1
|
Chen X, Xi Q, Sun F, Zou L, Li Y. Facile fabrication of redox nanoparticles loaded with exosomal-miRNAs and resveratrol as glycation inhibitor in alleviating the progression and development of diabetic cataract. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4247-4263. [PMID: 39446149 DOI: 10.1007/s00210-024-03535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Diabetic cataract (DC) represents a highly prevalent ocular manifestation resulting from diabetes often culminating in vision impairment among individuals with diabetes. Regrettably, the armamentarium of pharmaceutical interventions capable of both delaying and thwarting the onset of DC remains conspicuously sparse. Based on contemporary investigations, the pathogenesis of DC is prominently influenced by oxidative harm to the crystalline lens and the nonenzymatic glycosylation of lens proteins. Consequently, we have developed self-regenerating cerium oxide nanoparticles (CeO2 NPs), enveloped with resveratrol (RSV) and exosomal-microRNA (miRNA) to alleviate the effects of DC in an in vitro model. Moreover, the inclusion of RSV within CeO2 NPs serves a dual purpose. It can act as an antioxidant, minimizing glycation, and induce oxidative stress by effectively neutralizing reactive oxygen species (ROS). Additionally, it serves as a glycation inhibitor effectively preventing the cross-linking. Consequently, it helps minimize the glucose level in hemoglobin and inhibits the formation of advanced glycation end products (AGEs). Likewise, the CeO2-exosomal-miRNA when treated alone found to slightly impede the viability of human lens epithelial cells (HLEC) and induce apoptosis by suppressing the expression of α-crystalline gene (CRYAA). Particularly, miRNAs target genes associated with oxidative stress pathways, protein glycation, and the generation of AGEs, hence preventing structural damage to lens proteins. Compared with CeO2, RSV-CeO2, and miRNA-RSV-CeO2, the presence of miRNA-RSV-CeO2 led to a significant decrease in hemoglobin glycation. Remarkably, miRNA-RSV-CeO2 NPs attenuate the formation of malondialdehyde (MDA) and conjugated dienes (CD) with a relative value of 14.63 and 11.37 nmol/mg. As per the report, this method presents a promising opportunity to implement the proposed material combination for attenuating diabetic cataracts.
Collapse
Affiliation(s)
- Xia Chen
- Department of Endocrinology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China.
| | - Qian Xi
- Department of Endocrinology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Fei Sun
- Department of Endocrinology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Lin Zou
- Department of Endocrinology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Yingxuan Li
- Department of Endocrinology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| |
Collapse
|
2
|
Wu H, Li Y, Shi L, Liu Y, Shen J. New Advances in Periodontal Functional Materials Based on Antibacterial, Anti-Inflammatory, and Tissue Regeneration Strategies. Adv Healthc Mater 2025; 14:e2403206. [PMID: 39895157 DOI: 10.1002/adhm.202403206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/17/2025] [Indexed: 02/04/2025]
Abstract
With the global population aging, awareness of oral health is rising. Periodontitis, a widespread bacterial infectious disease, is gaining attention. Current novel biomaterials address key clinical issues like bacterial infection, gum inflammation, tooth loosening, and loss, focusing on antibacterial, anti-inflammatory, and tissue regeneration properties. However, strategies that integrate the advantages of these biomaterials to achieve synergistic therapeutic effects by clearing oral biofilms, inhibiting inflammation activation, and restoring periodontal soft and hard tissue functions remain very limited. Recent studies highlight the link between periodontitis and systemic diseases, underscoring the complexity of the periodontal disease. There is an urgent need to find comprehensive treatment plans that address clinical requirements. Whether by integrating new biomaterials to enhance existing periodontal treatments or by developing novel approaches to replace traditional therapies, these efforts will drive advancements in periodontitis treatment. Therefore, this review compares novel biomaterials with traditional treatments. It highlights the design concepts and mechanisms of these functional materials, focusing on their antibacterial, anti-inflammatory, and tissue regeneration properties, and discusses the importance of developing comprehensive treatment strategies. This review aims to provide guidance for emerging periodontitis research and to promote the development of precise and efficient treatment strategies.
Collapse
Affiliation(s)
- Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanfeng Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jing Shen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| |
Collapse
|
3
|
Liu D, Sun S, Qiao H, Xin Q, Zhou S, Li L, Song N, Zhang L, Chen Q, Tian F, Mu X, Zhang S, Zhang J, Guo M, Wang H, Zhang XD, Zhang R. Ce 12V 6 Clusters with Multi-Enzymatic Activities for Sepsis Treatment. Adv Healthc Mater 2025; 14:e2401581. [PMID: 39129228 DOI: 10.1002/adhm.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Artificial enzymes, especially nanozymes, have attracted wide attention due to their controlled catalytic activity, selectivity, and stability. The rising Cerium-based nanozymes exhibit unique SOD-like activity, and Vanadium-based nanozymes always hold excellent GPx-like activity. However, most inflammatory diseases involve polymerase biocatalytic processes that require multi-enzyme activities. The nanocomposite can fulfill multi-enzymatic activity simultaneously, but large nanoparticles (>10 nm) cannot be excreted rapidly, leading to biosafety challenges. Herein, atomically precise Ce12V6 clusters with a size of 2.19 nm are constructed. The Ce12V6 clusters show excellent glutathione peroxidase (GPx) -like activity with a significantly lower Michaelis-Menten constant (Km, 0.0125 mM versus 0.03 mM of natural counterpart) and good activities mimic superoxide dismutase (SOD) and peroxidase (POD). The Ce12V6 clusters exhibit the ability to scavenge the ROS including O2 ·- and H2O2 via the cascade reactions of multi-enzymatic activities. Further, the Ce12V6 clusters modulate the proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and consequently rescue the multi-organ failure in the lipopolysaccharide (LPS)-induced sepsis mouse model. With excellent biocompatibility, the Ce12V6 clusters show promise in the treatment of sepsis.
Collapse
Affiliation(s)
- Di Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Si Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Lingxia Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Cardiology Tianjin Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
4
|
Wang C, Liu A, Zhao Z, Ying T, Deng S, Jian Z, Zhang X, Yi C, Li D. Application and progress of 3D printed biomaterials in osteoporosis. Front Bioeng Biotechnol 2025; 13:1541746. [PMID: 39968010 PMCID: PMC11832546 DOI: 10.3389/fbioe.2025.1541746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Osteoporosis results from a disruption in skeletal homeostasis caused by an imbalance between bone resorption and bone formation. Conventional treatments, such as pharmaceutical drugs and hormone replacement therapy, often yield suboptimal results and are frequently associated with side effects. Recently, biomaterial-based approaches have gained attention as promising alternatives for managing osteoporosis. This review summarizes the current advancements in 3D-printed biomaterials designed for osteoporosis treatment. The benefits of biomaterial-based approaches compared to traditional systemic drug therapies are discussed. These 3D-printed materials can be broadly categorized based on their functionalities, including promoting osteogenesis, reducing inflammation, exhibiting antioxidant properties, and inhibiting osteoclast activity. 3D printing has the advantages of speed, precision, personalization, etc. It is able to satisfy the requirements of irregular geometry, differentiated composition, and multilayered structure of articular osteochondral scaffolds with boundary layer structure. The limitations of existing biomaterials are critically analyzed and future directions for biomaterial-based therapies are considered.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Aiguo Liu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Ziwen Zhao
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ting Ying
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuang Deng
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhen Jian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
5
|
Lin L, Liu H, Zhang D, Du L, Zhang H. Nanolevel Immunomodulators in Sepsis: Novel Roles, Current Perspectives, and Future Directions. Int J Nanomedicine 2024; 19:12529-12556. [PMID: 39606559 PMCID: PMC11600945 DOI: 10.2147/ijn.s496456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis represents a profound challenge in critical care, characterized by a severe systemic inflammatory response which can lead to multi-organ failure and death. The intricate pathophysiology of sepsis involves an overwhelming immune reaction that disrupts normal host defense mechanisms, necessitating innovative approaches to modulation. Nanoscale immunomodulators, with their precision targeting and controlled release capabilities, have emerged as a potent solution to recalibrate immune responses in sepsis. This review explores the recent advancements in nanotechnology for sepsis management, emphasizing the integration of nanoparticulate systems to modulate immune function and inflammatory pathways. Discussions detail the development of the immune system, the distinct inflammatory responses triggered by sepsis, and the scientific principles underpinning nanoscale immunomodulation, including specific targeting mechanisms and delivery systems. The review highlights nanoformulation designs aimed at enhancing bioavailability, stability, and therapeutic efficacy, which shows promise in clinical settings by modulating key inflammatory pathways. Ultimately, this review synthesizes the current state of knowledge and projects future directions for research, underscoring the transformative potential of nanolevel immunomodulators for sepsis treatment through innovative technologies and therapeutic strategies.
Collapse
Affiliation(s)
- Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Hanyou Liu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Dingshan Zhang
- Department of Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, People’s Republic of China
| | - Lijia Du
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| | - Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Jiang C, Shi Q, Yang J, Ren H, Zhang L, Chen S, Si J, Liu Y, Sha D, Xu B, Ni J. Ceria nanozyme coordination with curcumin for treatment of sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation. J Adv Res 2024; 63:159-170. [PMID: 37871772 PMCID: PMC11380017 DOI: 10.1016/j.jare.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
INTRODUCTION Sepsis-induced cardiac injury is the leading cause of death in patients. Recent studies have reported that reactive oxygen species (ROS)-mediated ferroptosis and macrophage-induced inflammation are the two main key roles in the process of cardiac injury. The combination of ferroptosis and inflammation inhibition is a feasible strategy in the treatment of sepsis-induced cardiac injury. OBJECTIVES In the present study, ceria nanozyme coordination with curcumin (CeCH) was designed by a self-assembled method with human serum albumin (HSA) to inhibit ferroptosis and inflammation of sepsis-induced cardiac injury. METHODS AND RESULTS The formed CeCH obtained the superoxide dismutase (SOD)-like and catalase (CAT)-like activities from ceria nanozyme to scavenge ROS, which showed a protective effect on cardiomyocytes in vitro. Furthermore, it also showed ferroptosis inhibition to reverse cell death from RSL3-induced cardiomyocytes, denoted from curcumin. Due to the combination therapy of ceria nanozyme and curcumin, the formed CeCH NPs could also promote M2 macrophage polarization to reduce inflammation in vitro. In the lipopolysaccharide (LPS)-induced sepsis model, the CeCH NPs could effectively inhibit ferroptosis, reverse inflammation, and reduce the release of pro-inflammatory factors, which markedly alleviated the myocardial injury and recover the cardiac function. CONCLUSION Overall, the simple self-assembled strategy with ceria nanozyme and curcumin showed a promising clinical application for sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation.
