1
|
Bunne C, Roohani Y, Rosen Y, Gupta A, Zhang X, Roed M, Alexandrov T, AlQuraishi M, Brennan P, Burkhardt DB, Califano A, Cool J, Dernburg AF, Ewing K, Fox EB, Haury M, Herr AE, Horvitz E, Hsu PD, Jain V, Johnson GR, Kalil T, Kelley DR, Kelley SO, Kreshuk A, Mitchison T, Otte S, Shendure J, Sofroniew NJ, Theis F, Theodoris CV, Upadhyayula S, Valer M, Wang B, Xing E, Yeung-Levy S, Zitnik M, Karaletsos T, Regev A, Lundberg E, Leskovec J, Quake SR. How to build the virtual cell with artificial intelligence: Priorities and opportunities. Cell 2024; 187:7045-7063. [PMID: 39672099 DOI: 10.1016/j.cell.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
Cells are essential to understanding health and disease, yet traditional models fall short of modeling and simulating their function and behavior. Advances in AI and omics offer groundbreaking opportunities to create an AI virtual cell (AIVC), a multi-scale, multi-modal large-neural-network-based model that can represent and simulate the behavior of molecules, cells, and tissues across diverse states. This Perspective provides a vision on their design and how collaborative efforts to build AIVCs will transform biological research by allowing high-fidelity simulations, accelerating discoveries, and guiding experimental studies, offering new opportunities for understanding cellular functions and fostering interdisciplinary collaborations in open science.
Collapse
Affiliation(s)
- Charlotte Bunne
- Department of Computer Science, Stanford University, Stanford, CA, USA; Genentech, South San Francisco, CA, USA; Chan Zuckerberg Initiative, Redwood City, CA, USA; School of Computer and Communication Sciences and School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Yusuf Roohani
- Department of Computer Science, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, CA, USA; Arc Institute, Palo Alto, CA, USA
| | - Yanay Rosen
- Department of Computer Science, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Ankit Gupta
- Chan Zuckerberg Initiative, Redwood City, CA, USA; Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xikun Zhang
- Department of Computer Science, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Marcel Roed
- Department of Computer Science, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Theo Alexandrov
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Mohammed AlQuraishi
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | | | | | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Chan Zuckerberg Biohub, New York, NY, USA
| | - Jonah Cool
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kirsty Ewing
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Emily B Fox
- Department of Computer Science, Stanford University, Stanford, CA, USA; Department of Statistics, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Matthias Haury
- Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood City, CA, USA
| | - Amy E Herr
- Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Patrick D Hsu
- Arc Institute, Palo Alto, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | - Shana O Kelley
- Chan Zuckerberg Biohub, Chicago, IL, USA; Northwestern University, Evanston, IL, USA
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tim Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Stephani Otte
- Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood City, CA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Seattle Hub for Synthetic Biology, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| | | | - Fabian Theis
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany; School of Computing, Information and Technology, Technical University of Munich, Munich, Germany; TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Christina V Theodoris
- Gladstone Institute of Cardiovascular Disease, Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Marc Valer
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Bo Wang
- Department of Computer Science, University of Toronto, Toronto, ON, Canada; Vector Institute, Toronto, ON, Canada
| | - Eric Xing
- Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, USA; Mohamed Bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates
| | - Serena Yeung-Levy
- Department of Computer Science, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Aviv Regev
- Genentech, South San Francisco, CA, USA.
| | - Emma Lundberg
- Chan Zuckerberg Initiative, Redwood City, CA, USA; Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, CA, USA.
| | - Stephen R Quake
- Chan Zuckerberg Initiative, Redwood City, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Applied Physics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Almadori A, Butler PEM. Scarring and Skin Fibrosis Reversal with Regenerative Surgery and Stem Cell Therapy. Cells 2024; 13:443. [PMID: 38474408 PMCID: PMC10930731 DOI: 10.3390/cells13050443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Skin scarring and fibrosis affect millions of people worldwide, representing a serious clinical problem causing physical and psychological challenges for patients. Stem cell therapy and regenerative surgery represent a new area of treatment focused on promoting the body's natural ability to repair damaged tissue. Adipose-derived stem cells (ASCs) represent an optimal choice for practical regenerative medicine due to their abundance, autologous tissue origin, non-immunogenicity, and ease of access with minimal morbidity for patients. This review of the literature explores the current body of evidence around the use of ASCs-based regenerative strategies for the treatment of scarring and skin fibrosis, exploring the different surgical approaches and their application in multiple fibrotic skin conditions. Human, animal, and in vitro studies demonstrate that ASCs present potentialities in modifying scar tissue and fibrosis by suppressing extracellular matrix (ECM) synthesis and promoting the degradation of their constituents. Through softening skin fibrosis, function and overall quality of life may be considerably enhanced in different patient cohorts presenting with scar-related symptoms. The use of stem cell therapies for skin scar repair and regeneration represents a paradigm shift, offering potential alternative therapeutic avenues for fibrosis, a condition that currently lacks a cure.
Collapse
Affiliation(s)
- Aurora Almadori
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College of London, London NW3 2QG, UK;
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London NW3 2QG, UK
- The Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital Campus, University College of London, London NW3 2QG, UK
| | - Peter EM Butler
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College of London, London NW3 2QG, UK;
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London NW3 2QG, UK
- The Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital Campus, University College of London, London NW3 2QG, UK
| |
Collapse
|
3
|
Ding Y, Liu S, Liu J, Jin S, Wang J. Cryopreservation with DMSO affects the DNA integrity, apoptosis, cell cycle and function of human bone mesenchymal stem cells. Cryobiology 2024; 114:104847. [PMID: 38246511 DOI: 10.1016/j.cryobiol.2024.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Cryopreservation (CP) enables pooling and long-term banking of various types of cells, which is indispensable for the cell therapeutics. Dimethyl sulfoxide (DMSO) is universally used as a cryoprotectant in basic and clinical research. Although, the use of DMSO has been under serious debate due to significant clinical side effects correlated with infusions of cellular therapy products containing DMSO, the effect of CP with DMSO on the cell properties and functions remains unknown. Here, we experimentally found that the CP of human bone mesenchymal stem cells (hBMSCs) with 10 % DMSO results 10-15 % of cells apoptosis upon immediate freeze-thaw, ca. 3.8 times of DNA damage/repair relative to the fresh ones after post-thaw cultured in 48 h, and cell cycle arrests at G0/G1 after post-thaw cultured in 24 h. Moreover, CP with 10 % DMSO significantly increases the reactive oxygen species (ROS) level of the frozen-thawed MSCs which may be one of the causes impair cellular properties and functions. Indeed, we found that the differentiation and migration ability of post-thaw cultured hBMSCs decrease as the expression of adipogenic, osteogenic genes and F-actin reduces in the comparison with those of the fresh cells.
Collapse
Affiliation(s)
- Yanqin Ding
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuo Liu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianting Liu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shenglin Jin
- Interdisciplinary Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| | - Jianjun Wang
- Interdisciplinary Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
4
|
Barreto da Silva T, Dias EA, Cardoso LMDF, Gama JFG, Alves LA, Henriques-Pons A. Magnetic Nanostructures and Stem Cells for Regenerative Medicine, Application in Liver Diseases. Int J Mol Sci 2023; 24:ijms24119293. [PMID: 37298243 DOI: 10.3390/ijms24119293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The term "liver disease" refers to any hepatic condition that leads to tissue damage or altered hepatic function and can be induced by virus infections, autoimmunity, inherited genetic mutations, high consumption of alcohol or drugs, fat accumulation, and cancer. Some types of liver diseases are becoming more frequent worldwide. This can be related to increasing rates of obesity in developed countries, diet changes, higher alcohol intake, and even the coronavirus disease 2019 (COVID-19) pandemic was associated with increased liver disease-related deaths. Although the liver can regenerate, in cases of chronic damage or extensive fibrosis, the recovery of tissue mass is impossible, and a liver transplant is indicated. Because of reduced organ availability, it is necessary to search for alternative bioengineered solutions aiming for a cure or increased life expectancy while a transplant is not possible. Therefore, several groups were studying the possibility of stem cells transplantation as a therapeutic alternative since it is a promising strategy in regenerative medicine for treating various diseases. At the same time, nanotechnological advances can contribute to specifically targeting transplanted cells to injured sites using magnetic nanoparticles. In this review, we summarize multiple magnetic nanostructure-based strategies that are promising for treating liver diseases.
