionality through artificial antigen-presenting cells (aAPCs) represents a promising immunotherapeutic strategy. This study evaluates the potential of genetically modified K562 cells, expressing CD137L and CD86, to enhance NK cell-mediated cytotoxicity against AML cell lines (HL-60, KG-1, and THP-1). Lentiviral transduction was used to generate aAPCs, confirmed by PCR, RT-PCR, and flow cytometry. Cord NK cells and the NK-92 cell line were co-cultured with aAPCs, and their cytotoxicity against cell lines was assessed using 7-AAD staining. The ability of transduced K562 cells to substitute for interleukin-15 (IL-15) was also evaluated. These cells significantly enhanced NK cell-mediated cytotoxicity, with greater effects observed at higher effector-to-target (E:T) ratios. The aAPCs partially replaced IL-15 in activating cord blood NK cells but were ineffective for NK-92 cells. The aAPCs effectively enhance NK cell cytotoxicity and may reduce cytokine dependence in therapeutic applications. These findings highlight the potential of aAPCs to improve NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Saman Sohrabi Akhkand
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mina Soufi Zomorrod
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Maleka MN, Mbita Z, Morafo V. Regulation of Granzymes A and B by High-Risk HPV: Impact on Immune Evasion and Carcinogenesis. Viruses 2025; 17:221. [PMID: 40006976 PMCID: PMC11861749 DOI: 10.3390/v17020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The number of new cancer cases is soaring, and currently, there are 440.5 per 100,000 new cases reported every year. A quarter of these are related to human papillomavirus (HPV) infections, particularly types 16 and 18. These include oropharyngeal, anal, vaginal, and penile cancers. A critical aspect of their oncogenic potential lies in their ability to manipulate host immune responses, facilitating immune evasion and carcinogenesis. High-risk HPVs target key immune components like granzymes A and B and MHC-I, which are crucial for the elimination of virus-infected and transformed cells, thereby weakening immune surveillance. Evidence suggests that high-risk HPVs downregulate the expression of tumor suppressors, such as p53 and pRB, and the activity of these immune components, weakening CTL and NK cell responses, thus enabling persistent infection and carcinogenesis. We discuss the implications of granzyme and MHC-I dysregulation for immune evasion, tumor progression, and potential therapeutic strategies. This review further explores the regulation of granzyme A, B, and MHC-I by high-risk HPVs, focusing on how viral oncoproteins, E6 and E7, interfere with granzyme-mediated cytotoxicity and antigen presentation. The complex interplay between high-risk HPVs, granzyme A, granzyme B, and MHC-I may provide insights into novel approaches for targeting HPV-associated cancers.
Collapse
Affiliation(s)
| | | | - Vivian Morafo
- Department of Biochemistry, Microbiology and Biotechnology, School of Molecular and Life Sciences, Private Bag X 1106, Sovenga, Polokwane 0727, South Africa; (M.N.M.); (Z.M.)
| |
Collapse
|
4
|
Dunbar ZT, González-Ochoa S, Kanagasabai T, Ivanova A, Shanker A. Differential Effector Function of Tissue-Specific Natural Killer Cells against Lung Tumors. J Innate Immun 2024; 16:573-594. [PMID: 39561728 PMCID: PMC11644122 DOI: 10.1159/000542078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Natural killer (NK) cells are innate lymphoid cells capable of directly killing target cells while modulating immune effector responses. Despite their multifunctional capacities, a limited understanding of their plasticity and heterogeneity has impeded progress in developing effective NK cell-based cancer therapies. In this study, we investigated NK cell tissue heterogeneity in relation to their phenotype and effector functions against lung tumors. METHODS Using hanging drop tumor spheroid and subcutaneously established LL/2 (LLC1) lung tumor models, we examined NK cell receptor diversity and its correlation with tissue-specific cytotoxicity through multiparametric flow cytometry, fluorescence imaging, and cytotoxicity assays. RESULTS We identified distinct patterns of cell surface receptors expression on tissue-specific NK cells that are crucial for antitumor activity. Linear regression mathematical analyses further revealed significant positive correlations between activation-associated cell surface receptors and cytotoxic capacity in NK cells from tissues such as the liver and bone marrow. CONCLUSION These findings underscore the differential effector capacities of NK cells from distinct tissues, even prior to exposure to LL/2 tumor cells. This highlights the significance of tissue-specific NK cell heterogeneity and its impact on their antitumor cytotoxicity. Recognizing these distinct tissue-specific receptor expression patterns will be instrumental in developing more efficacious NK cell-based cancer treatments.
Collapse
Affiliation(s)
- Zerick Terrell Dunbar
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Salvador González-Ochoa
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Alla Ivanova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
5
|
Cai W, Sun T, Qiu C, Sheng H, Chen R, Xie C, Kou L, Yao Q. Stable triangle: nanomedicine-based synergistic application of phototherapy and immunotherapy for tumor treatment. J Nanobiotechnology 2024; 22:635. [PMID: 39420366 PMCID: PMC11488210 DOI: 10.1186/s12951-024-02925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
In recent decades, cancer has posed a challenging obstacle that humans strive to overcome. While phototherapy and immunotherapy are two emerging therapies compared to traditional methods, they each have their advantages and limitations. These limitations include easy metastasis and recurrence, low response rates, and strong side effects. To address these issues, researchers have increasingly focused on combining these two therapies by utilizing a nano-drug delivery system due to its superior targeting effect and high drug loading rate, yielding remarkable results. The combination therapy demonstrates enhanced response efficiency and effectiveness, leading to a preparation that is highly targeted, responsive, and with low recurrence rates. This paper reviews several main mechanisms of anti-tumor effects observed in combination therapy based on the nano-drug delivery system over the last five years. Furthermore, the challenges and future prospects of this combination therapy are also discussed.
Collapse
Affiliation(s)
- Wenjing Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Huixiang Sheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Jiang P, Jing S, Sheng G, Jia F. The basic biology of NK cells and its application in tumor immunotherapy. Front Immunol 2024; 15:1420205. [PMID: 39221244 PMCID: PMC11361984 DOI: 10.3389/fimmu.2024.1420205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Natural Killer (NK) cells play a crucial role as effector cells within the tumor immune microenvironment, capable of identifying and eliminating tumor cells through the expression of diverse activating and inhibitory receptors that recognize tumor-related ligands. Therefore, harnessing NK cells for therapeutic purposes represents a significant adjunct to T cell-based tumor immunotherapy strategies. Presently, NK cell-based tumor immunotherapy strategies encompass various approaches, including adoptive NK cell therapy, cytokine therapy, antibody-based NK cell therapy (enhancing ADCC mediated by NK cells, NK cell engagers, immune checkpoint blockade therapy) and the utilization of nanoparticles and small molecules to modulate NK cell anti-tumor functionality. This article presents a comprehensive overview of the latest advances in NK cell-based anti-tumor immunotherapy, with the aim of offering insights and methodologies for the clinical treatment of cancer patients.
Collapse
Affiliation(s)
- Pan Jiang
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Infectious Diseases, Jingzhou First People’s Hospital, Jingzhou, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fajing Jia
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
7
|
Kumar R, Gupta R. Epigenetic regulation of NKG2D ligand and the rise of NK cell-based immunotherapy for cancer treatment. Front Oncol 2024; 14:1456631. [PMID: 39161385 PMCID: PMC11330816 DOI: 10.3389/fonc.2024.1456631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Epigenetic modifications influence gene expression and effects cancer initiation and progression. Therefore, they serve as diagnostic and prognostic biomarkers and potential therapeutic targets. Natural Killer (NK) cells, integral to the innate immune system, exhibit anti-tumor effect by recognizing and eliminating cancerous cells through the balance of activating and inhibitory ligands. Understanding the epigenetic regulation of NK cell ligands offers insights into enhancing NK cell-mediated tumor eradication. This review explores the epigenetic modifications governing the expression of activating NKG2D ligands and discusses clinical trials investigating NK cell-based immunotherapies, highlighting their potential as effective cancer treatment strategies. Case studies examining the safety and effectiveness of NK cell therapies in different cancer types, such as acute myeloid leukemia (AML) and non-small cell lung cancer (NSCLC), demonstrate promising outcomes with minimal toxicity. These findings underscore the therapeutic prospects of epigenetic modulation of NKG2D ligands and NK cell-based immunotherapies as effective cancer treatment strategies. Future research in the advancement of personalized medicine approaches and novel combination therapies with NK cell will further improve treatment outcomes and provide new therapeutic options for treating patients with various types of cancer.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Lee MJ, de los Rios Kobara I, Barnard TR, Vales Torres X, Tobin NH, Ferbas KG, Rimoin AW, Yang OO, Aldrovandi GM, Wilk AJ, Fulcher JA, Blish CA. NK Cell-Monocyte Cross-talk Underlies NK Cell Activation in Severe COVID-19. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1693-1705. [PMID: 38578283 PMCID: PMC11102029 DOI: 10.4049/jimmunol.2300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell-cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell-cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16- NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.
