1
|
Abdellatif A, Bou Jaoudeh M, Zwiers A, Breda G. Advancing Potency Assay Development for Advanced Therapy Medicinal Products: A Comprehensive Approach and Regulatory Insights. Hum Gene Ther 2025. [PMID: 40257954 DOI: 10.1089/hum.2024.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
The development of potency assays for Advanced Therapy Medicinal Products (ATMPs) presents significant challenges due to the variability of starting materials and the complex mechanisms of action involved. This article aims to address the following key question: How can we design robust and reliable potency assays for ATMPs that accommodate product-specific challenges and align with evolving regulatory standards? To answer this, we employed a mixed-methods approach, synthesizing data from scientific literature, industry reports, and regulatory guidelines to identify current limitations and innovative solutions for potency assay development. Our methodology integrates a systematic review of academic publications (2018-2024) to capture recent advancements in biotechnology and their applicability to potency testing. We complemented this with an analysis of industry perspectives, drawn from webinars and white papers, as well as a detailed comparison of global regulatory frameworks, including the FDA's new guidance on potency assurance for Cellular and Gene Therapy Products (CGTs/ATMPs). Additionally, we developed a comprehensive database to analyze potency assays used in approved, rejected, and withdrawn CGT/ATMP products, focusing on technical and regulatory challenges. Based on this multilevel analysis, we propose a product-specific framework for designing, developing, and validating potency assays for different ATMP categories, taking into account their unique technical and regulatory constraints. We also highlight emerging technologies, such as droplet digital polymerase chain reaction and reporter gene assays, as innovative tools for improving the precision and reliability of potency testing. Our findings underscore the need for flexible, risk-based strategies in potency assay development that evolve throughout product development and clinical trial phases. Future recommendations emphasize assay standardization, the definition of acceptable variability, and stronger correlations between in vitro potency data and clinical outcomes.
Collapse
Affiliation(s)
| | | | - Alex Zwiers
- ProductLife Group, Courbevoie, France
- Zwiers Regulatory Consultancy, Oss, The Netherlands
| | | |
Collapse
|
2
|
Taei A, Sajadi FS, Salahi S, Enteshari Z, Falah N, Shiri Z, Abasalizadeh S, Hajizadeh-Saffar E, Hassani SN, Baharvand H. The cell replacement therapeutic potential of human pluripotent stem cells. Expert Opin Biol Ther 2025; 25:47-67. [PMID: 39679436 DOI: 10.1080/14712598.2024.2443079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION The remarkable ability of human pluripotent stem cells (hPSCs) to differentiate into specialized cells of the human body emphasizes their immense potential in treating various diseases. Advances in hPSC technology are paving the way for personalized and allogeneic cell-based therapies. The first-in-human studies showed improved treatment of diseases with no adverse effects, which encouraged the industrial production of this type of medicine. To ensure the quality, safety and efficacy of hPSC-based products throughout their life cycle, it is important to monitor and control their clinical translation through good practices (GxP) regulations. Understanding these rules in advance will help ensure that the industrial development of hPSC-derived products for widespread clinical implementation is feasible and progresses rapidly. AREAS COVERED In this review, we discuss the key translational obstacles of hPSCs, outline the current hPSC-based clinical trials, and present a workflow for putative clinical hPSC-based products. Finally, we highlight some future therapeutic opportunities for hPSC-derivatives. EXPERT OPINION hPSC-based products continue to show promise for the treatment of a variety of diseases. While clinical trials support the relative safety and efficacy of hPSC-based products, further investigation is required to explore the clinical challenges and achieve exclusive regulations for hPSC-based cell therapies.
Collapse
Affiliation(s)
- Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh-Sadat Sajadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Sarvenaz Salahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Enteshari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasrin Falah
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Shiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Abasalizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
3
|
Pierro M, Thébaud B. Cell-based strategies for the treatment of injury to the developing lung. THE LUNG 2025:403-426. [DOI: 10.1016/b978-0-323-91824-4.00020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Kumar A, Ramesh S, Walther-Jallow L, Goos A, Kumar V, Ekblad Å, Madhuri V, Götherström C. Successful transport across continents of GMP-manufactured and cryopreserved culture-expanded human fetal liver-derived mesenchymal stem cells for use in a clinical trial. Regen Ther 2024; 26:324-333. [PMID: 39027723 PMCID: PMC11255121 DOI: 10.1016/j.reth.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Cell therapy has been increasingly considered to treat diseases, but it has been proven difficult to manufacture the same product at multiple manufacturing sites. Thus, for a wider implementation an alternative is to have one manufacturing site with a wide distribution to clinical sites. To ensure administration of a good quality cell therapy product with maintained functional characteristics, several obstacles must be overcome, which includes for example transfer of knowledge, protocols and procedures, site assessment, transportation and preparation of the product. Methods As the preparatory work for a clinical trial in India using fetal mesenchymal stem cells (fMSCs) developed and manufactured in Sweden, we performed a site assessment of the receiving clinical site, transferred methods, developed procedures and provided training of operators for handling of the cell therapy product. We further developed a Pharmacy Manual to cover the management of the product, from ordering it from the manufacturer, through transport, reconstitution, testing and administration at the clinical site. Lastly, the effect of long-distance transport on survival and function of, as well as the correct handling of the cell therapy product, was evaluated according to the pre-determined and approved Product Specification. Results Four batches of cryopreserved human fetal liver-derived fMSCs manufactured according to Good Manufacturing Practice and tested according to predetermined release criteria in Sweden, were certified and transported in a dry shipper at -150 °C to the clinical site in India. The transport was temperature monitored and took three-seven days to complete. The thawed and reconstituted cells showed more than 80% viability up to 3 h post-thawing, the cell recovery was more than 94%, the cells displayed the same surface protein expression pattern, differentiated into bone, had stable chromosomes and were sterile, which conformed with the data from the manufacturing site in Sweden. Conclusions Our study shows the feasibility of transferring necessary knowledge and technology to be able to carry out a clinical trial with a cell therapy product in distant country. It also shows that it is possible to transport a cryopreserved cell therapy product over long distances and borders with retained quality. This extends the use of cryopreserved cell therapy products in the future.
Collapse
Affiliation(s)
- Ashis Kumar
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore 632 004, Tamil Nadu, India
- Center for Stem Cell Research, a Unit of in Stem Bengaluru, Christian Medical College, Vellore 632 002, Tamil Nadu, India
- Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Sowmya Ramesh
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore 632 004, Tamil Nadu, India
- Center for Stem Cell Research, a Unit of in Stem Bengaluru, Christian Medical College, Vellore 632 002, Tamil Nadu, India
| | - Lilian Walther-Jallow
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Annika Goos
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Vignesh Kumar
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore 632 004, Tamil Nadu, India
- Center for Stem Cell Research, a Unit of in Stem Bengaluru, Christian Medical College, Vellore 632 002, Tamil Nadu, India
| | - Åsa Ekblad
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Vrisha Madhuri
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore 632 004, Tamil Nadu, India
- Center for Stem Cell Research, a Unit of in Stem Bengaluru, Christian Medical College, Vellore 632 002, Tamil Nadu, India
- Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Cecilia Götherström
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Nguyen TM, Jang WB, Lee Y, Kim YH, Lim HJ, Lee EJ, Nguyen TMT, Choi EJ, Kwon SM, Oh JW. Non-intrusive quality appraisal of differentiation-induced cardiovascular stem cells using E-Nose sensor technology. Biosens Bioelectron 2024; 246:115838. [PMID: 38042052 DOI: 10.1016/j.bios.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 12/04/2023]
Abstract
Stem cell technology holds immense potential for revolutionizing medicine, particularly in regenerative treatment for heart disease. The unique capacity of stem cells to differentiate into diverse cell types offers promise in repairing damaged tissues and implanting organs. Ensuring the quality of differentiated cells, essential for specific functions, demands in-depth analysis. However, this process consumes time and incurs substantial costs while invasive methods may alter stem cell features during differentiation and deplete cell numbers. To address these challenges, we propose a non-invasive strategy, using cellular respiration, to assess the quality of differentiation-induced stem cells, notably cardiovascular stem cells. This evaluation employs an electronic nose (E-Nose) and neural pattern separation (NPS). Our goal is to assess differentiation-induced cardiac stem cells (DICs) quality through E-Nose data analysis and compare it with standard commercial human cells (SCHCs). Sensitivity and specificity were evaluated by interacting SCHCs and DICs with the E-Nose, achieving over 90% classification accuracy. Employing selective combinations optimized by NPS, E-Nose successfully classified all six cell types. Consequently, the relative similarity among DICs like cardiomyocytes, endothelial cells with SCHCs was established relied on comparing response data from the E-Nose sensor without resorting to complex evaluations.