Collapse
Affiliation(s)
- Chenxiao Jiang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Qianzhi Shi
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Jing Yang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Lu Zhang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Shan Chen
- Department of General Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jiayi Si
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Dujuan Sha
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of General Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Jie Ni
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
7
|
Fu J, Cai W, Pan S, Chen L, Fang X, Shang Y, Xu J. Developments and Trends of Nanotechnology Application in Sepsis: A Comprehensive Review Based on Knowledge Visualization Analysis. ACS NANO 2024; 18:7711-7738. [PMID: 38427687 DOI: 10.1021/acsnano.3c10458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Sepsis, a common life-threatening clinical condition, continues to have high morbidity and mortality rates, despite advancements in management. In response, significant research efforts have been directed toward developing effective strategies. Within this scope, nanotechnology has emerged as a particularly promising field, attracting significant interest for its potential to enhance disease diagnosis and treatment. While several reviews have highlighted the use of nanoparticles in sepsis, comprehensive studies that summarize and analyze the hotspots and research trends are lacking. To identify and further promote the development of nanotechnology in sepsis, a bibliometric analysis was conducted on the relevant literature, assessing research trends and hotspots in the application of nanomaterials for sepsis. Next, a comprehensive review of the subjectively recognized research hotspots in sepsis, including nanotechnology-enhanced biosensors and nanoscale imaging for sepsis diagnostics, and nanoplatforms designed for antimicrobial, immunomodulatory, and detoxification strategies in sepsis therapy, is elucidated, while the potential side effects and toxicity risks of these nanomaterials were discussed. Particular attention is given to biomimetic nanoparticles, which mimic the biological functions of source cells like erythrocytes, immune cells, and platelets to evade immune responses and effectively deliver therapeutic agents, demonstrating substantial translational potential. Finally, current challenges and future perspectives of nanotechnology applications in sepsis with a view to maximizing their great potential in the research of translational medicine are also discussed.
Collapse
Affiliation(s)
- Jiaji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, China
| | - Wentai Cai
- The First Clinical College, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lang Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaowei Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, China
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
8
|
Kim YG, Lee Y, Lee N, Soh M, Kim D, Hyeon T. Ceria-Based Therapeutic Antioxidants for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210819. [PMID: 36793245 DOI: 10.1002/adma.202210819] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The growing interest in nanomedicine over the last 20 years has carved out a research field called "nanocatalytic therapy," where catalytic reactions mediated by nanomaterials are employed to intervene in disease-critical biomolecular processes. Among many kinds of catalytic/enzyme-mimetic nanomaterials investigated thus far, ceria nanoparticles stand out from others owing to their unique scavenging properties against biologically noxious free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), by exerting enzyme mimicry and nonenzymatic activities. Much effort has been made to utilize ceria nanoparticles as self-regenerating antioxidative and anti-inflammatory agents for various kinds of diseases, given the detrimental effects of ROS and RNS therein that need alleviation. In this context, this review is intended to provide an overview as to what makes ceria nanoparticles merit attention in disease therapy. The introductory part describes the characteristics of ceria nanoparticles as an oxygen-deficient metal oxide. The pathophysiological roles of ROS and RNS are then presented, as well as their scavenging mechanisms by ceria nanoparticles. Representative examples of recent ceria-nanoparticle-based therapeutics are summarized by categorization into organ and disease types, followed by the discussion on the remaining challenges and future research directions.
Collapse
Affiliation(s)
- Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yunjung Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Min Soh
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Center for Advanced Pharmaceutical Technology, HyeonTechNBio, Inc., Seoul, 08826, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Liu J, Han X, Zhang T, Tian K, Li Z, Luo F. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. J Hematol Oncol 2023; 16:116. [PMID: 38037103 PMCID: PMC10687997 DOI: 10.1186/s13045-023-01512-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Inflammation is a fundamental defensive response to harmful stimuli, but the overactivation of inflammatory responses is associated with most human diseases. Reactive oxygen species (ROS) are a class of chemicals that are generated after the incomplete reduction of molecular oxygen. At moderate levels, ROS function as critical signaling molecules in the modulation of various physiological functions, including inflammatory responses. However, at excessive levels, ROS exert toxic effects and directly oxidize biological macromolecules, such as proteins, nucleic acids and lipids, further exacerbating the development of inflammatory responses and causing various inflammatory diseases. Therefore, designing and manufacturing biomaterials that scavenge ROS has emerged an important approach for restoring ROS homeostasis, limiting inflammatory responses and protecting the host against damage. This review systematically outlines the dynamic balance of ROS production and clearance under physiological conditions. We focus on the mechanisms by which ROS regulate cell signaling proteins and how these cell signaling proteins further affect inflammation. Furthermore, we discuss the use of potential and currently available-biomaterials that scavenge ROS, including agents that were engineered to reduce ROS levels by blocking ROS generation, directly chemically reacting with ROS, or catalytically accelerating ROS clearance, in the treatment of inflammatory diseases. Finally, we evaluate the challenges and prospects for the controlled production and material design of ROS scavenging biomaterials.
Collapse
Affiliation(s)
- Jiatong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tingyue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhaoping Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, 610041, China.
| |
Collapse
|
10
|
Corsi F, Deidda Tarquini G, Urbani M, Bejarano I, Traversa E, Ghibelli L. The Impressive Anti-Inflammatory Activity of Cerium Oxide Nanoparticles: More than Redox? NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2803. [PMID: 37887953 PMCID: PMC10609664 DOI: 10.3390/nano13202803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Cerium oxide nanoparticles (CNPs) are biocompatible nanozymes exerting multifunctional biomimetic activities, including superoxide dismutase (SOD), catalase, glutathione peroxidase, photolyase, and phosphatase. SOD- and catalase-mimesis depend on Ce3+/Ce4+ redox switch on nanoparticle surface, which allows scavenging the most noxious reactive oxygen species in a self-regenerating, energy-free manner. As oxidative stress plays pivotal roles in the pathogenesis of inflammatory disorders, CNPs have recently attracted attention as potential anti-inflammatory agents. A careful survey of the literature reveals that CNPs, alone or as constituents of implants and scaffolds, strongly contrast chronic inflammation (including neurodegenerative and autoimmune diseases, liver steatosis, gastrointestinal disorders), infections, and trauma, thereby ameliorating/restoring organ function. By general consensus, CNPs inhibit inflammation cues while boosting the pro-resolving anti-inflammatory signaling pathways. The mechanism of CNPs' anti-inflammatory effects has hardly been investigated, being rather deductively attributed to CNP-induced ROS scavenging. However, CNPs are multi-functional nanozymes that exert additional bioactivities independent from the Ce3+/Ce4+ redox switch, such as phosphatase activity, which could conceivably mediate some of the anti-inflammatory effects reported, suggesting that CNPs fight inflammation via pleiotropic actions. Since CNP anti-inflammatory activity is potentially a pharmacological breakthrough, it is important to precisely attribute the described effects to one or another of their nanozyme functions, thus achieving therapeutic credibility.
Collapse
Affiliation(s)
- Francesca Corsi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Greta Deidda Tarquini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marta Urbani
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Ignacio Bejarano
- Institute of Biomedicine of Seville (IBiS), University of Seville, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain;
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41004 Seville, Spain
| | - Enrico Traversa
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
11
|
Song C, Xu J, Gao C, Zhang W, Fang X, Shang Y. Nanomaterials targeting macrophages in sepsis: A promising approach for sepsis management. Front Immunol 2022; 13:1026173. [PMID: 36569932 PMCID: PMC9780679 DOI: 10.3389/fimmu.2022.1026173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. Macrophages play significant roles in host against pathogens and the immunopathogenesis of sepsis, such as phagocytosis of pathogens, secretion of cytokines, and phenotype reprogramming. However, the rapid progression of sepsis impairs macrophage function, and conventional antimicrobial and supportive treatment are not sufficient to restore dysregulated macrophages roles. Nanoparticles own unique physicochemical properties, surface functions, localized surface plasmon resonance phenomenon, passive targeting in vivo, good biocompatibility and biodegradability, are accessible for biomedical applications. Once into the body, NPs are recognized by host immune system. Macrophages are phagocytes in innate immunity dedicated to the recognition of foreign substances, including nanoparticles, with which an immune response subsequently occurs. Various design strategies, such as surface functionalization, have been implemented to manipulate the recognition of nanoparticles by monocytes/macrophages, and engulfed by them to regulate their function in sepsis, compensating for the shortcomings of sepsis traditional methods. The review summarizes the mechanism of nanomaterials targeting macrophages and recent advances in nanomedicine targeting macrophages in sepsis, which provides good insight for exploring macrophage-based nano-management in sepsis.
Collapse
|
12
|
Jayusman PA, Nasruddin NS, Mahamad Apandi NI, Ibrahim N, Budin SB. Therapeutic Potential of Polyphenol and Nanoparticles Mediated Delivery in Periodontal Inflammation: A Review of Current Trends and Future Perspectives. Front Pharmacol 2022; 13:847702. [PMID: 35903322 PMCID: PMC9315271 DOI: 10.3389/fphar.2022.847702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/21/2022] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is an oral inflammatory process involving the periodontium, which is mainly caused by the invasion of periodontopathogenic microorganisms that results in gingival connective tissue and alveolar bone destruction. Metabolic products of the oral pathogens and the associated host immune and inflammatory responses triggered are responsible for the local tissue destruction. Numerous studies in the past decades have demonstrated that natural polyphenols are capable of modulating the host inflammatory responses by targeting multiple inflammatory components. The proposed mechanism by which polyphenolic compounds exert their great potential is by regulating the immune cell, proinflammatory cytokines synthesis and gene expression. However, due to its low absorption and bioavailability, the beneficial effects of these substances are very limited and it hampers their use as a therapeutic agent. To address these limitations, targeted delivery systems by nanoencapsulation techniques have been explored in recent years. Nanoencapsulation of polyphenolic compounds with different carriers is an efficient and promising approach to boost their bioavailability, increase the efficiency and reduce the degradability of natural polyphenols. In this review, we focus on the effects of different polyphenolic substances in periodontal inflammation and to explore the pharmaceutical significance of polyphenol-loaded nanoparticles in controlling periodontitis, which may be useful for further enhancement of their efficacy as therapeutic agents for periodontal disease.