Collapse
Affiliation(s)
- Tatiane Barreto da Silva
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Evellyn Araújo Dias
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | | | - Jaciara Fernanda Gomes Gama
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Luiz Anastácio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Andrea Henriques-Pons
- Laboratory of Innovations in Therapies, Education, and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| |
Collapse
|
5
|
Single-Cell RNA Sequencing Reveals Distinct Cardiac-Derived Stromal Cell Subpopulations. J Cardiovasc Dev Dis 2022; 9:jcdd9110374. [DOI: 10.3390/jcdd9110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Human cardiac-derived c-kit+ stromal cells (CSCs) have demonstrated efficacy in preclinical trials for the treatment of heart failure and myocardial dysfunction. Unfortunately, large variability in patient outcomes and cell populations remains a problem. Previous research has demonstrated that the reparative capacity of CSCs may be linked to the age of the cells: CSCs derived from neonate patients increase cardiac function and reduce fibrosis. However, age-dependent differences between CSC populations have primarily been explored with bulk sequencing methods. In this work, we hypothesized that differences in CSC populations and subsequent cell therapy outcomes may arise from differing cell subtypes within donor CSC samples. We performed single-cell RNA sequencing on four neonatal CSC (nCSC) and five child CSC (cCSC) samples. Subcluster analysis revealed cCSC-enriched clusters upregulated in several fibrosis- and immune response-related genes. Module-based analysis identified upregulation of chemotaxis and ribosomal activity-related genes in nCSCs and upregulation of immune response and fiber synthesis genes in cCSCs. Further, we identified versican and integrin alpha 2 as potential markers for a fibrotic cell subtype. By investigating differences in patient-derived CSC populations at the single-cell level, this research aims to identify and characterize CSC subtypes to better optimize CSC-based therapy and improve patient outcomes.
Collapse
|
6
|
Nair A, Horiguchi I, Fukumori K, Kino-oka M. Development of instability analysis for the filling process of human-induced pluripotent stem cell products. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
DeVeaux SA, Ogle ME, Vyshnya S, Chiappa NF, Leitmann B, Rudy R, Day A, Mortensen LJ, Kurtzberg J, Roy K, Botchwey EA. Characterizing human mesenchymal stromal cells' immune-modulatory potency using targeted lipidomic profiling of sphingolipids. Cytotherapy 2022; 24:608-618. [PMID: 35190267 PMCID: PMC10725732 DOI: 10.1016/j.jcyt.2021.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Cell therapies are expected to increase over the next decade owing to increasing demand for clinical applications. Mesenchymal stromal cells (MSCs) have been explored to treat a number of diseases, with some successes in early clinical trials. Despite early successes, poor MSC characterization results in lessened therapeutic capacity once in vivo. Here, we characterized MSCs derived from bone marrow (BM), adipose tissue and umbilical cord tissue for sphingolipids (SLs), a class of bioactive lipids, using liquid chromatography/tandem mass spectrometry. We found that ceramide levels differed based on the donor's sex in BM-MSCs. We detected fatty acyl chain variants in MSCs from all three sources. Linear discriminant analysis revealed that MSCs separated based on tissue source. Principal component analysis showed that interferon-γ-primed and unstimulated MSCs separated according to their SL signature. Lastly, we detected higher ceramide levels in low indoleamine 2,3-dioxygenase MSCs, indicating that sphingomyelinase or ceramidase enzymatic activity may be involved in their immune potency.
Collapse
Affiliation(s)
- S’Dravious A. DeVeaux
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Molly E. Ogle
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Sofiya Vyshnya
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Nathan F. Chiappa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Bobby Leitmann
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA
| | - Ryan Rudy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Abigail Day
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA
- NSF Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia Institute of Technology, Atlanta, GA
| | - Edward A. Botchwey
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
8
|
Vafaei S, Mansoori M, hashemi F, Basiri M. Exosome Odyssey to Original Line in Dental Regeneration. J Oral Biosci 2022; 64:271-278. [DOI: 10.1016/j.job.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
|
9
|
Alzate-Correa D, Lawrence WR, Salazar-Puerta A, Higuita-Castro N, Gallego-Perez D. Nanotechnology-Driven Cell-Based Therapies in Regenerative Medicine. AAPS J 2022; 24:43. [PMID: 35292878 PMCID: PMC9074705 DOI: 10.1208/s12248-022-00692-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
The administration of cells as therapeutic agents has emerged as a novel approach to complement the use of small molecule drugs and other biologics for the treatment of numerous conditions. Although the use of cells for structural and/or functional tissue repair and regeneration provides new avenues to address increasingly complex disease processes, it also faces numerous challenges related to efficacy, safety, and translational potential. Recent advances in nanotechnology-driven cell therapies have the potential to overcome many of these issues through precise modulation of cellular behavior. Here, we describe several approaches that illustrate the use of different nanotechnologies for the optimization of cell therapies and discuss some of the obstacles that need to be overcome to allow for the widespread implementation of nanotechnology-based cell therapies in regenerative medicine.
Collapse
Affiliation(s)
- D Alzate-Correa
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - W R Lawrence
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, 43210, USA
| | - A Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - N Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, 43210, USA.,Department of Surgery, The Ohio State University, 140 W. 19th Ave, room 3018, Columbus, Ohio, 43210, USA
| | - D Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA. .,Department of Surgery, The Ohio State University, 140 W. 19th Ave, room 3018, Columbus, Ohio, 43210, USA.
| |
Collapse
|
10
|
Wang B, Liu W, Li JJ, Chai S, Xing D, Yu H, Zhang Y, Yan W, Xu Z, Zhao B, Du Y, Jiang Q. A low dose cell therapy system for treating osteoarthritis: In vivo study and in vitro mechanistic investigations. Bioact Mater 2022; 7:478-490. [PMID: 34466747 PMCID: PMC8379370 DOI: 10.1016/j.bioactmat.2021.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be effective in alleviating the progression of osteoarthritis (OA). However, low MSC retention and survival at the injection site frequently require high doses of cells and/or repeated injections, which are not economically viable and create additional risks of complications. In this study, we produced MSC-laden microcarriers in spinner flask culture as cell delivery vehicles. These microcarriers containing a low initial dose of MSCs administered through a single injection in a rat anterior cruciate ligament (ACL) transection model of OA achieved similar reparative effects as repeated high doses of MSCs, as evaluated through imaging and histological analyses. Mechanistic investigations were conducted using a co-culture model involving human primary chondrocytes grown in monolayer, together with MSCs grown either within 3D constructs or as a monolayer. Co-culture supernatants subjected to secretome analysis showed significant decrease of inflammatory factors in the 3D group. RNA-seq of co-cultured MSCs and chondrocytes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed processes relating to early chondrogenesis and increased extracellular matrix interactions in MSCs of the 3D group, as well as phenotypic maintenance in the co-cultured chondrocytes. The cell delivery platform we investigated may be effective in reducing the cell dose and injection frequency required for therapeutic applications.
Collapse
Affiliation(s)
- Bin Wang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Department of Orthopaedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 10081, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Senlin Chai
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Hongsheng Yu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjin Yan
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| | - Zhihong Xu
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| | - Bin Zhao
- Department of Orthopaedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| |
Collapse
|
11
|
Zocchi ML, Facchin F, Pagani A, Bonino C, Sbarbati A, Conti G, Vindigni V, Bassetto F. New perspectives in regenerative medicine and surgery: the bioactive composite therapies (BACTs). EUROPEAN JOURNAL OF PLASTIC SURGERY 2021; 45:1-25. [PMID: 34728900 PMCID: PMC8554210 DOI: 10.1007/s00238-021-01874-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
Regenerative medicine and surgery is a rapidly expanding branch of translational research in tissue engineering, cellular and molecular biology. To date, the methods to improve cell intake, survival, and isolation need to comply with a complex and still unclear regulatory frame, becoming everyday more restrictive and often limiting the effectiveness and outcome of the therapeutic choices. Thus, the authors developed a novel 360° regenerative strategy based on the synergic action of several new components called the bioactive composite therapies (BACTs) to improve grafted cells intake, and survival in total compliance with the legal and ethical limits of the current regulatory frame. The rationale at the origin of this new technology is based on the evidence that cells need supportive substrate to survive in vitro and this observation, applying the concept of translational medicine, is true also in vivo. Bioactive composite mixtures (BACMs) are tailor-made bioactive mixtures containing several bioactive components that support cells' survival and induce a regenerative response in vivo by stimulating the recipient site to act as an in situ real bioreactor. Many different tissues have been used in the past for the isolation of cells, molecules, and growth factors, but the adipose tissue and its stromal vascular fraction (SVF) remains the most valuable, abundant, safe, and reliable source of regenerative components and particularly of adipose-derived stems cells (ADSCs). The role of plastic surgeons as the historical experts in all the most advanced techniques for harvesting, manipulating, and grafting adipose tissue is fundamental in this constant process of expansion of regenerative procedures. In this article, we analyze the main causes of cell death and the strategies for preventing it, and we present all the technical steps for preparing the main components of BACMs and the different mixing modalities to obtain the most efficient regenerative action on different clinical and pathological conditions. The second section of this work is dedicated to the logical and sequential evolution from simple bioactive composite grafts (BACGs) that distinguished our initial approach to regenerative medicine, to BACTs where many other fundamental technical steps are analyzed and integrated for supporting and enhancing the most efficient regenerative activity. Level of Evidence: Not gradable.