Collapse
Affiliation(s)
- Madeline J. Lee
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Izumi de los Rios Kobara
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Trisha R. Barnard
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Xariana Vales Torres
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Nicole H. Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kathie G. Ferbas
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anne W. Rimoin
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Grace M. Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aaron J. Wilk
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
9
|
Park YM, Lee HY, Shin DY, Kim SH, Yoo Y, Kim MJ, Kim MJ, Yang HJ, Park KH. Augmentation of NK-cell activity and immunity by combined natural polyphenols and saccharides in vitro and in vivo. Int J Biol Macromol 2024; 268:131908. [PMID: 38679269 DOI: 10.1016/j.ijbiomac.2024.131908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Curcuma longa and Sargassum coreanum are commonly used in traditional pharmaceutical medicine to improve immune function in chronic diseases. The present study was designed to systematically elucidate the in vitro and in vivo immuno-enhancing effects of a combination of C. longa and S. coreanum extracts (CS) that contain polyphenols and saccharides as functional molecules in a cyclophosphamide (Cy)-induced model of immunosuppression. In primary splenocytes, we observed the ameliorative effects of CS on a Cy-induced immunosuppression model with low cytotoxicity and an optimal mixture procedure. CS treatment enhanced T- and B-cell proliferation, increased splenic natural killer-cell activity, and restored cytokine release. Wistar rats were orally administered low (30 mg/kg), intermediate (100 mg/kg), or high (300 mg/kg) doses of CS for four weeks, followed by oral administration of Cy (5 mg/kg) for four weeks. Compared with the vehicle group, low-, intermediate-, and high-dose CS treatment accelerated dose-dependent recovery of the serum level of tumor necrosis factor-α, interferon-γ, interleukin-2, and interleukin-12. These results suggest that CS treatment accelerates the amelioration of immune deficiency in Cy-treated primary splenocytes and rats, which supports considering it for immunity maintenance. Our findings provide experimental evidence for further research and clinical application in immunosuppressed patients.
Collapse
Affiliation(s)
- Young Mi Park
- INVIVO Co. Ltd., 121, Nonsan 32992, Republic of Korea; Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan 54651, Republic of Korea
| | - Hak Yong Lee
- INVIVO Co. Ltd., 121, Nonsan 32992, Republic of Korea
| | | | - Suk Hun Kim
- Agricultural Corporation Company Nongjeongsim LC., Jeonju 55070, Republic of Korea
| | - Yeol Yoo
- Agricultural Corporation Company Nongjeongsim LC., Jeonju 55070, Republic of Korea
| | - Min Ji Kim
- Agricultural Corporation Company Nongjeongsim LC., Jeonju 55070, Republic of Korea
| | - Min Jung Kim
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hye Jeong Yang
- Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Kwang-Hyun Park
- Department of Emergency Medical Rescue and Department of Oriental Pharmaceutical Development, Nambu University, Gwangju 62271, Republic of Korea; Department of Emergency Medicine and BioMedical Science Graduate Program (BMSGP), Chonnam National University, Gwangju 61469, Republic of Korea.
| |
Collapse
|
10
|
Zhao X, Deng H, Feng Y, Wang Y, Yao X, Ma Y, Zhang L, Jie J, Yang P, Yang Y. Immune-cell-mediated tissue engineering strategies for peripheral nerve injury and regeneration. J Mater Chem B 2024; 12:2217-2235. [PMID: 38345580 DOI: 10.1039/d3tb02557h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
During the process of peripheral nerve repair, there are many complex pathological and physiological changes, including multi-cellular responses and various signaling molecules, and all these events establish a dynamic microenvironment for axon repair, regeneration, and target tissue/organ reinnervation. The immune system plays an indispensable role in the process of nerve repair and function recovery. An effective immune response not only involves innate-immune and adaptive-immune cells but also consists of chemokines and cytokines released by these immune cells. The elucidation of the orchestrated interplay of immune cells with nerve regeneration and functional restoration is meaningful for the exploration of therapeutic strategies. This review mainly enumerates the general immune cell response to peripheral nerve injury and focuses on their contributions to functional recovery. The tissue engineering-mediated strategies to regulate macrophages and T cells through physical and biochemical factors combined with scaffolds are discussed. The dynamic immune responses during peripheral nerve repair and immune-cell-mediated tissue engineering methods are presented, which provide a new insight and inspiration for immunomodulatory therapies in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xueying Zhao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Hui Deng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yuan Feng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yuehan Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Xiaomin Yao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yuyang Ma
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Jing Jie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University, 226001, Nantong, P. R. China.
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| |
Collapse
|
11
|
Dang BTN, Kwon TK, Lee S, Jeong JH, Yook S. Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy. J Control Release 2024; 365:773-800. [PMID: 38081328 DOI: 10.1016/j.jconrel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy is a groundbreaking strategy that has revolutionized the field of oncology compared to other therapeutic strategies, such as surgery, chemotherapy, or radiotherapy. However, cancer complexity, tumor heterogeneity, and immune escape have become the main hurdles to the clinical application of immunotherapy. Moreover, conventional immunotherapies cause many harmful side effects owing to hyperreactivity in patients, long treatment durations and expensive cost. Nanotechnology is considered a transformative approach that enhances the potency of immunotherapy by capitalizing on the superior physicochemical properties of nanocarriers, creating highly targeted tissue delivery systems. These advantageous features include a substantial specific surface area, which enhances the interaction with the immune system. In addition, the capability to finely modify surface chemistry enables the achievement of controlled and sustained release properties. These advances have significantly increased the potential of immunotherapy, making it more powerful than ever before. In this review, we introduce recent nanocarriers for application in cancer immunotherapy based on strategies that target different main immune cells, including T cells, dendritic cells, natural killer cells, and tumor-associated macrophages. We also provide an overview of the role and significance of nanotechnology in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
12
|
Lepretre F, Gras D, Chanez P, Duez C. Natural killer cells in the lung: potential role in asthma and virus-induced exacerbation? Eur Respir Rev 2023; 32:230036. [PMID: 37437915 DOI: 10.1183/16000617.0036-2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023] Open
Abstract
Asthma is a chronic inflammatory airway disorder whose pathophysiological and immunological mechanisms are not completely understood. Asthma exacerbations are mostly driven by respiratory viral infections and characterised by worsening of symptoms. Despite current therapies, asthma exacerbations can still be life-threatening. Natural killer (NK) cells are innate lymphoid cells well known for their antiviral activity and are present in the lung as circulating and resident cells. However, their functions in asthma and its exacerbations are still unclear. In this review, we will address NK cell activation and functions, which are particularly relevant for asthma and virus-induced asthma exacerbations. Then, the role of NK cells in the lungs at homeostasis in healthy individuals will be described, as well as their functions during pulmonary viral infections, with an emphasis on those associated with asthma exacerbations. Finally, we will discuss the involvement of NK cells in asthma and virus-induced exacerbations and examine the effect of asthma treatments on NK cells.
Collapse
Affiliation(s)
- Florian Lepretre
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Delphine Gras
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Pascal Chanez
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- APHM, Hôpital Nord, Clinique des Bronches, de l'allergie et du sommeil, Marseille, France
| | - Catherine Duez
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| |
Collapse
|
13
|
Kiaei SZF, Nouralishahi A, Ghasemirad M, Barkhordar M, Ghaffari S, Kheradjoo H, Saleh M, Mohammadzadehsaliani S, Molaeipour Z. Advances in natural killer cell therapies for breast cancer. Immunol Cell Biol 2023; 101:705-726. [PMID: 37282729 DOI: 10.1111/imcb.12658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023]
Abstract
Breast cancer (BC) is the most common cause of cancer death in women. According to the American Cancer Society's yearly cancer statistics, BC constituted almost 15% of all the newly diagnosed cancer cases in 2022 for both sexes. Metastatic disease occurs in 30% of patients with BC. The currently available treatments fail to cure metastatic BC, and the average survival time for patients with metastatic BC is approximately 2 years. Developing a treatment method that terminates cancer stem cells without harming healthy cells is the primary objective of novel therapeutics. Adoptive cell therapy is a branch of cancer immunotherapy that utilizes the immune cells to attack cancer cells. Natural killer (NK) cells are an essential component of innate immunity and are critical in destroying tumor cells without prior stimulation with antigens. With the advent of chimeric antigen receptors (CARs), the autologous or allogeneic use of NK/CAR-NK cell therapy has raised new hopes for treating patients with cancer. Here, we describe recent developments in NK and CAR-NK cell immunotherapy, including the biology and function of NK cells, clinical trials, different sources of NK cells and their future perspectives on BC.