Collapse
Affiliation(s)
- Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Inaas Mahamad Apandi
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norliwati Ibrahim
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Yokel RA, Ensor ML, Vekaria HJ, Sullivan PG, Feola DJ, Stromberg A, Tseng MT, Harrison DA. Cerium dioxide, a Jekyll and Hyde nanomaterial, can increase basal and decrease elevated inflammation and oxidative stress. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102565. [PMID: 35595014 DOI: 10.1016/j.nano.2022.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
It was hypothesized that the catalyst nanoceria can increase inflammation/oxidative stress from the basal and reduce it from the elevated state. Macrophages clear nanoceria. To test the hypothesis, M0 (non-polarized), M1- (classically activated, pro-inflammatory), and M2-like (alternatively activated, regulatory phenotype) RAW 264.7 macrophages were nanoceria exposed. Inflammatory responses were quantified by IL-1β level, arginase activity, and RT-qPCR and metabolic changes and oxidative stress by the mito and glycolysis stress tests (MST and GST). Morphology was determined by light microscopy, macrophage phenotype marker expression, and a novel three-dimensional immunohistochemical method. Nanoceria blocked IL-1β and arginase effects, increased M0 cell OCR and GST toward the M2 phenotype and altered multiple M1- and M2-like cell endpoints toward the M0 level. M1-like cells had greater volume and less circularity/roundness. M2-like cells had greater volume than M0 macrophages. The results are overall consistent with the hypothesis.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Marsha L Ensor
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Hemendra J Vekaria
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, USA; Neuroscience, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Patrick G Sullivan
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, USA; Neuroscience, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David J Feola
- Pharmacy Practice and Science, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Arnold Stromberg
- Statistics, University of Kentucky, Lexington, KY 40536-0082, USA
| | - Michael T Tseng
- Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
14
|
Fabrication of Anti-Oxidant Curcumin loaded Ceria Nanoclusters for the novel Delivery system to Prevention of Selenite-Induced Cataract Therapy in Alleviating Diabetic Cataract. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Barker E, Shepherd J, Asencio IO. The Use of Cerium Compounds as Antimicrobials for Biomedical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092678. [PMID: 35566026 PMCID: PMC9104093 DOI: 10.3390/molecules27092678] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 12/05/2022]
Abstract
Cerium and its derivatives have been used as remedies for wounds since the early 20th century. Cerium nitrate has attracted most attention in the treatment of deep burns, followed later by reports of its antimicrobial properties. Its ability to mimic and replace calcium is presumed to be a major mechanism of its beneficial action. However, despite some encouraging results, the overall data are somewhat confusing with seemingly the same compounds yielding opposing results. Despite this, cerium nitrate is currently used in wound treatment in combination with silver sulfadiazine as Flammacérium. Cerium oxide, especially in nanoparticle form (Nanoceria), has lately captured much interest due to its antibacterial properties mediated via oxidative stress, leading to an increase of published reports. The properties of Nanoceria depend on the synthesis method, their shape and size. Recently, the green synthesis route has gained a lot of interest as an alternative environmentally friendly method, resulting in production of effective antimicrobial and antifungal nanoparticles. Unfortunately, as is the case with antibiotics, emerging bacterial resistance against cerium-derived nanoparticles is a growing concern, especially in the case of bacterial biofilm. However, diverse strategies resulting from better understanding of the biology of cerium are promising. The aim of this paper is to present the progress to date in the use of cerium compounds as antimicrobials in clinical applications (in particular wound healing) and to provide an overview of the mechanisms of action of cerium at both the cellular and molecular level.
Collapse
|
16
|
Rocha LSR, Simões AZ, Macchi C, Somoza A, Giulietti G, Ponce MA, Longo E. Synthesis and defect characterization of hybrid ceria nanostructures as a possible novel therapeutic material towards COVID-19 mitigation. Sci Rep 2022; 12:3341. [PMID: 35228568 PMCID: PMC8885868 DOI: 10.1038/s41598-022-07200-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
This study reports the synthesis of hybrid nanostructures composed of cerium dioxide and microcrystalline cellulose prepared by the microwave-assisted hydrothermal route under distinct temperature and pH values. Their structural, morphological and spectroscopic behaviors were investigated by X-Rays Diffraction, Field Emission Gun Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, and Fourier-Transform Infrared, Ultraviolet-Visible, Raman and Positron Annihilation Lifetime spectroscopies to evaluate the presence of structural defects and their correlation with the underlying mechanism regarding the biocide activity of the studied material. The samples showed mean crystallite sizes around 10 nm, characterizing the formation of quantum dots unevenly distributed along the cellulose surface with a certain agglomeration degree. The samples presented the characteristic Ce-O vibration close to 450 cm-1 and a second-order mode around 1050 cm-1, which is indicative of distribution of localized energetic levels originated from defective species, essential in the scavenging of reactive oxygen species. Positron spectroscopic studies showed first and second lifetime components ranging between 202-223 ps and 360-373 ps, respectively, revealing the presence of two distinct defective oxygen species, in addition to an increment in the concentration of Ce3+-oxygen vacancy associates as a function of temperature. Therefore, we have successfully synthesized hybrid nanoceria structures with potential multifunctional therapeutic properties to be further evaluated against the COVID-19.
Collapse
Affiliation(s)
- L S R Rocha
- Center for Research and Development of Functional Materials, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.
| | - A Z Simões
- School of Engineering, São Paulo State University (UNESP), Guaratinguetá, SP, Brazil
| | - C Macchi
- CIFICEN (UNCPBA-CICPBA-CONICET) and Instituto de Física de Materiales Tandil (UNCPBA), Pinto 399, B7000GHG, Tandil, Argentina
| | - A Somoza
- CIFICEN (UNCPBA-CICPBA-CONICET) and Instituto de Física de Materiales Tandil (UNCPBA), Pinto 399, B7000GHG, Tandil, Argentina
| | - G Giulietti
- National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - M A Ponce
- National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - E Longo
- Center for Research and Development of Functional Materials, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| |
Collapse
|
17
|
Engineering chitosan nano-cocktail containing iron oxide and ceria: A two-in-one approach for treatment of inflammatory diseases and tracking of material delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112477. [PMID: 34857262 DOI: 10.1016/j.msec.2021.112477] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
In this study, modular two-in-one nano-cocktails were synthesised to provide treatment of inflammatory diseases and also enable tracking of their delivery to the disease sites. Chitosan nano-cocktails loaded with treatment module (cerium oxide nanoparticles) and imaging module (iron oxide nanoparticles) were synthesised by electrostatic self-assembly (Chit-IOCO) and ionic gelation method (Chit-TPP-IOCO), respectively. Their MRI capability, anti-inflammatory and anti-fibrosis ability were investigated. Results demonstrated that Chit-IOCO significantly reduced the expression of TNF-α and COX-2, while Chit-TPP-IOCO reduced IL-6 in the LPS-stimulated macrophages RAW264.7. Cytotoxicity studies showed that the nano-cocktails inhibited the proliferation of macrophages. Additionally, Chit-IOCO exhibited higher in vitro MRI relaxivity than Chit-TPP-IOCO, indicating that Chit-IOCO is a better MRI contrast agent in macrophages. It was possible to track the delivery of Chit-IOCO to the inflamed livers of CCl4-treated C57BL/6 mice, demonstrated by a shortened T2⁎ relaxation time of the livers after injecting Chit-IOCO into mice. In vivo anti-inflammatory and blood tests demonstrated that Chit-IOCO reduced inflammation-related proteins (TNF-a, iNOS and Cox-2) and bilirubin in CCl4 treated C57BL/6. Histology images indicated that the nano-cocktails at the treatment doses did not affect the organs of the mice. Importantly, the nano-cocktail reduced fibrosis of CCl4-treated mouse liver. This is the first reported data on the anti-inflammation and anti-fibrosis efficacy of Chit-IOCO in C57BL/6 mouse liver inflammation model. Overall, Chit-IOCO nanoparticles have shown great potential in MR imaging/detecting and treating/therapeutic capabilities for inflammatory diseases.
Collapse
|
18
|
Luo G, Zhang J, Sun Y, Wang Y, Wang H, Cheng B, Shu Q, Fang X. Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis. NANO-MICRO LETTERS 2021; 13:88. [PMID: 33717630 PMCID: PMC7938387 DOI: 10.1007/s40820-021-00598-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
Sepsis, a highly life-threatening organ dysfunction caused by uncontrollable immune responses to infection, is a leading contributor to mortality in intensive care units. Sepsis-related deaths have been reported to account for 19.7% of all global deaths. However, no effective and specific therapeutic for clinical sepsis management is available due to the complex pathogenesis. Concurrently eliminating infections and restoring immune homeostasis are regarded as the core strategies to manage sepsis. Sophisticated nanoplatforms guided by supramolecular and medicinal chemistry, targeting infection and/or imbalanced immune responses, have emerged as potent tools to combat sepsis by supporting more accurate diagnosis and precision treatment. Nanoplatforms can overcome the barriers faced by clinical strategies, including delayed diagnosis, drug resistance and incapacity to manage immune disorders. Here, we present a comprehensive review highlighting the pathogenetic characteristics of sepsis and future therapeutic concepts, summarizing the progress of these well-designed nanoplatforms in sepsis management and discussing the ongoing challenges and perspectives regarding future potential therapies. Based on these state-of-the-art studies, this review will advance multidisciplinary collaboration and drive clinical translation to remedy sepsis.
Collapse
Affiliation(s)
- Gan Luo
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Jue Zhang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Yaqi Sun
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Ya Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Hanbin Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Baoli Cheng
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Qiang Shu
- National Clinical Research Center for Child Health, Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 People’s Republic of China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| |
Collapse
|
19
|
Li YR, Zhu H. Nanoceria potently reduce superoxide fluxes from mitochondrial electron transport chain and plasma membrane NADPH oxidase in human macrophages. Mol Cell Biochem 2021; 476:4461-4470. [PMID: 34478033 PMCID: PMC9333338 DOI: 10.1007/s11010-021-04246-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
Cerium oxide nanoparticles, also known as nanoceria, possess antioxidative and anti-inflammatory activities in animal models of inflammatory disorders, such as sepsis. However, it remains unclear how nanoceria affect cellular superoxide fluxes in macrophages, a critical type of cells involved in inflammatory disorders. Using human ML-1 cell-derived macrophages, we showed that nanoceria at 1-100 μg/ml potently reduced superoxide flux from the mitochondrial electron transport chain (METC) in a concentration-dependent manner. The inhibitory effects of nanoceria were also shown in succinate-driven mitochondria isolated from the macrophages. Furthermore, nanoceria markedly mitigated the total intracellular superoxide flux in the macrophages. These data suggest that nanoceria could readily cross the plasma membrane and enter the mitochondrial compartment, reducing intracellular superoxide fluxes in unstimulated macrophages. In macrophages undergoing respiratory burst, nanoceria also strongly reduced superoxide flux from the activated macrophage plasma membrane NADPH oxidase (NOX) in a concentration-dependent manner. Token together, the results of the present study demonstrate that nanoceria can effectively diminish superoxide fluxes from both METC and NOX in human macrophages, which may have important implications for nanoceria-mediated protection against inflammatory disease processes.
