1
|
Zheng G, Lu M, Ouyang Y, Sun G. RNA methylation: A new perspective in osteoarthritis research. Gene 2025; 959:149518. [PMID: 40254081 DOI: 10.1016/j.gene.2025.149518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage degradation, osteophyte formation, and joint dysfunction, significantly impairing the quality of life in the elderly population. Recently, RNA modifications, as a dynamic and reversible epigenetic modification, have emerged as critical players in the onset and progression of OA. This review systematically summarizes the major types of RNA modifications involved in OA, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), and 7-methylguanosine (m7G), and explores their roles in regulating chondrocyte autophagy, inflammatory responses, and key signaling pathways. with a primary focus on RNA methylation. Special emphasis is placed on the dynamic regulatory functions of key methyltransferases (e.g., METTL3, FTO, WTAP) and their potential contributions to OA pathogenesis. Furthermore, we address current research hotspots and controversies in the field, proposing future research directions, such as leveraging single-cell sequencing to decipher dynamic RNA modification changes during OA progression and uncovering the cooperative networks among various RNA modifications. Advancing our understanding of the biological roles and mechanisms of RNA modifications holds promise for innovative strategies in the early diagnosis, disease stratification, and targeted therapy of OA.
Collapse
Affiliation(s)
- Guihao Zheng
- Department of Sports Medicine, Orthopaedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; Graduate School of Jiangxi Medical College, Nanchang University, China.
| | - Meifeng Lu
- Department of Sports Medicine, Orthopaedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; Graduate School of Jiangxi Medical College, Nanchang University, China.
| | - Yulong Ouyang
- Department of Sports Medicine, Orthopaedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| | - Guicai Sun
- Department of Sports Medicine, Orthopaedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
2
|
Lyu T, Liu X, Liu Y, Yang Z, Li P, Lu Y, Zhao P, Chen J, Ye C. Naringin in repairing articular cartilage injury by activating TGF-β/Smad signaling pathway to attenuate inflammatory response. Arch Biochem Biophys 2025; 768:110396. [PMID: 40120921 DOI: 10.1016/j.abb.2025.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Naringin protects cartilage and attenuates inflammation. This study investigated the mechanism by which naringin activates the TGF-β/Smad signaling pathway to attenuate the inflammatory response and repair rabbit articular cartilage injury. A ring bone extraction drill was used to create a rabbit articular cartilage injury model. Sixteen Japanese white rabbits were divided into Sham, Mod, Nar, and Con groups and treated for 12 weeks. Compared with the Mod group, obvious signs of morphological and structural repair of cartilage injury were observed in the Nar group. The ICRS, BV/TV, and BS/TV scores increased, whereas the Wakitani and Tb.Sp scores decreased. Furthermore, ADAMTS-5 levels were significantly reduced, and TGF-β1 levels were significantly increased. The average light density of P-Smad3 in the repaired tissue was significantly elevated, whereas that of MMP-13 was significantly reduced. Compared with that in the Sham group, the transcription and expression levels of TβRII, type II collagen, P-TβRII, and P-Smad2 in the repair tissues of the Mod group were lower. This was reversed in the Nar group. Therefore, naringin administration can improve the morphology and structure of articular cartilage injury, reduce the concentration and expression levels of pro-inflammatory factors in the joint fluid and repair tissues, and increase the concentrations and expression levels of anti-inflammatory factors in the joint fluid and repair tissues. Thus, naringin exerts a positive effect by reducing the inflammatory response and repairing articular cartilage injury. This mechanism is closely related to the activation of the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Tiancheng Lyu
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangchun Liu
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxuan Liu
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Pengyang Li
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingdong Lu
- Pathology Department, Guang'anmen Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Pengyuan Zhao
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- Preventive Treatment of Disease Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Chao Ye
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
3
|
Battistoni CM, Munoz Briones J, Brubaker DK, Panitch A, Liu JC. Chondrogenic and chondroprotective response of composite collagen I/II-hyaluronic acid scaffolds within an inflammatory osteoarthritic environment. Biomater Sci 2025. [PMID: 40354044 DOI: 10.1039/d5bm00033e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Inflammation plays a key role in cartilage damage that occurs in osteoarthritis (OA). However, in vitro assessments of tissue-engineered constructs for cartilage regeneration generally do not consider their performance in the presence of inflammation. In this work, the chondrogenic differentiation potential of mesenchymal stromal cells (MSCs) was evaluated in the presence of both chondrogenic factors and inflammatory cytokines, and cartilage formation, degradative response, and inflammatory response were characterized. The addition of cytokines reduced cartilage production, increased cell proliferation, and resulted in an increase in inflammatory markers. Incorporation of hyaluronic acid (HA) had little impact on both collagen fibril microstructure and mechanical properties, two gel properties known to affect cell response, and thus allows the work to probe the biological impact of HA without the confounding effect of these gel properties. Regardless of in vitro environment, HA did not change cartilage production. The inflammatory response was similar with or without HA in terms of IL-6 and IL-10 secretion whereas IL-8 production exhibited some correlation with HA concentration as observed via a linear regression model. Additionally, in the presence of cytokines, inclusion of HA statistically decreased the gene- and protein-level expression of matrix metalloproteinase-13 (MMP-13). Thus, when exposed to both chondrogenic growth factors and inflammatory cytokines within a chondrogenic-promoting collagen I/II blended hydrogel, chondrogenic differentiation of MSCs was limited by the inflammatory environment. These findings emphasize the importance of understanding how biomaterials affect cell responses within disease-relevant inflammatory environments.
Collapse
Affiliation(s)
- Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue, University, West Lafayette, IN 47907, USA.
| | - Javier Munoz Briones
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN 47907, USA
| | - Douglas K Brubaker
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44016, USA
- Blood Heart Lung Immunology Research Center, University Hospitals, Cleveland, OH 44106, USA
| | - Alyssa Panitch
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue, University, West Lafayette, IN 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Liu H, Zhu Y, Chen W, Sheng R, Liu C, Sun Y, Liu J, Wang M, Lu J, Chen J, Zhang W. Fullerol Initiates Stem Cell-Nanomaterials Interactions for Enhanced Tissue Regeneration via Clathrin-Mediated Endocytosis and Nuclear Factor Erythroid 2-Related Factor 2 Signaling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25011-25034. [PMID: 40241445 DOI: 10.1021/acsami.5c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The advancement of nanomedicine requires a thorough understanding of the intrinsic bioactivity and molecular interactions of nanomaterials for safe and effective clinical applications, which remains lacking for most currently developed nanomaterials. Here, we uncover the unique intrinsic bioactivity and regulatory mechanisms of carbon-based fullerol nanomaterials through high-throughput molecular analysis and explore their therapeutic potential for tissue regeneration using tissue engineering approaches. Fullerol exhibits intrinsic pro-differentiation and antioxidant properties that enhance the osteogenesis and chondrogenesis of MSCs. Mechanistically, proteomic analysis combined with small-molecule inhibition studies reveals that fullerol is internalized by MSCs via clathrin-mediated endocytosis and activates NRF2 signaling, thereby exerting antioxidant effects that restore impaired MSC viability and differentiation under oxidative stress. Leveraging these unique bioactivities, we develop a fullerol-functionalized hydrogel with feasible physicochemical properties and triple biological functions in antioxidant, pro-osteogenic, and pro-chondrogenic effects and confirm its great regenerative capacity for both cartilage and subchondral bone by promoting structural restoration and improving functional recovery in a rat osteochondral defect model. Our findings offer new insights into the intricate interactions between stem cells and nanomaterials at the cellular and molecular levels and broaden the potential biomedical applications of fullerol for future cartilage and bone regeneration therapies.
Collapse
Affiliation(s)
- Haoyang Liu
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, 210009 Nanjing, China
| | - Yue Zhu
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
| | - Weixu Chen
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
- Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 221000 Xuzhou, China
| | - Renwang Sheng
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
| | - Chuanquan Liu
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
| | - Yuzhi Sun
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 210008 Nanjing, China
| | - Jia Liu
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
| | - Mingyue Wang
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
| | - Jun Lu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
- Department of Ophthalmology, Zhongda Hospital, Southeast University, 210009 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Wei Zhang
- School of Medicine, and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210009 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
5
|
Panichi V, Dolzani P, Cattini L, Alabiso F, Bissoli I, Cetrullo S, Columbaro M, Flamigni F, Arciola CR, Filardo G, Di Martino A, D'Adamo S, Borzì RM. Intrinsic amyloid deposition following proteostasis impairment in osteoarthritic chondrocytes: Insights and therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167865. [PMID: 40294851 DOI: 10.1016/j.bbadis.2025.167865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/05/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Osteoarthritis (OA) is the most common age-related and degenerative joint disease. Proteostasis and protein quality control (autophagy, unfolded protein response, and the ubiquitin-proteasome system) are pivotal for cellular homeostasis and their impairment leads to protein misfolding and amyloid deposition in aged tissues. We here investigated amyloid deposition in OA. Amyloid fibrils were observed in chondrocytes in ex vivo cartilage samples. The underlying mechanisms were assessed in vitro: chondrocytes and cartilage organ cultures were treated with chloroquine and/or lipopolysaccharide for assessment (Western Blotting, immunohistochemistry, histochemistry cytofluorimetry) of amyloid deposition after induction of ER stress with/without blockage of autophagy. Overall, our data show for the first time that proteostasis impairment leads to intrinsic amyloid deposition in OA chondrocytes. These effects were mitigated by selected polyphenols. In conclusion, amyloidosis could contribute to OA progression, and the failure of proteostasis, a hallmark of aging, represents a promising therapeutic target.