Collapse
Affiliation(s)
- Seyedeh Zahra Fotook Kiaei
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Ghasemirad
- Department of Periodontics, Faculty of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Barkhordar
- Hematology, Oncology and Stem Cell Transplantation Research Center (HORCSCT), Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA
| | | | - Zahra Molaeipour
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Caforio M, Tumino N, Sorino C, Manni I, Di Giovenale S, Piaggio G, Iezzi S, Strimpakos G, Mattei E, Moretta L, Fanciulli M, Vacca P, Locatelli F, Folgiero V. AATF/Che-1 RNA polymerase II binding protein overexpression reduces the anti-tumor NK-cell cytotoxicity through activating receptors modulation. Front Immunol 2023; 14:1191908. [PMID: 37435061 PMCID: PMC10332273 DOI: 10.3389/fimmu.2023.1191908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction AATF/Che-1 over-expression in different tumors is well known and its effect on tumorigenicity is mainly due to its central role demonstrated in the oncogenic pathways of solid tumors, where it controls proliferation and viability. The effect exerted by tumors overexpressing Che-1 on the immune response has not yet been investigated. Methods Starting from ChIP-sequencing data we confirmed Che-1 enrichment on Nectin-1 promoter. Several co-cultures experiments between NK-cells and tumor cells transduced by lentiviral vectors carrying Che-1-interfering sequence, analyzed by flow-cytometry have allowed a detailed characterization of NK receptors and tumor ligands expression. Results Here, we show that Che-1 is able to modulate the expression of Nectin-1 ligand at the transcriptional level, leading to the impairment of killing activity of NK-cells. Nectin-1 down-modulation induces a modification in NK-cell ligands expression able to interact with activating receptors and to stimulate NK-cell function. In addition, NK-cells from Che-1 transgenic mice, confirming a reduced expression of activating receptors, exhibit impaired activation and a preferential immature status. Discussion The critical equilibrium between NK-cell ligand expression on tumor cells and the interaction with NK cell receptors is affected by Che-1 over-expression and partially restored by Che-1 interference. The evidence of a new role for Che-1 as regulator of anti-tumor immunity supports the necessity to develop approaches able to target this molecule which shows a dual tumorigenic function as cancer promoter and immune response modulator.
Collapse
Affiliation(s)
- Matteo Caforio
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Cristina Sorino
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Isabella Manni
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Stefano Di Giovenale
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giulia Piaggio
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simona Iezzi
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Georgios Strimpakos
- National Research Council (CNR), Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy
| | - Elisabetta Mattei
- Consiglio Nazionale delle Ricerche (CNR)-Institute of Cell Biology and Neurobiology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit , Children Hospital Bambino Gesù, RomaLM, Rome, Italy
| | - M. Fanciulli
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Valentina Folgiero
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
15
|
Portale F, Di Mitri D. NK Cells in Cancer: Mechanisms of Dysfunction and Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24119521. [PMID: 37298470 DOI: 10.3390/ijms24119521] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Natural killer cells (NK) are innate lymphocytes endowed with the ability to recognize and kill cancer cells. Consequently, adoptive transfer of autologous or allogeneic NK cells represents a novel opportunity in cancer treatment that is currently under clinical investigation. However, cancer renders NK cells dysfunctional, thus restraining the efficacy of cell therapies. Importantly, extensive effort has been employed to investigate the mechanisms that restrain NK cell anti-tumor function, and the results have offered forthcoming solutions to improve the efficiency of NK cell-based therapies. The present review will introduce the origin and features of NK cells, summarize the mechanisms of action and causes of dysfunction of NK cells in cancer, and frame NK cells in the tumoral microenvironment and in the context of immunotherapies. Finally, we will discuss therapeutic potential and current limitations of NK cell adoptive transfer in tumors.
Collapse
Affiliation(s)
- Federica Portale
- Tumor Microenviroment Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Diletta Di Mitri
- Tumor Microenviroment Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| |
Collapse
|
16
|
Srivastava RM, Thounaojam M, Marincola FM, Shanker A. Editorial: Lymphocyte functional crosstalk and regulation, volume II. Front Immunol 2023; 14:1214843. [PMID: 37266417 PMCID: PMC10231030 DOI: 10.3389/fimmu.2023.1214843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Raghvendra M. Srivastava
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, United States
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Menaka Thounaojam
- Department of Ophthalmology, Augusta University, Augusta, GA, United States
| | | | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, United States
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
17
|
Zhou Y, Cheng L, Liu L, Li X. NK cells are never alone: crosstalk and communication in tumour microenvironments. Mol Cancer 2023; 22:34. [PMID: 36797782 PMCID: PMC9933398 DOI: 10.1186/s12943-023-01737-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Immune escape is a hallmark of cancer. The dynamic and heterogeneous tumour microenvironment (TME) causes insufficient infiltration and poor efficacy of natural killer (NK) cell-based immunotherapy, which becomes a key factor triggering tumour progression. Understanding the crosstalk between NK cells and the TME provides new insights for optimising NK cell-based immunotherapy. Here, we present new advances in direct or indirect crosstalk between NK cells and 9 specialised TMEs, including immune, metabolic, innervated niche, mechanical, and microbial microenvironments, summarise TME-mediated mechanisms of NK cell function inhibition, and highlight potential targeted therapies for NK-TME crosstalk. Importantly, we discuss novel strategies to overcome the inhibitory TME and provide an attractive outlook for the future.
Collapse
Affiliation(s)
- Yongqiang Zhou
- grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China ,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Lu Cheng
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Lu Liu
- grid.412643.60000 0004 1757 2902Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China. .,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China. .,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
18
|
Improving NK cell function in multiple myeloma with NKTR-255, a novel polymer-conjugated human IL-15. Blood Adv 2023; 7:9-19. [PMID: 35882498 DOI: 10.1182/bloodadvances.2022007985] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 01/18/2023] Open
Abstract
Multiple myeloma (MM) is characterized by an immunosuppressive microenvironment that enables tumor development. One of the mechanisms of immune evasion used by MM cells is the inhibition of natural killer (NK) cell effector functions; thus, the restoration of NK cell antitumor activity represents a key goal to increase tumor cell recognition, avoid tumor escape and potentially enhancing the effect of other drugs. In this study, we evaluated the ability of the investigational medicine NKTR-255, an IL-15 receptor agonist, to engage the IL-15 pathway and stimulate NK cells against MM cells. We observed that incubation with NKTR-255 was able to tilt the balance toward an activated phenotype in NK cells isolated from peripheral blood mononuclear cells of patients with MM, with increased expression of activating receptors on the surface of treated NK cells. This resulted in an enhanced degranulation, cytokine release, and anti-tumor cytotoxicity when the NK cells were exposed to both MM cell lines and primary MM cells. We further evaluated the in vivo effect of NKTR-255 in fully humanized immunocompetent mice subcutaneously engrafted with H929 MM cells. Compared with placebo, weekly injection of the mice with NKTR-255 increased the number of circulating NK cells in peripheral blood and delayed tumor growth. Finally, we observed that combination of NKTR-255 with the anti-CD38 antibody, daratumumab, was effective against MM cells in vitro and in vivo. Taken together, our data suggest a significant impact of NKTR-255 in inducing NK cell function against MM cells with important translational implications.
Collapse
|
19
|
Rahmani S, Yazdanpanah N, Rezaei N. Natural killer cells and acute myeloid leukemia: promises and challenges. Cancer Immunol Immunother 2022; 71:2849-2867. [PMID: 35639116 PMCID: PMC10991240 DOI: 10.1007/s00262-022-03217-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Acute myeloid leukemia (AML) is considered as one of the most malignant conditions of the bone marrow. Over the past few decades, despite substantial progresses in the management of AML, relapse remission remains a major problem. Natural killer cells (NK cells) are known as a unique component of the innate immune system. Due to swift tumor detection, distinct cytotoxic action, and extensive immune interaction, NK cells have been used in various cancer settings for decades. It has been a growing knowledge of therapeutic magnitudes ranging from adoptive NK cell transfer to chimeric antigen receptor NK cells, aiming to achieve better therapeutic responses in patients with AML. In this article, the potentials of NK cells for treatment of AML are highlighted, and challenges for such therapeutic methods are discussed. In addition, the clinical application of NK cells, mainly in patients with AML, is pictured according to the existing evidence.
Collapse
Affiliation(s)
- Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Wang K, Cadzow M, Bixley M, Leask MP, Merriman ME, Yang Q, Li Z, Takei R, Phipps-Green A, Major TJ, Topless R, Dalbeth N, King F, Murphy R, Stamp LK, de Zoysa J, Wang Z, Shi Y, Merriman TR. A Polynesian-specific copy number variant encompassing the MICA gene associates with gout. Hum Mol Genet 2022; 31:3757-3768. [PMID: 35451026 PMCID: PMC9616569 DOI: 10.1093/hmg/ddac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Gout is of particularly high prevalence in the Māori and Pacific (Polynesian) populations of Aotearoa New Zealand (NZ). Here, we investigated the contribution of common population-specific copy number variation (CNV) to gout in the Aotearoa NZ Polynesian population. Microarray-generated genome-wide genotype data from Aotearoa NZ Polynesian individuals with (n = 1196) and without (n = 1249) gout were analyzed. Comparator population groups were 552 individuals of European ancestry and 1962 of Han Chinese ancestry. Levels of circulating major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) were measured by enzyme-linked immunosorbent assay. Fifty-four CNV regions (CNVRs) appearing in at least 10 individuals were detected, of which seven common (>2%) CNVRs were specific to or amplified in Polynesian people. A burden test of these seven revealed associations of insertion/deletion with gout (odds ratio (OR) 95% confidence interval [CI] = 1.80 [1.01; 3.22], P = 0.046). Individually testing of the seven CNVRs for association with gout revealed nominal association of CNVR1 with gout in Western Polynesian (Chr6: 31.36-31.45 Mb, OR = 1.72 [1.03; 2.92], P = 0.04), CNVR6 in the meta-analyzed Polynesian sample sets (Chr1: 196.75-196.92 Mb, OR = 1.86 [1.16; 3.00], P = 0.01) and CNVR9 in Western Polynesian (Chr1: 189.35-189.54 Mb, OR = 2.75 [1.15; 7.13], P = 0.03). Analysis of European gout genetic association data demonstrated a signal of association at the CNVR1 locus that was an expression quantitative trait locus for MICA. The most common CNVR (CNVR1) includes deletion of the MICA gene, encoding an immunomodulatory protein. Expression of MICA was reduced in the serum of individuals with the deletion. In summary, we provide evidence for the association of CNVR1 containing MICA with gout in Polynesian people, implicating class I MHC-mediated antigen presentation in gout.