Collapse
Affiliation(s)
- Thanh Mien Nguyen
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea
| | - You Hwan Kim
- Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea
| | - Hye Ji Lim
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Thu M T Nguyen
- Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea
| | - Eun-Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea; Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea.
| |
Collapse
|
6
|
Allahham N, Colic I, Rayner MLD, Gurnani P, Phillips JB, Rahim AA, Williams GR. Advanced Formulation Approaches for Emerging Therapeutic Technologies. Handb Exp Pharmacol 2024; 284:343-365. [PMID: 37733107 DOI: 10.1007/164_2023_695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In addition to proteins, discussed in the Chapter "Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules", there are a wide range of alternatives to small molecule active ingredients. Cells, extracellular vesicles, and nucleic acids in particular have attracted increasing research attention in recent years. There are now a number of products on the market based on these emerging technologies, the most famous of which are the mRNA-based vaccines against SARS-COV-2. These advanced therapeutic moieties are challenging to formulate however, and there remain significant challenges for their more widespread use. In this chapter, we consider the potential and bottlenecks for developing further medical products based on these systems. Cells, extracellular vesicles, and nucleic acids will be discussed in terms of their mechanism of action, the key requirements for translation, and how advanced formulation approaches can aid their future development. These points will be presented with selected examples from the literature, and with a focus on the formulations which have made the transition to clinical trials and clinical products.
Collapse
Affiliation(s)
- Nour Allahham
- UCL School of Pharmacy, University College London, London, UK
| | - Ines Colic
- UCL School of Pharmacy, University College London, London, UK
| | | | - Pratik Gurnani
- UCL School of Pharmacy, University College London, London, UK
| | | | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | | |
Collapse
|
7
|
Salmikangas P, Carlsson B, Klumb C, Reimer T, Thirstrup S. Potency testing of cell and gene therapy products. Front Med (Lausanne) 2023; 10:1190016. [PMID: 37215709 PMCID: PMC10196484 DOI: 10.3389/fmed.2023.1190016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Potency is one of the critical quality attributes of biological medicinal products, defining their biological activity. Potency testing is expected to reflect the Mechanism of Action (MoA) of the medicinal product and ideally the results should correlate with the clinical response. Multiple assay formats may be used, both in vitro assays and in vivo models, however, for timely release of the products for clinical studies or for commercial use, quantitative, validated in vitro assays are necessary. Robust potency assays are fundamental also for comparability studies, process validation and for stability testing. Cell and Gene Therapy Products (CGTs, also called Advanced Therapy Medicinal Products, ATMPs) are part of biological medicines, having nucleic acids, viral vectors, viable cells and tissues as starting material. For such complex products potency testing is often challenging and may require a combination of methods to address multiple functional mechanisms of the product. For cells, viability and cell phenotype are important attributes but alone will not be sufficient to address potency. Furthermore, if the cells are transduced with a viral vector, potency probably is related to the expression of the transgene but will also be dependent on the target cells and transduction efficiency/copy number of the transgene in the cells. Genome Editing (GE) together with other cell manipulations can result into multiple changes in the characteristics and activity of the cells, which should be all somehow captured by the potency testing. Non-clinical studies/models may provide valuable support for potency testing, especially for comparability testing. However, sometimes lack of suitable potency data may lead to situations where bridging clinical efficacy data are required to solve the problems of the potency testing, for example where comparability of different clinical batches is unclear. In this article the challenges of potency testing are discussed together with examples of assays used for different CGTs/ATMPs and the available guidance addressing differences between the European Union and the United States.
Collapse
|
8
|
Sato Y, Ono S. Regulatory Environment and Approvals in Cell and Gene Therapy Products Between Japan, the USA, and the EU. Ther Innov Regul Sci 2023; 57:227-237. [PMID: 36112305 DOI: 10.1007/s43441-022-00455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND This study aimed to demonstrate the differences in the way cell and gene therapy (CGT) products have been developed and reviewed for approval in Japan, the USA, and the EU by comparing regulations and successfully launched products in each region, and to examine the background to such differences. METHODS Information on relevant regulations and approved CGT products were collected from the public source and compared by region. RESULTS While regulations on CGT products are largely consistent among these regions, some differences could have a substantial impact on the practices defining CGT products, the timing of responses required to comply with the regulations for handling gene-modified organisms, and the acceptable validation processes under good manufacturing practice regulations. Although CGT products are given some preferential status in all regions, the preferential treatment given to CGT products varies across regions. The CGT products launched in each region also differ significantly in type, indications, the nature of the developers, and the clinical evidence submitted. While all the cellular products launched in Japan were approved based on small uncontrolled trials, most cellular products in the USA and EU were approved based on controlled studies. A trend was observed for companies to enter their home markets. CONCLUSION Our study showed differences of regulations on CGT products and of features in approved products as well as the trend of their home market entries, which may have been driven by a different context than that of traditional pharmaceuticals.
Collapse
Affiliation(s)
- Yuya Sato
- Laboratory of Pharmaceutical Regulatory Science, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shunsuke Ono
- Laboratory of Pharmaceutical Regulatory Science, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
9
|
Emerson AE, McCall AB, Brady SR, Slaby EM, Weaver JD. Hydrogel Injection Molding to Generate Complex Cell Encapsulation Geometries. ACS Biomater Sci Eng 2022; 8:4002-4013. [DOI: 10.1021/acsbiomaterials.2c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amy E. Emerson
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Alec B. McCall
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Sarah R. Brady
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Emily M. Slaby
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Jessica D. Weaver
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| |
Collapse
|
10
|
Ren G, Peng Q, Fink T, Zachar V, Porsborg SR. Potency assays for human adipose-derived stem cells as a medicinal product toward wound healing. Stem Cell Res Ther 2022; 13:249. [PMID: 35690872 PMCID: PMC9188073 DOI: 10.1186/s13287-022-02928-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/29/2022] [Indexed: 11/18/2022] Open
Abstract
In pre-clinical studies, human adipose-derived stem cells (hASCs) have shown great promise as a treatment modality for healing of cutaneous wounds. The advantages of hASCs are that they are relatively easy to obtain in large numbers from basic liposuctions, they maintain their characteristics after long-term in vitro culture, and they possess low immunogenicity, which enables the use of hASCs from random donors. It has been hypothesized that hASCs exert their wound healing properties by reducing inflammation, inducing angiogenesis, and promoting fibroblast and keratinocyte growth. Due to the inherent variability associated with the donor-dependent nature of ASC-based products, it appears necessary that the quality of the different products is prospectively certified using a set of most relevant potency assays. In this review, we present an overview of the available methodologies to assess the Mode and the Mechanism of Action of hASCs, specifically in the wound healing scenario. In conclusion, we propose a panel of potential potency assays to include in the future production of ASC-based medicinal products.