Collapse
Affiliation(s)
- Y Robert Li
- Department of Pharmacology, Jerry Wallace School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA.
| | - Hong Zhu
- Department of Physiology and Pathophysiology, Jerry Wallace School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA
| |
Collapse
|
20
|
Yang X, You J, Wei Y, Li H, Gao L, Guo Q, Huang Y, Gong C, Yi C. Emerging nanomaterials applied for tackling the COVID-19 cytokine storm. J Mater Chem B 2021; 9:8185-8201. [PMID: 34528037 DOI: 10.1039/d1tb01446c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the global outbreak of coronavirus disease 2019 (COVID-19), a hyperinflammatory state called the cytokine storm was recognized as a major contributor to multiple organ failure and mortality. However, to date, the diagnosis and treatment of the cytokine storm remain major challenges for the clinical prognosis of COVID-19. In this review, we outline various nanomaterial-based strategies for preventing the COVID-19 cytokine storm. We highlight the contribution of nanomaterials to directly inhibit cytokine release. We then discuss how nanomaterials can be used to deliver anti-inflammatory drugs to calm the cytokine storm. Nanomaterials also play crucial roles in diagnostics. Nanomaterial-based biosensors with improved sensitivity and specificity can be used to detect cytokines. In summary, emerging nanomaterials offer platforms and tools for the detection and treatment of the COVID-19 cytokine storm and future pandemic.
Collapse
Affiliation(s)
- Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jia You
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanfeng Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huawei Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Gao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Qing Guo
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Ying Huang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Wang Y, Li C, Wan Y, Qi M, Chen Q, Sun Y, Sun X, Fang J, Fu L, Xu L, Dong B, Wang L. Quercetin-Loaded Ceria Nanocomposite Potentiate Dual-Directional Immunoregulation via Macrophage Polarization against Periodontal Inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101505. [PMID: 34499411 DOI: 10.1002/smll.202101505] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/13/2021] [Indexed: 05/22/2023]
Abstract
Macrophage polarization toward M1 phenotype (pro-inflammation) is closely associated with the destructive phase of periodontal inflammation. Nanoceria is verified to inhibit M1 polarization of macrophages by the favorable ability of reactive oxygen species (ROS) scavenging. However, the function of nanoceria on macrophage polarization toward M2 phenotype (anti-inflammation) in reparative phase of periodontal inflammation is quite limited. In this work, by introducing an antioxidant drug quercetin onto nano-octahedral ceria, synergistic and intense regulation of host immunity against periodontal disease is realized. Such nanocomposite can control the phenotypic switch of macrophages by not only inhibition of M1 polarization for suppressing the damage in the destructive phase but also promotion of M2 polarization for regenerating the surrounding tissues in reparative phase of periodontal disease. As-prepared nanocomposite can effectively increase the M2/M1 ratio of macrophage polarization in inflammatory cellular models by lipopolysaccharide stimulation. More importantly, the nanocomposite also exerts an improved therapeutic potential against local inflammation by significant downregulation of pro-inflammatory cytokines and upregulation of anti-inflammatory cytokines in an animal model with periodontal inflammation. Therefore, this newly developed nanomedicine is efficient in ROS scavenging and driving pro-inflammatory macrophages to the anti-inflammatory phenotype to eliminate inflammation, thereby providing a promising candidate for treating periodontal inflammation.
Collapse
Affiliation(s)
- Yu Wang
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Sciences and Technology of Stomatology Nanoengineering, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Sciences and Technology of Stomatology Nanoengineering, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Yao Wan
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Manlin Qi
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Qiuhan Chen
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Sciences and Technology of Stomatology Nanoengineering, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Yue Sun
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Xiaolin Sun
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Jiao Fang
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Li Fu
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Lin Wang
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| |
Collapse
|
22
|
Wu Y, Ta HT. Different approaches to synthesising cerium oxide nanoparticles and their corresponding physical characteristics, and ROS scavenging and anti-inflammatory capabilities. J Mater Chem B 2021; 9:7291-7301. [PMID: 34355717 DOI: 10.1039/d1tb01091c] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The biological applications of cerium oxide nanoparticles (nanoceria) have received extensive attention in recent decades. The coexistence of trivalent cerium and tetravalent cerium on the surface of nanoceria allows the scavenging of reactive oxygen species (ROS). The regeneratable changes between Ce3+ and Ce4+ make nanoceria a suitable therapeutic agent for treating ROS-related diseases and inflammatory diseases. The size, morphology and Ce3+/Ce4+ state of cerium oxide nanoparticles are affected by the synthesis method. This review focuses on various synthesis methods of cerium oxide nanoparticles and discusses their corresponding physical characteristics, and anti-ROS and anti-inflammatory properties.
Collapse
Affiliation(s)
- Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hang T Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. and School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
23
|
Rasmi Y, Saloua KS, Nemati M, Choi JR. Recent Progress in Nanotechnology for COVID-19 Prevention, Diagnostics and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1788. [PMID: 34361174 PMCID: PMC8308319 DOI: 10.3390/nano11071788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic is currently an unprecedented public health threat. The rapid spread of infections has led to calls for alternative approaches to combat the virus. Nanotechnology is taking root against SARS-CoV-2 through prevention, diagnostics and treatment of infections. In light of the escalating demand for managing the pandemic, a comprehensive review that highlights the role of nanomaterials in the response to the pandemic is highly desirable. This review article comprehensively discusses the use of nanotechnology for COVID-19 based on three main categories: prevention, diagnostics and treatment. We first highlight the use of various nanomaterials including metal nanoparticles, carbon-based nanoparticles and magnetic nanoparticles for COVID-19. We critically review the benefits of nanomaterials along with their applications in personal protective equipment, vaccine development, diagnostic device fabrication and therapeutic approaches. The remaining key challenges and future directions of nanomaterials for COVID-19 are briefly discussed. This review is very informative and helpful in providing guidance for developing nanomaterial-based products to fight against COVID-19.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran;
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Kouass Sahbani Saloua
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran;
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
24
|
Nasiri E, Kariminik A. Up-regulation of AIM2 and TLR4 and down-regulation of NLRC4 are associated with septicemia. Indian J Med Microbiol 2021; 39:334-338. [PMID: 34099337 DOI: 10.1016/j.ijmmb.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Innate immunity receptors play key roles in recognition of bacterial associated molecular patterns. Inflammasomes and toll like receptors (TLRs) are the important innate immunity receptors. In this project transcription levels of TLR4, a TLR member, absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4), as inflammasomes, in the patients suffering from septicemia. METHODS AIM2, NLRC4 and TLR4 mRNA levels were evaluated in the 40 patients suffering from septicemia and 40 healthy controls using Real-Time PCR technique. RESULTS Data analysis revealed that, although NLRC4 expression decreased, TLR4 and AIM2 levels significantly increased in the patients suffering from septicemia. Gender and infection with various bacteria did not affect expression of AIM2, NLRC4 and TLR4. CONCLUSIONS It appears that septicemia can be limited by immune responses in AIM2 and TLR4 dependent manner. The potential roles played by bacteria to down-regulation of NLRC4 need to be evaluated by further investigations.
Collapse
Affiliation(s)
- Elham Nasiri
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Ashraf Kariminik
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran.
| |
Collapse
|
25
|
Dou C, Li J, He J, Luo F, Yu T, Dai Q, Chen Y, Xu J, Yang X, Dong S. Bone-targeted pH-responsive cerium nanoparticles for anabolic therapy in osteoporosis. Bioact Mater 2021; 6:4697-4706. [PMID: 34095626 PMCID: PMC8164008 DOI: 10.1016/j.bioactmat.2021.04.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022] Open
Abstract
Antiresorptive drugs are widely used for treatment of osteoporosis and cancer bone metastasis, which function mainly through an overall inhibition of osteoclast. However, not all osteoclasts are "bone eaters"; preosteoclasts (pOCs) play anabolic roles in bone formation and angiogenesis through coupling with osteoblasts and secreting platelet derived growth factor-BB (PDGF-BB). In this study, a bone-targeted pH-responsive nanomaterial was designed for selectively eliminating mature osteoclasts (mOCs) without affecting pOCs. Biocompatible cerium nano-system (CNS) was guided to the acidic extracellular microenvironment created by mOCs and gained oxidative enzymatic activity. Oxidative CNS decreased the viability of mOCs through accumulating intracellular reactive oxygen species and enhancing calcium oscillation. Non-acid secreting anabolic pOCs were thus preserved and kept producing PDGF-BB, which lead to mesenchymal stem cell osteogenesis and endothelial progenitor cell angiogenesis via PI3K-Akt activated focal adhesion kinase. In treating osteoporotic ovariectomized mice, CNS showed better protective effects compare with the current first line antiresorptive drug due to the better anabolic effects marked by higher level of bone formation and vascularization. We provided a novel anabolic therapeutic strategy in treating bone disorders with excessive bone resorption.
Collapse
Affiliation(s)
- Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jianmei Li
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jian He
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Corresponding author.
| | - Xiaochao Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Corresponding author.
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Corresponding author. Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
26
|
Wei F, Neal CJ, Sakthivel TS, Kean T, Seal S, Coathup MJ. Multi-functional cerium oxide nanoparticles regulate inflammation and enhance osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112041. [PMID: 33947541 DOI: 10.1016/j.msec.2021.112041] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022]
Abstract
Oxidative stress increases bone loss and limits repair, in part, through immunoregulation and the formation and maintenance of low-grade chronic inflammation. The aim of this study was to investigate the effect of cerium oxide nanoparticles (CeONPs) on (i) macrophage phenotype and cytokine expression under normal and simulated acute and chronic inflammatory conditions and, (ii) human mesenchymal stem cell (hBMSCs) proliferation, osteoinduction and osteogenic differentiation. Spherical particles composed of 60% Ce3+ with a hydrodynamic size of ~35 nm and surface charge of 25.4 mV were internalized within cells. Under both acute and chronic conditions, inducible nitric oxide synthase (iNOS) activity decreased with a significant reduction seen in the 1 and 10 μg/mL groups (p < 0.001). A dose dependent and significant increase in anti-inflammatory cytokine gene expression was observed in all CeONP groups under chronic inflammatory condition. No increase in alkaline phosphatase (ALP) activity or mineral deposits were measured following hBMSCs cultured without osteogenic media in any of the CeONP groups, however, a significant increase in osteogenic-related gene expression, ALP activity and bone mineral deposits was measured when supplemented with both CeONPs and osteogenic media. CeONP activity was multifaceted and exhibited low toxicity. A therapeutic dose of 1 μg/mL delivered a disparate but protective effect when under both acute and chronic inflammatory conditions while at the same dose, potentiated osteogenesis.