Collapse
Affiliation(s)
- Veronica Panichi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Paolo Dolzani
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Luca Cattini
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Francesco Alabiso
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy.
| | - Irene Bissoli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy.
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; Istituto Nazionale per le Ricerche Cardiovascolari, Italy.
| | - Marta Columbaro
- Electron Microscopy Platform, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy.
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration and Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy.
| | - Giuseppe Filardo
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, Lugano, Switzerland.
| | - Alessandro Di Martino
- Clinica Ortopedica e Traumatologica II, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Stefania D'Adamo
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy.
| | - Rosa Maria Borzì
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
6
|
Lyu X, Wang J, Su J. Intelligent Manufacturing for Osteoarthritis Organoids. Cell Prolif 2025:e70043. [PMID: 40285592 DOI: 10.1111/cpr.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease worldwide, imposing a substantial global disease burden. However, its pathogenesis remains incompletely understood, and effective treatment strategies are still lacking. Organoid technology, in which stem cells or progenitor cells self-organise into miniature tissue structures under three-dimensional (3D) culture conditions, provides a promising in vitro platform for simulating the pathological microenvironment of OA. This approach can be employed to investigate disease mechanisms, carry out high-throughput drug screening and facilitate personalised therapies. This review summarises joint structure, OA pathogenesis and pathological manifestations, thereby establishing the disease context for the application of organoid technology. It then examines the components of the arthrosis organoid system, specifically addressing cartilage, subchondral bone, synovium, skeletal muscle and ligament organoids. Furthermore, it details various strategies for constructing OA organoids, including considerations of cell selection, pathological classification and fabrication techniques. Notably, this review introduces the concept of intelligent manufacturing of OA organoids by incorporating emerging engineering technologies such as artificial intelligence (AI) into the organoid fabrication process, thereby forming an innovative software and hardware cluster. Lastly, this review discusses the challenges currently facing intelligent OA organoid manufacturing and highlights future directions for this rapidly evolving field. By offering a comprehensive overview of state-of-the-art methodologies and challenges, this review anticipates that intelligent, automated fabrication of OA organoids will expedite fundamental research, drug discovery and personalised translational applications in the orthopaedic field.
Collapse
Affiliation(s)
- Xukun Lyu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Li J, Zhang Y, Gan X, Li J, Xia G, He L, Xia C, Zhang W, Akhtar Ali K, Zhu M, Huang H. Blocking the LRH-1/LCN2 axis by ML-180, an LRH-1 inverse agonist, ameliorates osteoarthritis via inhibiting the MAPK pathway. Biochem Pharmacol 2025; 237:116922. [PMID: 40194607 DOI: 10.1016/j.bcp.2025.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/28/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Osteoarthritis (OA) is a chronic and degenerative disease marked by inflammation and extracellular matrix (ECM) degeneration, contributing to synovial inflammation and cartilage destruction. Accumulating evidence has demonstrated that Liver receptor homolog-1 (LRH-1), an orphan nuclear receptor, mediates inflammatory response. However, there is a lack of evidence regarding the regulatory role of LRH-1 in OA pathogenesis. In this study, we confirmed that chondrocytes expressed LRH-1, and observed its upregulation in both IL-1β-treated chondrocytes and cartilage of destabilization of the medial meniscus (DMM)-operated mice. Overexpression of LRH-1 promoted inflammation and dysregulation of ECM metabolism in IL-1β-induced chondrocytes, reversed by inhibition of LRH-1 with ML-180 or gene silencing to protect chondrocytes. Moreover, ML-180 treatment in vivo improved the deteriorated OA phenotypes in mouse models, alleviating OA development. Mechanistically, RNA sequencing revealed that Lipocalin-2 (LCN2), a member of the lipocalin family associated with inflammation, is located downstream of LRH-1 and is positively regulated by it. Furthermore, the LRH-1/LCN2 axis mainly relied on activating the mitogen-activated protein kinase (MAPK) signaling pathway to promote inflammation and dysregulation of ECM metabolism, ultimately damaging chondrocytes. Our findings demonstrate that LRH-1 positively modulates LCN2,activating the MAPK pathway, indicating that targeting the LRH-1/LCN2/MAPK axis may represent a potential therapeutic strategy for OA.
Collapse
Affiliation(s)
- Jianwen Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yayun Zhang
- Department of Traumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junhong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ganqing Xia
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Lingxiao He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chengyan Xia
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weikai Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Khan Akhtar Ali
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meipeng Zhu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Srivastava V, Harsulkar A, Aphale S, Märtson A, Kõks S, Kulkarni P, Deshpande S. Functional Attributes of Synovial Fluid from Osteoarthritic Knee Exacerbate Cellular Inflammation and Metabolic Stress, and Fosters Monocyte to Macrophage Differentiation. Biomedicines 2025; 13:878. [PMID: 40299511 PMCID: PMC12024712 DOI: 10.3390/biomedicines13040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Besides conventional norms that recognize synovial fluid (SF) as a joint lubricant, nutritional channel, and a diagnostic tool in knee osteoarthritis (kOA), based on the authors previous studies, this study aims to define functional role of SF in kOA. Methods: U937, a monocytic, human myeloid cell line, was induced with progressive grades of kOA SF, and the induction response was assessed on various pro-inflammatory parameters. This 'SF challenge test model' was further extended to determine the impact of SF on U937 differentiation using macrophage-specific markers and associated transcription factor genes. Mitochondrial membrane potential changes in SF-treated cells were evaluated with fluorescent JC-1 probe. Results: a significant increase in nitric oxide, matrix metalloproteinase (MMP) 1, 13, and vascular endothelial growth factor (VEGF)-1 was noted in the induced cells. A marked increase was seen in CD68, CD86, and the transcription factors -activator protein (AP)-1, interferon regulatory factor (IRF)-1, and signal transducer and activator of transcription (STAT)-6 in the SF-treated cells indicating active monocytes to macrophage differentiation. Reduced mitochondrial membrane potential was reflected by a reduced red-to-green ratio in JC-1 staining. Conclusions: these results underline the active role of OA SF in stimulating and maintaining inflammation in joint cells, fostering monocyte differentiation into pro-inflammatory macrophages. The decline in the membrane potential suggestive of additional inflammatory pathway in OA via the release of pro-apoptotic factors and damaged associated molecular patterns (DAMPs) within the cells. Overall, biochemical modulation of SF warrants a potential approach to intervene inflammatory cascade in OA and mitigate its progression.
Collapse
Affiliation(s)
- Vanshika Srivastava
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India; (V.S.); (A.H.); (S.A.)
| | - Abhay Harsulkar
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India; (V.S.); (A.H.); (S.A.)
| | - Shama Aphale
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India; (V.S.); (A.H.); (S.A.)
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, L Puusepa 8, 51014 Tartu, Estonia;
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, L Puusepa 8, 51014 Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
| | - Priya Kulkarni
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive JG56, P.O. Box 116131, Gainesville, FL 32611, USA
| | - Shantanu Deshpande
- Department of Orthopaedics, Bharati Hospital, Pune-Satara Road, Pune 411043, India
| |
Collapse
|
9
|
Kahraman E, Vasconcelos D, Ribeiro B, Monteiro AC, Mastromatteo E, Bortolin A, Couto M, Boschis L, Lamghari M, Neto E. Deciphering cartilage neuro-immune interactions and innervation profile through 3D engineered osteoarthritic micropathophysiological system. Mater Today Bio 2025; 31:101491. [PMID: 39896288 PMCID: PMC11786692 DOI: 10.1016/j.mtbio.2025.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/15/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Osteoarthritis (OA) is an inflammatory musculoskeletal disorder that results in cartilage breakdown and alterations in the surrounding tissue microenvironment. Imbalances caused by inflammation and catabolic processes potentiate pathological nerves and blood vessels outgrowth toward damaged areas leading to pain in the patients. Yet, the precise mechanisms leading the nerve sprouting into the aneural cartilaginous tissue remain elusive. In this work, we aim to recapitulate in vitro the hallmarks of OA pathophysiology, including the sensory innervation profile, and provide a sensitive and reliable analytical tool to monitor the in vitro disease progression at microscale. Leveraging the use of patient-derived cells and bioengineering cutting-edge technologies, we engineered cartilage-like microtissues composed of primary human chondrocytes encapsulated in gelatin methacrylate hydrogel. Engineered constructs patterned inside microfluidic devices show the expression of cartilage markers, namely collagen type II, aggrecan, SOX-9 and glycosaminoglycans. Upon pro-inflammatory triggering, using primary human pro-inflammatory macrophage secretome, hallmarks of OA are recapitulated namely catabolic processes of human chondrocytes and the sensory innervation profile, supported by gene expression and functional assays. To monitor the OA micropathological system, a highly sensitive technology - EliChip™ - is presented to quantitively assess the molecular signature of cytokines and growth factors (interleukin 6 and nerve growth factor) produced from a single microfluidic chip. Herein, we report a miniaturized pathophysiological model and analytical tool to foster the neuro-immune interactions playing a role in cartilage-related disorders.