Collapse
Affiliation(s)
- Guoqiang Ren
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Qiuyue Peng
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Trine Fink
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Simone Riis Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark.
| |
Collapse
|
11
|
Kusena JWT, Shariatzadeh M, Studd AJ, James JR, Thomas RJ, Wilson SL. The importance of cell culture parameter standardization: an assessment of the robustness of the 2102Ep reference cell line. Bioengineered 2021; 12:341-357. [PMID: 33380247 PMCID: PMC8806261 DOI: 10.1080/21655979.2020.1870074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022] Open
Abstract
Work undertaken using the embryonic carcinoma 2102Ep line, highlighted the requirement for robust, well-characterized and standardized protocols. A systematic approach utilizing 'quick hit' experiments demonstrated variability introduced into culture systems resulting from slight changes to culture conditions (route A). This formed the basis for longitudinal experiments investigating long-term effects of culture parameters including seeding density and feeding regime (route B).Results demonstrated that specific growth rates (SGR) of passage 59 (P59) cells seeded at 20,000 cells/cm2 and subjected to medium exchange after 48h prior to reseeding at 72h (route B2) on average was marginally higher than, P55 cells cultured under equivalent conditions (route A1); whereby SGR values were (0.021±0.004) and (0.019±0.004). Viability was higher in route B2 over 10 passages with average viability reported as (86.3%±8.1) compared to route A1 (83.3±8.8). The metabolite data demonstrated both culture route B1 (P57 cells seeded at 66,667 cells/cm2) and B2 had consistent-specific metabolite rates (SMR) for glucose, but SMR values of route B1 was consistently lower than route B2 (0.00001 mmol, cell-1.d-1 and 0.000025).Results revealed interactions between phenotype, SMR and feeding regime that may not be accurately reflected by growth rate or observed morphology. This implies that current schemes of protocol control do not adequately account for variability, since key cell characteristics, including phenotype and SMR, change regardless of standardized seeding densities. This highlights the need to control culture parameters through defined protocols, for processes that involve culture for therapeutic use, biologics production, and reference lines.
Collapse
Affiliation(s)
- James Willard Tonderai Kusena
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Maryam Shariatzadeh
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Adam James Studd
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Jenna Rebekah James
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Robert James Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Samantha Loiuse Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
12
|
Kusena JWT, Shariatzadeh M, Thomas RJ, Wilson SL. Understanding cell culture dynamics: a tool for defining protocol parameters for improved processes and efficient manufacturing using human embryonic stem cells. Bioengineered 2021; 12:979-996. [PMID: 33757391 PMCID: PMC8806349 DOI: 10.1080/21655979.2021.1902696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Standardization is crucial when culturing cells including human embryonic stem cells (hESCs) which are valuable for therapy development and disease modeling. Inherent issues regarding reproducibility of protocols are problematic as they hinder translation to good manufacturing practice (GMP), thus reducing clinical efficacy and uptake. Pluripotent cultures require standardization to ensure that input material is consistent prior to differentiation, as inconsistency of input cells creates end-product variation. To improve protocols, developers first must understand the cells they are working with and their related culture dynamics. This innovative work highlights key conditions required for optimized and cost-effective bioprocesses compared to generic protocols typically implemented. This entailed investigating conditions affecting growth, metabolism, and phenotype dynamics to ensure cell quality is appropriate for use. Results revealed critical process parameters (CPPs) including feeding regime and seeding density impact critical quality attributes (CQAs) including specific metabolic rate (SMR) and specific growth rate (SGR). This implied that process understanding, and control is essential to maintain key cell characteristics, reduce process variation and retain CQAs. Examination of cell dynamics and CPPs permitted the formation of a defined protocol for culturing H9 hESCs. The authors recommend that H9 seeding densities of 20,000 cells/cm2, four-day cultures or three-day cultures following a recovery passage from cryopreservation and 100% medium exchange after 48 hours are optimal. These parameters gave ~SGR of 0.018 hour-1 ± 1.5x10-3 over three days and cell viabilities ≥95%±0.4, while producing cells which highly expressed pluripotent and proliferation markers, Oct3/4 (>99% positive) and Ki-67 (>99% positive).
Collapse
Affiliation(s)
- J W T Kusena
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| | - M Shariatzadeh
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| | - R J Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| | - S L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
13
|
Tsiftsoglou AS. Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells 2021; 10:cells10082140. [PMID: 34440909 PMCID: PMC8391952 DOI: 10.3390/cells10082140] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Human erythropoietin (EPO) is an N-linked glycoprotein consisting of 166 aa that is produced in the kidney during the adult life and acts both as a peptide hormone and hematopoietic growth factor (HGF), stimulating bone marrow erythropoiesis. EPO production is activated by hypoxia and is regulated via an oxygen-sensitive feedback loop. EPO acts via its homodimeric erythropoietin receptor (EPO-R) that increases cell survival and drives the terminal erythroid maturation of progenitors BFU-Es and CFU-Es to billions of mature RBCs. This pathway involves the activation of multiple erythroid transcription factors, such as GATA1, FOG1, TAL-1, EKLF and BCL11A, and leads to the overexpression of genes encoding enzymes involved in heme biosynthesis and the production of hemoglobin. The detection of a heterodimeric complex of EPO-R (consisting of one EPO-R chain and the CSF2RB β-chain, CD131) in several tissues (brain, heart, skeletal muscle) explains the EPO pleotropic action as a protection factor for several cells, including the multipotent MSCs as well as cells modulating the innate and adaptive immunity arms. EPO induces the osteogenic and endothelial transdifferentiation of the multipotent MSCs via the activation of EPO-R signaling pathways, leading to bone remodeling, induction of angiogenesis and secretion of a large number of trophic factors (secretome). These diversely unique properties of EPO, taken together with its clinical use to treat anemias associated with chronic renal failure and other blood disorders, make it a valuable biologic agent in regenerative medicine for the treatment/cure of tissue de-regeneration disorders.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Armstrong JPK, Keane TJ, Roques AC, Patrick PS, Mooney CM, Kuan WL, Pisupati V, Oreffo ROC, Stuckey DJ, Watt FM, Forbes SJ, Barker RA, Stevens MM. A blueprint for translational regenerative medicine. Sci Transl Med 2021; 12:12/572/eaaz2253. [PMID: 33268507 DOI: 10.1126/scitranslmed.aaz2253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
The past few decades have produced a large number of proof-of-concept studies in regenerative medicine. However, the route to clinical adoption is fraught with technical and translational obstacles that frequently consign promising academic solutions to the so-called "valley of death." Here, we present a proposed blueprint for translational regenerative medicine. We offer principles to help guide the selection of cells and materials, present key in vivo imaging modalities, and argue that the host immune response should be considered throughout design and development. Last, we suggest a pathway to navigate the often complex regulatory and manufacturing landscape of translational regenerative medicine.
Collapse
Affiliation(s)
- James P K Armstrong
- Department of Materials, Imperial College London, London SW7 2AZ, UK. .,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.,Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Timothy J Keane
- Department of Materials, Imperial College London, London SW7 2AZ, UK.,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.,Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Anne C Roques
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - P Stephen Patrick
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Claire M Mooney
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Wei-Li Kuan
- John van Geest Centre for Brain Repair and Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0PY, UK
| | - Venkat Pisupati
- John van Geest Centre for Brain Repair and Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0PY, UK
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, UK
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair and Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0PY, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK. .,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.,Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
15
|
Klein K, Stolk P, De Bruin ML, Leufkens H. Regulatory density as a means to refine current regulatory approaches for increasingly complex medicines. Drug Discov Today 2021; 26:2221-2225. [PMID: 33862191 DOI: 10.1016/j.drudis.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
The continuous scientific, societal, and technological advancements have shifted drug development toward increasingly complex and ever more targeted treatments. This creates new and unprecedented challenges for global regulatory systems. To address the increased risks and uncertainties of increasingly complex medicine, we advocate for a more tailored and flexible regulatory approach, which is explained here with the concept of 'regulatory density'. In the context of this paper, 'regulatory density' describes the relative amount of obligatory standards, measures and procedures applied to certain medicinal products or product classes and the resources required to meet these requirements. Given that risk and uncertainty are dynamic variables that can change over time, with this paper, we want to stimulate (re)thinking of regulatory approaches for managing the challenges of future complex medicines.