Collapse
Affiliation(s)
- Fei Wei
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Tamil Selvan Sakthivel
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Thomas Kean
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Melanie J Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
27
|
Shcherbakov AB, Reukov VV, Yakimansky AV, Krasnopeeva EL, Ivanova OS, Popov AL, Ivanov VK. CeO 2 Nanoparticle-Containing Polymers for Biomedical Applications: A Review. Polymers (Basel) 2021; 13:924. [PMID: 33802821 PMCID: PMC8002506 DOI: 10.3390/polym13060924] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
The development of advanced composite biomaterials combining the versatility and biodegradability of polymers and the unique characteristics of metal oxide nanoparticles unveils new horizons in emerging biomedical applications, including tissue regeneration, drug delivery and gene therapy, theranostics and medical imaging. Nanocrystalline cerium(IV) oxide, or nanoceria, stands out from a crowd of other metal oxides as being a truly unique material, showing great potential in biomedicine due to its low systemic toxicity and numerous beneficial effects on living systems. The combination of nanoceria with new generations of biomedical polymers, such as PolyHEMA (poly(2-hydroxyethyl methacrylate)-based hydrogels, electrospun nanofibrous polycaprolactone or natural-based chitosan or cellulose, helps to expand the prospective area of applications by facilitating their bioavailability and averting potential negative effects. This review describes recent advances in biomedical polymeric material practices, highlights up-to-the-minute cerium oxide nanoparticle applications, as well as polymer-nanoceria composites, and aims to address the question: how can nanoceria enhance the biomedical potential of modern polymeric materials?
Collapse
Affiliation(s)
- Alexander B. Shcherbakov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Vladimir V. Reukov
- Department of Textiles, Merchandising and Interiors, University of Georgia, Athens, GA, 30602, USA;
| | - Alexander V. Yakimansky
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (A.V.Y.); (E.L.K.)
| | - Elena L. Krasnopeeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (A.V.Y.); (E.L.K.)
| | - Olga S. Ivanova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia; (O.S.I.); (A.L.P.)
| | - Anton L. Popov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia; (O.S.I.); (A.L.P.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia; (O.S.I.); (A.L.P.)
| |
Collapse
|
28
|
Sartini S, Permana AD, Mitra S, Tareq AM, Salim E, Ahmad I, Harapan H, Emran TB, Nainu F. Current State and Promising Opportunities on Pharmaceutical Approaches in the Treatment of Polymicrobial Diseases. Pathogens 2021; 10:245. [PMID: 33672615 PMCID: PMC7924209 DOI: 10.3390/pathogens10020245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the emergence of newly identified acute and chronic infectious disorders caused by diverse combinations of pathogens, termed polymicrobial diseases, has had catastrophic consequences for humans. Antimicrobial agents have been clinically proven to be effective in the pharmacological treatment of polymicrobial diseases. Unfortunately, an increasing trend in the emergence of multi-drug-resistant pathogens and limited options for delivery of antimicrobial drugs might seriously impact humans' efforts to combat polymicrobial diseases in the coming decades. New antimicrobial agents with novel mechanism(s) of action and new pharmaceutical formulations or delivery systems to target infected sites are urgently required. In this review, we discuss the prospective use of novel antimicrobial compounds isolated from natural products to treat polymicrobial infections, mainly via mechanisms related to inhibition of biofilm formation. Drug-delivery systems developed to deliver antimicrobial compounds to both intracellular and extracellular pathogens are discussed. We further discuss the effectiveness of several biofilm-targeted delivery strategies to eliminate polymicrobial biofilms. At the end, we review the applications and promising opportunities for various drug-delivery systems, when compared to conventional antimicrobial therapy, as a pharmacological means to treat polymicrobial diseases.
Collapse
Affiliation(s)
- Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; or
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; or
| | - Emil Salim
- Faculty of Pharmacy, Universitas Sumatera Utara, North Sumatera 20155, Indonesia;
| | - Islamudin Ahmad
- Faculty of Pharmacy, Universitas Mulawarman, East Kalimantan 75119, Indonesia;
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| |
Collapse
|
29
|
Pant A, Mackraj I, Govender T. Advances in sepsis diagnosis and management: a paradigm shift towards nanotechnology. J Biomed Sci 2021; 28:6. [PMID: 33413364 PMCID: PMC7790597 DOI: 10.1186/s12929-020-00702-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sepsis, a dysregulated immune response due to life-threatening organ dysfunction, caused by drug-resistant pathogens, is a major global health threat contributing to high disease burden. Clinical outcomes in sepsis depend on timely diagnosis and appropriate early therapeutic intervention. There is a growing interest in the evaluation of nanotechnology-based solutions for sepsis management due to the inherent and unique properties of these nano-sized systems. This review presents recent advancements in nanotechnology-based solutions for sepsis diagnosis and management. Development of nanosensors based on electrochemical, immunological or magnetic principals provide highly sensitive, selective and rapid detection of sepsis biomarkers such as procalcitonin and C-reactive protein and are reviewed extensively. Nanoparticle-based drug delivery of antibiotics in sepsis models have shown promising results in combating drug resistance. Surface functionalization with antimicrobial peptides further enhances efficacy by targeting pathogens or specific microenvironments. Various strategies in nanoformulations have demonstrated the ability to deliver antibiotics and anti-inflammatory agents, simultaneously, have been reviewed. The critical role of nanoformulations of other adjuvant therapies including antioxidant, antitoxins and extracorporeal blood purification in sepsis management are also highlighted. Nanodiagnostics and nanotherapeutics in sepsis have enormous potential and provide new perspectives in sepsis management, supported by promising future biomedical applications included in the review.
Collapse
Affiliation(s)
- Amit Pant
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Irene Mackraj
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
30
|
Allawadhi P, Khurana A, Allwadhi S, Joshi K, Packirisamy G, Bharani KK. Nanoceria as a possible agent for the management of COVID-19. NANO TODAY 2020; 35:100982. [PMID: 32952596 PMCID: PMC7492057 DOI: 10.1016/j.nantod.2020.100982] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/09/2020] [Accepted: 09/11/2020] [Indexed: 05/22/2023]
Abstract
The COVID-19 pandemic has emerged as an unprecedented global healthcare emergency and has devastated the global economy. The SARS-CoV-2 virus replicates in the host cells and is seemingly much more virulent compared to other flu viruses, as well as the SARS-CoV-1. The respiratory complications of the disease include acute respiratory distress syndrome (ARDS), cytokine storm, systemic inflammation, and pulmonary fibrosis. Nanoceria (NC) is a versatile rare earth nanoparticle with remarkable catalase and superoxide dismutase mimetic redox regenerative properties. Interestingly, NC possesses promising anti-inflammatory, antioxidant and anti-fibrotic properties, making it an attractive tool to fight against the SARS-CoV-2 as well as the associated systemic complications. Until now, there is no clinically approved vaccine or drug for the treatment of COVID-19, and the conquest to find a novel therapy for this global havoc is being undertaken at a warlike pace. Herein, based on preclinical evidence, we hypothesize that NC owing to its unique pharmacological properties, might be an attractive preclinical candidate to win the battle over COVID-19. Further, it may be used as a prevention or treatment strategy in combination with other drugs.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, 247667, India
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad, Telangana, 500030, India
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT), Delhi, 110016, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, Haryana, 124001, India
| | - Kamaldeep Joshi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, Haryana, 124001, India
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, 247667, India
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, 247667, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad, Telangana, 500030, India
| |
Collapse
|
31
|
dos Santos Ramos MA, dos Santos KC, da Silva PB, de Toledo LG, Marena GD, Rodero CF, de Camargo BAF, Fortunato GC, Bauab TM, Chorilli M. Nanotechnological strategies for systemic microbial infections treatment: A review. Int J Pharm 2020; 589:119780. [PMID: 32860856 PMCID: PMC7449125 DOI: 10.1016/j.ijpharm.2020.119780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Systemic infections is one of the major causes of mortality worldwide, and a shortage of drug approaches applied for the rapid and necessary treatment contribute to increase the levels of death in affected patients. Several drug delivery systems based in nanotechnology such as metallic nanoparticles, liposomes, nanoemulsion, microemulsion, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, hydrogels and liquid crystals can contribute in the biological performance of active substances for the treatment of microbial diseases triggered by fungi, bacteria, virus and parasites. In the presentation of these statements, this review article present and demonstrate the effectiveness of these drug delivery systems for the treatment of systemic diseases caused by several microorganisms, through a review of studies on scientific literature worldwide that contributes to better information for the most diverse professionals from the areas of health sciences. The studies demonstrated that the drug delivery systems described can contribute to the therapeutic scenario of these diseases, being classified as safe, active platforms and with therapeutic versatility.
Collapse
Affiliation(s)
- Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil,Corresponding authors
| | - Karen Cristina dos Santos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Patrícia Bento da Silva
- Department of Genetic and Morphology, Brasília University (UNB), Institute of Biological Sciences, Zip Code: 70735100, Brazil
| | - Luciani Gaspar de Toledo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Gabriel Davi Marena
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Camila Fernanda Rodero
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Bruna Almeida Furquim de Camargo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil.
| |
Collapse
|
32
|
Baldim V, Yadav N, Bia N, Graillot A, Loubat C, Singh S, Karakoti AS, Berret JF. Polymer-Coated Cerium Oxide Nanoparticles as Oxidoreductase-like Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42056-42066. [PMID: 32812730 DOI: 10.1021/acsami.0c08778] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cerium oxide nanoparticles have been shown to mimic oxidoreductase enzymes by catalyzing the decomposition of organic substrates and reactive oxygen species. This mimicry can be found in superoxide radicals and hydrogen peroxides, which are harmful molecules produced in oxidative stress-associated diseases. Despite the fact that nanoparticle functionalization is mandatory in the context of nanomedicine, the influence of polymer coatings on their enzyme-like catalytic activity is poorly understood. In this work, six polymer-coated cerium oxide nanoparticles are prepared by the association of 7.8 nm cerium oxide cores with two poly(sodium acrylate) and four poly(ethylene glycol) (PEG)-grafted copolymers with different terminal or anchoring end groups, such as phosphonic acids. The superoxide dismutase-, catalase-, peroxidase-, and oxidase-like catalytic activities of the coated nanoparticles were systematically studied. It is shown that the polymer coatings do not affect the superoxide dismutase-like, impair the catalase-like and oxidase-like, and surprisingly improves peroxidase-like catalytic activities of cerium oxide nanoparticles. It is also demonstrated that the particles coated with the PEG-grafted copolymers perform better than the poly(acrylic acid)-coated ones as oxidoreductase-like enzymes, a result that confirms the benefit of having phosphonic acids as anchoring groups at the particle surface.