Collapse
Affiliation(s)
- Emine Kahraman
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Daniela Vasconcelos
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Beatriz Ribeiro
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Ana Carolina Monteiro
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Enzo Mastromatteo
- Trustech Innovation Technology, Via Baraggino, 76, 10034, Chivasso, Torino, Italy
| | - Andrea Bortolin
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Marina Couto
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Laura Boschis
- Trustech Innovation Technology, Via Baraggino, 76, 10034, Chivasso, Torino, Italy
| | - Meriem Lamghari
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Estrela Neto
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| |
Collapse
|
10
|
Fukui D, Nishiyama D, Yamanaka M, Tamai H, Nishio N, Kawakami M, Yamada H. Development of a Novel Rat Knee Osteoarthritis Model Induced by Medial Meniscus Extrusion. Cartilage 2025; 16:108-117. [PMID: 37837194 PMCID: PMC11744626 DOI: 10.1177/19476035231205680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE The medial meniscus extrusion (MME) is associated with increased stress on the knee joint, which leads to cartilage degeneration. To evaluate the etiology of knee osteoarthritis, it is extremely important to create animal models of the disease that more closely resemble actual clinical conditions in terms of symptomatology, molecular biology, and histology. This study aimed to create a clinically relevant model of MME in rats. DESIGN Behavioral, molecular biological, and histological changes in the newly developed rat MME model were compared with those in sham and medial meniscus transection and medial collateral ligament transection (MMT) models to examine the characteristics of this model. RESULTS In the MME rat model, behavioral evaluation shows abnormalities in gait compared with the other 2 groups, and molecular biological evaluation of the infrapatellar synovia of rats shows that gene expression of inflammatory cytokines, matrix-degrading enzymes, and pain-related nerve growth factor was increased compared with the sham group. Furthermore, histological evaluation reveals that cartilage degeneration was the most severe in the MME group. CONCLUSIONS The newly developed MME model reproduced the characteristic pathology of MME in clinical practice, such as severe pain, inflammation, and rapid progression of osteoarthritis. The MME model, which might more closely mimic human knee osteoarthritis (OA), could be a useful model for elucidating the pathophysiology and considering therapeutic management for knee OA.
Collapse
Affiliation(s)
- Daisuke Fukui
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Daisuke Nishiyama
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Manabu Yamanaka
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hidenobu Tamai
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Naoko Nishio
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Mamoru Kawakami
- Department of Orthopedic Surgery, Saiseikai Wakayama Hospital, Wakayama, Japan
| | - Hiroshi Yamada
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
11
|
Feng X, Ma Y, Zhao Y, Zhao Z, Song Z, Lin L, Wang W. Synergistic therapeutic effect of parecoxib and ilomastat combination in osteoarthritis via inhibition of IL-17/PI3K/AKT/NF-κB activity. Mol Immunol 2025; 179:94-105. [PMID: 39933417 DOI: 10.1016/j.molimm.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Osteoarthritis is a degenerative disease, and current drug treatment is to give nonsteroidal anti-inflammatory drugs to relieve symptoms. The anti-inflammatory ability of parecoxib and ilomastat has been confirmed, but the synergistic effect of combined administration in osteoarthritis has not been clear. METHODS Mouse primary chondrocytes stimulated with IL-1β were cultured. The expression levels of inflammatory cytokines and matrix metalloproteinases were investigated by western blotting, quantitative real-time polymerase chain reaction and ELISA. The effects of parecoxib and ilomastat on chondrocyte apoptosis were evaluated by flow cytometry. In addition, the rat model of osteoarthritis was established by meniscal instability, and the morphological changes of cartilage and the expression levels of related molecules were monitored using Safranin O-Fast green and immunohistochemical staining after intra-articular injection of parecoxib, ilomastat, and the combination of the two. RESULTS In vitro experiments showed that the combined administration of parecoxib and ilomastat more effectively inhibited the expression of proinflammatory factors and matrix metalloproteinases compared with single drug administration. The combined drug treatment could more effectively inhibit IL-1β-induced chondrocyte apoptosis. The combined drug treatment alleviated the progression of osteoarthritis by inhibiting the IL-17/PI3K/AKT/NF-κB pathway. In addition, in vivo experiments showed that the combined administration could improve the further deterioration of the osteoarthritis rat model. CONCLUSIONS The combined administration of parecoxib and ilomastat to inhibit IL-17/PI3K/AKT/NF-κB transduction is beneficial to reduce the infiltration of inflammatory factors and matrix metalloproteinases in osteoarthritis.
Collapse
Affiliation(s)
- Xiaofei Feng
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Yao Ma
- Clinical Laboratory Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou 730000, China
| | - Yuhao Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Zhenrui Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Zhengdong Song
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Wenji Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Yang YZ, Li JD, Zhang JG, Zhang K, Zhang AR, Li PP, Li QJ, Guo HZ. Mechanism of action and new developments in the study of curcumin in the treatment of osteoarthritis: a narrative review. Inflammopharmacology 2025; 33:929-940. [PMID: 40009345 DOI: 10.1007/s10787-025-01665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/18/2025] [Indexed: 02/27/2025]
Abstract
Osteoarthritis is a degenerative joint disease that affects the aging population worldwide. It has an underlying inflammatory cause that leads to loss of chondrocytes, reducing the cartilage layer at the affected joints. Compounds with anti-inflammatory properties are potential therapeutic agents for osteoarthritis. Curcumin, derived from species of the Curcuma, is an anti-inflammatory compound. The purpose of this review is to summarize the anti-osteoarthritic effects of curcumin from clinical and preclinical studies. Many clinical trials have been conducted to determine curcumin's effectiveness in osteoarthritis patients. Available studies have shown that curcumin prevents chondrocyte apoptosis and inhibits the release of proteoglycans and metalloproteinases as well as the expression of cyclooxygenase, prostaglandin E-2, and inflammatory cytokines in chondrocytes. The mechanism of action of curcumin also involves multiple cell signaling pathways, including Nuclear factor kappa-B(NF-κB), Mitogen-activated protein kinase (MAPK), Wnt/β-catenin pathway (Wnt/β-catenin), The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), Nuclear factor erythroid 2-related factor 2/antioxidant response elements/heme oxygenase-1(Nrf2/ARE/HO-1), and Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathways. Curcumin further reduced the release of inflammatory factors and apoptosis by inhibiting the activation of NF-κB. In addition, curcumin modulates the MAPK, Nrf2/ARE/HO-1, and PI3K/Akt/mTOR signaling pathways and affects cell proliferation and apoptosis processes, a series of effects that together promote the healthy state of chondrocytes. In conclusion, curcumin, as a natural plant compound, exhibits significant anti-inflammatory potential by modulating inflammatory factors associated with articular osteoarthritis through multiple mechanisms. Its protective effects on articular cartilage and synovium make it a promising candidate for the treatment of OA. Future studies should further explore the mechanism of action of curcumin and its optimal dosage and therapeutic regimen in clinical applications, to provide more effective therapeutic options for osteoarthritis patients.
Collapse
Affiliation(s)
- Yong-Ze Yang
- Gansu University of Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, Lanzhou, China
| | - Ji-Dong Li
- Gansu University of Chinese Medicine, Lanzhou, China
| | | | - Kai Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, Lanzhou, China
| | - An-Ren Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, Lanzhou, China
| | - Peng-Peng Li
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Qing-Jun Li
- Gansu University of Chinese Medicine, Lanzhou, China
| | | |
Collapse
|
13
|
Behn A, Brendle S, Ehrnsperger M, Zborilova M, Grupp TM, Grifka J, Schäfer N, Grässel S. Filtered and unfiltered lipoaspirates reveal novel molecular insights and therapeutic potential for osteoarthritis treatment: a preclinical in vitro study. Front Cell Dev Biol 2025; 13:1534281. [PMID: 40083666 PMCID: PMC11903472 DOI: 10.3389/fcell.2025.1534281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction Orthobiologics, such as autologous nanofat, are emerging as a potential treatment option for osteoarthritis (OA), a common degenerative joint causing pain and disability in the elderly. Nanofat, a minimally processed human fat graft rich in stromal vascular fraction (SVF) secretory factors, has shown promise in relieving pain. This study aimed to elucidate the molecular mechanisms underlying nanofat treatment of OA-affected cells and compare two filtration systems used for nanofat preparation. Methods Chondrocytes and synoviocytes were isolated from articular cartilage and synovium of 22 OA-patients. Lipoaspirates from 13 OA-patients were emulsified using the Adinizer® or Lipocube™ Nano filter systems to generate nanofat. The fluid phase of SVF from both filtered and unfiltered lipoaspirates was applied to OA-affected cells. Luminex multiplex ELISA were performed with lipoaspirates and cell supernatants alongside functional assays evaluating cell migration, proliferation, metabolic activity, and senescence. Results A total of 62 cytokines, chemokines, growth factors, neuropeptides, matrix-degrading enzymes, and complement components were identified in lipoaspirates. Among these, significant concentration differences were observed for TIMP-2, TGF-ß3, and complement component C3 between the filtered and unfiltered samples. Nanofat enhanced chondrocyte proliferation and migration, as well as synoviocyte migration and metabolic activity, while reducing chondrocyte metabolic activity. Pain-related factors like β-NGF, MCP-1, Substance P, VEGF, and αCGRP were reduced, while anti-inflammatory TGF-β1+3 increased and pro-inflammatory cytokines (IL-5, IL-7, IL-15, and IFN-γ) decreased. Nanofat also elevated secretion of complement components and TIMPs in both cell types. Notably, our results revealed no significant differences in cellular effects between sSVF filtered using the Adinizer® and Lipocube™ Nano systems, as well as compared to unfiltered sSVF. Discussion Here, we provide first insights into how autologous nanofat therapy may ameliorate OA by enhancing chondrocyte proliferation and synoviocyte migration while modulating inflammatory and pain-related factors. However, further research is needed to determine its effects on cartilage regeneration.