Collapse
Affiliation(s)
- Michele L Zocchi
- Plastic and Reconstructive Surgery Unit, University of Padua, Padua, Italy.,Remix Institute for Regenerative Surgery, Turin, Italy
| | - Federico Facchin
- Plastic and Reconstructive Surgery Unit, University of Padua, Padua, Italy
| | - Andrea Pagani
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Claudia Bonino
- Department of Rheumatology and Immune Diseases, Humanitas Gradenigo Hospital, Turin, Italy
| | - Andrea Sbarbati
- Institute of Human Anatomy, University of Verona, Verona, Italy
| | - Giamaica Conti
- Institute of Human Anatomy, University of Verona, Verona, Italy
| | - Vincenzo Vindigni
- Plastic and Reconstructive Surgery Unit, University of Padua, Padua, Italy
| | - Franco Bassetto
- Plastic and Reconstructive Surgery Unit, University of Padua, Padua, Italy
| |
Collapse
|
12
|
Kim DS, Lee G, Cho H, Bae S. Regenerative Medicine in South Korea: Bridging the Gap Between Authorization and Reimbursement. Front Bioeng Biotechnol 2021; 9:737504. [PMID: 34527662 PMCID: PMC8435711 DOI: 10.3389/fbioe.2021.737504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022] Open
Abstract
Regenerative medicine (RM) has considerable potential to address the needs of aging-related and uncurable diseases. However, its incorporation into reimbursement of health insurance benefits poses many challenges, including uncertain evidence and insufficient investment. This paper examines the wide gap between manufacturers, regulatory bodies, and health technology bodies regarding reimbursements for RMs focused cell therapy products. In this mixed-methods study, we first analyzed the sales of RMs approved in South Korea. In addition to exploring beliefs related to the market value of RMs, in-depth interviews were conducted with 24 experts (17 from bio-industries, two from the regulatory body, three from a health technology assessment (HTA) body, and two from the Pharmaceutical Benefit Coverage Assessment Committee [PBCAC]). Lastly, we surveyed PBCAC members about the market value of RMs. In total, 15 of the 20 developed cell therapy products are on the market in South Korea, and amounted to 0.24% of total pharmaceutical expenditures in 2018. We identified a wide gap between stakeholders and regulators regarding the market value and pricing of RMs. The interviewees from the pharmaceutical manufacturer association raised the issue of rising manufacturing costs and proposed a specific pricing policy for RMs. To bridge the gap between approval and reimbursement, stakeholders demand an alternative framework of value-based pricing. Conditional health insurance reimbursement may be an alternative to the traditional process in order to generate evidence of the effects of RMs using “risk-based” or “outcome-based” approaches.
Collapse
Affiliation(s)
- Dong-Sook Kim
- Department of Research, Health Insurance Review and Assessment Service, Chuncheon, South Korea
| | - Geunwoo Lee
- Department of Research, Health Insurance Review and Assessment Service, Chuncheon, South Korea
| | - Hyungyung Cho
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - SeungJin Bae
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
13
|
Ornelas-González A, González-González M, Rito-Palomares M. Microcarrier-based stem cell bioprocessing: GMP-grade culture challenges and future trends for regenerative medicine. Crit Rev Biotechnol 2021; 41:1081-1095. [PMID: 33730936 DOI: 10.1080/07388551.2021.1898328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recently, stem cell-based therapies have been proposed as an alternative for the treatment of many diseases. Stem cells (SCs) are well known for their capacity to preserve themselves, proliferate, and differentiate into multiple lineages. These characteristics allow stem cells to be a viable option for the treatment of diverse diseases. Traditional methodologies based on 2-dimensional culture techniques (T-flasks and Petri dishes) are simple and well standardized; however, they present disadvantages that limit the production of the cell yield required for regenerative medicine applications. Lately, microcarrier (MC)-based culture techniques have emerged as an attractive platform for expanding stem cells in suspension systems. Although the use of stem cell expansion on MCs has recently shown significant increase, their implementation for medical purposes is been hampered by bottlenecks in upstream and downstream processing. Therefore, there is an urgent need in the development of bioprocesses that simplify stem cell cultures under xeno-free conditions and detachment from MCs without diminishing their pluripotency and viability. A critical analysis of the factors that impact the up and downstream bioprocessing on MC-based stem cell cultures is presented in this review. This analysis aims to raise the awareness of the current drawbacks that limit MC-based stem cell bioprocessing in regenerative medicine and propose alternatives to overcome them.
Collapse
Affiliation(s)
| | | | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
14
|
Sepsis and Septic Shock; Current Treatment Dilemma and Role of Stem Cell Therapy in Pediatrics. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2021. [DOI: 10.5812/pedinfect.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Sepsis’s primary therapy consists of antibiotics therapy, supportive therapies, and source control of infection. The failure rate of this approach is about 20 - 40%. The widespread use of antibiotics has caused multiple drug resistance in primary etiological agents of sepsis in community-acquired and healthcare-associated infections. In the absence of new antibiotic options, alternative treatment modalities seem necessary. Evidence Acquisition: Herein, we have reviewed and discussed current problems with sepsis management and stem cell therapy in sepsis, preclinical, experimental studies, and early-phase clinical trials using stem cells to treat sepsis. In the preparation of the paper, PubMed, Web of Science Core Collection (Clarivate), Scopus, and the web address (www.clinicaltrials.gov) were searched by the keywords (sepsis and cell therapy, septic shock, and cell therapy). Results: After the inclusion of criteria, we reviewed 301 original articles. Few articles were found for phase II and phase III clinical trials. Eighty-three articles were included in the current review article. Besides problems with infection source control, the host immune response to the infection enumerated for primary underlying pathophysiologic dysregulation of sepsis and complicated the treatment. Mesenchymal stem cells (MSCs) therapy offers a promising treatment option for sepsis. Indeed, immunomodulatory properties, antimicrobial activity, the capacity of protection against organ failure, enhance the resolution of tissue injury, tissue repair, and restoration after sepsis confer MSCs with a significant advantage to treat the immune and inflammatory dysfunctions associated with severe sepsis and septic shock. Conclusions: It seems that MSCs therapy exhibits an appropriate safety index. Future trials should focus on strengthening study quality, reporting MSCs’ therapeutic effects and adverse events. Although early clinical trials seem promising and have beneficial effects, we need more controlled clinical studies, especially in phases II and III.
Collapse
|
15
|
Lam C, van Velthoven MH, Meinert E. Developing a Blockchain-Based Supply Chain System for Advanced Therapies: Protocol for a Feasibility Study. JMIR Res Protoc 2020; 9:e17005. [PMID: 33315020 PMCID: PMC7769686 DOI: 10.2196/17005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/20/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background Advanced therapies, including cell and gene therapies, have shown therapeutic promise in curing life-threatening diseases, such as leukemia and lymphoma. However, these therapies can be complicated and expensive to deliver due to their sensitivity to environment; troublesome tissue, cell, or genetic material sourcing; and complicated regulatory requirements. Objective This study aims to create a novel connected supply chain logistics and manufacturing management platform based on blockchain, with cell and gene therapy as a use case. Objectives are to define the requirements and perform feasibility evaluations on the use of blockchain for standardized manufacturing and establishment of a chain of custody for the needle-to-needle delivery of autologous cell and gene therapies. A way of lowering overall regulatory compliance costs for running a network of facilities operating similar or parallel processes will be evaluated by lowering the monitoring costs through publishing zero-knowledge proofs and product release by exception. Methods The study will use blockchain technologies to digitally connect and integrate supply chain with manufacturing to address the security, scheduling, and communication issues between advanced therapy treatment centers and manufacturing facilities in order to realize a transparent, secure, automated, and cost-effective solution to the delivery of these life-saving therapies. An agile software development methodology will be used to develop, implement, and evaluate the system. The system will adhere to the EU and US good manufacturing practices and regulatory requirements. Results This is a proposed study protocol, and upon acceptance, grant funding will be pursued for its execution in 2021. Conclusions The successful implementation of the integrated blockchain solution to supply chain and manufacturing of advanced therapies can push the industry standards toward a safer and more secure therapy delivery process. International Registered Report Identifier (IRRID) PRR1-10.2196/17005
Collapse
Affiliation(s)
- Ching Lam
- Digitally Enabled PrevenTative Health (DEPTH) Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Michelle Helena van Velthoven
- Digitally Enabled PrevenTative Health (DEPTH) Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Edward Meinert
- Digitally Enabled PrevenTative Health (DEPTH) Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,Department of Primary Care and Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M, Kiani J. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Front Immunol 2020; 11:2062. [PMID: 33117331 PMCID: PMC7553049 DOI: 10.3389/fimmu.2020.02062] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats system has demonstrated considerable advantages over other nuclease-based genome editing tools due to its high accuracy, efficiency, and strong specificity. Given that cancer is caused by an excessive accumulation of mutations that lead to the activation of oncogenes and inactivation of tumor suppressor genes, the CRISPR/Cas9 system is a therapy of choice for tumor genome editing and treatment. In defining its superior use, we have reviewed the novel applications of the CRISPR genome editing tool in discovering, sorting, and prioritizing targets for subsequent interventions, and passing different hurdles of cancer treatment such as epigenetic alterations and drug resistance. Moreover, we have reviewed the breakthroughs precipitated by the CRISPR system in the field of cancer immunotherapy, such as identification of immune system-tumor interplay, production of universal Chimeric Antigen Receptor T cells, inhibition of immune checkpoint inhibitors, and Oncolytic Virotherapy. The existing challenges and limitations, as well as the prospects of CRISPR based systems, are also discussed.