Collapse
Affiliation(s)
- Victor Baldim
- Matière et systèmes complexes, Université de Paris, CNRS, 75013 Paris, France
- Electrochimie et Physicochimie aux Interfaces, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des États-Unis, 78035 Versailles, France
| | - Nisha Yadav
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, 380009 Gujarat, India
| | - Nicolas Bia
- SPECIFIC POLYMERS, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Alain Graillot
- SPECIFIC POLYMERS, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Cédric Loubat
- SPECIFIC POLYMERS, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, 380009 Gujarat, India
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment (FEBE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
33
|
Stephen Inbaraj B, Chen BH. An overview on recent in vivo biological application of cerium oxide nanoparticles. Asian J Pharm Sci 2020; 15:558-575. [PMID: 33193860 PMCID: PMC7610205 DOI: 10.1016/j.ajps.2019.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/25/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022] Open
Abstract
Cerium oxide nanoparticles (CNPs) possess a great potential as therapeutic agents due to their ability to self-regenerate by reversibly switching between two valences +3 and +4. This article reviews recent articles dealing with in vivo studies of CNPs towards Alzheimer's disease, obesity, liver inflammation, cancer, sepsis, amyotrophic lateral sclerosis, acute kidney injury, radiation-induced tissue damage, hepatic ischemia reperfusion injury, retinal diseases and constipation. In vivo anti-cancer studies revealed the effectiveness of CNPs to reduce tumor growth and angiogenesis in melanoma, ovarian, breast and retinoblastoma cancer cell-induced mice, with their conjugation with folic acid, doxorubicin, CPM, or CXC receptor-4 antagonist ligand eliciting higher efficiency. After conjugation with triphenylphosphonium or magnetite nanoparticles, CNPs were shown to combat Alzheimer's disease by reducing amyloid-β, glial fibrillary acidic protein, inflammatory and oxidative stress markers in mice. By improving muscle function and longevity, the citrate/EDTA-stabilized CNPs could ameliorate amyotrophic lateral sclerosis. Also, they could effectively reduce obesity in mice by scavenging ROS and reducing adipogenesis, triglyceride synthesis, GAPDH enzyme activity, leptin and insulin levels. In CCl4-induced rats, stress signaling pathways due to inflammatory cytokines, liver enzymes, oxidative and endoplasmic reticulum messengers could be attenuated by CNPs. Commercial CNPs showed protective effects on rats with hepatic ischemia reperfusion and peritonitis-induced hepatic/cardiac injuries by decreasing oxidative stress and hepatic/cardiac inflammation. The same CNPs could improve kidney function by diminishing renal superoxide, hyperglycemia and tubular damage in peritonitis-induced acute kidney injury in rats. Radiation-induced lung and testicular tissue damage could be alleviated in mice, with the former showing improvement in pulmonary distress and bronchoconstriction and the latter exhibiting restoration in spermatogenesis rate and spermatid/spermatocyte number. Through enhancement of gastrointestinal motility, the CNPs could alleviate constipation in both young and old rats. They could also protect rat from light-induced retinal damage by slowing down neurodegenerative process and microglial activation.
Collapse
Affiliation(s)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, Taipei 242
| |
Collapse
|
34
|
Liu AC, Patel K, Vunikili RD, Johnson KW, Abdu F, Belman SK, Glicksberg BS, Tandale P, Fontanez R, Mathew OK, Kasarskis A, Mukherjee P, Subramanian L, Dudley JT, Shameer K. Sepsis in the era of data-driven medicine: personalizing risks, diagnoses, treatments and prognoses. Brief Bioinform 2020; 21:1182-1195. [PMID: 31190075 PMCID: PMC8179509 DOI: 10.1093/bib/bbz059] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
Sepsis is a series of clinical syndromes caused by the immunological response to infection. The clinical evidence for sepsis could typically attribute to bacterial infection or bacterial endotoxins, but infections due to viruses, fungi or parasites could also lead to sepsis. Regardless of the etiology, rapid clinical deterioration, prolonged stay in intensive care units and high risk for mortality correlate with the incidence of sepsis. Despite its prevalence and morbidity, improvement in sepsis outcomes has remained limited. In this comprehensive review, we summarize the current landscape of risk estimation, diagnosis, treatment and prognosis strategies in the setting of sepsis and discuss future challenges. We argue that the advent of modern technologies such as in-depth molecular profiling, biomedical big data and machine intelligence methods will augment the treatment and prevention of sepsis. The volume, variety, veracity and velocity of heterogeneous data generated as part of healthcare delivery and recent advances in biotechnology-driven therapeutics and companion diagnostics may provide a new wave of approaches to identify the most at-risk sepsis patients and reduce the symptom burden in patients within shorter turnaround times. Developing novel therapies by leveraging modern drug discovery strategies including computational drug repositioning, cell and gene-therapy, clustered regularly interspaced short palindromic repeats -based genetic editing systems, immunotherapy, microbiome restoration, nanomaterial-based therapy and phage therapy may help to develop treatments to target sepsis. We also provide empirical evidence for potential new sepsis targets including FER and STARD3NL. Implementing data-driven methods that use real-time collection and analysis of clinical variables to trace, track and treat sepsis-related adverse outcomes will be key. Understanding the root and route of sepsis and its comorbid conditions that complicate treatment outcomes and lead to organ dysfunction may help to facilitate identification of most at-risk patients and prevent further deterioration. To conclude, leveraging the advances in precision medicine, biomedical data science and translational bioinformatics approaches may help to develop better strategies to diagnose and treat sepsis in the next decade.
Collapse
Affiliation(s)
- Andrew C Liu
- Department of Information Services, Northwell Health, New Hyde Park, NY, USA
- Donald and Barbara School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, USA
| | - Krishna Patel
- Department of Information Services, Northwell Health, New Hyde Park, NY, USA
- Donald and Barbara School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, USA
| | - Ramya Dhatri Vunikili
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Kipp W Johnson
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY, USA
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
| | - Fahad Abdu
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- Stonybrook University, 100 Nicolls Rd, Stony Brook, NY, USA
| | - Shivani Kamath Belman
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY, USA
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Pratyush Tandale
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- School of Biotechnology and Bioinformatics, D Y Patil University, Navi Mumbai, India
| | - Roberto Fontanez
- Department of Information Services, Northwell Health, New Hyde Park, NY, USA
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
| | | | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY, USA
| | | | | | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY, USA
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
| | - Khader Shameer
- Department of Information Services, Northwell Health, New Hyde Park, NY, USA
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
| |
Collapse
|
35
|
Lin YH, Shen LJ, Chou TH, Shih YH. Synthesis, Stability, and Cytotoxicity of Novel Cerium Oxide Nanoparticles for Biomedical Applications. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01798-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Córdoba-Jover B, Arce-Cerezo A, Ribera J, Pauta M, Oró D, Casals G, Fernández-Varo G, Casals E, Puntes V, Jiménez W, Morales-Ruiz M. Cerium oxide nanoparticles improve liver regeneration after acetaminophen-induced liver injury and partial hepatectomy in rats. J Nanobiotechnology 2019; 17:112. [PMID: 31672158 PMCID: PMC6822381 DOI: 10.1186/s12951-019-0544-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background and aims Cerium oxide nanoparticles are effective scavengers of reactive oxygen species and have been proposed as a treatment for oxidative stress-related diseases. Consequently, we aimed to investigate the effect of these nanoparticles on hepatic regeneration after liver injury by partial hepatectomy and acetaminophen overdose. Methods All the in vitro experiments were performed in HepG2 cells. For the acetaminophen and partial hepatectomy experimental models, male Wistar rats were divided into three groups: (1) nanoparticles group, which received 0.1 mg/kg cerium nanoparticles i.v. twice a week for 2 weeks before 1 g/kg acetaminophen treatment, (2) N-acetyl-cysteine group, which received 300 mg/kg of N-acetyl-cysteine i.p. 1 h after APAP treatment and (3) partial hepatectomy group, which received the same nanoparticles treatment before partial hepatectomy. Each group was matched with vehicle-controlled rats. Results In the partial hepatectomy model, rats treated with cerium oxide nanoparticles showed a significant increase in liver regeneration, compared with control rats. In the acetaminophen experimental model, nanoparticles and N-acetyl-cysteine treatments decreased early liver damage in hepatic tissue. However, only the effect of cerium oxide nanoparticles was associated with a significant increment in hepatocellular proliferation. This treatment also reduced stress markers and increased cell cycle progression in hepatocytes and the activation of the transcription factor NF-κB in vitro and in vivo. Conclusions Our results demonstrate that the nanomaterial cerium oxide, besides their known antioxidant capacities, can enhance hepatocellular proliferation in experimental models of liver regeneration and drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Bernat Córdoba-Jover
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain
| | - Altamira Arce-Cerezo
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain
| | - Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain
| | - Montse Pauta
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain
| | - Denise Oró
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain.,Working Group for the Biochemical Assessment of Hepatic Disease-SEQC-ML, Barcelona, Spain
| | - Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain
| | - Eudald Casals
- Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain.,Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Victor Puntes
- Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain.,Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain.,Department of Biomedicine-Biochemistry Unit, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain. .,Working Group for the Biochemical Assessment of Hepatic Disease-SEQC-ML, Barcelona, Spain. .,Department of Biomedicine-Biochemistry Unit, School of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
37
|
Yokel RA, Hancock ML, Grulke EA, Unrine JM, Dozier AK, Graham UM. Carboxylic acids accelerate acidic environment-mediated nanoceria dissolution. Nanotoxicology 2019; 13:455-475. [PMID: 30729879 PMCID: PMC6609459 DOI: 10.1080/17435390.2018.1553251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Ligands that accelerate nanoceria dissolution may greatly affect its fate and effects. This project assessed the carboxylic acid contribution to nanoceria dissolution in aqueous, acidic environments. Nanoceria has commercial and potential therapeutic and energy storage applications. It biotransforms in vivo. Citric acid stabilizes nanoceria during synthesis and in aqueous dispersions. In this study, citrate-stabilized nanoceria dispersions (∼4 nm average primary particle size) were loaded into dialysis cassettes whose membranes passed cerium salts but not nanoceria particles. The cassettes were immersed in iso-osmotic baths containing carboxylic acids at pH 4.5 and 37 °C, or other select agents. Cerium atom material balances were conducted for the cassette and bath by sampling of each chamber and cerium quantitation by ICP-MS. Samples were collected from the cassette for high-resolution transmission electron microscopy observation of nanoceria size. In carboxylic acid solutions, nanoceria dissolution increased bath cerium concentration to >96% of the cerium introduced as nanoceria into the cassette and decreased nanoceria primary particle size in the cassette. In solutions of citric, malic, and lactic acids and the ammonium ion ∼15 nm, ceria agglomerates persisted. In solutions of other carboxylic acids, some select nanoceria agglomerates grew to ∼1 micron. In carboxylic acid solutions, dissolution half-lives were 800-4000 h; in water and horseradish peroxidase they were ≥55,000 h. Extending these findings to in vivo and environmental systems, one expects acidic environments containing carboxylic acids to degrade nanoceria by dissolution; two examples would be phagolysosomes and in the plant rhizosphere.