Collapse
Affiliation(s)
- Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Matt Bixley
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Megan P Leask
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Marilyn E Merriman
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
- Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao 266003, China
| | - Riku Takei
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Tanya J Major
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ruth Topless
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Frances King
- Ngati Porou Hauora Charitable Trust, Te Puia Springs, New Zealand
| | - Rinki Murphy
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch 8013, New Zealand
| | - Janak de Zoysa
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
- Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao 266003, China
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
21
|
Wang YY, Li SY, Chen SQ, Wang LL, Han ZQ. Myeloid-derived Suppressor Cells Activate Liver Natural Killer Cells in a Murine Model in Uveal Melanoma. Curr Med Sci 2022; 42:1071-1078. [PMID: 36245024 DOI: 10.1007/s11596-022-2623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Elevated myeloid-derived suppressor cells (MDSCs) in many malignancies are associated with the increased risk for metastases and poor prognosis. Therefore, a mouse model of intraocular melanoma was established to explore how MDSCs influence liver metastases. METHODS In this study, murine B16LS melanoma cells were transplanted into the posterior compartment (PC) of the eye of C57BL/6 mice. Leucocytes from the liver of naive mice and mice bearing melanoma liver metastasis were isolated using isotonic Percoll centrifugation, examined by flow cytometry for their expression of Gr1, CD11b, F4/80, RAE-1, and Mult-1, and further isolated for MDSCs and natural killer (NK) cells. The effects of MDSCs on NK cells were tested by coculturing and assessing the ability of NK cells to produce interferon-gamma (IFN-γ) by ELISA and NK cell cytotoxicity by 3H-thymidine incorporation assay. The impact of IFN-γ on liver metastases was examined via selectively depleting IFN-γ in vivo. RESULTS The results showed that mice with liver metastases had increased levels of CD11b+Gr1+F4/80+ as well as CD11b+Gr1+F4/80- MDSCs. MDSCs significantly enhanced the generation of IFN-γ together with the cytotoxicity of the NK cells. Furthermore, these effects were cell-cell contact-dependent. Although IFN-γ was not of a toxic nature to the melanoma cells, it profoundly inhibited B16LS cell proliferation. Depleting IFN-γ in vivo led to increased liver metastases. CONCLUSION All these findings first revealed that MDSCs accumulated in liver metastasis of intraocular melanoma could activate the NK cells to produce an effective anti-tumor immune response. Thus, the MDSCs' performance in different tumor models would need more investigation to boost current immunotherapy modalities.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang-Ying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - San-Qian Chen
- Department of Obstetrics and Gynecology, Chibi People's Hospital, Chibi, 437300, China
| | - Liang-Liang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Qiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Razeghian E, Kameh MC, Shafiee S, Khalafi F, Jafari F, Asghari M, Kazemi K, Ilkhani S, Shariatzadeh S, Haj-Mirzaian A. The role of the natural killer (NK) cell modulation in breast cancer incidence and progress. Mol Biol Rep 2022; 49:10935-10948. [PMID: 36008609 DOI: 10.1007/s11033-022-07865-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/11/2022] [Indexed: 01/11/2023]
Abstract
The importance of the immune system on tumor surveillance has been investigated for many years, and its impact on controlling tumor progression has been verified. An important subgroup of the innate immune system is natural killer (NK) cells, whose essential function in modulating tumor behavior and suppressing metastasis and tumor growth has been demonstrated. The first idea of NK cells' crucial biological processes was demonstrated through their potent ability to conduct direct cellular cytotoxicity, even without former sensitization. These properties of NK cells allow them to recognize transformed cells that have attenuated self-ligand and express stress-induced ligands. Furthermore, secretion of various cytokines and chemokines after their activation leads to tumor elimination via either direct cytotoxic effect on malignant cells or activation of the adaptive immune system. In addition, novel immunotherapeutic approaches tend to take advantage of NK cells' ability, leading to antibody-based approaches, the formation of engineered CAR-NK cells, and adoptive cell transfer. However, the restricted functionality of NK cells and the inability to infiltrate tumors are its blind spots in breast cancer patients. In this review, we gathered newly acquired data on the biology and functions of NK cells in breast cancer and proposed ways to employ this knowledge for novel therapeutic approaches in cancers, particularly breast cancer.
Collapse
Affiliation(s)
- Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdis Chahar Kameh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fehimeh Jafari
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Asghari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arvin Haj-Mirzaian
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Ben-Shmuel A, Sabag B, Puthenveetil A, Biber G, Levy M, Jubany T, Awwad F, Roy RK, Joseph N, Matalon O, Kivelevitz J, Barda-Saad M. Inhibition of SHP-1 activity by PKC-θ regulates NK cell activation threshold and cytotoxicity. eLife 2022; 11:73282. [PMID: 35258455 PMCID: PMC8903836 DOI: 10.7554/elife.73282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Natural killer (NK) cells play a crucial role in immunity, killing virally infected and cancerous cells. The balance of signals initiated upon engagement of activating and inhibitory NK receptors with cognate ligands determines killing or tolerance. Nevertheless, the molecular mechanisms regulating rapid NK cell discrimination between healthy and malignant cells in a heterogeneous tissue environment are incompletely understood. The SHP-1 tyrosine phosphatase is the central negative NK cell regulator that dephosphorylates key activating signaling proteins. Though the mechanism by which SHP-1 mediates NK cell inhibition has been partially elucidated, the pathways by which SHP-1 is itself regulated remain unclear. Here, we show that phosphorylation of SHP-1 in NK cells on the S591 residue by PKC-θ promotes the inhibited SHP-1 ‘folded’ state. Silencing PKC-θ maintains SHP-1 in the active conformation, reduces NK cell activation and cytotoxicity, and promotes tumor progression in vivo. This study reveals a molecular pathway that sustains the NK cell activation threshold through suppression of SHP-1 activity.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Abhishek Puthenveetil
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Moria Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tammir Jubany
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Fatima Awwad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Roshan Kumar Roy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Jessica Kivelevitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
24
|
Min KY, Koo J, Noh G, Lee D, Jo MG, Lee JE, Kang M, Hyun SY, Choi WS, Kim HS. CD1d hiPD-L1 hiCD27 + Regulatory Natural Killer Subset Suppresses Atopic Dermatitis. Front Immunol 2022; 12:752888. [PMID: 35069528 PMCID: PMC8766675 DOI: 10.3389/fimmu.2021.752888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Effector and regulatory functions of various leukocytes in allergic diseases have been well reported. Although the role of conventional natural killer (NK) cells has been established, information on its regulatory phenotype and function are very limited. Therefore, the objective of this study was to investigate the phenotype and inhibitory functions of transforming growth factor (TGF)-β-producing regulatory NK (NKreg) subset in mice with MC903-induced atopic dermatitis (AD). Interestingly, the population of TGF-β-producing NK cells in peripheral blood monocytes (PBMCs) was decreased in AD patients than in healthy subjects. The number of TGF-β+ NK subsets was decreased in the spleen or cervical lymph node (cLN), but increased in ear tissues of mice with AD induced by MC903 than those of normal mice. We further observed that TGF-β+ NK subsets were largely included in CD1dhiPD-L1hiCD27+ NK cell subset. We also found that numbers of ILC2s and TH2 cells were significantly decreased by adoptive transfer of CD1dhiPD-L1hiCD27+ NK subsets. Notably, the ratio of splenic Treg per TH2 was increased by the adoptive transfer of CD1dhiPD-L1hiCD27+ NK cells in mice. Taken together, our findings demonstrate that the TGF-β-producing CD1dhiPD-L1hiCD27+ NK subset has a previously unrecognized role in suppressing TH2 immunity and ILC2 activation in AD mice, suggesting that the function of TGF-β-producing NK subset is closely associated with the severity of AD in humans.