Collapse
Affiliation(s)
| | - Mobina Ghasemi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Khanali
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
García-Fernández C, López-Fernández A, Borrós S, Lecina M, Vives J. Strategies for large-scale expansion of clinical-grade human multipotent mesenchymal stromal cells. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020; 8:620. [PMID: 32637403 PMCID: PMC7317031 DOI: 10.3389/fbioe.2020.00620] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cell therapy products exhibit great therapeutic potential but come with a deterring price tag partly caused by their costly manufacturing processes. The development of strategies that lead to cost-effective cell production is key to expand the reach of cell therapies. Growth factors are critical culture media components required for the maintenance and differentiation of cells in culture and are widely employed in cell therapy manufacturing. However, they are expensive, and their common use in soluble form is often associated with decreased stability and bioactivity. Immobilization has emerged as a possible strategy to optimize growth factor use in cell culture. To date, several immobilization techniques have been reported for attaching growth factors onto a variety of biomaterials, but these have been focused on tissue engineering. This review briefly summarizes the current landscape of cell therapy manufacturing, before describing the types of chemistry that can be used to immobilize growth factors for cell culture. Emphasis is placed to identify strategies that could reduce growth factor usage and enhance bioactivity. Finally, we describe a case study for stem cell factor.
Collapse
Affiliation(s)
| | | | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| | - Marion E. G. Brunck
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| |
Collapse
|
19
|
Kagihiro M, Fukumori K, Horiguchi I, Kim MH, Kino-oka M. Suppression of time-dependent decay by controlling the redox balance of human induced pluripotent stem cells suspended in a cryopreservation solution. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Coalson E, Bishop E, Liu W, Feng Y, Spezia M, Liu B, Shen Y, Wu D, Du S, Li AJ, Ye Z, Zhao L, Cao D, Li A, Hagag O, Deng A, Liu W, Li M, Haydon RC, Shi L, Athiviraham A, Lee MJ, Wolf JM, Ameer GA, He TC, Reid RR. Stem cell therapy for chronic skin wounds in the era of personalized medicine: From bench to bedside. Genes Dis 2019; 6:342-358. [PMID: 31832514 PMCID: PMC6888708 DOI: 10.1016/j.gendis.2019.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
With the significant financial burden of chronic cutaneous wounds on the healthcare system, not to the personal burden mention on those individuals afflicted, it has become increasingly essential to improve our clinical treatments. This requires the translation of the most recent benchtop approaches to clinical wound repair as our current treatment modalities have proven insufficient. The most promising potential treatment options rely on stem cell-based therapies. Stem cell proliferation and signaling play crucial roles in every phase of the wound healing process and chronic wounds are often associated with impaired stem cell function. Clinical approaches involving stem cells could thus be utilized in some cases to improve a body's inhibited healing capacity. We aim to present the laboratory research behind the mechanisms and effects of this technology as well as current clinical trials which showcase their therapeutic potential. Given the current problems and complications presented by chronic wounds, we hope to show that developing the clinical applications of stem cell therapies is the rational next step in improving wound care.
Collapse
Affiliation(s)
- Elam Coalson
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Elliot Bishop
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mia Spezia
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bo Liu
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, Changsha 410011, China
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Scott Du
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chongqing General Hospital, Chongqing 400013, China
| | - Alissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ofir Hagag
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alison Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Winny Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Mingyang Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60616, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL 60208, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL 60208, USA
| | - Russell R. Reid
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL 60208, USA
| |
Collapse
|
21
|
Kusena JWT, Thomas RJ, McCall MJ, Wilson SL. From protocol to product: ventral midbrain dopaminergic neuron differentiation for the treatment of Parkinson's disease. Regen Med 2019; 14:1057-1069. [DOI: 10.2217/rme-2019-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Current cell therapy product limitations include the need for in-depth product understanding to ensure product potency, safety and purity. New technologies require development and validation to address issues of production scale-up to meet clinical need; assays are required for process control, validation and release. Prior to clinical realization, an understanding of production processes is required to implement process changes that are essential for process control. Identification of key parameters forms the basis of process tolerances, allowing for validated, adaptive manufacturing processes. This enables greater process control and yield while withstanding regulatory scrutiny. This report summaries key milestones in specifically for ventral midbrain dopaminergic neuroprogenitor differentiation and key translational considerations and recommendations to enable successful, robust and reproducible current cell therapy product-manufacturing.
Collapse
Affiliation(s)
- James WT Kusena
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Robert J Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Mark J McCall
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Samantha L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
22
|
Santiago-Toledo G, Georgiou M, Dos Reis J, Roberton VH, Valinhas A, Wood RC, Phillips JB, Mason C, Li D, Li Y, Sinden JD, Choi D, Jat PS, Wall IB. Generation of c-MycER TAM-transduced human late-adherent olfactory mucosa cells for potential regenerative applications. Sci Rep 2019; 9:13190. [PMID: 31519924 PMCID: PMC6744411 DOI: 10.1038/s41598-019-49315-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
Human olfactory mucosa cells (hOMCs) have been transplanted to the damaged spinal cord both pre-clinically and clinically. To date mainly autologous cells have been tested. However, inter-patient variability in cell recovery and quality, and the fact that the neuroprotective olfactory ensheathing cell (OEC) subset is difficult to isolate, means an allogeneic hOMC therapy would be an attractive "off-the-shelf" alternative. The aim of this study was to generate a candidate cell line from late-adherent hOMCs, thought to contain the OEC subset. Primary late-adherent hOMCs were transduced with a c-MycERTAM gene that enables cell proliferation in the presence of 4-hydroxytamoxifen (4-OHT). Two c-MycERTAM-derived polyclonal populations, PA5 and PA7, were generated and expanded. PA5 cells had a normal human karyotype (46, XY) and exhibited faster growth kinetics than PA7, and were therefore selected for further characterisation. PA5 hOMCs express glial markers (p75NTR, S100ß, GFAP and oligodendrocyte marker O4), neuronal markers (nestin and ß-III-tubulin) and fibroblast-associated markers (CD90/Thy1 and fibronectin). Co-culture of PA5 cells with a neuronal cell line (NG108-15) and with primary dorsal root ganglion (DRG) neurons resulted in significant neurite outgrowth after 5 days. Therefore, c-MycERTAM-derived PA5 hOMCs have potential as a regenerative therapy for neural cells.
Collapse
Affiliation(s)
| | - Melanie Georgiou
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Joana Dos Reis
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Victoria H Roberton
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Ana Valinhas
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Rachael C Wood
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
- Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - James B Phillips
- Department of Pharmacology, UCL School of Pharmacy, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
| | - Chris Mason
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
- AVROBIO Inc, Cambridge, MA 02139, USA
| | - Daqing Li
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - Ying Li
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - John D Sinden
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
- ReNeuron Limited, Pencoed, Bridgend, CF35 5HY, UK
| | - David Choi
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - Parmjit S Jat
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, W1W 7FF, UK
| | - Ivan B Wall
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK.
- Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK.