Collapse
Affiliation(s)
- Alissa Behn
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Saskia Brendle
- Research and Development, Aesculap AG, Tuttlingen, Germany
- Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU Munich, Munich, Germany
| | - Marianne Ehrnsperger
- Department of Orthopedic Surgery, University of Regensburg, Asklepios, Germany
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Magdalena Zborilova
- Department of Orthopedic Surgery, University of Regensburg, Asklepios, Germany
| | - Thomas M. Grupp
- Research and Development, Aesculap AG, Tuttlingen, Germany
- Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU Munich, Munich, Germany
| | - Joachim Grifka
- Department of Orthopedic Surgery, University of Regensburg, Asklepios, Germany
- Department of Orthopedics and Ergonomics, Ostbayerische Technische Hochschule (OTH), Regensburg, Germany
| | - Nicole Schäfer
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
- Department of Orthopedic Surgery, University of Regensburg, Asklepios, Germany
| |
Collapse
|
14
|
Carrillo-Norte JA, Gervasini-Rodríguez G, Santiago-Triviño MÁ, García-López V, Guerrero-Bonmatty R. Oral administration of hydrolyzed collagen alleviates pain and enhances functionality in knee osteoarthritis: Results from a randomized, double-blind, placebo-controlled study. Contemp Clin Trials Commun 2025; 43:101424. [PMID: 39839727 PMCID: PMC11745964 DOI: 10.1016/j.conctc.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/23/2025] Open
Abstract
Osteoarthritis (OA) is a major source of chronic pain and disability, representing a significant global health concern that affects 10-15 % of individuals aged over 60, with a higher prevalence among females than males. This investigation aimed to evaluate the impact of a dietary supplement containing collagen peptides (MW 1-3 kDa) on knee OA symptoms and inflammatory biomarkers such as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). Adults aged 30-81 years (50 % female) with grade II or III OA and a minimum pain score of 40 on the 0 to 100 visual analogue scale (VAS) were enrolled. Participants were randomly assigned to receive either 10 g of the test product (verum group) or placebo and were assessed at baseline (T0, pre-treatment) and after a six-month follow-up period (T6). Baseline characteristics were comparable between groups. At T6, the verum group exhibited significant reductions in VAS pain scores, Lequesne algofunctional index (LAI) scores, CRP levels (mg/L), and ESR (mm/h) compared to placebo (p < 0.001). No adverse effects were reported during the study, and the supplement demonstrated good tolerability and yielded satisfactory safety and acceptability. These findings suggest that the dietary supplement may serve as a complement to drug therapy for knee OA by alleviating osteoarticular pain, improving locomotor function and potentially reducing reliance on analgesic and anti-inflammatory medications. This study provides valuable insights into the efficacy and safety of collagen peptides in managing knee OA symptoms.
Collapse
Affiliation(s)
- Juan Antonio Carrillo-Norte
- Department of Medical and Surgical Therapeutics, Division of Clinical Pharmacology, School of Medicine, University of Extremadura, Badajoz, Spain
| | - Guillermo Gervasini-Rodríguez
- Department of Medical and Surgical Therapeutics, Division of Clinical Pharmacology, School of Medicine, University of Extremadura, Badajoz, Spain
| | | | - Virginio García-López
- Department of Medical and Surgical Therapeutics, Division of Clinical Pharmacology, School of Medicine, University of Extremadura, Badajoz, Spain
| | | |
Collapse
|
15
|
Singer J, Knezic N, Gohring G, Fite O, Christiansen J, Huard J. Synovial mesenchymal stem cells. ORTHOBIOLOGICS 2025:141-154. [DOI: 10.1016/b978-0-12-822902-6.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
17
|
Pan L, Nagib L, Ganguly S, Moorthy A, Tahir H. A comprehensive review of phase 2/3 trials in osteoarthritis: an expert opinion. Expert Opin Emerg Drugs 2024; 29:347-359. [PMID: 39087391 DOI: 10.1080/14728214.2024.2386174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Osteoarthritis (OA) is a chronic, degenerative, and debilitating disease associated with significant long-term morbidity and disability. The pathogenesis of OA is not completely understood but involves an interplay between environmental risk factors, joint mechanics, abnormal pain pathways and upregulation of inflammatory signaling pathways. Current therapeutic options for patients are limited to conservative management, minimal pharmacological options or surgical management, with significant caveats to all approaches. AREAS COVERED In this review, we have set out to investigate current phase II/III clinical trials by undertaking a PubMed search. Examined clinical trials have explored a myriad of potential therapeutics from conventional disease-modifying anti-rheumatic drugs and biologics usually used in the treatment of inflammatory arthritides, to more novel approaches targeting inflammatory pathways implicated in OA, cartilage degeneration or pain pathways. EXPERT OPINION Unfortunately, most completed phase II/III clinical trials have shown little impact on patient pain scores, with the exception of the traditional DMARD methotrexate and Sprifermin. Methotrexate has been shown to be beneficial when used in the correct patient cohort (MRI proven synovitis). Sprifermin has the longest follow-up data of 5 years and has been shown to reduce loss of MRI-measured cartilage thickness and pain scores.
Collapse
Affiliation(s)
- Liyang Pan
- General internal medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Lydia Nagib
- General internal medicine, Royal Free London NHS Foundation Trust, London, UK
| | - Sujata Ganguly
- Department of rheumatology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Arumugam Moorthy
- Department of rheumatology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Hasan Tahir
- General internal medicine, Royal Free London NHS Foundation Trust, London, UK
- Department of rheumatology, University College London, London, UK
| |
Collapse
|
18
|
Lee AY, Park JY, Hwang SJ, Jang KH, Jo CH. Effects of Late-Passage Small Umbilical Cord-Derived Fast Proliferating Cells on Tenocytes from Degenerative Rotator Cuff Tears under an Interleukin 1β-Induced Tendinopathic Environment. Tissue Eng Regen Med 2024; 21:1217-1231. [PMID: 39500862 PMCID: PMC11589062 DOI: 10.1007/s13770-024-00673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Tendinopathy is a chronic tendon disease. Mesenchymal stem cells (MSCs), known for their anti-inflammatory properties, may lose effectiveness with extensive culturing. Previous research introduced "small umbilical cord-derived fast proliferating cells" (smumf cells), isolated using a novel minimal cube explant method. These cells maintained their MSC characteristics through long-term culture. Thus, the purpose of the present study was to assess the anti-inflammatory effects of late-passage smumf cells at P10 on tenocytes derived from degenerative rotator cuff tears in a tendinopathic environment. METHODS The mRNA expression with respect to aging of MSCs and secretion of growth factors (GFs) by smumf cells at P10 were measured. mRNA and protein synthesis in tenocytes with respect to the tenocyte phenotype, inflammatory cytokines, and matrix- degradation enzymes were measured. The inflammatory signal pathways involving nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) in tenocytes were also investigated. The proliferative response of degenerative tenocytes to co-culture with smumf cells over 7 days in varying IL-1β induced tendinopathic environments was investigated. RESULTS smumf cells at P10 showed no signs of aging compared to those at P3. smumf cells at P10, secreting 2,043 pg/ml of hepatocyte growth factor (HGF), showed a 1.88-fold (p = .002) increase in HGF secretion in a tendinopathic environment. Degenerative tenocytes co-cultured with smumf cells showed significantly increased protein expression levels of collagen type I (Col I) and the Col I/III ratio by 1.46-fold (p < .001) and 1.66-fold (p < .001), respectively. The smumf cells at P10 reduced both mRNA and protein expression levels of matrix metalloproteinases-1, -2, -3, -8, -9, and -13 in tenocytes and attenuated NF-κB (phosphorylated IκBα/IκBα and phosphorylated p65/p65) and MAPK (phosphorylated p38/p38 and phosphorylated JNK/JNK) pathways activated by IL-1β. Removal of IL-1β from the co-culture accelerated the growth of tenocytes by 1.42-fold (p < .001). Removal of IL-1β accelerated tenocyte growth in co-cultures. CONCULSION Late-passage smumf cells exert anti-inflammatory effects on tenocytes derived from degenerative rotator cuff tears under a tendinopathic environment, primarily through the secretion of growth factors (GFs).