Collapse
Affiliation(s)
- Keun Young Min
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Jimo Koo
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Geunwoong Noh
- Department of Allergy, Allergy and Clinical Immunology Center Cheju Halla General Hospital, Jeju, South Korea
| | - Dajeong Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Min Geun Jo
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Ji Eon Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Minseong Kang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Seung Yeun Hyun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Wahn Soo Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea.,Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea
| |
Collapse
|
25
|
Ayyadurai VAS, Deonikar P, McLure KG, Sakamoto KM. Molecular Systems Architecture of Interactome in the Acute Myeloid Leukemia Microenvironment. Cancers (Basel) 2022; 14:756. [PMID: 35159023 PMCID: PMC8833542 DOI: 10.3390/cancers14030756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
A molecular systems architecture is presented for acute myeloid leukemia (AML) to provide a framework for organizing the complexity of biomolecular interactions. AML is a multifactorial disease resulting from impaired differentiation and increased proliferation of hematopoietic precursor cells involving genetic mutations, signaling pathways related to the cancer cell genetics, and molecular interactions between the cancer cell and the tumor microenvironment, including endothelial cells, fibroblasts, myeloid-derived suppressor cells, bone marrow stromal cells, and immune cells (e.g., T-regs, T-helper 1 cells, T-helper 17 cells, T-effector cells, natural killer cells, and dendritic cells). This molecular systems architecture provides a layered understanding of intra- and inter-cellular interactions in the AML cancer cell and the cells in the stromal microenvironment. The molecular systems architecture may be utilized for target identification and the discovery of single and combination therapeutics and strategies to treat AML.
Collapse
Affiliation(s)
- V. A. Shiva Ayyadurai
- Systems Biology Group, International Center for Integrative Systems, Cambridge, MA 02138, USA;
| | - Prabhakar Deonikar
- Systems Biology Group, International Center for Integrative Systems, Cambridge, MA 02138, USA;
| | | | - Kathleen M. Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
26
|
Egg Yolk Protein Water Extracts Modulate the Immune Response in BALB/c Mice with Immune Dysfunction Caused by Forced Swimming. Foods 2022; 11:foods11010121. [PMID: 35010247 PMCID: PMC8750884 DOI: 10.3390/foods11010121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 01/15/2023] Open
Abstract
The objective of this study was to determine the immunomodulatory effects of egg yolk protein–water extract (EYW) on splenocyte proliferation, cytokine secretion, immunoglobulin production, and NK cell cytotoxic activity in BALB/c mice. The forced swimming test (FST) was used to provide a model for suppressing immune regulation. The proliferation of B cells in the EYW supplementation group was significantly increased from the level to which it was reduced by the FST (from 40.9% to 81.8%, p < 0.05). EYW supplementation affected cytokine secretion of splenocytes. Levels of interleukin (IL)-2 and IL-10—as Th1 and Th2 cytokines, respectively—were decreased after the FST. However, EYW supplementation showed that secretion levels of these cytokines were significantly increased to pre-FST levels (p < 0.05). The production of immunoglobulins (IgA and IgG) was increased abnormally after the FST, whereas EYW supplementation significantly decreased it to pre-FST levels (p < 0.05). EYW supplementation also improved NK cell cytotoxic activity against YAC-1 tumor cells compared to the PC group (p < 0.05). These data suggest that EYW has potential as an immunomodulatory agent in the food and/or pharmaceutical industries.
Collapse
|
27
|
Immunomodulatory Actions of Mesenchymal Stromal Cells (MSCs) in Osteoarthritis of the Knee. OSTEOLOGY 2021. [DOI: 10.3390/osteology1040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cellular therapy offers regeneration which curbs osteoarthritis of the knee. Among cellular therapies, mesenchymal stromal cells (MSCs) are readily isolated from various sources as culture expanded and unexpanded cellular population which are used as therapeutic products. Though MSCs possess a unique immunological and regulatory profile through cross-talk between MSCs and immunoregulatory cells (T cells, NK cells, dendritic cells, B cells, neutrophils, monocytes, and macrophages), they provide an immunotolerant environment when transplanted to the site of action. Immunophenotypic profile allows MSCs to escape immune surveillance and promotes their hypoimmunogenic or immune-privileged status. MSCs do not elicit a proliferative response when co-cultured with allogeneic T cells in vitro. MSCs secrete a wide range of anti-inflammatory mediators such as PGE-2, IDO, IL-1Ra, and IL-10. They also stimulate the resilient chondrogenic progenitors and enhance the chondrocyte differentiation by secretion of BMPs and TGFβ1. We highlight the various mechanisms of MSCs during tissue healing signals, their interaction with the immune system, and the impact of their lifespan in the management of osteoarthritis of the knee. A better understanding of the immunobiology of MSC renders them as an efficient therapeutic product for the management of osteoarthritis of the knee.
Collapse
|
28
|
Lemaire V, Shemesh CS, Rotte A. Pharmacology-based ranking of anti-cancer drugs to guide clinical development of cancer immunotherapy combinations. J Exp Clin Cancer Res 2021; 40:311. [PMID: 34598713 PMCID: PMC8485537 DOI: 10.1186/s13046-021-02111-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
The success of antibodies targeting Programmed cell death protein 1 (PD-1) and its ligand L1 (PD-L1) in cancer treatment and the need for improving response rates has led to an increased demand for the development of combination therapies with anti-PD-1/PD-L1 blockers as a backbone. As more and more drugs with translational potential are identified, the number of clinical trials evaluating combinations has increased considerably and the demand to prioritize combinations having potential for success over the ones that are unlikely to be successful is rising. This review aims to address the unmet need to prioritize cancer immunotherapy combinations through comprehensive search of potential drugs and ranking them based on their mechanism of action, clinical efficacy and safety. As lung cancer is one of the most frequently studied cancer types, combinations that showed potential for the treatment of lung cancer were prioritized. A literature search was performed to identify drugs with potential in combination with PD-1/PD-L1 blockers and the drugs were ranked based on their mechanism of action and known clinical efficacy. Nineteen drugs or drug classes were identified from an internal list of lead molecules and were scored for their clinical potential. Efficacy and safety data from pivotal studies was summarized for the selected drugs. Further, overlap of mechanisms of action and adverse events was visualized using a heat map illustration to help screen drugs for combinations. The quantitative scoring methodology provided in this review could serve as a template for preliminary ranking of novel combinations.
Collapse
Affiliation(s)
- Vincent Lemaire
- Department of Clinical Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Colby S Shemesh
- Department of Clinical Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Anand Rotte
- Independent Consultant, Santa Clara, USA
- Current address: Clinical and Regulatory Affairs, Arcellx, Gaithersburg, USA
| |
Collapse
|
29
|
Abaricia JO, Farzad N, Heath TJ, Simmons J, Morandini L, Olivares-Navarrete R. Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomater 2021; 133:58-73. [PMID: 33882355 DOI: 10.1016/j.actbio.2021.04.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
As the focus of implantable biomaterials has shifted from bioinert implants to bioactive designs, recent research has highlighted the complex interactions between cell physiologic systems and material properties, particularly physical cues. From the cells known to interact with implanted biomaterials, the response of the immune system has been a critical target of study recently. Here, we review studies characterizing the response of innate immune cells to various material cues, particularly of those at the surface of implanted materials.The innate immune system consists of cell types with various roles in inflammation. Neutrophils and macrophages serve both phagocytic and signaling roles, especially early in the inflammatory phase of biomaterial implantation. These cell types ultimately dictate the outcome of implants as chronic inflammation, fibrosis, or integration. Other cell types like dendritic cells, mast cells, natural killer cells, and innate lymphoid cells may also serve an immunomodulatory role in the biomaterial context. This review highlights recent advances in our understanding of the role of innate immunity in the response to implantable biomaterials as well as key mechanobiological findings in innate immune cells underpinning these advances. STATEMENT OF SIGNIFICANCE: This review highlights recent advances in the understanding of the role of innate immunity in the response to implantable biomaterials, especially in neutrophils and macrophages, as well as key mechanobiological findings in innate immune cells underpinning these advances. Here we discuss how physicochemical properties of biomaterials control innate immune cell behavior.
Collapse
|
30
|
Hsu LJ, Liu CL, Kuo ML, Shen CN, Shen CR. An Alternative Cell Therapy for Cancers: Induced Pluripotent Stem Cell (iPSC)-Derived Natural Killer Cells. Biomedicines 2021; 9:1323. [PMID: 34680440 PMCID: PMC8533510 DOI: 10.3390/biomedicines9101323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Cell therapy is usually defined as the treatment or prevention of human disease by supplementation with cells that have been selected, manipulated, and pharmacologically treated or altered outside the body (ex vivo). Induced pluripotent stem cells (iPSCs), with their unique characteristics of indefinite expansion in cultures and genetic modifications, represent an ideal cell source for differentiation into specialized cell types. Cell therapy has recently become one of the most promising therapeutic approaches for cancers, and different immune cell types are selected as therapeutic platforms. Natural killer (NK) cells are shown to be effective tumor cell killers and do not cause graft-vs-host disease (GVHD), making them excellent candidates for, and facilitating the development of, "off-the-shelf" cell therapies. In this review, we summarize the progress in the past decade in the advent of iPSC technology and review recent developments in gene-modified iPSC-NK cells as readily available "off-the-shelf" cellular therapies.