Collapse
Affiliation(s)
- Robert A. Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | | | - Eric A. Grulke
- Chemical & Materials Engineering, University of Kentucky, Lexington, KY
| | - Jason M. Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, KY
| | | | - Uschi M. Graham
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY
- CDC/NIOSH, Cincinnati, OH
| |
Collapse
|
38
|
Yttrium oxide nanoparticles reduce the severity of acute pancreatitis caused by cerulein hyperstimulation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:54-65. [PMID: 30851439 DOI: 10.1016/j.nano.2019.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/22/2019] [Accepted: 02/16/2019] [Indexed: 12/14/2022]
Abstract
Oxidative stress plays a major role in acute pancreatitis (AP), leading to massive macrophage infiltration. Nanoyttria (NY) possesses potent free radical scavenging activity. As reactive oxygen species and inflammation play major role in AP, we hypothesized that NY may alleviate cerulein induced AP. NY ameliorated LPS induced oxidative stress in vitro. It reduced ROS, superoxide radical generation and restored the mitochondrial membrane potential in macrophages. Interestingly, NY reduced plasma amylase and lipase levels and attenuated the mitochondrial stress and inflammatory markers. NY suppressed the recruitment of inflammatory cells around the damaged pancreatic acinar cells. Furthermore, NY intervention perturbed the course of AP via reduction of endoplasmic reticulum (ER) stress markers (BiP, IRE1 and Ero1-Lα), and molecular chaperones (Hsp27 and Hsp70). We, to the best of our knowledge, report for first time that NY can attenuate experimental AP by restoration of mitochondrial and ER homeostasis through Nrf2/NFκB pathway modulation.
Collapse
|
39
|
RIG-1 and MDA5 are the important intracellular sensors against bacteria in septicemia suffering patients. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2018.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
Kwon HJ, Shin K, Soh M, Chang H, Kim J, Lee J, Ko G, Kim BH, Kim D, Hyeon T. Large-Scale Synthesis and Medical Applications of Uniform-Sized Metal Oxide Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704290. [PMID: 29573296 DOI: 10.1002/adma.201704290] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/19/2017] [Indexed: 05/27/2023]
Abstract
Thanks to recent advances in the synthesis of high-quality inorganic nanoparticles, more and more types of nanoparticles are becoming available for medical applications. Especially, metal oxide nanoparticles have drawn much attention due to their unique physicochemical properties and relatively inexpensive production costs. To further promote the development and clinical translation of these nanoparticle-based agents, however, it is highly desirable to reduce unwanted interbatch variations of the nanoparticles because characterizing and refining each batch are costly, take a lot of effort, and, thus, are not productive. Large-scale synthesis is a straightforward and economic pathway to minimize this issue. Here, the recent achievements in the large-scale synthesis of uniform-sized metal oxide nanoparticles and their biomedical applications are summarized, with a focus on nanoparticles of transition metal oxides and lanthanide oxides, and clarifying the underlying mechanism for the synthesis of uniform-sized nanoparticles. Surface modification steps to endow hydrophobic nanoparticles with water dispersibility and biocompatibility are also briefly described. Finally, various medical applications of metal oxide nanoparticles, such as bioimaging, drug delivery, and therapy, are presented.
Collapse
Affiliation(s)
- Hyek Jin Kwon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwangsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Soh
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hogeun Chang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jonghoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jisoo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Giho Ko
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
41
|
Rice KM, Bandarupalli VVK, Manne NDPK, Blough ER. Spleen data: Cerium oxide nanoparticles attenuate polymicrobial sepsis induced spenic damage in male Sprague Dawley rats. Data Brief 2018; 18:740-746. [PMID: 29900230 PMCID: PMC5996310 DOI: 10.1016/j.dib.2018.03.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 11/15/2022] Open
Abstract
Sepsis is a serious life threatening medical emergency which, if not treated properly, oftentimes results in organ failure and death. Current sepsis treatment protocols are largely centered on the use of antibiotics and supportive care. Recent studies have suggested that antibiotics fail to be effective for sepsis treatment when administered during hypo-dynamic phase of sepsis that is usually characterized by the presence of a cytokine storm. As such, there is an urgent need to develop novel therapeutic drugs that target the inflammatory cytokines that are secreted as a result of increased reactive oxygen species. Cerium oxide nanoparticles (CeO2) have been shown to act as anti-inflammatory and anti-oxidant agent. More recently, they have been shown to attenuate polymicrobial insult-induced mortality in Sprague Dawley rats. Here, we investigated whether CeO2 nanoparticles can attenuate splenic damage in this animal model of sepsis. A single intravenous dose (0.5 mg/kg) of CeO2 nanoparticles attenuated the sepsis-induced loss in splenic cell structural integrity. These improvements in splenic structure were accompanied by a decrease in expression of late phase pro-inflammatory cytokine high mobility group box 1 (HMGB1) along with reduced bacterial load in the blood and peritoneal fluid of septic animals. Taken together these findings suggest that CeO2 nanoparticles can be used to attenuate polymicrobial insult-induced splenic damage in Sprague dawley rats.
Collapse
Affiliation(s)
- Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA.,Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA.,Biotechnology Graduate Program West Virginia State University, Institute, WV, USA.,Department of Health and Human Service, School of Kinesiology, Marshall University, Huntington, WV, USA
| | | | | | - Eric R Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA.,Biotechnology Graduate Program West Virginia State University, Institute, WV, USA.,Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA.,Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
42
|
Chen BH, Stephen Inbaraj B. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Crit Rev Biotechnol 2018; 38:1003-1024. [PMID: 29402135 DOI: 10.1080/07388551.2018.1426555] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Amidst numerous emerging nanoparticles, cerium oxide nanoparticles (CNPs) possess fascinating pharmacological potential as they can be used as a therapeutic for various oxidative stress-associated chronic diseases such as cancer, inflammation and neurodegeneration due to unique redox cycling between Ce3+ and Ce4+ oxidation states on their surface. Lattice defects generated by the formation of Ce3+ ions and compensation by oxygen vacancies on CNPs surface has led to switching between CeO2 and CeO2-x during redox reactions making CNPs a lucrative catalytic nanoparticle capable of mimicking key natural antioxidant enzymes such as superoxide dismutase and catalase. Eventually, most of the reactive oxygen species and nitrogen species in biological system are scavenged by CNPs via an auto-regenerative mechanism in which a minimum dose can exhibit catalytic activity for a longer duration. Due to the controversial outcomes on CNPs toxicity, considerable attention has recently been drawn towards establishing relationships between the physicochemical properties of CNPs obtained by different synthesis methods and biological effects ranging from toxicity to therapeutics. Unlike non-redox active nanoparticles, variations in physicochemical properties and the surface properties of CNPs obtained from different synthesis methods can significantly affect their biological activity (inactive, antioxidant, or pro-oxidant). Moreover, these properties can influence the biological identity, cellular interactions, cellular uptake, biodistribution, and therapeutic efficiency. This review aims to highlight the critical role of various physicochemical and the surface properties of CNPs controlling their biological activity based on 165 cited references.
Collapse
Affiliation(s)
- Bing-Huei Chen
- a Department of Food Science , Fu Jen Catholic University , New Taipei City , Taiwan.,b Graduate Institute of Medicine , Fu Jen Catholic University , New Taipei City , Taiwan
| | | |
Collapse
|
43
|
You M, Li K, Xie Y, Huang L, Zheng X. The Effects of Cerium Valence States at Cerium Oxide Coatings on the Responses of Bone Mesenchymal Stem Cells and Macrophages. Biol Trace Elem Res 2017; 179:259-270. [PMID: 28229387 DOI: 10.1007/s12011-017-0968-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022]
Abstract
Ideal orthopedic coatings should trigger good osteogenic response and limited inflammatory response. The cerium valence states in ceria are associated with their anti-oxidative activity and anti-inflammatory property. In the study, we prepared two kinds of plasma sprayed CeO2 coatings with different Ce4+ concentrations to investigate the effects of Ce valence states on the response of bone mesenchymal stem cells (BMSCs) and macrophage RAW264.7. Both the coatings (CeO2-A and CeO2-B) were characterized via XRD, SEM, and X-ray photoelectron spectroscopy. The CeO2 coatings enhanced osteogenic behaviors of BMSCs in terms of cellular proliferation, alkaline phosphatase (ALP) activity and calcium deposition activity in comparison with the Ti substrate. In particular, the CeO2-B coating (higher Ce4+ concentration) elicited greater effects than the CeO2-A coating (higher Ce3+ concentration). RT-PCR and western blot results suggested that the CeO2-B coating promoted BMSCs osteogenic differentiation through the SMAD-dependent BMP signaling pathway, which activated Runx2 expression and subsequently enhanced the expression of ALP and OCN. With respect to either CeO2-A coating or Ti substrate, the CeO2-B coating exerted greater effects on the macrophages, increasing the anti-inflammatory cytokines (IL-10 and IL-1ra) expression and suppressing the expression of the pro-inflammatory cytokines (TNF-α and IL-6) and ROS production. Furthermore, it also upregulated the expression of osteoinductive molecules (TGF-β1 and BMP2) in the macrophages. The regulation of cerium valence states at plasma sprayed ceria coatings can be a valuable strategy to improve osteogenic properties and alleviate inflammatory response.