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
23
|
Wong RS, Chen YY, Smolke CD. Regulation of T cell proliferation with drug-responsive microRNA switches. Nucleic Acids Res 2019; 46:1541-1552. [PMID: 29244152 PMCID: PMC5815133 DOI: 10.1093/nar/gkx1228] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/30/2017] [Indexed: 11/21/2022] Open
Abstract
As molecular and cellular therapies advance in the clinic, the role of genetic regulation is becoming increasingly important for controlling therapeutic potency and safety. The emerging field of mammalian synthetic biology provides promising tools for the construction of regulatory platforms that can intervene with endogenous pathways and control cell behavior. Recent work has highlighted the development of synthetic biological systems that integrate sensing of molecular signals to regulated therapeutic function in various disease settings. However, the toxicity and limited dosing of currently available molecular inducers have largely inhibited translation to clinical settings. In this work, we developed synthetic microRNA-based genetic systems that are controlled by the pharmaceutical drug leucovorin, which is readily available and safe for prolonged administration in clinical settings. We designed microRNA switches to target endogenous cytokine receptor subunits (IL-2Rβ and γc) that mediate various signaling pathways in T cells. We demonstrate the function of these control systems by effectively regulating T cell proliferation with the drug input. Each control system produced unique functional responses, and combinatorial targeting of multiple receptor subunits exhibited greater repression of cell growth. This work highlights the potential use of drug-responsive genetic control systems to improve the management and safety of cellular therapeutics.
Collapse
Affiliation(s)
- Remus S Wong
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA 94305, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, 420 Westwood Plaza, Boelter Hall 5531, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Christina D Smolke
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA 94305, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
24
|
Hunt CJ. Technical Considerations in the Freezing, Low-Temperature Storage and Thawing of Stem Cells for Cellular Therapies. Transfus Med Hemother 2019; 46:134-150. [PMID: 31244583 PMCID: PMC6558338 DOI: 10.1159/000497289] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/26/2019] [Indexed: 12/31/2022] Open
Abstract
The commercial and clinical development of cellular therapy products will invariably require cryopreservation and frozen storage of cellular starting materials, intermediates and/or final product. Optimising cryopreservation is as important as optimisation of the cell culture process in obtaining maximum yield and a consistent end-product. Suboptimal cryopreservation can lead not only to batch-to-batch variation, lowered cellular functionality and reduced cell yield, but also to the potential selection of subpopulations with genetic or epigenetic characteristics divergent from the original cell line. Regulatory requirements also impact on cryopreservation as these will require a robust and reproducible approach to the freezing, storage and thawing of the product. This requires attention to all aspects of the application of low temperatures: from the choice of freezing container and cryoprotectant, the cooling rate employed and its mode of de-livery, the correct handling of the frozen material during storage and transportation, to the eventual thawing of the product by the end-user. Each of these influences all of the others to a greater or lesser extent and none should be ignored. This paper seeks to provide practical insights and alternative solutions to the technical challenges faced during cryopreservation of cells for use in cellular therapies.
Collapse
|
25
|
Couto PS, Shatirishvili G, Bersenev A, Verter F. First decade of clinical trials and published studies with mesenchymal stromal cells from umbilical cord tissue. Regen Med 2019; 14:309-319. [DOI: 10.2217/rme-2018-0171] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: This is the first analysis of both clinical trials and published studies that employ umbilical cord mesenchymal stromal cells, for the decade 2007–2017. Materials & methods: Searching international databases, we found 178 registered trials and 98 publications. Results: Among the registered clinical trials, 20% have resulted in publications so far. Among the publications, 18% report safety and 74% report some form of improvement. Between 36 and 45% of the publications do not report aspects of the cell manufacturing, including isolation method, culture medium or number of culture passages. Conclusion: Analyses that link trials with publications can elucidate factors that promote study completion and publication. More full disclosure of cell manufacturing is needed to evaluate the efficacy of mesenchymal stromal cell isolated from umbilical cord tissue (UC-MSC) products.
Collapse
Affiliation(s)
- Pedro S Couto
- Parent's Guide to Cord Blood Foundation, Brookeville, MD 20833, USA
- Department of Biochemical Engineering, University College London, London WC1E 7JE, UK
| | | | - Alexey Bersenev
- Advanced Cell Therapy Laboratory at Yale – New Haven Hospital, Yale University, New Haven, CT 06520, USA
| | - Frances Verter
- Parent's Guide to Cord Blood Foundation, Brookeville, MD 20833, USA
| |
Collapse
|
26
|
Al-Otaibi NAS, Cassoli JS, Martins-de-Souza D, Slater NKH, Rahmoune H. Human leukemia cells (HL-60) proteomic and biological signatures underpinning cryo-damage are differentially modulated by novel cryo-additives. Gigascience 2019; 8:giy155. [PMID: 30535373 PMCID: PMC6394207 DOI: 10.1093/gigascience/giy155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 11/26/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cryopreservation is a routinely used methodology for prolonged storage of viable cells. The use of cryo-protective agents (CPAs) such as dimethylsulfoxide (DMSO), glycerol, or trehalose is paramount to reducing cellular cryo-injury, but their effectiveness is still limited. The current study focuses on establishing and modulating the proteomic and the corresponding biological profiles associated with the cryo-injury of human leukemia (HL-60) cells cryopreserved in DMSO alone or DMSO +/- novel CPAs (e.g., nigerose [Nig] or salidroside [Sal]). FINDINGS To reduce cryo-damage, HL-60 cells were cultured prior and post cryopreservation in malondialdehyde Roswell Park Memorial Institute medium-1640 media +/- Nig or Sal. Shotgun proteomic analysis showed significant alterations in the levels of proteins in cells cryopreserved in Nig or Sal compared to DMSO. Nig mostly affected cellular metabolism and energy pathways, whereas Sal increased the levels of proteins associated with DNA repair/duplication, RNA transcription, and cell proliferation. Validation testing showed that the proteome profile associated with Sal was correlated with a 2.8-fold increase in cell proliferative rate. At the functional level, both Nig and Sal increased glutathione reductase (0.0012±6.19E-05 and 0.0016±3.04E-05 mU/mL, respectively) compared to DMSO controls (0.0003±3.7E-05 mU/mL) and reduced cytotoxicity by decreasing lactate dehydrogenase activities (from -2.5 to -4.75 fold) and lipid oxidation (-1.6 fold). In contrast, only Nig attenuated protein carbonylation or oxidation. CONCLUSIONS We have identified key molecules and corresponding functional pathways underpinning the effect of cryopreservation (+/- CPAs) of HL-60 cells. We also validated the proteomic findings by identifying the corresponding biological profiles associated with promoting an anti-oxidative environment post cryopreservation. Nig or Sal in comparison to DMSO showed differential or additive effects in regard to reducing cryo-injury and enhancing cell survival/proliferation post thaw. These results can provide useful insight to cryo-damage and the design of enhanced cryomedia formulation.
Collapse
Affiliation(s)
- Noha A S Al-Otaibi
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, P.O Box 6086, Riyadh 11442, Saudi Arabia
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nigel K H Slater
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Hassan Rahmoune
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
27
|
Bose RJC, Mattrey RF. Accomplishments and challenges in stem cell imaging in vivo. Drug Discov Today 2018; 24:492-504. [PMID: 30342245 DOI: 10.1016/j.drudis.2018.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/24/2018] [Accepted: 10/13/2018] [Indexed: 02/08/2023]
Abstract
Stem cell therapies have demonstrated promising preclinical results, but very few applications have reached the clinic owing to safety and efficacy concerns. Translation would benefit greatly if stem cell survival, distribution and function could be assessed in vivo post-transplantation, particularly in patients. Advances in molecular imaging have led to extraordinary progress, with several strategies being deployed to understand the fate of stem cells in vivo using magnetic resonance, scintigraphy, PET, ultrasound and optical imaging. Here, we review the recent advances, challenges and future perspectives and opportunities in stem cell tracking and functional assessment, as well as the advantages and challenges of each imaging approach.
Collapse
Affiliation(s)
- Rajendran J C Bose
- Department of Radiology and Advanced Imaging Research Center, 5323 Harry Hines Blvd, UT Southwestern Medical Center, Dallas, TX 75390-8514, USA; Current affiliation: Molecular Imaging Program at Stanford (MIPS) and the Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305-5427, USA
| | - Robert F Mattrey
- Department of Radiology and Advanced Imaging Research Center, 5323 Harry Hines Blvd, UT Southwestern Medical Center, Dallas, TX 75390-8514, USA.
| |
Collapse
|
28
|
Featherall J, Robey PG, Rowe DW. Continuing Challenges in Advancing Preclinical Science in Skeletal Cell-Based Therapies and Tissue Regeneration. J Bone Miner Res 2018; 33:1721-1728. [PMID: 30133922 PMCID: PMC6691896 DOI: 10.1002/jbmr.3578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/28/2022]
Abstract
Cell-based therapies hold much promise for musculoskeletal medicine; however, this rapidly growing field faces a number of challenges. Few of these therapies have proven clinical benefit, and an insufficient regulatory environment has allowed for widespread clinical implementation without sufficient evidence of efficacy. The technical and biological complexity of cell-based therapies has contributed to difficulties with reproducibility and mechanistic clarity. In order to aid in addressing these challenges, we aim to clarify the key issues in the preclinical cell therapy field, and to provide a conceptual framework for advancing the state of the science. Broadly, these suggestions relate to: (i) delineating cell-therapy types and moving away from "catch-all" terms such as "stem cell" therapies; (ii) clarifying descriptions of cells and their processing; and (iii) increasing the standard of in vivo evaluation of cell-based therapy experiments to determining cell fates. Further, we provide an overview of methods for experimental evaluation, data sharing, and professional society participation that would be instrumental in advancing this field. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joseph Featherall
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.,Medical Research Scholars Program, Clinical Center, National Institutes of Health, Department of Health and Human Services, Bethesda MD, USA.,Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda MD, USA
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda MD, USA
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, UConn School of Dental Medicine, Farmington, CT, USA
| |
Collapse
|
29
|
Kim YS, Smoak MM, Melchiorri AJ, Mikos AG. An Overview of the Tissue Engineering Market in the United States from 2011 to 2018. Tissue Eng Part A 2018; 25:1-8. [PMID: 30027831 DOI: 10.1089/ten.tea.2018.0138] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IMPACT STATEMENT This report seeks to provide an update of the current landscape of the tissue engineering market in the United States from an unbiased point of view by analyzing the financial reports provided by tissue engineering companies, as well as data from publicly available clinical trials with relevant tissue engineering applications.