Collapse
Affiliation(s)
- Li-Jie Hsu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- PhD Program in Biotechnology Industry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chao-Lin Liu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei 243, Taiwan;
- Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei 243, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Center of Molecular and Clinical Immunology, Chang Gung University, Taoyuan 333, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Lin-Kou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- PhD Program in Biotechnology Industry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Center of Molecular and Clinical Immunology, Chang Gung University, Taoyuan 333, Taiwan
- Department of Ophthalmology, Lin-Kou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
31
|
A COVID-19 Overview and Potential Applications of Cell Therapy. Biologics 2021. [DOI: 10.3390/biologics1020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has already reaped thousands of lives, although many scientific studies already showed the possibility of this scenario. Currently, further attention is provided to patients depicting comorbidities such as respiratory or immunocompromised diseases, hypertension, and diabetes, as these individuals show a worse prognosis. Cell therapies using stem cells and/or defense cells, combined or not with traditional treatment, could be an outstanding strategy for COVID-19 management since these treatments can act by modulating the immune system, reducing proliferation, and favoring the complete elimination of the virus. In this review, we highlight the main molecular characteristics of this novel coronavirus, as well as the main pathognomonic signs of COVID-19. Furthermore, possible cell therapies are pointed out to show alternative treatments against COVID-19 and its sequels.
Collapse
|
32
|
Mansouri V, Beheshtizadeh N, Gharibshahian M, Sabouri L, Varzandeh M, Rezaei N. Recent advances in regenerative medicine strategies for cancer treatment. Biomed Pharmacother 2021; 141:111875. [PMID: 34229250 DOI: 10.1016/j.biopha.2021.111875] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stands as one of the most leading causes of death worldwide, while one of the most significant challenges in treating it is revealing novel alternatives to predict, diagnose, and eradicate tumor cell growth. Although various methods, such as surgery, chemotherapy, and radiation therapy, are used today to treat cancer, its mortality rate is still high due to the numerous shortcomings of each approach. Regenerative medicine field, including tissue engineering, cell therapy, gene therapy, participate in cancer treatment and development of cancer models to improve the understanding of cancer biology. The final intention is to convey fundamental and laboratory research to effective clinical treatments, from the bench to the bedside. Proper interpretation of research attempts helps to lessen the burden of treatment and illness for patients. The purpose of this review is to investigate the role of regenerative medicine in accelerating and improving cancer treatment. This study examines the capabilities of regenerative medicine in providing novel cancer treatments and the effectiveness of these treatments to clarify this path as much as possible and promote advanced future research in this field.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
33
|
Trivedi A, Khan MA, Bade G, Talwar A. Orchestration of Neutrophil Extracellular Traps (Nets), a Unique Innate Immune Function during Chronic Obstructive Pulmonary Disease (COPD) Development. Biomedicines 2021; 9:53. [PMID: 33435568 PMCID: PMC7826777 DOI: 10.3390/biomedicines9010053] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
Morbidity, mortality and economic burden caused by chronic obstructive pulmonary disease (COPD) is a significant global concern. Surprisingly, COPD is already the third leading cause of death worldwide, something that WHO had not predicted to occur until 2030. It is characterized by persistent respiratory symptoms and airway limitation due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles of gases. Neutrophil is one of the key infiltrated innate immune cells in the lung during the pathogenesis of COPD. Neutrophils during pathogenic attack or injury decide to undergo for a suicidal death by releasing decondensed chromatin entangled with antimicrobial peptides to trap and ensnare pathogens. Casting neutrophil extracellular traps (NETs) has been widely demonstrated to be an effective mechanism against invading microorganisms thus controlling overwhelming infections. However, aberrant and massive NETs formation has been reported in several pulmonary diseases, including chronic obstructive pulmonary disease. Moreover, NETs can directly induce epithelial and endothelial cell death resulting in impairing pulmonary function and accelerating the progression of the disease. Therefore, understanding the regulatory mechanism of NET formation is the need of the hour in order to use NETs for beneficial purpose and controlling their involvement in disease exacerbation. For example, DNA neutralization of NET proteins using protease inhibitors and disintegration with recombinant human DNase would be helpful in controlling excess NETs. Targeting CXC chemokine receptor 2 (CXCR2) would also reduce neutrophilic inflammation, mucus production and neutrophil-proteinase mediated tissue destruction in lung. In this review, we discuss the interplay of NETs in the development and pathophysiology of COPD and how these NETs associated therapies could be leveraged to disrupt NETopathic inflammation as observed in COPD, for better management of the disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| | - Meraj A. Khan
- Translational Medicine, SickKids Research Institute, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Geetanjali Bade
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| | - Anjana Talwar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| |
Collapse
|
34
|
Arianfar E, Shahgordi S, Memarian A. Natural Killer Cell Defects in Breast Cancer: A Key Pathway for Tumor Evasion. Int Rev Immunol 2020; 40:197-216. [PMID: 33258393 DOI: 10.1080/08830185.2020.1845670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the most important innate immune component cancers invader, natural killer (NK) cells have a magnificent role in antitumor immunity without any prior sensitization. Different subsets of NK cells have distinct responses during tumor cell exposure, according to their phenotypes and environments. Their function is induced mainly by the activity of both inhibitory and activating receptors against cancerous cells. Since the immunosuppression in the tumor microenvironment of breast cancer patients has directly deteriorated the phenotype and disturbed the function of NK cells, recruiting compensatory mechanisms indicate promising outcomes for immunotherapeutic approaches. These evidences accentuate the importance of NK cell distinct features in protection against breast tumors. In this review, we discuss the several mechanisms involved in NK cells suppression which consequently promote tumor progression and disease recurrence in patients with breast cancer.
Collapse
Affiliation(s)
- Elaheh Arianfar
- Student Research Committee, Faculty of Medicine, Department of Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sanaz Shahgordi
- Student Research Committee, Faculty of Medicine, Department of Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.,Immunology department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
35
|
Abdian Asl A, Vaziri Nezamdoust F, Fesahat F, Astani A, Barati M, Raee P, Asadi-Saghandi A. Association between rs1049174 NKG2D gene polymorphism and idiopathic recurrent spontaneous abortion in Iranian women: a case-control study. J OBSTET GYNAECOL 2020; 41:774-778. [PMID: 33063590 DOI: 10.1080/01443615.2020.1798906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer group 2, member D (NKG2D) is one of the best known activating receptors of NK cells, which recognises its ligand on altered or stressed cells and activates NK cells to kill them. In this study, the single nucleotide polymorphism of the NKG2D gene for rs1049174 mutation was compared in 140 women with recurrent spontaneous abortion (RSA) and 175 control women with at least one successful pregnancy and without any known pregnancy loss. The findings just revealed that GG genotype and G allele were significantly higher in the case group compared with the control group (p < .001). Our results regarding decreased risk of RSA in C allele (OR = 0.438; 95%CI = 0.310-0.619; p < .001), and GC genotype (OR = 0.492; 95%CI = 0.214-0.574; p < .001) compared with G allele and GG genotype respectively. This study demonstrated a significant association between NKG2D gene polymorphism (rs1049174 G/C) and the risk of RSA in Iranian women.Impact statementWhat is already known on this subject? According to previous investigations, maternal immune responses may affect the foetus, causing recurrent spontaneous abortion (RSA). The main cause of RSA has not yet been detected in nearly 50% of the cases.What do the results of this study add? The results showed that the frequency of G allele and C allele were significantly different in the case group and control group.What are the implications of these findings for clinical practice and/or further research? The results suggest a protective function of C allele because it significantly decreased the risk of RSA compared to G allele. It improves inhibition of NK cells and probably participates in maintaining pregnancy in fertile controls; whereas, G allele is related to a slight inhibition of NK cells, probably leading to increase effectiveness of NK activation and undesirable inflammation, which consequently causes foetal rejection.
Collapse
Affiliation(s)
- Amir Abdian Asl
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Astani
- Zoonotic Diseases Research Center, School of Public Health, Sahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Meisam Barati
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Anatomy and Reproductive Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolghasem Asadi-Saghandi
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
SPECTRUM AND FREQUENCY OF NK CELL RECEPTOR GENES AMONG CYSTIC FIBROSIS PATIENTS. EUREKA: LIFE SCIENCES 2020. [DOI: 10.21303/2504-5695.2020.001328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aim – to establish and analyze the spectrum of KIR genes in people with a confirmed diagnosis of Cystic fibrosis (CF), homozygote of F508del mutation of the СFTR gene for understanding the genetic predisposition of congenital immunity key part functioning during CF.
Materials and Methods. Examined 48 people with a confirmed diagnosis of CF, homozygotes of the F508del mutation of the CFTR gene, and 104 practically healthy people without the F508del mutation of the CFTR gene from the control group. The following molecular genetic methods were used: DNA extraction from peripheral blood cells, KIR genotyping by PCR-SSP for the presence or absence of the 14 KIR genes (KIR2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1).