Collapse
Affiliation(s)
- Ah-Young Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Dongjak-Gu, Seoul, 07061, Korea
- Institute of Reproductive Medicine and Population, Medical Research Center at, Seoul National University, Jongno-Gu, Seoul, 03087, Korea
| | - Ju-Young Park
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Dongjak-Gu, Seoul, 07061, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Jongno-Gu, Seoul, 03080, Korea
| | - Sam Joongwon Hwang
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Dongjak-Gu, Seoul, 07061, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Jongno-Gu, Seoul, 03080, Korea
| | - Kwi-Hoon Jang
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Dongjak-Gu, Seoul, 07061, Korea
| | - Chris Hyunchul Jo
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Dongjak-Gu, Seoul, 07061, Korea.
- Institute of Reproductive Medicine and Population, Medical Research Center at, Seoul National University, Jongno-Gu, Seoul, 03087, Korea.
- Department of Translational Medicine, Seoul National University College of Medicine, Jongno-Gu, Seoul, 03080, Korea.
| |
Collapse
|
19
|
Migliorini F, Giorgino R, Mazzoleni MG, Schäfer L, Bertini FA, Maffulli N. Intra-articular injections of ozone versus hyaluronic acid for knee osteoarthritis: a level I meta-analysis. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 35:20. [PMID: 39579218 DOI: 10.1007/s00590-024-04135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/05/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION Intra-articular injections of ozone and hyaluronic acid (HA) are routinely performed for the management of knee osteoarthritis. The present meta-analysis compared intra-articular injections of HA versus ozone in patients with knee osteoarthritis (OA) in patient-reported outcome measures (PROMs). The outcomes of interest were to determine if intra-articular ozone injections show comparable visual analogue scale (VAS) and Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) scores compared to intra-articular HA injections. METHODS This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the 2020 PRISMA statement. In January 2024, the following databases were accessed: PubMed, Web of Science, Google Scholar, and Embase. All the randomised controlled trials (RCTs) comparing intra-articular HA versus ozone injections in patients with knee OA were accessed. Only studies which clearly stated that injections were performed in patients with knee OA were considered. Data concerning the VAS and WOMAC were retrieved at baseline and the last follow-up. Studies with a follow-up shorter than 4 months or longer than 6 months were not included. RESULTS Data from 424 patients were collected. 74% (314 of 424 patients) were women. The mean age of the patients was 61.1 ± 4.5 years, and the mean BMI was 27.8 ± 0.8 kg/m2. Compatibility was found in the mean age, mean BMI, PROMs, and the percentage of women. No difference was found in VAS at follow-up (P = 0.4). CONCLUSION The current level I evidence suggests that ozone and HA intra-articular injections achieve similar pain control between 4 and 6 months of follow-up. LEVEL OF EVIDENCE Level I.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165, Rome, Italy
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St.Brigida, 52152, Simmerath, Germany
| | - Riccardo Giorgino
- Residency Program in Orthopedics and Traumatology, University of Milan, Milan, Italy
| | - Manuel Giovanni Mazzoleni
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy
| | - Luise Schäfer
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St.Brigida, 52152, Simmerath, Germany
| | - Francesca Alzira Bertini
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, 00185, Rome, Italy.
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke On Trent, ST4 7QB, UK.
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London, E1 4DG, UK.
| |
Collapse
|
20
|
Neri S, Guidotti S, Panichi V, Minguzzi M, Cattini L, Platano D, Ursini F, Arciola CR, Borzì RM. IKKα affects the susceptibility of primary human osteoarthritis chondrocytes to oxidative stress-induced DNA damage by tuning autophagy. Free Radic Biol Med 2024; 225:726-740. [PMID: 39461484 DOI: 10.1016/j.freeradbiomed.2024.10.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The functional derangement affecting human chondrocytes during osteoarthritis (OA) onset and progression is sustained by the failure of major homeostatic mechanisms. This makes them more susceptible to oxidative stress (OS), which can induce DNA damage responses and exacerbate stress-induced senescence. The knockdown (KD) of IκB kinase α (IKKα), a dispensable protein in healthy articular cartilage physiology, was shown to increase the survival and replication potential of human primary OA chondrocytes. Our recent findings showed that the DNA Mismatch Repair pathway only partially accounts for the reduced susceptibility to OS of IKKαKD cells. Here we therefore investigated other ROS-mediated DNA damage and repair mechanisms. We exposed IKKαWT and IKKαKD chondrocytes to sub-cytotoxic hydrogen peroxide and evaluated the occurrence of double-strand breaks (DSB), 8-oxo-2'-deoxyguanosine (8-oxo-dG) and telomere shortening. ROS exposure was able to significantly increase the number of γH2AX foci (directly related to the number of DSB) in both cell types, but IKKα deficient cells undergoing cell division were able to better recover compared to their IKKα proficient counterpart. 8-oxo-dG signal proved to be the highest DNA damage signal among those investigated, located in the mitochondria and with a slightly higher intensity in IKKα proficient cells immediately after OS exposure. Furthermore, ROS significantly reduced telomere length both in IKKαWT and IKKαKD, with the former showing more pervasive effects, especially in dividing cells. Assessment of the HIF-1α>Beclin-1>LC3B axis after recovery from OS showed that IKKα deficient cells exhibited a more efficient autophagic machinery that allowed them to better cope with oxidative stress, possibly through the turnover of damaged mitochondria. Higher Beclin-1 levels likely helped in rescuing dividing cells (identified by coupled cell cycle analysis) because of Beclin-1's involvement in both autophagy and mitotic spindle organization. Therefore, our data further confirm the higher capacity of IKKαKD chondrocytes to cope with oxidative stress-induced DNA damage.
Collapse
Affiliation(s)
- Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Serena Guidotti
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Veronica Panichi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Manuela Minguzzi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Luca Cattini
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Daniela Platano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), AlmaMater Studiorum University of Bologna, 40126, Bologna, Italy; Laboratory of Immunorheumatology and Tissue Regeneration, Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Francesco Ursini
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), AlmaMater Studiorum University of Bologna, 40126, Bologna, Italy.
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration and Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), AlmaMater Studiorum University of Bologna, 40126, Bologna, Italy.
| | - Rosa Maria Borzì
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| |
Collapse
|
21
|
Nomura M, Moriyama H, Wakimoto Y, Miura Y. Correction: Disuse atrophy of articular cartilage can be restored by mechanical reloading in mice. Mol Biol Rep 2024; 51:1158. [PMID: 39549169 PMCID: PMC11568975 DOI: 10.1007/s11033-024-10081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Affiliation(s)
- Masato Nomura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| | - Hideki Moriyama
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Yoshio Wakimoto
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Yasushi Miura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| |
Collapse
|
22
|
Zhou D, Tian JM, Li Z, Huang J. Cbx4 SUMOylates BRD4 to regulate the expression of inflammatory cytokines in post-traumatic osteoarthritis. Exp Mol Med 2024; 56:2184-2201. [PMID: 39349832 PMCID: PMC11541578 DOI: 10.1038/s12276-024-01315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 10/03/2024] Open
Abstract
Brominated domain protein 4 (BRD4) is a chromatin reader known to exacerbate the inflammatory response in post-traumatic osteoarthritis (PTOA) by controlling the expression of inflammatory cytokines. However, the extent to which this regulatory effect is altered after BRD4 translation remains largely unknown. In this study, we showed that the E3 SUMO protein ligase CBX4 (Cbx4) is involved in the SUMO modification of BRD4 to affect its ability to control the expression of the proinflammatory genes IL-1β, TNF-α, and IL-6 in synovial fibroblasts. Specifically, Cbx4-mediated SUMOylation of K1111 lysine residues prevents the degradation of BRD4, thereby activating the transcriptional activities of the IL-1β, TNF-α and IL-6 genes, which depend on BRD4. SUMOylated BRD4 also recruits the multifunctional methyltransferase subunit TRM112-like protein (TRMT112) to further promote the processing of proinflammatory gene transcripts to eventually increase their expression. In vivo, treatment of PTOA with a Cbx4 inhibitor in rats was comparable to treatment with BRD4 inhibitors, indicating the importance of SUMOylation in controlling BRD4 to alleviate PTOA. Overall, this study is the first to identify Cbx4 as the enzyme responsible for the SUMO modification of BRD4 and highlights the central role of the Cbx4-BRD4 axis in exacerbating PTOA from the perspective of inflammation.
Collapse
Affiliation(s)
- Ding Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Ming Tian
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
23
|
José Alcaraz M. Control of articular degeneration by extracellular vesicles from stem/stromal cells as a potential strategy for the treatment of osteoarthritis. Biochem Pharmacol 2024; 228:116226. [PMID: 38663683 DOI: 10.1016/j.bcp.2024.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint condition that contributes to years lived with disability. Current therapeutic approaches are limited as there are no disease-modifying interventions able to delay or inhibit the progression of disease. In recent years there has been an increasing interest in the immunomodulatory and regenerative properties of mesenchymal stem/stromal cells (MSCs) to develop new OA therapies. Extracellular vesicles (EVs) mediate many of the biological effects of these cells and may represent an alternative avoiding the limitations of cell-based therapy. There is also a growing interest in EV modifications to enhance their efficacy and applications. Recent preclinical studies have provided strong evidence supporting the potential of MSC EVs for the development of OA treatments. Thus, MSC EVs may regulate chondrocyte functions to avoid cartilage destruction, inhibit abnormal subchondral bone metabolism and synovial tissue alterations, and control pain behavior. EV actions may be mediated by the transfer of their cargo to target cells, with an important role for proteins and non-coding RNAs modulating signaling pathways relevant for OA progression. Nevertheless, additional investigations are needed concerning EV optimization, and standardization of preparation procedures. More research is also required for a better knowledge of possible effects on different OA phenotypes, pharmacokinetics, mechanism of action, long-term effects and safety profile. Furthermore, MSC EVs have a high potential as vehicles for drug delivery or as adjuvant therapy to potentiate or complement the effects of other approaches.