Collapse
Affiliation(s)
- Yu Seon Kim
- 1 Department of Bioengineering, Rice University, Houston, Texas
| | - Mollie M Smoak
- 1 Department of Bioengineering, Rice University, Houston, Texas
| | | | - Antonios G Mikos
- 1 Department of Bioengineering, Rice University, Houston, Texas
- 2 Biomaterials Lab, Rice University, Houston, Texas
| |
Collapse
|
30
|
Guzniczak E, Jimenez M, Irwin M, Otto O, Willoughby N, Bridle H. Impact of poloxamer 188 (Pluronic F-68) additive on cell mechanical properties, quantification by real-time deformability cytometry. BIOMICROFLUIDICS 2018; 12:044118. [PMID: 30867863 PMCID: PMC6404947 DOI: 10.1063/1.5040316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/03/2018] [Indexed: 06/09/2023]
Abstract
Advances in cellular therapies have led to the development of new approaches for cell product purification and formulation, e.g., utilizing cell endogenous properties such as size and deformability as a basis for separation from potentially harmful undesirable by-products. However, commonly used additives such as Pluronic F-68 and other poloxamer macromolecules can change the mechanical properties of cells and consequently alter their processing. In this paper, we quantified the short-term effect of Pluronic F-68 on the mechanotype of three different cell types (Jurkat cells, red blood cells, and human embryonic kidney cells) using real-time deformability cytometry. The impact of the additive concentration was assessed in terms of cell size and deformability. We observed that cells respond progressively to the presence of Pluronic F-68 within first 3 h of incubation and become significantly stiffer (p-value < 0.001) in comparison to a serum-free control and a control containing serum. We also observed that the short-term response manifested as cell stiffening is true (p-value < 0.001) for the concentration reaching 1% (w/v) of the poloxamer additive in tested buffers. Additionally, using flow cytometry, we assessed that changes in cell deformability triggered by addition of Pluronic F-68 are not accompanied by size or viability alterations.
Collapse
Affiliation(s)
- Ewa Guzniczak
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | - Melanie Jimenez
- School of Engineering, Biomedical Engineering Division, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Matthew Irwin
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | - Oliver Otto
- ZIK HIKE, Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, Biomechanics, University of Greifswald, Fleischmannstraße 42-44, 17489 Greifswald, Germany
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | - Helen Bridle
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
31
|
Bauman E, Granja PL, Barrias CC. Fetal bovine serum-free culture of endothelial progenitor cells-progress and challenges. J Tissue Eng Regen Med 2018; 12:1567-1578. [PMID: 29701896 DOI: 10.1002/term.2678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Two decades after the first report on endothelial progenitor cells (EPC), their key role in postnatal vasculogenesis and vascular repair is well established. The therapeutic potential of EPC and their growing use in clinical trials calls for the development of more robust, reproducible, and safer methods for the in vitro expansion and maintenance of these cells. Despite many limitations associated with its usage, fetal bovine serum (FBS) is still widely applied as a cell culture supplement. Although different approaches aiming at establishing FBS-free culture have been developed for many cell types, adequate solutions for endothelial cells, and for EPC in particular, are still scarce, possibly due to the multiple challenges that have to be faced when culturing these cells. In this review, we provide a brief overview on the therapeutic relevance of EPC and critically analyse the available literature on FBS-free endothelial cell culture methods, including xeno-free, serum-free, and chemically defined systems.
Collapse
Affiliation(s)
- E Bauman
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal
| | - P L Granja
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - C C Barrias
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
32
|
Gottipamula S, Sridhar KN. Large-scale Isolation, Expansion and Characterization of Human Amniotic Epithelial Cells. Int J Stem Cells 2018; 11:87-95. [PMID: 29843193 PMCID: PMC5984062 DOI: 10.15283/ijsc18001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives The human Amniotic epithelial cells (AME) derived from amniotic membrane of placenta have been considered as the potential fetal stem cell source with minimal or no ethical concerns and are important therapeutic tool for anti-fibrotic and regenerative therapies. Methods and Results Here, we evaluated the isolation, media screening, scale-up and characterization of AME cells. The isolation, expansion of AMEs were performed by sequential passaging and growth kinetics studies. The AMEs were characterized using immunocytochemistry, immunophenotyping, In-vitro differentiation, and anti-fibrotic assays. The growth kinetics study revealed that the AME cultured in Ultraculture (UC) and DMEM knockout (DMEM-KO) have prominently higher growth rate compared to others. Overall, the AMEs cultured from 5 different media retained basic morphological characteristics and the functional characteristics. Conclusions Our result suggests that the AMEs can be successfully cultured in UC based complete media without losing its epithelial cell characteristics even after passaging for passage 2 (P2). However, a careful and methodical pre-clinical and clinical translation studies need to be conducted to show its safety and efficacy.
Collapse
Affiliation(s)
- Sanjay Gottipamula
- Sri Research for Tissue Engineering Pvt. Ltd, Shankara Research Centre, Rangadore Memorial Hospital, Bangalore, India
| | - K N Sridhar
- Sri Research for Tissue Engineering Pvt. Ltd, Shankara Research Centre, Rangadore Memorial Hospital, Bangalore, India
| |
Collapse
|
33
|
Sediq AS, Klem R, Nejadnik MR, Meij P, Jiskoot W. Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability. Pharm Res 2018; 35:150. [PMID: 29846807 PMCID: PMC5976703 DOI: 10.1007/s11095-018-2422-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/01/2018] [Indexed: 11/29/2022]
Abstract
Purpose To investigate the potential of two flow imaging microscopy (FIM) techniques (Micro-Flow Imaging (MFI) and FlowCAM) to determine total cell concentration and cell viability. Methods B-lineage acute lymphoblastic leukemia (B-ALL) cells of 2 different donors were exposed to ambient conditions. Samples were taken at different days and measured with MFI, FlowCAM, hemocytometry and automated cell counting. Dead and live cells from a fresh B-ALL cell suspension were fractionated by flow cytometry in order to derive software filters based on morphological parameters of separate cell populations with MFI and FlowCAM. The filter sets were used to assess cell viability in the measured samples. Results All techniques gave fairly similar cell concentration values over the whole incubation period. MFI showed to be superior with respect to precision, whereas FlowCAM provided particle images with a higher resolution. Moreover, both FIM methods were able to provide similar results for cell viability as the conventional methods (hemocytometry and automated cell counting). Conclusion FIM-based methods may be advantageous over conventional cell methods for determining total cell concentration and cell viability, as FIM measures much larger sample volumes, does not require labeling, is less laborious and provides images of individual cells. Electronic supplementary material The online version of this article (10.1007/s11095-018-2422-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A S Sediq
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - R Klem
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - M R Nejadnik
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - P Meij
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands.
| |
Collapse
|
34
|
Kinetic analysis of cell decay during the filling process: Application to lot size determination in manufacturing systems for human induced pluripotent and mesenchymal stem cells. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Commercialization Considerations for Cell-Based Therapies: What We Have Learned So Far. CURRENT TRANSPLANTATION REPORTS 2017. [DOI: 10.1007/s40472-017-0173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Delalat B, Harding F, Gundsambuu B, De-Juan-Pardo EM, Wunner FM, Wille ML, Jasieniak M, Malatesta KA, Griesser HJ, Simula A, Hutmacher DW, Voelcker NH, Barry SC. 3D printed lattices as an activation and expansion platform for T cell therapy. Biomaterials 2017. [DOI: 10.1016/j.biomaterials.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Klyachko NL, Polak R, Haney MJ, Zhao Y, Gomes Neto RJ, Hill MC, Kabanov AV, Cohen RE, Rubner MF, Batrakova EV. Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials 2017; 140:79-87. [PMID: 28633046 PMCID: PMC5605925 DOI: 10.1016/j.biomaterials.2017.06.017] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 01/24/2023]
Abstract
Most potent therapeutics are unable to cross the blood-brain barrier following systemic administration, which necessitates the development of unconventional, clinically applicable drug delivery systems. With the given challenges, biologically active vehicles are crucial to accomplishing this task. We now report a new method for drug delivery that utilizes living cells as vehicles for drug carriage across the blood brain barrier. Cellular backpacks, 7-10 μm diameter polymer patches of a few hundred nanometers in thickness, are a potentially interesting approach, because they can act as drug depots that travel with the cell-carrier, without being phagocytized. Backpacks loaded with a potent antioxidant, catalase, were attached to autologous macrophages and systemically administered into mice with brain inflammation. Using inflammatory response cells enabled targeted drug transport to the inflamed brain. Furthermore, catalase-loaded backpacks demonstrated potent therapeutic effects deactivating free radicals released by activated microglia in vitro. This approach for drug carriage and release can accelerate the development of new drug formulations for all the neurodegenerative disorders.