Results – molecular genetic studies of KIR-genes repertoire in the group of cystic fibrosis patients showed a decrease in the frequency of genes, responsible for activating NK cells receptors. Of the five examined NK cell activation genes, one gene was completely absent, namely 2DS4, and another (2DS1) was detected in only 3 of 48 patients examined, which was 6.25 %, and this figure is significantly lower in comparison with the control group (c2=4.801, p<0.05). Regarding the genes of NK-cell inhibitory receptors, all investigated genes were detected in the study group (8 in general). By detection frequency, they mostly correspond to the control group, with the exception of the 2DL3 gene, found in patients with CF with a significantly lower frequency (c2=11.97, p<0.005).
Conclusion – for the first time in the group of patients with CF, a study was performed on the frequency and spectrum of KIR-genes, responsible for NK cell receptors. Reducing the frequency of activation NK cell receptor genes in patients with CF can lead to a weakening of congenital immunity and the severity of infectious processes during CF
Collapse
|
37
|
Abstract
The observation that heart failure with reduced ejection fraction is associated with elevated circulating levels of pro-inflammatory cytokines opened a new area of research that has revealed a potentially important role for the immune system in the pathogenesis of heart failure. However, until the publication in 2019 of the CANTOS trial findings on heart failure outcomes, all attempts to target inflammation in the heart failure setting in phase III clinical trials resulted in neutral effects or worsening of clinical outcomes. This lack of positive results in turn prompted questions on whether inflammation is a cause or consequence of heart failure. This Review summarizes the latest developments in our understanding of the role of the innate and adaptive immune systems in the pathogenesis of heart failure, and highlights the results of phase III clinical trials of therapies targeting inflammatory processes in the heart failure setting, such as anti-inflammatory and immunomodulatory strategies. The most recent of these studies, the CANTOS trial, raises the exciting possibility that, in the foreseeable future, we might be able to identify those patients with heart failure who have a cardio-inflammatory phenotype and will thus benefit from therapies targeting inflammation.
Collapse
|
38
|
Deniz AAH, Abdik EA, Abdik H, Aydın S, Şahin F, Taşlı PN. Zooming in across the Skin: A Macro-to-Molecular Panorama. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1247:157-200. [PMID: 31953808 DOI: 10.1007/5584_2019_442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Vo MC, Lakshmi TJ, Jung SH, Cho D, Park HS, Chu TH, Lee HJ, Kim HJ, Kim SK, Lee JJ. Cellular immunotherapy in multiple myeloma. Korean J Intern Med 2019; 34:954-965. [PMID: 30754964 PMCID: PMC6718748 DOI: 10.3904/kjim.2018.325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
In multiple myeloma (MM), the impaired function of several types of immune cells favors the tumor's escape from immune surveillance and, therefore, its growth and survival. Tremendous improvements have been made in the treatment of MM over the past decade but cellular immunotherapy using dendritic cells, natural killer cells, and genetically engineered T-cells represent a new therapeutic era. The application of these treatments is growing rapidly, based on their capacity to eradicate MM. In this review, we summarize recent progress in cellular immunotherapy for MM and its future prospects.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye-Seong Park
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun-Ju Lee
- VaxCell-Bio Therapeutics, Hwasun, College of Industrial Science, Kongju National University, Yesan, Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan, Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
- VaxCell-Bio Therapeutics, Hwasun, College of Industrial Science, Kongju National University, Yesan, Korea
- Correspondence to Je-Jung Lee, M.D. Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun 58128, Korea Tel: +82-61-379-7638, Fax: +82-61-379-7628, E-mail:
| |
Collapse
|
40
|
Kumar V. Natural killer cells in sepsis: Underprivileged innate immune cells. Eur J Cell Biol 2019; 98:81-93. [DOI: 10.1016/j.ejcb.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
|
41
|
Sterle HA, Nicoud MB, Massari NA, Táquez Delgado MA, Herrero Ducloux MV, Cremaschi GA, Medina VA. Immunomodulatory role of histamine H4 receptor in breast cancer. Br J Cancer 2019; 120:128-138. [PMID: 29988113 PMCID: PMC6325108 DOI: 10.1038/s41416-018-0173-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Although the role of histamine H4 receptor (H4R) in immune cells is being extensively investigated, its immunomodulatory function in cancer is completely unknown. This study aimed to investigate the role of H4R in antitumour immunity in a model of triple-negative breast cancer. METHODS We evaluated growth parameters, histological characteristics and the composition of tumour, splenic and tumour draining lymph node (TDLN) immune subsets, in a syngeneic model, developed orthotopically with 4T1 cells in H4R knockout (H4R-KO) and wild-type mice. RESULTS Mice lacking H4R show reduced tumour size and weight, decreased number of lung metastases and percentage of CD4+ tumour-infiltrating T cells, while exhibiting increased infiltration of NK cells and CD19+ lymphocytes. Likewise, TDLN of H4R-KO mice show decreased CD4+ T cells and T regulatory cells (CD4+CD25+FoxP3+), and increased percentages of NK cells. Finally, H4R-deficient mice show decreased Tregs in spleens and non-draining lymph nodes, and a negative correlation between tumour weight and the percentages of CD4+, CD19+ and NK splenic cells, suggesting that H4R also regulates antitumour immunity at a systemic level. CONCLUSIONS This is the first report that demonstrates the participation of H4R in antitumour immunity, suggesting that H4R could be a target for cancer treatment.
Collapse
Affiliation(s)
- Helena A Sterle
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Noelia A Massari
- Immunology Department, School of Natural Sciences, National University of Patagonia San Juan Bosco, Chubut, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - María V Herrero Ducloux
- Pathology Department, School of Natural Sciences, National University of Patagonia San Juan Bosco, Chubut, Argentina
| | - Graciela A Cremaschi
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Gao L, Jiang Y, Wang Y, Qu X, Li L, Lou X, Wang Y, Guo H, Liu Y. Male asymptomatic hyperuricemia patients display a lower number of NKG2D+ NK cells before and after a low-purine diet. Medicine (Baltimore) 2018; 97:e13668. [PMID: 30558070 PMCID: PMC6320027 DOI: 10.1097/md.0000000000013668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Aberrant activation of the immune system has been reported in asymptomatic hyperuricemia (HUA) patients. However, very few studies have elucidated the role of natural killer (NK) cells in this disease. METHODS In this study, we evaluated the relationship between NK cells and HUA in 16 control subjects and 20 patients, who were all on a low-purine diet. We analyzed the number of circulating NK cells, its subsets, interferon-γ, and CD107 NK cells, by flow cytometry, before and after 4 and 24 weeks of diet control. We also assessed the potential association of the NK cells with clinical measures. RESULTS The patients consistently had a lower number of NKG2D NK cells before and after low-purine diet, even the serum uric acid (SUA) levels <7 mg/dL after diet control. Moreover, a lower number of NK cells and a higher number of CD107a NK cells were observed on recruitment. Low-purine diet was benefit on the improvement of the SUA levels, body mass index (BMI), and the number and functions of NK cells. Furthermore, the number of CD3CD56 NK cells and NKG2D NK cells negatively correlated with the BMI before and after diet control. CONCLUSION The consistent lower number of NKG2D NK cells and correlated with BMI before and after low-purine diet may be involved in the occurrence and development of HUA.
Collapse
Affiliation(s)
- Lichao Gao
- The School of Public Health
- Department of Endocrinology of The First Hospital, Jilin University
| | - Yanfang Jiang
- Genetic Diagnosis Center
- Key Laboratory of Zoonoses Research, Ministry of Education, The First Hospital of Jilin University, Changchun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yichen Wang
- Department of Endocrinology of The First Hospital, Jilin University
| | - Xiaozhang Qu
- Department of Endocrinology of The First Hospital, Jilin University
| | - Lei Li
- Department of Endocrinology of The First Hospital, Jilin University
| | - Xiaoqian Lou
- Department of Endocrinology of The First Hospital, Jilin University
| | - Ye Wang
- Department of Endocrinology of The First Hospital, Jilin University
| | - Hui Guo
- Department of Endocrinology of The First Hospital, Jilin University
| | - Ya Liu
- The School of Public Health
| |
Collapse
|
43
|
Littwitz-Salomon E, Malyshkina A, Schimmer S, Dittmer U. The Cytotoxic Activity of Natural Killer Cells Is Suppressed by IL-10 + Regulatory T Cells During Acute Retroviral Infection. Front Immunol 2018; 9:1947. [PMID: 30210499 PMCID: PMC6119693 DOI: 10.3389/fimmu.2018.01947] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022] Open
Abstract
Natural killer (NK) cells play a key role in host defense against cancer and viral infections. It was shown that NK cells are important for the control of acute retroviral infections, but their antiviral activity depends on multiple parameters such as viral inoculation dose, interactions with myeloid cell types and the cytokine milieu. In addition, during an ongoing retroviral infection regulatory T cells (Tregs) can suppress NK cell functions. However, the precise role of Tregs on the initial NK cell response and their immediate antiviral activity after an acute retroviral infection is still unknown. Here we show that thymus-derived Tregs suppress the proliferation, effector functions and cytotoxicity of NK cells very early during acute Friend Retrovirus (FV) infection. Tregs exhibited an activated phenotype and increased the production of the immunosuppressive cytokines IL-10 and TGF-β after FV infection of mice. Neutralization of the immunosuppressive cytokine IL-10 resulted in a significant augmentation of NK cell functions. Although the activation of dendritic cells (DCs) and macrophages as well as the IL-15 cytokine levels were increased after Treg depletion, Tregs mainly affect the NK cell activity in an IL-10-regulated pathway. In this study we demonstrate an IL-10-dependent suppression of NK cells by activated Tregs during the first days of a retroviral infection.