Collapse
Affiliation(s)
- María José Alcaraz
- Department of Pharmacology, University of Valencia, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
24
|
Tian B, Zhang L, Zheng J, Kang X. The role of NF-κB-SOX9 signalling pathway in osteoarthritis. Heliyon 2024; 10:e37191. [PMID: 39319133 PMCID: PMC11419907 DOI: 10.1016/j.heliyon.2024.e37191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The nuclear factor-κB (NF-κB) signalling pathway exists in a variety of cells and is involved in the gene regulation of various physiological and pathological processes such as inflammation, immunity, cell proliferation and apoptosis. It has been shown that this signaling pathway is also involved in numerous events associated with osteoarthritis, including chondrocyte catabolism, chondrocyte survival, and synovial inflammation. SRY-related high mobility group-box 9(SOX9) is the "master regulator" of chondrocytes and one of the key transcription factors that maintain chondrocyte phenotype and cartilage homeostasis. NF-κB can positively regulate the expression of SOX9 by directly binding to its promoter region, and play a role in the formation and development of chondrocytes. This article reviews the regulatory effect of the NF-κB-SOX9 signaling axis on osteoarthritis.
Collapse
Affiliation(s)
- Bin Tian
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
- Department of Orthopedics, the First Afffliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Liang Zhang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
| | - Jiang Zheng
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
| |
Collapse
|
25
|
Ventura L, do Espírito-Santo RF, Keaser M, Zhang Y, Ro JY, Da Silva JT. Green Light Exposure Reduces Primary Hyperalgesia and Proinflammatory Cytokines in a Rodent Model of Knee Osteoarthritis: Shedding Light on Sex Differences. Biomedicines 2024; 12:2005. [PMID: 39335519 PMCID: PMC11429231 DOI: 10.3390/biomedicines12092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Knee osteoarthritis (OA) often causes chronic pain that disproportionately affects females. Proinflammatory cytokines TNF-α, IL-1β, and IL-6 are key effectors of OA pathological changes. Green light shows potential as an alternative intervention for various pain conditions. However, no studies have investigated green light's analgesic effects in both sexes in chronic knee OA. We induced unilateral knee OA with intra-articular injection of monoiodoacetate (MIA) in male and female Sprague-Dawley rats. Two days post-injection, the rats were exposed to green-light-emitting diodes (GLED) or ambient room light eight hours daily for 24 days. Knee mechanical sensitivity was assessed using a small animal algometer. Blood serum concentrations of TNF-α, IL-1β, IL-6, and IL-10 were quantified at baseline and 23 days post-injection. MIA injection decreased the knee mechanical thresholds of the male and female rats. GLED exposure attenuated mechanical hypersensitivity in both sexes compared to the controls; however, GLED-induced analgesia occurred sooner and with greater magnitude in males than in females. In both sexes, the analgesic effects of green light lasted 5 days after the final GLED session. Finally, GLED exposure reversed the elevation of serum proinflammatory cytokines. These findings suggest that GLED exposure reduces primary hyperalgesia in OA, potentially by lowering proinflammatory cytokines, and indicate sex differences in GLED-induced analgesia.
Collapse
Affiliation(s)
- Laura Ventura
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, University of Maryland Baltimore School of Dentistry, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland Baltimore School of Medicine, Baltimore, MD 21201, USA
| | - Renan F do Espírito-Santo
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, University of Maryland Baltimore School of Dentistry, Baltimore, MD 21201, USA
| | - Michael Keaser
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, University of Maryland Baltimore School of Dentistry, Baltimore, MD 21201, USA
| | - Youping Zhang
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, University of Maryland Baltimore School of Dentistry, Baltimore, MD 21201, USA
| | - Jin Y Ro
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, University of Maryland Baltimore School of Dentistry, Baltimore, MD 21201, USA
| | - Joyce T Da Silva
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, University of Maryland Baltimore School of Dentistry, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland Baltimore School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Kupratis ME, Gonzalez U, Rahman A, Burris DL, Corbin EA, Price C. Exogenous Collagen Crosslinking is Highly Detrimental to Articular Cartilage Lubrication. J Biomech Eng 2024; 146:071001. [PMID: 38323667 PMCID: PMC11005859 DOI: 10.1115/1.4064663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Healthy articular cartilage is a remarkable bearing material optimized for near-frictionless joint articulation. Because its limited self-repair capacity renders it susceptible to osteoarthritis (OA), approaches to reinforce or rebuild degenerative cartilage are of significant interest. While exogenous collagen crosslinking (CXL) treatments improve cartilage's mechanical properties and increase its resistance to enzymatic degradation, their effects on cartilage lubrication remain less clear. Here, we examined how the collagen crosslinking agents genipin (GP) and glutaraldehyde (GTA) impact cartilage lubrication using the convergent stationary contact area (cSCA) configuration. Unlike classical configurations, the cSCA sustains biofidelic kinetic friction coefficients (μk) via superposition of interstitial and hydrodynamic pressurization (i.e., tribological rehydration). As expected, glutaraldehyde- and genipin-mediated CXL increased cartilage's tensile and compressive moduli. Although net tribological rehydration was retained after CXL, GP or GTA treatment drastically elevated μk. Both healthy and "OA-like" cartilage (generated via enzymatic digestion) sustained remarkably low μk in saline- (≤0.02) and synovial fluid-lubricated contacts (≤0.006). After CXL, μk increased up to 30-fold, reaching values associated with marked chondrocyte death in vitro. These results demonstrate that mechanical properties (i.e., stiffness) are necessary, but not sufficient, metrics of cartilage function. Furthermore, the marked impairment in lubrication suggests that CXL-mediated stiffening is ill-suited to cartilage preservation or joint resurfacing.
Collapse
Affiliation(s)
- Meghan E. Kupratis
- Biomedical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - Uriel Gonzalez
- Biomedical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - Atia Rahman
- Mechanical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - David L. Burris
- Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Elise A. Corbin
- Biomedical Engineering, University of Delaware, Newark, DE 19713; Materials Science & Engineering, University of Delaware, Newark, DE 19716
- University of Delaware
| | - Christopher Price
- Biomedical Engineering, University of Delaware, Newark, DE 19713; Mechanical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
27
|
Mariano A, Ammendola S, Migliorini A, Leopizzi M, Raimondo D, Scotto d'Abusco A. Intron retention in PI-PLC γ1 mRNA as a key mechanism affecting MMP expression in human primary fibroblast-like synovial cells. Cell Biochem Funct 2024; 42:e4091. [PMID: 38973151 DOI: 10.1002/cbf.4091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
The intron retention (IR) is a phenomenon utilized by cells to allow diverse fates at the same mRNA, leading to a different pattern of synthesis of the same protein. In this study, we analyzed the modulation of phosphoinositide-specific phospholipase C (PI-PLC) enzymes by Harpagophytum procumbens extract (HPE) in synoviocytes from joins of osteoarthritis (OA) patients. In some samples, the PI-PLC γ1 isoform mature mRNA showed the IR and, in these synoviocytes, the HPE treatment increased the phenomenon. Moreover, we highlighted that as a consequence of IR, a lower amount of PI-PLC γ1 was produced. The decrease of PI-PLC γ1 was associated with the decrease of metalloprotease-3 (MMP-3), and MMP-13, and ADAMTS-5 after HPE treatment. The altered expression of MMPs is a hallmark of the onset and progression of OA, thus substances able to decrease their expression are very desirable. The interesting outcomes of this study are that 35% of analyzed synovial tissues showed the IR phenomenon in the PI-PLC γ1 mRNA and that the HPE treatment increased this phenomenon. For the first time, we found that the decrease of PI-PLC γ1 protein in synoviocytes interferes with MMP production, thus affecting the pathways involved in the MMP expression. This finding was validated by the silencing of PI-PLC γ1 in synoviocytes where the IR phenomenon was not present. Our results shed new light on the biochemical mechanisms involved in the degrading enzyme production in the joint of OA patients, suggesting a new therapeutic target and highlighting the importance of personalized medicine.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, Roma, Italy
| | | | - Arianna Migliorini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
28
|
Abu-Awwad A, Tudoran C, Abu-Awwad SA, Tudoran M, Voita-Mekeres F, Faur C, Szilagyi G. Analogies Between Platelet-Rich Plasma Versus Hyaluronic Acid Intra-articular Injections in the Treatment of Advanced Knee Arthritis: A Single-Center Study. Cureus 2024; 16:e61163. [PMID: 38933627 PMCID: PMC11202161 DOI: 10.7759/cureus.61163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Background Knee osteoarthritis (KOA), a degenerative joint disease, is a common cause of chronic knee pain and disability in adults. Conservative management options are the first-line approach, but intra-articular injections, such as platelet-rich plasma (PRP) and hyaluronic acid (HA), are considered for advanced cases. This study aims to compare the efficacy of PRP versus HA injections in patients with advanced KOA. Methods A retrospective study was conducted on 145 patients with advanced KOA. Seventy patients received PRP injections, while 75 patients received HA injections. The Visual Analog Scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, and International Knee Documentation Committee (IKDC) score were employed to evaluate the treatment's efficacy. Adverse events associated with these injections were also recorded. Results Both PRP and HA injections significantly reduced pain and improved joint function in patients with advanced KOA. PRP injections were slightly more effective than HA injections in reducing pain scores. Both treatments showed similar improvements in functional outcomes. Adverse events were minimal and self-limiting for both treatments. Conclusions Both PRP and HA injections effectively ameliorate advanced KOA by reducing pain and improving function. PRP injections showed a slightly greater improvement in pain scores and functional outcomes. The choice between PRP and HA injections may depend on factors like cost, availability, and patient preference. Further research is needed to validate these findings and understand treatment suitability for different patient populations.