Collapse
Affiliation(s)
- Kevin Klein
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology and Clinical Pharmacology, WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht University, Utrecht, The Netherlands; Exon Consultancy, Amsterdam, The Netherlands.
| | - Pieter Stolk
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology and Clinical Pharmacology, WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht University, Utrecht, The Netherlands; Exon Consultancy, Amsterdam, The Netherlands
| | - Marie Louise De Bruin
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology and Clinical Pharmacology, WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht University, Utrecht, The Netherlands; Copenhagen Centre for Regulatory Science (CORS), Department of Pharmacy, University of Copenhagen, Denmark
| | - Hubert Leufkens
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology and Clinical Pharmacology, WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Drago D, Foss-Campbell B, Wonnacott K, Barrett D, Ndu A. Global regulatory progress in delivering on the promise of gene therapies for unmet medical needs. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:524-529. [PMID: 33997101 PMCID: PMC8099595 DOI: 10.1016/j.omtm.2021.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid expansion of the gene therapy pipeline in recent years offers significant potential to treat diseases with great unmet medical need. However, the unique nature of these therapies poses challenges to regulating them within traditional frameworks, even when developing in a single country. Various factors exacerbate the issues in commercializing products across regions, including the lack of established regulatory frameworks for developing gene therapy products in many jurisdictions. While some countries have established separate regulatory frameworks for advanced therapies/regenerative medicine products, differences exist between them. Recommended solutions to overcome these hurdles include fostering convergence among countries with separate regulatory frameworks for these products and utilizing reliance and recognition for countries without such frameworks. Additionally, regulators who choose to establish new dedicated frameworks for regulating gene therapies should consider the inclusion of key elements such as expedited regulatory pathways that offer early engagement with regulators, innovative clinical trial design, and adequate post-market confirmatory studies. Increasing the alignment of regulatory pathways across countries will be crucial to facilitating the development of, and access to, gene therapies on a global scale.
Collapse
Affiliation(s)
- Daniela Drago
- Biogen, Inc., Global Safety and Regulatory Sciences, Cambridge, MA, USA
| | - Betsy Foss-Campbell
- American Society of Gene and Cell Therapy, Policy and Advocacy, Milwaukee, WI, USA
| | - Keith Wonnacott
- Pfizer, Inc., Global Regulatory Affairs, Gaithersburg, MD, USA
| | - David Barrett
- American Society of Gene and Cell Therapy, Executive Office, Milwaukee, WI, USA
| | - Adora Ndu
- BioMarin Pharmaceutical, Inc., Worldwide Research and Development Strategy, Scientific Collaborations and Policy, Washington, DC, USA
| |
Collapse
|
17
|
Advanced therapy medicinal product manufacturing under the hospital exemption and other exemption pathways in seven European Union countries. Cytotherapy 2020; 22:592-600. [PMID: 32563611 DOI: 10.1016/j.jcyt.2020.04.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/01/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS As part of the advanced therapy medicinal product (ATMP) regulation, the hospital exemption (HE) was enacted to accommodate manufacturing of custom-made ATMPs for treatment purposes in the European Union (EU). However, how the HE pathway has been used in practice is largely unknown. METHODS Using a survey and interviews, we provide the product characteristics, scale and motivation for ATMP manufacturing under HE and other, non-ATMP-specific exemption pathways in seven European countries. RESULTS Results show that ATMPs were manufactured under HE by public facilities located in Finland, Germany, Italy and the Netherlands, which enabled availability of a modest number of ATMPs (n = 12) between 2009 and 2017. These ATMPs were shown to have close proximity to clinical practice, and manufacturing was primarily motivated by clinical needs and clinical experience. Public facilities used HE when patients could not obtain treatment in ongoing or future trials. Regulatory aspects motivated (Finland, Italy, the Netherlands) or limited (Belgium, Germany) HE utilization, whereas financial resources generally limited HE utilization by public facilities. Public facilities manufactured other ATMPs (n = 11) under named patient use (NPU) between 2015 and 2017 and used NPU in a similar fashion as HE. The scale of manufacturing under HE over 9 years was shown to be rather limited in comparison to manufacturing under NPU over 3 years. In Germany, ATMPs were mainly manufactured by facilities of private companies under HE. CONCLUSIONS The HE enables availability of ATMPs with close proximity to clinical practice. Yet in some countries, HE provisions limit utilization, whereas commercial developments could be undermined by private HE licenses in Germany. Transparency through a public EU-wide registry and guidance for distinguishing between ATMPs that are or are not commercially viable as well as public-private engagements are needed to optimize the use of the HE pathway and regulatory pathways for commercial development in a complementary fashion.
Collapse
|
18
|
Wu W, Wang Y, Tang Z, Gao Y, Huo Y. Regulatory oversight of cell therapy in China: Government's efforts in patient access and therapeutic innovation. Pharmacol Res 2020; 158:104889. [PMID: 32428666 DOI: 10.1016/j.phrs.2020.104889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/09/2020] [Accepted: 05/02/2020] [Indexed: 11/15/2022]
Abstract
In recent years, remarkable progress has been made in the fundamental research and on clinical development of cell therapy. Although China has launched a series of regulations to establish a proper regulatory framework that facilitates the development of cell therapy products, the regulatory framework has not been able to meet the country's regulatory requirements. This article introduced the development of regulation and current regulatory pathways for cell therapy in China and identified the main challenges in clinical studies. China has recently tightened its policy on cell therapy clinical studies after medical chaos occurred in the area of cell therapy over the past few years. Currently the regulatory jurisdiction between NMPA and NHC are not very clear, especially for clinical somatic cell research, further efforts are necessary to establish a legislative system with a clear and functional regulatory framework for cell therapy.
Collapse
Affiliation(s)
- Weijia Wu
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China; Sino-Danish Regulatory Science Center, Fudan University, Shanghai, China
| | - Yuanyuan Wang
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China; Sino-Danish Regulatory Science Center, Fudan University, Shanghai, China
| | - Zhijia Tang
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuan Gao
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China; Sino-Danish Regulatory Science Center, Fudan University, Shanghai, China.
| | - Yan Huo
- National Institution of Food and Drug Control, National Medical Products Administration, Beijing, China.
| |
Collapse
|
19
|
Dosta P, Ferber S, Zhang Y, Wang K, Ros A, Uth N, Levinson Y, Abraham E, Artzi N. Scale-up manufacturing of gelatin-based microcarriers for cell therapy. J Biomed Mater Res B Appl Biomater 2020; 108:2937-2949. [PMID: 32356942 DOI: 10.1002/jbm.b.34624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/11/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Microcarriers, including crosslinked porous gelatin beads (Cultispher G) are widely used as cell carriers for cell therapy applications. Microcarriers can support a range of adherent cell types in stirred tank bioreactor culture, which is scalable up to several thousands of liters. Cultispher G in particular is advantageous for cell therapy applications because it can be dissolved enzymatically, and thus cells can be harvested without the need to perform a large-scale cell-bead filtration step. This enzymatic dissolution, however, is challenged by the slow degradation of the carriers in the presence of enzymes as new extracellular matrix is being deposited by the proliferating cells. This extended dissolution timelimits the yield of cell recovery while compromising cellular viability. We report herein the development of crosslinked porous gelatin beads that afford rapid, stimuli-triggered dissolution for facile cell removal using human mesenchymal stem cells (hMSC) as a model system. We successfully fabricated redox-sensitive beads (RS beads) and studied their cell growth, dissolution time and cell yield, compared to regular gelatin-based beads (Reg beads). We have shown that RS beads allow for much faster dissolution compared to Reg beads, supporting better hMSC detachment and recovery following 8 days of culture in spinner flasks, or in 3L bioreactors. These newly synthesized RS beads show promise as cellular microcarriers and can be used for scale-up manufacturing of different cell types while providing on-demand degradation for facile cell retrieval.