Collapse
Affiliation(s)
| | - Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
44
|
Zhu G, Nemoto S, Mailloux AW, Perez-Villarroel P, Nakagawa R, Falahat R, Berglund AE, Mulé JJ. Induction of Tertiary Lymphoid Structures With Antitumor Function by a Lymph Node-Derived Stromal Cell Line. Front Immunol 2018; 9:1609. [PMID: 30061886 PMCID: PMC6054958 DOI: 10.3389/fimmu.2018.01609] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/28/2018] [Indexed: 02/03/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) associate with better prognosis in certain cancer types, but their underlying formation and immunological benefit remain to be determined. We established a mouse model of TLSs to study their contribution to antitumor immunity. Because the stroma in lymph nodes (sLN) participates in architectural support, lymphogenesis, and lymphocyte recruitment, we hypothesized that TLSs can be created by sLN. We selected a sLN line with fibroblast morphology that expressed sLN surface markers and lymphoid chemokines. The subcutaneous injection of the sLN line successfully induced TLSs that attracted infiltration of host immune cell subsets. Injection of MC38 tumor lysate-pulsed dendritic cells activated TLS-residing lymphocytes to demonstrate specific cytotoxicity. The presence of TLSs suppressed MC38 tumor growth in vivo by improving antitumor activity of tumor-infiltrating lymphocytes with downregulated immune checkpoint proteins (PD-1 and Tim-3). Future engineering of sLN lines may allow for further enhancements of TLS functions and immune cell compositions.
Collapse
Affiliation(s)
- Genyuan Zhu
- Immunology Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Satoshi Nemoto
- Immunology Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Adam W Mailloux
- Immunology Program, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Ryosuke Nakagawa
- Immunology Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Rana Falahat
- Immunology Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, United States
| | - James J Mulé
- Immunology Program, Moffitt Cancer Center, Tampa, FL, United States.,Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
45
|
The role of extracellular vesicles when innate meets adaptive. Semin Immunopathol 2018; 40:439-452. [PMID: 29616308 PMCID: PMC6208666 DOI: 10.1007/s00281-018-0681-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.
Collapse
|
46
|
Lin C, Zhang J. Reformation in chimeric antigen receptor based cancer immunotherapy: Redirecting natural killer cell. Biochim Biophys Acta Rev Cancer 2018; 1869:200-215. [DOI: 10.1016/j.bbcan.2018.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/20/2018] [Indexed: 01/05/2023]
|
47
|
Bazett M, Costa AM, Bosiljcic M, Anderson RM, Alexander MP, Wong SWY, Dhanji S, Chen JM, Pankovich J, Lam S, Sutcliffe S, Gunn H, Kalyan S, Mullins DW. Harnessing innate lung anti-cancer effector functions with a novel bacterial-derived immunotherapy. Oncoimmunology 2017; 7:e1398875. [PMID: 29399400 PMCID: PMC5790356 DOI: 10.1080/2162402x.2017.1398875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023] Open
Abstract
Acute infection is known to induce strong anti-tumor immune responses, but clinical translation has been hindered by the lack of an effective strategy to safely and consistently provoke a therapeutic response. These limitations are overcome with a novel treatment approach involving repeated subcutaneous delivery of a Klebsiella-derived investigational immunotherapeutic, QBKPN. In preclinical models of lung cancer, QBKPN administration consistently showed anti-cancer efficacy, which was dependent on Klebsiella pre-exposure, but was independent of adaptive immunity. Rather, QBKPN induced anti-tumor innate immunity that required NK cells and NKG2D engagement. QBKPN increased NK cells and macrophages in the lungs, altered macrophage polarization, and augmented the production of cytotoxic molecules. An exploratory trial in patients with non-small cell lung cancer demonstrated QBKPN was well tolerated, safe, and induced peripheral immune changes suggestive of macrophage polarization and reduction of PD-1 and PD-L1 expression on leukocytes. These data demonstrate preclinical efficacy, and clinical safety and tolerability, for this cancer immunotherapy strategy that exploits innate anti-tumor immune mechanisms.
Collapse
Affiliation(s)
- Mark Bazett
- Qu Biologics Inc., Vancouver, BC, V5 T 4T5, Canada
| | - Amanda M Costa
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | - Matthew P Alexander
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Stephanie W Y Wong
- Qu Biologics Inc., Vancouver, BC, V5 T 4T5, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Salim Dhanji
- Qu Biologics Inc., Vancouver, BC, V5 T 4T5, Canada
| | | | | | - Stephen Lam
- BC Cancer Research Center, Vancouver, BC, Canada
| | | | - Hal Gunn
- Qu Biologics Inc., Vancouver, BC, V5 T 4T5, Canada
| | - Shirin Kalyan
- Qu Biologics Inc., Vancouver, BC, V5 T 4T5, Canada.,Department of Medicine, Division of Endocrinology, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - David W Mullins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Medical Education, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
48
|
Schäfer C, Ascui G, Ribeiro CH, López M, Prados-Rosales R, González PA, Bueno SM, Riedel CA, Baena A, Kalergis AM, Carreño LJ. Innate immune cells for immunotherapy of autoimmune and cancer disorders. Int Rev Immunol 2017; 36:315-337. [PMID: 28933579 DOI: 10.1080/08830185.2017.1365145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Modulation of the immune system has been widely targeted for the treatment of several immune-related diseases, such as autoimmune disorders and cancer, due to its crucial role in these pathologies. Current available therapies focus mainly on symptomatic treatment and are often associated with undesirable secondary effects. For several years, remission of disease and subsequently recovery of immune homeostasis has been a major goal for immunotherapy. Most current immunotherapeutic strategies are aimed to inhibit or potentiate directly the adaptive immune response by modulating antibody production and B cell memory, as well as the effector potential and memory of T cells. Although these immunomodulatory approaches have shown some success in the clinic with promising therapeutic potential, they have some limitations related to their effectiveness in disease models and clinical trials, as well as elevated costs. In the recent years, a renewed interest has emerged on targeting innate immune cells for immunotherapy, due to their high plasticity and ability to exert a potent and extremely rapid response, which can influence the outcome of the adaptive immune response. In this review, we discuss the immunomodulatory potential of several innate immune cells, as well as they use for immunotherapy, especially in autoimmunity and cancer.
Collapse
Affiliation(s)
- Carolina Schäfer
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Gabriel Ascui
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Carolina H Ribeiro
- b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Mercedes López
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Rafael Prados-Rosales
- c Centro de Investigaciones Cooperativas en Biociencias (CIC bioGUNE) , Bilbao , Spain
| | - Pablo A González
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Riedel
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,e Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina , Universidad Andrés Bello , Santiago , Chile
| | - Andrés Baena
- f Departamento de Microbiología y Parasitología, Facultad de Medicina , Universidad de Antioquia , Medellín , Colombia
| | - Alexis M Kalergis
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile.,g Departamento de Endocrinología, Facultad de Medicina , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Leandro J Carreño
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| |
Collapse
|
49
|
Use of C57BL/6N mice on the variety of immunological researches. Lab Anim Res 2017; 33:119-123. [PMID: 28747977 PMCID: PMC5527137 DOI: 10.5625/lar.2017.33.2.119] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Inbred mice are an essential animal strain for research as they can improve the reproducibility and reliability of study results. The establishment of new inbred lines is continuing, and new inbred lines are being used in many research fields. C57BL/6 is a mouse laboratory animal that has been developed and used as an inbred strain since early stage of mouse strain development, and, in the 1950s, C57BL/6 was separated into substrains by the Jackson Laboratory (C57BL/6J) and the National Institutes of Health (C57BL/6N). C57BL/6 mice have been used in immunology and antitumor activity studies since the early strain development stage. After the mouse genome was fully described, C57BL/6 mice use in many areas of research has expanded. In particular, immunological characteristics such as those related to cell-mediated immunity and NK cell activity are relatively higher in C57BL/6 mice than in other mice. The C57BL/6NKorl is a stock of C57BL/6N established as part of a localization of experimental animal strategy of the Korean Food and Drug Administration. Based on analysis of single nucleotide polymorphisms (SNPs), C57BL/6NKorl is considered a genetically distinct inbred stock from other C57BL/6N. Various research efforts have been made to describe the characteristics and increase knowledge of the characteristics of C57BL/6Nkorl. The results obtained through these efforts are expected to increase the utilization of C57BL/6Nkorl as a domestic laboratory animal resource and to enhance the reliability of mouse based studies.
Collapse
|
50
|
Reactive oxygen species mediated T lymphocyte abnormalities in an iron-overloaded mouse model and iron-overloaded patients with myelodysplastic syndromes. Ann Hematol 2017; 96:1085-1095. [DOI: 10.1007/s00277-017-2985-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
|