Collapse
Affiliation(s)
- Ahmed Abu-Awwad
- Orthopedics and Traumatology, Department XV-Discipline of Orthopedics-Traumatology, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, ROU
- Orthopedics and Traumatology, "Pius Brinzeu" County Emergency Hospital, Timisoara, ROU
- Orthopedics and Traumatology, Research Center University Professor Doctor Teodor Șora, Victor Babes University of Medicine and Pharmacy, Timisoara, ROU
| | - Cristina Tudoran
- Department VII, Internal Medicine II, Discipline of Cardiology, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, ROU
- Cardiology, Center of Molecular Research in Nephrology and Vascular Disease, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, ROU
- Cardiology, "Pius Brinzeu" County Emergency Hospital, Timisoara, ROU
| | - Simona-Alina Abu-Awwad
- Gynecology, "Pius Brinzeu" County Emergency Hospital, Timisoara, ROU
- Gynecology, Department XII-Discipline of Obstetrics and Gynecology, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, ROU
| | - Mariana Tudoran
- Cardiology, "Pius Brinzeu" County Emergency Hospital, Timisoara, ROU
| | - Florica Voita-Mekeres
- Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, ROU
| | - Cosmin Faur
- Orthopedics and Traumatology, Department XV-Discipline of Orthopedics-Traumatology, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, ROU
- Orthopedics and Traumatology, "Pius Brinzeu" County Emergency Hospital, Timisoara, ROU
- Orthopedics and Traumatology, Research Center University Professor Doctor Teodor Șora, Victor Babes University of Medicine and Pharmacy, Timisoara, ROU
| | - Gheorghe Szilagyi
- Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, ROU
| |
Collapse
|
29
|
Li B, Yang Z, Li Y, Zhang J, Li C, Lv N. Exploration beyond osteoarthritis: the association and mechanism of its related comorbidities. Front Endocrinol (Lausanne) 2024; 15:1352671. [PMID: 38779455 PMCID: PMC11110169 DOI: 10.3389/fendo.2024.1352671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/12/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis is the most prevalent age-related degenerative joint disease and a leading cause of pain and disability in aged people. Its etiology is multifaceted, involving factors such as biomechanics, pro-inflammatory mediators, genetics, and metabolism. Beyond its evident impact on joint functionality and the erosion of patients' quality of life, OA exhibits symbiotic relationships with various systemic diseases, giving rise to various complications. This review reveals OA's extensive impact, encompassing osteoporosis, sarcopenia, cardiovascular diseases, diabetes mellitus, neurological disorders, mental health, and even cancer. Shared inflammatory processes, genetic factors, and lifestyle elements link OA to these systemic conditions. Consequently, recognizing these connections and addressing them offers opportunities to enhance patient care and reduce the burden of associated diseases, emphasizing the need for a holistic approach to managing OA and its complications.
Collapse
Affiliation(s)
| | | | | | | | | | - Naishan Lv
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine (Shandong Hospital of integrated traditional Chinese and Western medicine), Jinan, China
| |
Collapse
|
30
|
Xue H, Zhou H, Lou Q, Yuan P, Feng Z, Qiao L, Zhang J, Xie H, Shen Y, Ma Q, Wang S, Zhang B, Ye H, Cheng J, Sun X, Shi P. Urolithin B reduces cartilage degeneration and alleviates osteoarthritis by inhibiting inflammation. Food Funct 2024; 15:3552-3565. [PMID: 38465899 DOI: 10.1039/d3fo03793b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Osteoarthritis is the most prevalent degenerative joint disease reported worldwide. Conventional treatment strategies mainly focus on medication and involve surgical joint replacement. The use of these therapies is limited by gastrointestinal complications and the lifespan of joint prostheses. Hence, safe and efficacious drugs are urgently needed to impede the osteoarthritis progression. Urolithin B, a metabolite of ellagic acid in the gut, exhibits anti-inflammatory and antioxidant properties; however, its role in osteoarthritis remains unclear. In this study, we demonstrated that urolithin B efficiently inhibits the inflammatory factor-induced production of matrix metalloproteinases (MMP3 and MMP13) in vitro and upregulates the expression of type II collagen and aggrecan. Urolithin B alleviates cartilage erosion and osteophyte formation induced by anterior cruciate ligament transections. Moreover, urolithin B inhibits the activation of the NF-κB pathway by reducing the phosphorylation of Iκb-α and the nuclear translocation of P65. In summary, urolithin B significantly inhibits inflammation and alleviates osteoarthritis. Hence, urolithin B can be considered a potential agent suitable for the effective treatment of osteoarthritis in the future.
Collapse
Affiliation(s)
- Hong Xue
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hongyu Zhou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qiliang Lou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhenhua Feng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Li Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiateng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hongwei Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shiyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Boya Zhang
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huali Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiao Cheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
31
|
Tian R, Su S, Yu Y, Liang S, Ma C, Jiao Y, Xing W, Tian Z, Jiang T, Wang J. Revolutionizing osteoarthritis treatment: How mesenchymal stem cells hold the key. Biomed Pharmacother 2024; 173:116458. [PMID: 38503241 DOI: 10.1016/j.biopha.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Osteoarthritis (OA) is a multifaceted disease characterized by imbalances in extracellular matrix metabolism, chondrocyte and synoviocyte senescence, as well as inflammatory responses mediated by macrophages. Although there have been notable advancements in pharmacological and surgical interventions, achieving complete remission of OA remains a formidable challenge, oftentimes accompanied by significant side effects. Mesenchymal stem cells (MSCs) have emerged as a promising avenue for OA treatment, given their ability to differentiate into chondrocytes and facilitate cartilage repair, thereby mitigating the impact of an inflammatory microenvironment induced by macrophages. This comprehensive review aims to provide a concise overview of the diverse roles played by MSCs in the treatment of OA, while elucidating the underlying mechanisms behind these contributions. Specifically, the roles include: (a) Promotion of chondrocyte and synoviocyte regeneration; (b) Inhibition of extracellular matrix degradation; (c) Attenuating the macrophage-induced inflammatory microenvironment; (d) Alleviation of pain. Understanding the multifaceted roles played by MSCs in OA treatment is paramount for developing novel therapeutic strategies. By harnessing the regenerative potential and immunomodulatory properties of MSCs, it may be possible to devise more effective and safer approaches for managing OA. Further research and clinical studies are warranted to optimize the utilization of MSCs and realize their full potential in the field of OA therapeutics.
Collapse
Affiliation(s)
- Ruijiao Tian
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Shibo Su
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China; Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Yang Yu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Siqiang Liang
- Zhongke Comprehensive Medical Transformation Center Research Institute (Hainan) Co., Ltd, Haikou 571199, China
| | - Chuqing Ma
- The Second Clinical College, Hainan Medical University, Haikou 571199, China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Weihong Xing
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Ziheng Tian
- School of Clinical Medicine, Jining Medical University, Jining 272002, China
| | - Tongmeng Jiang
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China; Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Juan Wang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China; School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
32
|
Liu H, Chi R, Xu J, Guo J, Guo Z, Zhang X, Hou L, Zheng Z, Lu F, Xu T, Sun K, Guo F. DMT1-mediated iron overload accelerates cartilage degeneration in Hemophilic Arthropathy through the mtDNA-cGAS-STING axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167058. [PMID: 38331112 DOI: 10.1016/j.bbadis.2024.167058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Excess iron contributes to Hemophilic Arthropathy (HA) development. Divalent metal transporter 1 (DMT1) delivers iron into the cytoplasm, thus regulating iron homeostasis. OBJECTIVES We aimed to investigate whether DMT1-mediated iron homeostasis is involved in bleeding-induced cartilage degeneration and the molecular mechanisms underlying iron overload-induced chondrocyte damage. METHODS This study established an in vivo HA model by puncturing knee joints of coagulation factor VIII gene knockout mice with a needle, and mimicked iron overload conditions in vitro by treatment of Ferric ammonium citrate (FAC). RESULTS We demonstrated that blood exposure caused iron overload and cartilage degeneration, as well as elevated expression of DMT1. Furthermore, DMT1 silencing alleviated blood-induced iron overload and cartilage degeneration. In hemophilic mice, articular cartilage degeneration was also suppressed by intro-articularly injection of DMT1 adeno-associated virus 9 (AAV9). Mechanistically, RNA-sequencing analysis indicated the association between iron overload and cGAS-STING pathway. Further, iron overload triggered mtDNA-cGAS-STING pathway activation, which could be effectively mitigated by DMT1 silencing. Additionally, we discovered that RU.521, a potent Cyclic GMP-AMP Synthase (cGAS) inhibitor, successfully suppressed the downward cascades of cGAS-STING, thereby protecting against chondrocyte damage. CONCLUSION Taken together, DMT1-mediated iron overload promotes chondrocyte damage and murine HA development, and targeted DMT1 may provide therapeutic and preventive approaches in HA.