Collapse
Affiliation(s)
- Pere Dosta
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shiran Ferber
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Zhang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kui Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Albert Ros
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Uth
- Research and Technology, Walkersville, Maryland, USA
| | | | - Eytan Abraham
- Research and Technology, Walkersville, Maryland, USA
| | - Natalie Artzi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Coppens DG, Gardarsdottir H, van den Bogert CA, De Bruin ML, Leufkens HG, Hoekman J. Publication rates and reported results in a cohort of gene- and cell-based therapy trials. Regen Med 2020; 15:1215-1227. [PMID: 32103712 DOI: 10.2217/rme-2019-0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: We investigated publication rates and reported results for gene- and cell-based therapy trials. Materials & methods: In a cohort of Institutional Review Board (IRB)-authorized trials during 2007-2017 in the Netherlands (n = 105), we examine publication rates and reported results in scientific papers and conference abstracts as well as associations with the occurrence of trial characteristics. Results: The publication rate for scientific papers was 27% and 17% for conference abstracts (median survival time: 1050 days). Academic hospitals published more in scientific papers whereas private sponsors published more in conference abstracts. Manufacturing protocols were underreported compared with clinical outcomes. Most publications reported positive results (78%). Conclusion: Publication rates are currently suboptimal indicating a need for enhanced knowledge sharing to stimulate gene- and cell-based therapy development.
Collapse
Affiliation(s)
- Delphi Gm Coppens
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Helga Gardarsdottir
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Clinical Pharmacy, Division Laboratories, Pharmacy & Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A van den Bogert
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marie L De Bruin
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Copenhagen Centre for Regulatory Science, University of Copenhagen, Copenhagen, Denmark
| | - Hubert Gm Leufkens
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jarno Hoekman
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Innovation Studies Group, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Kusena JWT, Thomas RJ, McCall MJ, Wilson SL. From protocol to product: ventral midbrain dopaminergic neuron differentiation for the treatment of Parkinson's disease. Regen Med 2019; 14:1057-1069. [DOI: 10.2217/rme-2019-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Current cell therapy product limitations include the need for in-depth product understanding to ensure product potency, safety and purity. New technologies require development and validation to address issues of production scale-up to meet clinical need; assays are required for process control, validation and release. Prior to clinical realization, an understanding of production processes is required to implement process changes that are essential for process control. Identification of key parameters forms the basis of process tolerances, allowing for validated, adaptive manufacturing processes. This enables greater process control and yield while withstanding regulatory scrutiny. This report summaries key milestones in specifically for ventral midbrain dopaminergic neuroprogenitor differentiation and key translational considerations and recommendations to enable successful, robust and reproducible current cell therapy product-manufacturing.
Collapse
Affiliation(s)
- James WT Kusena
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Robert J Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Mark J McCall
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Samantha L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
22
|
Perspectives for Clinical Translation of Adipose Stromal/Stem Cells. Stem Cells Int 2019; 2019:5858247. [PMID: 31191677 PMCID: PMC6525805 DOI: 10.1155/2019/5858247] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Adipose stromal/stem cells (ASCs) are an ideal cell type for regenerative medicine applications, as they can easily be harvested from adipose tissue in large quantities. ASCs have excellent proliferation, differentiation, and immunoregulatory capacities that have been demonstrated in numerous studies. Great interest and investment have been placed in efforts to exploit the allogeneic use and immunomodulatory and anti-inflammatory effects of ASCs. However, bridging the gap between in vitro and in vivo studies and moving into clinical practice remain a challenge. For the clinical translation of ASCs, several issues must be considered, including how to characterise such a heterogenic cell population and how to ensure their safety and efficacy. This review explores the different phases of in vitro and preclinical ASC characterisation and describes the development of appropriate potency assays. In addition, good manufacturing practice requirements are discussed, and cell-based medicinal products holding marketing authorisation in the European Union are reviewed. Moreover, the current status of clinical trials applying ASCs and the patent landscape in the field of ASC research are presented. Overall, this review highlights the applicability of ASCs for clinical cell therapies and discusses their potential.
Collapse
|
23
|
Ambekar RS, Kandasubramanian B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05334] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rushikesh S. Ambekar
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| |
Collapse
|
24
|
Detela G, Lodge A. EU Regulatory Pathways for ATMPs: Standard, Accelerated and Adaptive Pathways to Marketing Authorisation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:205-232. [PMID: 30815512 PMCID: PMC6378853 DOI: 10.1016/j.omtm.2019.01.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Advanced therapy medicinal products (ATMPs) require evaluation by the European Medicines Agency’s Committee for Advanced Therapies prior to being placed on the European market, subject to a Marketing Authorisation granted by the European Commission. In common with other medicinal products, various regulatory pathways are available for taking ATMPs through clinical trials to market authorisation, and the regulatory pathway taken will depend on a product’s characteristics and the target patient population. With the industry poised to deliver more late-stage clinical and commercial ATMPs for serious diseases with high unmet medical need (e.g., T cell immunotherapies for cancer), bringing medicines to patients through optimized regulatory strategies and expedited pathways is assuming greater importance. The European Medicines Agency’s priority medicines (PRIME) scheme was introduced in 2016 specifically to enable this, and eligibility has been granted to 19 ATMPs as of the fourth quarter (Q4) 2018. Furthermore, two chimeric antigen receptor (CAR) T cell therapies, Yescarta and Kymriah, have recently completed their journeys through the scheme to Marketing Authorisation. This review discusses how the regulatory pathway for any particular ATMP, with or without PRIME designation, is determined and navigated.
Collapse
Affiliation(s)
- Giulia Detela
- VivaBioCell S.p.A., via del Cotonificio, 127, 33100 Udine, Italy
| | - Anthony Lodge
- Kite, a Gilead Company, Flowers Building, Granta Park, Abington, Cambridge CB21 6GT, UK
| |
Collapse
|
25
|
de Wilde S, Coppens DG, Hoekman J, de Bruin ML, Leufkens HG, Guchelaar HJ, Meij P. EU decision-making for marketing authorization of advanced therapy medicinal products: a case study. Drug Discov Today 2018; 23:1328-1333. [DOI: 10.1016/j.drudis.2018.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/31/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022]
|
26
|
A decade of marketing approval of gene and cell-based therapies in the United States, European Union and Japan: An evaluation of regulatory decision-making. Cytotherapy 2018; 20:769-778. [PMID: 29730080 DOI: 10.1016/j.jcyt.2018.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
There is a widely held expectation of clinical advance with the development of gene and cell-based therapies (GCTs). Yet, establishing benefits and risks is highly uncertain. We examine differences in decision-making for GCT approval between jurisdictions by comparing regulatory assessment procedures in the United States (US), European Union (EU) and Japan. A cohort of 18 assessment procedures was analyzed by comparing product characteristics, evidentiary and non-evidentiary factors considered for approval and post-marketing risk management. Product characteristics are very heterogeneous and only three products are marketed in multiple jurisdictions. Almost half of all approved GCTs received an orphan designation. Overall, confirmatory evidence or indications of clinical benefit were evident in US and EU applications, whereas in Japan approval was solely granted based on non-confirmatory evidence. Due to scientific uncertainties and safety risks, substantial post-marketing risk management activities were requested in the EU and Japan. EU and Japanese authorities often took unmet medical needs into consideration in decision-making for approval. These observations underline the effects of implemented legislation in these two jurisdictions that facilitate an adaptive approach to licensing. In the US, the recent assessments of two chimeric antigen receptor-T cell (CAR-T) products are suggestive of a trend toward a more permissive approach for GCT approval under recent reforms, in contrast to a more binary decision-making approach for previous approvals. It indicates that all three regulatory agencies are currently willing to take risks by approving GCTs with scientific uncertainties and safety risks, urging them to pay accurate attention to post-marketing risk management.