Collapse
Affiliation(s)
- Natalia L Klyachko
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Roberta Polak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew J Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reginaldo J Gomes Neto
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael C Hill
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Robert E Cohen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael F Rubner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elena V Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Maartens JH, De-Juan-Pardo E, Wunner FM, Simula A, Voelcker NH, Barry SC, Hutmacher DW. Challenges and opportunities in the manufacture and expansion of cells for therapy. Expert Opin Biol Ther 2017; 17:1221-1233. [DOI: 10.1080/14712598.2017.1360273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Joachim H. Maartens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
| | - Elena De-Juan-Pardo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
| | - Felix M. Wunner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
| | - Antonio Simula
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
| | - Nicolas H. Voelcker
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Simon C. Barry
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
- Molecular Immunology, Department of Gastroenterology, Women’s and Children’s Hospital, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
- ARC Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
39
|
Kropp C, Massai D, Zweigerdt R. Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.09.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Pettitt D, Arshad Z, Davies B, Smith J, French A, Cole D, Bure K, Dopson S, DiGiusto D, Karp J, Reeve B, Barker R, Holländer G, Brindley D. An assessment of the factors affecting the commercialization of cell-based therapeutics: a systematic review protocol. Syst Rev 2017; 6:120. [PMID: 28651620 PMCID: PMC5485574 DOI: 10.1186/s13643-017-0517-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/09/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cellular-based therapies represent a platform technology within the rapidly expanding field of regenerative medicine and are distinct from conventional therapeutics-offering a unique approach to managing what were once considered untreatable diseases. Despite a significant increase in basic science activity within the cell therapy arena, alongside a growing portfolio of cell therapy trials and promising investment, the translation of cellular-based therapeutics from "bench to bedside" remains challenging, and the number of industry products available for widespread clinical use remains comparatively low. This systematic review identifies unique intrinsic and extrinsic barriers in the cell-based therapy domain. METHODS/DESIGN Eight electronic databases will be searched, specifically Medline, EMBASE (OvidSP), BIOSIS & Web of Science, Cochrane Library & HEED, EconLit (ProQuest), WHOLIS WHO Library Database, PAIS International (ProQuest), and Scopus. Addition to this gray literature was searched by manually reviewing relevant work. All identified articles will be subjected for review by two authors who will decide whether or not each article passes our inclusion/exclusion criteria. Eligible papers will subsequently be reviewed, and key data extracted into a pre-designed data extraction scorecard. An assessment of the perceived impact of broad commercial barriers to the adoption of cell-based therapies will be conducted. These broad categories will include manufacturing, regulation and intellectual property, reimbursement, clinical trials, clinical adoption, ethics, and business models. This will inform further discussion in the review. There is no PROSPERO registration number. DISCUSSION Through a systematic search and appraisal of available literature, this review will identify key challenges in the commercialization pathway of cellular-based therapeutics and highlights significant barriers impeding successful clinical adoption. This will aid in creating an adaptable, acceptable, and harmonized approach supported by apposite regulatory frameworks and pertinent expertise throughout the respective stages of the adoption cycle to facilitate the adoption of new products and technologies in the industry.
Collapse
Affiliation(s)
- David Pettitt
- The Oxford - UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), The University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Zeeshaan Arshad
- University of St. Andrews School of Medicine, University of St. Andrews, St. Andrews, UK. .,, Docherty Gardens, Glenrothes, KY7 5GA, UK.
| | - Benjamin Davies
- Orthopedic Surgery Departement, University of Cambridge, Cambridge, UK
| | - James Smith
- The Oxford - UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), The University of Oxford, Oxford, UK.,Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anna French
- The Oxford - UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), The University of Oxford, Oxford, UK
| | | | - Kim Bure
- Sartorius Stedim, Göttingen, Germany
| | - Sue Dopson
- Said Business School, University of Oxford, Oxford, UK
| | - David DiGiusto
- Division of Cell Transplantation and Regenerative Medicine, University of Stanford, Stanford, USA
| | - Jeff Karp
- Harvard Medical School, Harvard University, Boston, USA.,Brigham and Women's Hospital, Boston, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA
| | | | | | - Georg Holländer
- Department of Paediatrics, University of Oxford, Oxford, UK.,Department of Biomedicine, University of Basel and Basel University Children's Hospital, Basel, Switzerland
| | - David Brindley
- The Oxford - UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), The University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK.,Said Business School, University of Oxford, Oxford, UK.,Harvard Stem Cell Institute, Cambridge, USA.,Centre for Behavioral Medicine, UCL School of Pharmacy, University College London, London, UK.,USCF-Stanford Center of Excellence in Regulatory Science and Innovation (CERSI), Stanford, USA
| |
Collapse
|
41
|
Odeleye AOO, Castillo-Avila S, Boon M, Martin H, Coopman K. Development of an optical system for the non-invasive tracking of stem cell growth on microcarriers. Biotechnol Bioeng 2017; 114:2032-2042. [PMID: 28464210 PMCID: PMC5575559 DOI: 10.1002/bit.26328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/29/2023]
Abstract
The emergence of medicinal indications for stem cell therapies has seen a need to develop the manufacturing capacity for adherent cells such as mesenchymal stem cells (MSCs). One such development is in the use of microcarriers, which facilitate enhanced cell densities for adherent stem cell cultures when compared with 2D culture platforms. Given the variety of stem cell expansion systems commercially available, novel methods of non-invasive and automated monitoring of cell number, confluence, and aggregation, within disparate environments, will become imperative to process control, ensuring reliable and consistent performance. The in situ epi-illumination of mouse embryonic fibroblasts and human mesenchymal stem cells attached to Cytodex 1 and 3 microcarriers was achieved using a bespoke microscope. Robust image processing techniques were developed to provide quantitative measurements of confluence, aggregate recognition, and cell number, without the need for fluorescent labeling or cell detachment. Large datasets of cells counted on individual microcarriers were statistically analyzed and compared with NucleoCounter measurements, with an average difference of less than 7% observed from days 0 to 6 of a 12-day culture noted, prior to the onset of aggregation. The developed image acquisition system and post-processing methodologies were successfully applied to dynamically moving colonized microcarriers. The proposed system offers a novel method of cell identification at the individual level, to consistently and accurately assess viable cell number, confluence, and cell distribution, while also minimizing the variability inherent in the current invasive means by which cells adhered to microcarriers are analyzed. Biotechnol. Bioeng. 2017;114: 2032-2042. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Akinlolu Oyekunle Oluseun Odeleye
- Centre for Biological Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.,Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | | | - Mathew Boon
- University of Huddersfield, Huddersfield, United Kingdom
| | - Haydn Martin
- University of Huddersfield, Huddersfield, United Kingdom
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
42
|
Trohatou O, Roubelakis MG. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Past, Present, and Future. Cell Reprogram 2017; 19:217-224. [PMID: 28520465 DOI: 10.1089/cell.2016.0062] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The concept of Regenerative Medicine combined with Cell based Therapy and Tissue Engineering represents the fourth pillar of healthcare and provides a promising approach for the treatment of serious diseases. Recently, cell based therapies are focused on the use of mesenchymal stem/stromal cells (MSCs). Human MSCs, that represent a mesoderm derived population of progenitors, are easily expanded in culture. They are capable to differentiate into osteoblasts, chondrocytes, and adipocytes and exhibit the potential to repair or regenerate damaged tissues. The best characterized source of human MSCs to date is the bone marrow; recently, fetal sources, such as amniotic fluid, umbilical cord, amniotic membranes, or placenta, have also attracted increased attention. Thus, MSCs may represent a valuable tool for tissue repair and cell therapeutic applications. To this end, the main focus of this review is to summarize and evaluate the key characteristics, the sources, and the potential use of MSCs in therapeutic approaches and modalities.