Collapse
Affiliation(s)
- Mingyu You
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
| |
Collapse
|
44
|
Serebrovska Z, Swanson RJ, Portnichenko V, Shysh A, Pavlovich S, Tumanovska L, Dorovskych A, Lysenko V, Tertykh V, Bolbukh Y, Dosenko V. Anti-inflammatory and antioxidant effect of cerium dioxide nanoparticles immobilized on the surface of silica nanoparticles in rat experimental pneumonia. Biomed Pharmacother 2017; 92:69-77. [PMID: 28531802 DOI: 10.1016/j.biopha.2017.05.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
A massage with the potent counter-inflammatory material, cerium dioxide nanoparticles, is promising and the antioxidant properties of CeO2 are considered the main, if not the only, mechanism of this action. Nevertheless, the elimination of ceria nano-particles from the organism is very slow and there is a strong concern for toxic effect of ceria due to its accumulation. To overcome this problem, we engineered a combined material in which cerium nanoparticles were immobilized on the surface of silica nanoparticles (CeO2 NP), which is shown to be easily removed from an organism and could be used as carriers for nano-ceria. In our study particle size was 220±5nm, Zeta-potential -4.5mV (in water), surface charge density -17.22μC/cm2 (at pH 7). Thirty-six male Wistar rats, 5 months old and 250-290g were divided into four groups: 1) control; 2) CeO2 NP treatment; 3) experimental pneumonia (i/p LPS injection, 1mg/kg); and 4) experimental pneumonia treated with CeO2 NP (4 times during the study in dosage of 0.6mg/kg with an orogastric catheter). Gas exchange and pulmonary ventilation were measured four times: 0, 1, 3 and 24h after LPS injection in both untreated and CeO2 NP-treated animals. The mRNA of TNF-α, Il-6, and CxCL2 were determined by RT-PCR. ROS-generation in blood plasma and lung tissue homogenates were measured by means of lucigenin- and luminol-enhanced chemiluminescence. Endotoxemia in the acute phase was associated with: (1) pathological changes in lung morphology; (2) increase of ROS generation; (3) enhanced expression of CxCL2; and (4) a gradual decrease of VO2 and VE. CeO2 NP treatment of intact animals did not make any changes in all studied parameters except for a significant augmentation of VO2 and VE. CeO2 NP treatment of rats with pneumonia created positive changes in diminishing lung tissue injury, decreasing ROS generation in blood and lung tissue and decreasing pro-inflammatory cytokine expression (TNF-α, Il-6 and CxCL2). Oxygen consumption in this group was increased compared to the LPS pneumonia group. In our study we have shown anti-inflammatory and antioxidant effects of CeO2 NP. In addition, this paper is the first to report that CeO2 NP stimulates oxygen consumption in both healthy rats, and rats with pneumonia. We propose the key in understanding the mechanisms behind the phenomena lies in the property of CeO2 NP to scavenge ROS and the influence of this potent antioxidant on mitochondrial function. The study of biodistribution and elimination of СеО2NP is the purpose of our ongoing study.
Collapse
Affiliation(s)
- Z Serebrovska
- Bogomoletz Institute of Physiology, National Academy of Sciences, 4 Bogomoletz St., Kyiv 01024, Ukraine.
| | - R J Swanson
- Liberty University College of Osteopathic Medicine in Lynchburg, 306 Liberty View Lane, Lynchburg, VA24502, USA
| | - V Portnichenko
- Bogomoletz Institute of Physiology, National Academy of Sciences, 4 Bogomoletz St., Kyiv 01024, Ukraine
| | - A Shysh
- Bogomoletz Institute of Physiology, National Academy of Sciences, 4 Bogomoletz St., Kyiv 01024, Ukraine
| | - S Pavlovich
- Bogomoletz Institute of Physiology, National Academy of Sciences, 4 Bogomoletz St., Kyiv 01024, Ukraine
| | - L Tumanovska
- Bogomoletz Institute of Physiology, National Academy of Sciences, 4 Bogomoletz St., Kyiv 01024, Ukraine
| | - A Dorovskych
- Integrative Medicine Clinic "SmartMed", 16 Luteranska St., Kyiv, 01024, Ukraine
| | - V Lysenko
- Lashkariov Institute of Semiconductor Physics, National Academy of Sciences, 41 Nauki Ave., 03028, Kyiv, Ukraine
| | - V Tertykh
- Chuiko Institute of Surface Chemistry, National Academy of Sciences, 17 Generala Naumova St., 03164, Kyiv, Ukraine
| | - Y Bolbukh
- Chuiko Institute of Surface Chemistry, National Academy of Sciences, 17 Generala Naumova St., 03164, Kyiv, Ukraine
| | - V Dosenko
- Bogomoletz Institute of Physiology, National Academy of Sciences, 4 Bogomoletz St., Kyiv 01024, Ukraine
| |
Collapse
|
45
|
Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj 2017; 1861:802-813. [PMID: 28115205 DOI: 10.1016/j.bbagen.2017.01.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The balance between oxidation and anti-oxidation is believed to be critical in maintaining healthy biological systems. However, our endogenous antioxidant defense systems are incomplete without exogenous antioxidants and, therefore, there is a continuous demand for exogenous antioxidants to prevent stress and ageing associated disorders. Nanotechnology has yielded enormous variety of nanomaterials (NMs) of which metallic and carbonic (mainly fullerenes) NMs, with redox property, have been found to be strong scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. SCOPE OF REVIEW Redox activity of metal based NMs and membrane translocation time of fullerene NMs seem to be the major determinants in ROS scavenging potential exhibited by these NMs. A comprehensive knowledge about the effects of ROS scavenging NMs in cellular antioxidant signalling is largely lacking. This review compiles the mechanisms of ROS scavenging as well as antioxidant signalling of the aforementioned metallic and fullerene NMs. MAJOR CONCLUSIONS Direct interaction between NMs and proteins does greatly affect the corona/adsorption formation dynamics but such interaction does not provide the explanation behind diverse biological outcomes induced by NMs. Indirect interaction, however, that could occur via NMs uptake and dissolution, NMs ROS induction and ROS scavenging property, and NMs membrane translocation time seem to work as a central mode of interaction. GENERAL SIGNIFICANCE The usage of potential antioxidant NMs in biological systems would greatly impact the field of nanomedicine. ROS scavenging NMs hold great promise in the future treatment of ROS related degenerative disorders.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia; King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Aws Alshamsan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia; Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Therapeutic Potential of Cerium Oxide Nanoparticles for the Treatment of Peritonitis Induced by Polymicrobial Insult in Sprague-Dawley Rats. Crit Care Med 2016; 43:e477-89. [PMID: 26327202 DOI: 10.1097/ccm.0000000000001258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Peritonitis is a life-threatening disease that is associated with high mortality. The purpose of this study was to determine if cerium oxide nanoparticles can be used to diminish intra-abdominal infection-induced mortality and systemic inflammatory response syndrome in the laboratory rat. DESIGN Randomized, controlled animal study and cell culture study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats aged 12 weeks, RAW 246.7 macrophage cell line. INTERVENTIONS Intra-abdominal infection or peritonitis was induced by intraperitoneal injection of cecal material (600 mg/kg in 5% sterile dextrose water at a dosage of 5 mL/kg) obtained from healthy donors. Rats in control and peritonitis groups received 200 μL of sterile deionized water IV via the tail vein, whereas rats in cerium oxide-only group and peritonitis+cerium oxide group received cerium oxide nanoparticles (0.5 mg/kg) IV at the time of polymicrobial injection. Survival rate was monitored for 14 days, while in other experiments, animals were killed at 3 and 18 hours after induction of peritonitis for biochemical analysis. MEASUREMENTS AND MAIN RESULTS Administration of a single dose (0.5 mg/kg) of cerium oxide nanoparticles IV to rats in the peritonitis group significantly improved survival rates and functioned to restore core body temperature toward baseline. Treatment-induced increases in animal survivability were associated with reduced systemic and hepatic oxidative stress, diminished serum cytokines, and chemokine levels. Changes in serum inflammatory markers with treatment were accompanied by decreased monocyte and lymphocyte extravasation into the peritoneal cavity along with decreased infiltration of macrophages into liver. In the heart, treatment diminished extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase-Stat-3 signaling and attenuated endothelial expression of P-selectin and vascular cell adhesion molecule-1. CONCLUSIONS Cerium oxide nanoparticles attenuate the systemic inflammatory response associated with peritonitis, suggesting potential use as a novel therapeutic agent for the treatment of severe intra-abdominal infection.
Collapse
|
47
|
Asano S, Arvapalli R, Manne NDPK, Maheshwari M, Ma B, Rice KM, Selvaraj V, Blough ER. Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction. Int J Nanomedicine 2015; 10:6215-25. [PMID: 26491293 PMCID: PMC4599716 DOI: 10.2147/ijn.s89783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The severe inflammation observed during sepsis is thought to cause diaphragm dysfunction, which is associated with poor patient prognosis. Cerium oxide (CeO2) nanoparticles have been posited to exhibit anti-inflammatory and antioxidative activities suggesting that these particles may be of potential use for the treatment of inflammatory disorders. To investigate this possibility, Sprague Dawley rats were randomly assigned to the following groups: sham control, CeO2 nanoparticle treatment only (0.5 mg/kg iv), sepsis, and sepsis+CeO2 nanoparticles. Sepsis was induced by the introduction of cecal material (600 mg/kg) directly into the peritoneal cavity. Nanoparticle treatment decreased sepsis-associated impairments in diaphragmatic contractile (P(o)) function (sham: 25.6±1.6 N/cm(2) vs CeO2: 23.4±0.8 N/cm(2) vs Sep: 15.9±1.0 N/cm(2) vs Sep+CeO2: 20.0±1.0 N/cm(2), P<0.05). These improvements in diaphragm contractile function were accompanied by a normalization of protein translation signaling (Akt, FOXO-1, and 4EBP1), diminished proteolysis (caspase 8 and ubiquitin levels), and decreased inflammatory signaling (Stat3 and iNOS). Histological analysis suggested that nanoparticle treatment was associated with diminished sarcolemma damage and diminished inflammatory cell infiltration. These data indicate CeO2 nanoparticles may improve diaphragmatic function in the septic laboratory rat.
Collapse
Affiliation(s)
- Shinichi Asano
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA
| | | | - Nandini D P K Manne
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA
| | - Mani Maheshwari
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Physiology and Toxicology, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Bing Ma
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA
| | - Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Vellaisamy Selvaraj
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA
| | - Eric R Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Physiology and Toxicology, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|