Collapse
|
27
|
Hourd P, Williams DJ. Scanning the horizon for high value-add manufacturing science: Accelerating manufacturing readiness for the next generation of disruptive, high-value curative cell therapeutics. Cytotherapy 2018; 20:759-767. [DOI: 10.1016/j.jcyt.2018.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
|
28
|
Hongisto H, Ilmarinen T, Vattulainen M, Mikhailova A, Skottman H. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther 2017; 8:291. [PMID: 29284513 PMCID: PMC5747074 DOI: 10.1186/s13287-017-0738-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSCs) provide a promising cell source for ocular cell replacement therapy, but often lack standardized and xenogeneic-free culture and differentiation protocols. We aimed to develop a xeno- and feeder cell-free culture system for undifferentiated hPSCs along with efficient methods to derive ocular therapy target cells: retinal pigment epithelial (RPE) cells and corneal limbal epithelial stem cells (LESCs). METHODS Multiple genetically distinct hPSC lines were adapted to a defined, xeno-, and feeder-free culture system of Essential 8™ medium and laminin-521 matrix. Thereafter, two-stage differentiation methods toward ocular epithelial cells were established utilizing xeno-free media and a combination of extracellular matrix proteins. Both differentiation methods shared the same basal elements, using only minor inductive modifications during early differentiation towards desired cell lineages. The resulting RPE cells and LESCs were characterized after several independent differentiation experiments and recovery after xeno-free cryopreservation. RESULTS The defined, xeno-, and feeder-free culture system provided a robust means to generate high-quality hPSCs with chromosomal stability limited to early passages. Inductive cues introduced during the first week of differentiation had a substantial effect on lineage specification, cell survival, and even mature RPE properties. Derivative RPE formed functional epithelial monolayers with mature tight junctions and expression of RPE genes and proteins, as well as phagocytosis and key growth factor secretion capacity after 9 weeks of maturation on inserts. Efficient LESC differentiation led to cell populations expressing LESC markers such as p40/p63α by day 24. Finally, we established xeno-free cryobanking protocols for pluripotent hPSCs, hPSC-RPE cells, and hPSC-LESCs, and demonstrated successful recovery after thawing. CONCLUSIONS We propose methods for efficient and scalable, directed differentiation of high-quality RPE cells and LESCs. The two clinically relevant cell types are generated with simple inductive modification of the same basal method, followed by adherent culture, passaging, and cryobanking.
Collapse
Affiliation(s)
- Heidi Hongisto
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - Tanja Ilmarinen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Meri Vattulainen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Alexandra Mikhailova
- Department of Ophthalmology, SILK, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Finnish Federation of the Visually Impaired, Helsinki, Finland
| | - Heli Skottman
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| |
Collapse
|
29
|
Coppens DG, De Bruin ML, Leufkens HG, Hoekman J. Global Regulatory Differences for Gene- and Cell-Based Therapies: Consequences and Implications for Patient Access and Therapeutic Innovation. Clin Pharmacol Ther 2017; 103:120-127. [DOI: 10.1002/cpt.894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/12/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Delphi G.M. Coppens
- Utrecht/WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Marie L. De Bruin
- Utrecht/WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
- Copenhagen Centre for Regulatory Science (CORS), Department of Pharmacy; University of Copenhagen; Copenhagen Denmark
| | - Hubert G.M. Leufkens
- Utrecht/WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Jarno Hoekman
- Utrecht/WHO Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
- Innovation Studies Group, Copernicus Institute for Sustainable Development; Utrecht University; Utrecht The Netherlands
| |
Collapse
|
30
|
Guillamat-Prats R, Camprubí-Rimblas M, Bringué J, Tantinyà N, Artigas A. Cell therapy for the treatment of sepsis and acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:446. [PMID: 29264363 DOI: 10.21037/atm.2017.08.28] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sepsis and acute respiratory distress syndrome (ARDS) are life threating diseases with high mortality and morbidity in all the critical care units around the world. After decades of research, and numerous pre-clinical and clinical trials, sepsis and ARDS remain without a specific and effective pharmacotherapy and essentially the management remains supportive. In the last years cell therapies gained potential as a therapeutic treatment for ARDS and sepsis. Based on numerous pre-clinical studies, there is a growing evidence of the potential benefits of cell based therapies for the treatment of sepsis and ARDS. Several cell types are used in the last years for the treatment of both syndromes showing high efficiency. Embryonic stem cells (ESC), multipotent stem (or stromal) cells (MSC) and epithelial progenitors cells (EpPC) have been used for both diseases. Nowadays, the major part of the pre-clinical studies are using MSC, however other relevant groups are also using induced pluripotent stem cells (iPSC) for the treatment of both syndromes and alveolar type II cells for ARDS treatment. Numerous questions need further study including: determining the best source for the progenitor cells isolation, their large scale production and cryopreservation. Also, the heterogeneity of patients with sepsis and ARDS is massive, and establish a target population or the stratification of the patients will help us to determine better the therapeutic effect of these cell therapies. In this review we are going to describe briefly the different cell types, their potential sources and characteristics and mechanism of action. Here, also we elucidate the results of several pre-clicinical and clinical studies in ARDS and in sepsis and the future directions of these studies.
Collapse
Affiliation(s)
- Raquel Guillamat-Prats
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain
| | - Marta Camprubí-Rimblas
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain.,Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Josep Bringué
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain.,Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Neus Tantinyà
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain
| | - Antonio Artigas
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain.,Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain.,Critical Care Center, Corporació Sanitària i Universitària Parc Taulí, Sabadell, Catalonia, Spain
| |
Collapse
|
31
|
Loisel S, Dulong J, Ménard C, Renoud ML, Meziere N, Isabelle B, Latour M, Bescher N, Pedeux R, Bertheuil N, Flecher E, Sensebé L, Tarte K. Brief Report: Proteasomal Indoleamine 2,3-Dioxygenase Degradation Reduces the Immunosuppressive Potential of Clinical Grade-Mesenchymal Stromal Cells Undergoing Replicative Senescence. Stem Cells 2017; 35:1431-1436. [DOI: 10.1002/stem.2580] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Séverine Loisel
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Joëlle Dulong
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Cédric Ménard
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Marie-Laure Renoud
- Etablissement Français du Sang Pyrénées Méditerranée, Université Paul Sabatier; UMR5273-INSERM U1031 Toulouse France
| | | | - Bezier Isabelle
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Maëlle Latour
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Nadège Bescher
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Rémy Pedeux
- UMR U917, INSERM, Université Rennes 1; Rennes France
- UMR U1242, INSERM; Centre Eugéne Marquis; Rennes, France
| | - Nicolas Bertheuil
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
- Department of Plastic; Reconstructive and Aesthetic Surgery
| | - Erwan Flecher
- Department of Thoracic and Cardiac Surgery; CHU Rennes; France
| | - Luc Sensebé
- Etablissement Français du Sang Pyrénées Méditerranée, Université Paul Sabatier; UMR5273-INSERM U1031 Toulouse France
| | - Karin Tarte
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| |
Collapse
|
32
|
Lambrechts T, Sonnaert M, Schrooten J, Luyten FP, Aerts JM, Papantoniou I. Large-Scale Mesenchymal Stem/Stromal Cell Expansion: A Visualization Tool for Bioprocess Comparison. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:485-498. [DOI: 10.1089/ten.teb.2016.0111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Toon Lambrechts
- M3-BIORES: Measure, Model and Manage Bioresponses, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Maarten Sonnaert
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Metallurgy and Materials Engineering, KU Leuven, Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Antleron, Leuven, Belgium
| | - Frank P. Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Jean-Marie Aerts
- M3-BIORES: Measure, Model and Manage Bioresponses, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Advances and Future Applications of Augmented Peripheral Nerve Regeneration. Int J Mol Sci 2016; 17:ijms17091494. [PMID: 27618010 PMCID: PMC5037771 DOI: 10.3390/ijms17091494] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
Peripheral nerve injuries remain a significant source of long lasting morbidity, disability, and economic costs. Much research continues to be performed in areas related to improving the surgical outcomes of peripheral nerve repair. In this review, the physiology of peripheral nerve regeneration and the multitude of efforts to improve surgical outcomes are discussed. Improvements in tissue engineering that have allowed for the use of synthetic conduits seeded with neurotrophic factors are highlighted. Selected pre-clinical and available clinical data using cell based methods such as Schwann cell, undifferentiated, and differentiated stem cell transplantation to guide and enhance peripheral nerve regeneration are presented. The limitations that still exist in the utility of neurotrophic factors and cell-based therapies are outlined. Strategies that are most promising for translation into the clinical arena are suggested.