Collapse
Affiliation(s)
- Ourania Trohatou
- 1 Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece .,2 Cell and Gene Therapy Laboratory, Centre of Basic Research II , Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Maria G Roubelakis
- 1 Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece .,2 Cell and Gene Therapy Laboratory, Centre of Basic Research II , Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| |
Collapse
|
43
|
Lavon N, Zimerman M, Itskovitz-Eldor J. Scalable Expansion of Pluripotent Stem Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 163:23-37. [PMID: 29085956 DOI: 10.1007/10_2017_26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Large-scale expansion of pluripotent stem cells (PSC) in a robust, well-defined, and monitored process is essential for production of cell-based therapeutic products. The transition from laboratory-scale protocols to industrial-scale production is one of the first milestones to be achieved in order to use both human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) as the starting material for cellular products. The methods to be developed require adjustment of the culture platforms, optimization of culture parameters, and adaptation of downstream procedures. Optimization of expansion protocols and their scalability has become much easier with the design of bioreactor systems that enable continuous monitoring of culture parameters, continuous media change, and support software for automated control. This chapter highlights the common properties that are required for production of scalable, reproducible, homogeneous, and clinically suitable cell therapy products. We describe the available platforms for large-scale expansion of PSCs and parameters that should be considered when optimizing the expansion protocols in a scalable bioreactor. All the above are detailed in the light of the requirements and challenges of bringing a cell-based therapeutic product to the clinic and ultimately to the market. We discuss some considerations that should be taken into account, such as cost-effectiveness, good manufacturing practice, and regulatory guidelines. Graphical Abstract.
Collapse
|
44
|
Powell AB, Williams K, Cruz CRY. Gene-modified, cell-based therapies—an overview. Cytotherapy 2016; 18:1351-1359. [DOI: 10.1016/j.jcyt.2016.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Editorial. Cytotherapy 2016; 18:1349-1350. [PMID: 27686830 DOI: 10.1016/j.jcyt.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Caplan AI, Mason C, Reeve B. The 3Rs of Cell Therapy. Stem Cells Transl Med 2016; 6:17-21. [PMID: 28170173 PMCID: PMC5442742 DOI: 10.5966/sctm.2016-0180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
The 3Rs for a good education are “reading, 'riting, and 'rithmetic.” The basis for good health care solutions for the emergent field of cell therapy in the future will also involve 3Rs: regulation, reimbursement, and realization of value. The business models in this new field of cell therapy will involve these 3Rs. This article brings forth realities facing this new industry for its approaches to provide curative health care solutions. Stem Cells Translational Medicine2017;6:17–21
Collapse
Affiliation(s)
- Arnold I. Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
- AvroBio Inc., Cambridge, Massachusetts, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
47
|
Pollock K, Budenske JW, McKenna DH, Dosa PI, Hubel A. Algorithm-driven optimization of cryopreservation protocols for transfusion model cell types including Jurkat cells and mesenchymal stem cells. J Tissue Eng Regen Med 2016; 11:2806-2815. [PMID: 27229375 DOI: 10.1002/term.2175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/22/2016] [Accepted: 02/15/2016] [Indexed: 12/17/2022]
Abstract
This investigation describes the use of a differential evolution (DE) algorithm to optimize cryopreservation solution compositions and cooling rates for specific cell types. Jurkat cells (a lymphocyte model cell type) and mesenchymal stem cells (MSCs) were combined with non-DMSO solutions at concentrations dictated by a DE algorithm. The cells were then frozen in 96-well plates at DE algorithm-dictated cooling rates in the range 0.5-10°C/min. The DE algorithm was iterated until convergence resulted in identification of an optimum solution composition and cooling rate, which occurred within six to nine generations (seven to 10 experiments) for both cell types. The optimal composition for cryopreserving Jurkat cells included 300 mm trehalose, 10% glycerol and 0.01% ectoine (TGE) at 10°C/min. The optimal composition for cryopreserving MSCs included 300 mm ethylene glycol, 1 mm taurine and 1% ectoine (SEGA) at 1°C/min. High-throughput concentration studies verified the optimum identified by the DE algorithm. Vial freezing experiments showed that experimental solutions of TGE at 10°C/min resulted in significantly higher viability for Jurkat cells than DMSO at 1°C/min, while experimental solutions of SEGA at 10°C/min resulted in significantly higher recovery for MSCs than DMSO at 1°C/min; these results were solution- and cell type-specific. Implementation of the DE algorithm permits optimization of multicomponent freezing solutions in a rational, accelerated fashion. This technique can be applied to optimize freezing conditions, which vary by cell type, with significantly fewer experiments than traditional methods. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kathryn Pollock
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph W Budenske
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Peter I Dosa
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
48
|
Wu CY, Roybal KT, Puchner EM, Onuffer J, Lim WA. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 2015; 350:aab4077. [PMID: 26405231 PMCID: PMC4721629 DOI: 10.1126/science.aab4077] [Citation(s) in RCA: 529] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/09/2015] [Indexed: 12/17/2022]
Abstract
There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control.
Collapse
Affiliation(s)
- Chia-Yung Wu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA
| | - Kole T Roybal
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA
| | - Elias M Puchner
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - James Onuffer
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA.
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA. Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Campbell A, Brieva T, Raviv L, Rowley J, Niss K, Brandwein H, Oh S, Karnieli O. Concise Review: Process Development Considerations for Cell Therapy. Stem Cells Transl Med 2015; 4:1155-63. [PMID: 26315572 DOI: 10.5966/sctm.2014-0294] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/20/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The development of robust and well-characterized methods of production of cell therapies has become increasingly important as therapies advance through clinical trials toward approval. A successful cell therapy will be a consistent, safe, and effective cell product, regardless of the cell type or application. Process development strategies can be developed to gain efficiency while maintaining or improving safety and quality profiles. This review presents an introduction to the process development challenges of cell therapies and describes some of the tools available to address production issues. This article will provide a summary of what should be considered to efficiently advance a cellular therapy from the research stage through clinical trials and finally toward commercialization. The identification of the basic questions that affect process development is summarized in the target product profile, and considerations for process optimization are discussed. The goal is to identify potential manufacturing concerns early in the process so they may be addressed effectively and thus increase the probability that a therapy will be successful. SIGNIFICANCE The present study contributes to the field of cell therapy by providing a resource for those transitioning a potential therapy from the research stage to clinical and commercial applications. It provides the necessary steps that, when followed, can result in successful therapies from both a clinical and commercial perspective.
Collapse
Affiliation(s)
- Andrew Campbell
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Thomas Brieva
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Lior Raviv
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Jon Rowley
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Knut Niss
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Harvey Brandwein
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Steve Oh
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Ohad Karnieli
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| |
Collapse
|
50
|
Dodson BP, Levine AD. Challenges in the translation and commercialization of cell therapies. BMC Biotechnol 2015; 15:70. [PMID: 26250902 PMCID: PMC4528687 DOI: 10.1186/s12896-015-0190-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
Background Cell therapies are an emerging form of healthcare that offer significant potential to improve the practice of medicine and provide benefits to patients who currently have limited or no treatment options. Ideally, these innovative therapies can complement existing small molecule, biologic and device approaches, forming a so-called fourth pillar of medicine and allowing clinicians to identify the best treatment approach for each patient. Despite this potential, cell therapies are substantially more complex than small molecule or biologic interventions. This complexity poses challenges for scientists and firms developing cell therapies and regulators seeking to oversee this growing area of medicine. Results In this project, we retrospectively examined the development of seven cell therapies – including three autologous interventions and four allogeneic interventions – with the aim of identifying common challenges hindering attempts to bring new cell therapies to market. We complemented this analysis with a series of qualitative interviews with experts in various aspects of cell therapy. Through our analysis, which included review of extant literature collected from company documents, newspapers, journals, analyst reports and similar sources, and analysis of the qualitative interviews, we identified several common challenges that cell therapy firms must address in both the pre- and post-market stages. Key pre-market challenges included identifying and maintaining stable funding to see firms through lengthy developmental timelines and uncertain regulatory processes. These challenges are not unique to cell therapies, of course, but the novelty of cell-based interventions complicates these efforts compared to small molecule or biologic approaches. The atypical nature of cell therapies also led to post-market difficulties, including challenges navigating the reimbursement process and convincing providers to change their treatment approaches. In addition, scaling up production, distributing cell therapies and managing the costs of production were challenges that started pre-market and continued into the post-market phase. Conclusions Our analysis highlights several interrelated challenges hindering the development of cell therapies. Identifying strategies to address these challenges may accelerate the development and increase the impact of novel cell therapies.
Collapse
Affiliation(s)
- Brittany P Dodson
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Aaron D Levine
- School of Public Policy, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|