Collapse
|
34
|
Williams DJ, Archer R, Archibald P, Bantounas I, Baptista R, Barker R, Barry J, Bietrix F, Blair N, Braybrook J, Campbell J, Canham M, Chandra A, Foldes G, Gilmanshin R, Girard M, Gorjup E, Hewitt Z, Hourd P, Hyllner J, Jesson H, Kee J, Kerby J, Kotsopoulou N, Kowalski S, Leidel C, Marshall D, Masi L, McCall M, McCann C, Medcalf N, Moore H, Ozawa H, Pan D, Parmar M, Plant AL, Reinwald Y, Sebastian S, Stacey G, Thomas RJ, Thomas D, Thurman-Newell J, Turner M, Vitillo L, Wall I, Wilson A, Wolfrum J, Yang Y, Zimmerman H. Comparability: manufacturing, characterization and controls, report of a UK Regenerative Medicine Platform Pluripotent Stem Cell Platform Workshop, Trinity Hall, Cambridge, 14-15 September 2015. Regen Med 2016; 11:483-92. [PMID: 27404768 PMCID: PMC5422032 DOI: 10.2217/rme-2016-0053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper summarizes the proceedings of a workshop held at Trinity Hall, Cambridge to discuss comparability and includes additional information and references to related information added subsequently to the workshop. Comparability is the need to demonstrate equivalence of product after a process change; a recent publication states that this ‘may be difficult for cell-based medicinal products’. Therefore a well-managed change process is required which needs access to good science and regulatory advice and developers are encouraged to seek help early. The workshop shared current thinking and best practice and allowed the definition of key research questions. The intent of this report is to summarize the key issues and the consensus reached on each of these by the expert delegates.
Collapse
Affiliation(s)
- David J Williams
- Loughborough University, Centre for Biological Engineering, Holywell Park, Loughborough LE11 3TU, UK
| | | | - Peter Archibald
- Loughborough University, Centre for Biological Engineering, Holywell Park, Loughborough LE11 3TU, UK
| | - Ioannis Bantounas
- University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Ricardo Baptista
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Roger Barker
- University of Cambridge, John van Geest Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Jacqueline Barry
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Florence Bietrix
- European Infrastructure for Translational Medicine, EATRIS Headquarters, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| | - Nicholas Blair
- University of Cambridge, Anne McLaren Laboratory for Regenerative Medicine West Forvie Building, Robinson Way, Cambridge, CB2 0SZ, UK
| | | | | | - Maurice Canham
- University of Edinburgh, MRC Centre for Regenerative Medicine, Edinburgh Bioquarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Amit Chandra
- Loughborough University, Centre for Biological Engineering, Holywell Park, Loughborough LE11 3TU, UK
| | - Gabor Foldes
- Imperial College London, Faculty of Medicine, National Heart & Lung Institute, ICTEM building, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Rudy Gilmanshin
- FloDesign Sonics Inc., 380 Main St, Wilbraham, MA 01095, USA
| | - Mathilde Girard
- I-Stem, CECS/I-STEM, 2, Rue Henri Desbruères, 91100 Corbeil-Essonnes, France
| | - Erwin Gorjup
- Fraunhofer IBMT, Außenstelle Cambridge/Babraham, Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Zöe Hewitt
- University of Sheffield, Centre for Stem Cell Biology, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Paul Hourd
- Loughborough University, Centre for Biological Engineering, Holywell Park, Loughborough LE11 3TU, UK
| | - Johan Hyllner
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Helen Jesson
- Loughborough University, Centre for Biological Engineering, Holywell Park, Loughborough LE11 3TU, UK
| | - Jasmin Kee
- Reneuron, Pencoed Business Park, Pencoed, Bridgend CF35 5HY, UK
| | - Julie Kerby
- Neusentis (Pfizer Ltd.), The Portway Building, Granta Park, Great Abington, Cambridge CB21 6GS, UK
| | - Nina Kotsopoulou
- Autolus Limited, Forest House, 58 Wood Lane, White City, London, W12 7RP, UK
| | | | - Chris Leidel
- FloDesign Sonics Inc., 380 Main St, Wilbraham, MA 01095, USA
| | - Damian Marshall
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Louis Masi
- FloDesign Sonics Inc., 380 Main St, Wilbraham, MA 01095, USA
| | - Mark McCall
- Loughborough University, Centre for Biological Engineering, Holywell Park, Loughborough LE11 3TU, UK
| | - Conor McCann
- University College London, Stem Cells & Regenerative Medicine Section, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Nicholas Medcalf
- Loughborough University, Centre for Biological Engineering, Holywell Park, Loughborough LE11 3TU, UK
| | - Harry Moore
- University of Sheffield, Centre for Stem Cell Biology, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Hiroki Ozawa
- University College London, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - David Pan
- Medical Research Council, 2nd Floor David Phillips Building, Polaris House, North Star Avenue, Swindon, SN2 1FL, UK
| | - Malin Parmar
- Lund University, Developmental & Regenerative Neurobiology, Wallenberg Neuroscience Centre, Lund University, 221 84 Lund, Sweden
| | - Anne L Plant
- NIST, Material Measurement Laboratory, NIST, Gaithersburg, MD 20899, USA
| | - Yvonne Reinwald
- Keele University, Institute for Science & Technology in Medicine, Keele University Thronburrow Drive, Hartshill Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | - Sujith Sebastian
- Loughborough University, Centre for Biological Engineering, Holywell Park, Loughborough LE11 3TU, UK
| | - Glyn Stacey
- National Institute for Biological Standards & Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Robert J Thomas
- Loughborough University, Centre for Biological Engineering, Holywell Park, Loughborough LE11 3TU, UK
| | - Dave Thomas
- TAP Biosystems, Sartorius Stedim, York Way, Royston, Hertfordshire, SG8 5WY UK
| | - Jamie Thurman-Newell
- Loughborough University, Centre for Biological Engineering, Holywell Park, Loughborough LE11 3TU, UK
| | - Marc Turner
- Scottish National Blood Transfusion Services, SNBTS HeadQuarters, 21 Ellen's Glen Road, Edinburgh, EH17 7QT, UK
| | - Loriana Vitillo
- University of Cambridge, Anne McLaren Laboratory for Regenerative Medicine West Forvie Building, Robinson Way, Cambridge, CB2 0SZ, UK
| | - Ivan Wall
- University College London, Department of Biochemical Engineering, Torrington Place, London, WC1E 7JE, UK
| | - Alison Wilson
- CellData Services, 3 Burgate Court, York, YO43 4TZ, UK
| | - Jacqueline Wolfrum
- MIT Center for Biomedical Innovation, Building E19-604, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ying Yang
- Keele University, Institute for Science & Technology in Medicine, Keele University Thronburrow Drive, Hartshill Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | - Heiko Zimmerman
- Fraunhofer IBMT, Fraunhofer-Institut für Biomedizinische Technik IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| |
Collapse
|
35
|
Hematti P. Characterization of mesenchymal stromal cells: potency assay development. Transfusion 2016; 56:32S-5S. [DOI: 10.1111/trf.13569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Peiman Hematti
- Department of Medicine; University of Wisconsin-Madison School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center; Madison Wisconsin
| |
Collapse
|
36
|
Chamorro CI, Zeiai S, Reinfeldt Engberg G, Fossum M. Minced Tissue in Compressed Collagen: A Cell-containing Biotransplant for Single-staged Reconstructive Repair. J Vis Exp 2016:53061. [PMID: 26967119 DOI: 10.3791/53061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Conventional techniques for cell expansion and transplantation of autologous cells for tissue engineering purposes can take place in specially equipped human cell culture facilities. These methods include isolation of cells in single cell suspension and several laborious and time-consuming events before transplantation back to the patient. Previous studies suggest that the body itself could be used as a bioreactor for cell expansion and regeneration of tissue in order to minimize ex vivo manipulations of tissues and cells before transplanting to the patient. The aim of this study was to demonstrate a method for tissue harvesting, isolation of continuous epithelium, mincing of the epithelium into small pieces and incorporating them into a three-layered biomaterial. The three-layered biomaterial then served as a delivery vehicle, to allow surgical handling, exchange of nutrition across the transplant, and a controlled degradation. The biomaterial consisted of two outer layers of collagen and a core of a mechanically stable and slowly degradable polymer. The minced epithelium was incorporated into one of the collagen layers before transplantation. By mincing the epithelial tissue into small pieces, the pieces could be spread and thereby the propagation of cells was stimulated. After the initial take of the transplants, cell expansion and reorganization would take place and extracellular matrix mature to allow ingrowth of capillaries and nerves and further maturation of the extracellular matrix. The technique minimizes ex vivo manipulations and allow cell harvesting, preparation of autograft, and transplantation to the patient as a simple one-stage intervention. In the future, tissue expansion could be initiated around a 3D mold inside the body itself, according to the specific needs of the patient. Additionally, the technique could be performed in an ordinary surgical setting without the need for sophisticated cell culturing facilities.
Collapse
Affiliation(s)
- Clara I Chamorro
- Department of Women's and Children's Health, Center for Molecular Medicine, Karolinska Institutet
| | - Said Zeiai
- Department of Women's and Children's Health, Center for Molecular Medicine, Karolinska Institutet; Department of Pediatric Surgery, Urology Section, Astrid Lindgren Children's Hospital, Karolinska University Hospital
| | - Gisela Reinfeldt Engberg
- Department of Women's and Children's Health, Center for Molecular Medicine, Karolinska Institutet; Department of Pediatric Surgery, Urology Section, Astrid Lindgren Children's Hospital, Karolinska University Hospital
| | - Magdalena Fossum
- Department of Women's and Children's Health, Center for Molecular Medicine, Karolinska Institutet; Department of Pediatric Surgery, Urology Section, Astrid Lindgren Children's Hospital, Karolinska University Hospital;
| |
Collapse
|
37
|
Galipeau J, Krampera M, Barrett J, Dazzi F, Deans RJ, DeBruijn J, Dominici M, Fibbe WE, Gee AP, Gimble JM, Hematti P, Koh MBC, LeBlanc K, Martin I, McNiece IK, Mendicino M, Oh S, Ortiz L, Phinney DG, Planat V, Shi Y, Stroncek DF, Viswanathan S, Weiss DJ, Sensebe L. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 2015; 18:151-9. [PMID: 26724220 DOI: 10.1016/j.jcyt.2015.11.008] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) as a pharmaceutical for ailments characterized by pathogenic autoimmune, alloimmune and inflammatory processes now cover the spectrum of early- to late-phase clinical trials in both industry and academic sponsored studies. There is a broad consensus that despite different tissue sourcing and varied culture expansion protocols, human MSC-like cell products likely share fundamental mechanisms of action mediating their anti-inflammatory and tissue repair functionalities. Identification of functional markers of potency and reduction to practice of standardized, easily deployable methods of measurements of such would benefit the field. This would satisfy both mechanistic research as well as development of release potency assays to meet Regulatory Authority requirements for conduct of advanced clinical studies and their eventual registration. In response to this unmet need, the International Society for Cellular Therapy (ISCT) addressed the issue at an international workshop in May 2015 as part of the 21st ISCT annual meeting in Las Vegas. The scope of the workshop was focused on discussing potency assays germane to immunomodulation by MSC-like products in clinical indications targeting immune disorders. We here provide consensus perspective arising from this forum. We propose that focused analysis of selected MSC markers robustly deployed by in vitro licensing and metricized with a matrix of assays should be responsive to requirements from Regulatory Authorities. Workshop participants identified three preferred analytic methods that could inform a matrix assay approach: quantitative RNA analysis of selected gene products; flow cytometry analysis of functionally relevant surface markers and protein-based assay of secretome. We also advocate that potency assays acceptable to the Regulatory Authorities be rendered publicly accessible in an "open-access" manner, such as through publication or database collection.
Collapse
Affiliation(s)
- Jacques Galipeau
- Department of Hematology and Medical Oncology, Winship Cancer Institute, and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Mauro Krampera
- Section of Hematology, Stem Cell Research Laboratory and Cell Factory, Department of Medicine, University of Verona, Verona, Italy
| | - John Barrett
- Stem Cell Allotransplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Dazzi
- Regenerative and Heamatological Medicine, King's College London, London, UK
| | - Robert J Deans
- Regenerative Medicine, Athersys Inc., Cleveland, OH, USA
| | - Joost DeBruijn
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, Division of Oncology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Willem E Fibbe
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Centre, Leiden, Netherlands
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA
| | - Jeffery M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Department of Medicine, and Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Mickey B C Koh
- Department of Haematology, St George's Hospital and Medical School, London, UK; Blood Services Group, Health Sciences Authority, Singapore
| | - Katarina LeBlanc
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Ian K McNiece
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Steve Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore
| | - Luis Ortiz
- Division of Occupational and Environmental Health Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - Valerie Planat
- IFR150 STROMALab UMR 5273 UPS-CNRS-EFS-INSERM U1031, Toulouse, France
| | - Yufang Shi
- Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China; The First Affiliated Hospital, Soochow University Institutes for Translational Medicine, Suzhou, China
| | - David F Stroncek
- Cell Processing Section, Department of Transfusion Medicine Clinical Center, NIH, Bethesda, MD, USA
| | | | - Daniel J Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Luc Sensebe
- UMR5273 STROMALab CNRS/EFS/UPS-INSERM U1031, Toulouse, France
| |
Collapse
|
38
|
Rutten MJ, Laraway B, Gregory CR, Xie H, Renken C, Keese C, Gregory KW. Rapid assay of stem cell functionality and potency using electric cell-substrate impedance sensing. Stem Cell Res Ther 2015; 6:192. [PMID: 26438432 PMCID: PMC4594964 DOI: 10.1186/s13287-015-0182-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 07/30/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023] Open
Abstract
Regenerative medicine studies using autologous bone marrow mononuclear cells (BM-MNCs) have shown improved clinical outcomes that correlate to in vitro BM-MNC invasive capacity. The current Boyden-chamber assay for testing invasive capacity is labor-intensive, provides only a single time point, and takes 36 hours to collect data and results, which is not practical from a clinical cell delivery perspective. To develop a rapid, sensitive and reproducible invasion assay, we employed Electric Cell-substrate Impedance Sensing (ECIS) technology. Chemokine-directed BM-MNC cell invasion across a Matrigel-coated Transwell filter was measurable within minutes using the ECIS system we developed. This ECIS-Transwell chamber system provides a rapid and sensitive test of stem and progenitor cell invasive capacity for evaluation of stem cell functionality to provide timely clinical data for selection of patients likely to realize clinical benefit in regenerative medicine treatments. This device could also supply robust unambiguous, reproducible and cost effective data as a potency assay for cell product release and regulatory strategies.
Collapse
Affiliation(s)
- Michael J Rutten
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| | - Bryan Laraway
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| | - Cynthia R Gregory
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA. .,VA Portland Health Care System, 3710 SW US Veterans Hospital Road, 97239, Portland, OR, USA. .,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| | - Hua Xie
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| | - Christian Renken
- Applied BioPhysics, Inc., 185 Jordan Road, 12180, Troy, NY, USA.
| | - Charles Keese
- Applied BioPhysics, Inc., 185 Jordan Road, 12180, Troy, NY, USA.
| | - Kenton W Gregory
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA. .,Department of Biomedical Engineering, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| |
Collapse
|