Collapse
Affiliation(s)
- Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fan Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
33
|
Xiong A, Xiong R, Luo F. Ski ameliorates synovial cell inflammation in monosodium iodoacetate-induced knee osteoarthritis. Heliyon 2024; 10:e24471. [PMID: 38298665 PMCID: PMC10827772 DOI: 10.1016/j.heliyon.2024.e24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common degenerative diseases and is characterized by cartilage degeneration, synovial inflammation, joint stiffness and even loss of motor function. In the clinical treatment of arthritis, conventional analgesic and anti-inflammatory drugs have great side effects. We have evaluated the possibility of the endogenous transcription regulator Ski as an anti-inflammatory alternative in OA through experimental studies in animal models and in vivo and in vitro. Male Sprague‒Dawley rats were injected with monosodium iodoacetate (MIA) into the knee joints to induce symptoms identical to those of human OA. We isolated knee synovial tissue under sterile conditions and cultured primary synovial cells. In vitro, Ski inhibits the proinflammatory factors IL-1β, IL-6 and TNF-α mRNA and protein expression in lipopolysaccharide (LPS)-stimulated fibroblast-like synoviocytes (FLSs) and U-937 cells. In addition, Ski attenuates or inhibits OA-induced synovial inflammation by upregulating the protein expression of the anti-inflammatory factor IL-4 and downregulating the protein expression of downstream molecules related to the NF-κB inflammatory signaling pathway. In vivo, Ski downregulated proinflammatory factors and p-NF-κB p65 in KOA synovial tissue and alleviated pain-related behaviors in KOA rats. These experimental data show that Ski has strong anti-inflammatory activity. Ski is an endogenous factor, and if used in the clinical treatment of OA, the side effects are small. However, the anti-inflammatory mechanism of Ski must be further studied.
Collapse
Affiliation(s)
- Ao Xiong
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Renping Xiong
- Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
34
|
Moqadami A, Khalaj-Kondori M, Hosseinpour Feizi MA, Baradaran B. Minocycline declines interleukin-1ß-induced apoptosis and matrix metalloproteinase expression in C28/I2 chondrocyte cells: an in vitro study on osteoarthritis. EXCLI JOURNAL 2024; 23:114-129. [PMID: 38487083 PMCID: PMC10938238 DOI: 10.17179/excli2023-6710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/15/2024] [Indexed: 03/17/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that occurs with aging. In its late phases, it is determined by the loss of chondrocytes and the breakdown of the extracellular matrix, resulting in pain and functional impairment. Interleukin-1 beta (IL-1β) is increased in the injured joints and contributes to the OA pathobiology by inducing chondrocyte apoptosis and up-regulation of matrix metalloproteinases (MMPs). Here, we aimed to understand whether minocycline could protect chondrocytes against the IL-1β-induced effects. The human C28/I2 chondrocyte cell line was treated with IL-1β or IL-1β plus minocycline. Cell viability/toxicity, cell cycle progression, and apoptosis were assessed with MMT assay and flow cytometry. Expression of apoptotic genes and MMPs were evaluated with qRT-PCR and western blotting. IL-1β showed a significant cytotoxic effect on the C28/I2 chondrocyte cells. The minocycline effective concentration (EC50) significantly protected the C28/I2 cells against the IL-1β-induced cytotoxic effect. Besides, minocycline effectively lowered IL-1β-induced sub-G1 cell population increase, indicating the minocycline anti-apoptotic effect. When assessed by real-time PCR and western blotting, the minocycline treatment group showed an elevated level of Bcl-2 and a significant decrease in the mRNA and protein expression of the apoptotic markers Bax and Caspase-3 and Matrix metalloproteinases (MMPs) such as MMP-3 and MMP-13. In conclusion, IL-1β promotes OA by inducing chondrocyte death and MMPs overexpression. Treatment with minocycline reduces these effects and decreases the production of apoptotic factors as well as the MMP-3 and MMP-13. Minocycline might be considered as an anti-IL-1β therapeutic supplement in the treatment of osteoarthritis. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Amin Moqadami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Liu G, Wei J, Xiao W, Xie W, Ru Q, Chen L, Wu Y, Mobasheri A, Li Y. Insights into the Notch signaling pathway in degenerative musculoskeletal disorders: Mechanisms and perspectives. Biomed Pharmacother 2023; 169:115884. [PMID: 37981460 DOI: 10.1016/j.biopha.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Degenerative musculoskeletal disorders are a group of age-related diseases of the locomotive system that severely affects the patient's ability to work and cause adverse sequalae such as fractures and even death. The incidence and prevalence of degenerative musculoskeletal disorders is rising owing to the aging of the world's population. The Notch signaling pathway, which is expressed in almost all organ systems, extensively regulates cell proliferation and differentiation as well as cellular fate. Notch signaling shows increased activity in degenerative musculoskeletal disorders and retards the progression of degeneration to some extent. The review focuses on four major degenerative musculoskeletal disorders (osteoarthritis, intervertebral disc degeneration, osteoporosis, and sarcopenia) and summarizes the pathophysiological functions of Notch signaling in these disorders, especially its role in stem/progenitor cells in each disorder. Finally, a conclusion will be presented to explore the research and application of the perspectives on Notch signaling in degenerative musculoskeletal disorders.
Collapse
Affiliation(s)
- Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Wei
- Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
36
|
Huang TH, Liu BH, Hsu CH, Wu CJ, Liao KW, Lin CS, Chan YL. The Synergistic Effects of Corbicula fluminea and Sarcodia montagneana on Alleviating Systemic Inflammation and Osteoarthritis Progression. Antioxidants (Basel) 2023; 12:2068. [PMID: 38136188 PMCID: PMC10740935 DOI: 10.3390/antiox12122068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Osteoarthritis (OA) is a progressive disease that causes pain, stiffness, and inflammation in the affected joints. Currently, there are no effective treatments for preventing the worst outcomes, such as synovitis or cartilage degradation. Sarcodia montagneana and Corbicula fluminea are common species found in the ocean or in freshwater areas. Their extracts are demonstrated to possess both antioxidative and anti-inflammatory functions. This study aimed to investigate the synergistic effects of the extracts of Sarcodia montagneana (SME) and Corbicula fluminea (FCE) on reducing local and systemic inflammation, as well as their efficacy in OA symptom relief. An in vitro monocytic LPS-treated THP-1 cell model and in vivo MIA-induced mouse OA model were applied, and the results showed that the combinatory usage of SME and FCE effectively suppressed IFN-γ and TNF-α production when THP-1 cells were treated with LPS. SME and FCE also significantly decreased the systemic TNF-α level and joint swelling and prevented the loss of proteoglycan in the cartilage within the joints of OA mice. The data shown here provide a potential solution for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Tse-Hung Huang
- Department of Traditional Chinese Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33303, Taiwan
- Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Chemical Engineering and Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Bang-Hung Liu
- Department of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Chia-Hui Hsu
- Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Chang-Jer Wu
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
| | - Chen-Si Lin
- Department of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Yi-Lin Chan
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan
| |
Collapse
|
37
|
Hsu SL, Jhan SW, Hsu CC, Wu YN, Wu KLH, Kuo CEA, Chiu HW, Cheng JH. Effect of three clinical therapies on cytokines modulation in the hip articular cartilage and bone improvement in rat early osteonecrosis of the femoral head. Biomed J 2023; 46:100571. [PMID: 36442793 PMCID: PMC10749886 DOI: 10.1016/j.bj.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Extracorporeal shockwave therapy (ESWT) and adipose-derived mesenchymal stem cells (ADSCs) have been used clinically for the treatment of osteonecrosis of the femoral head (ONFH). The study elucidated that ESWT, ADSCs, and combination therapy modulated pro-inflammatory cytokines in the articular cartilage and subchondral bone of early rat ONFH. METHODS ESWT and ADSCs were prepared and isolated for treatment. Micro-CT, pathological analysis, and immunohistochemistry were performed and analysed. RESULTS After treatments, subchondral bone of ONFH was improved in trabecular bone volume (BV/TV) (p < 0.001), thickness (Tb.Th) (p < 0.01 and 0.001), and separation (Tb.Sp) (p < 0.001) and bone mineral density (BMD) (p < 0.001) using micro-CT analysis. The articular cartilage was protected and decreased apoptosis markers after all the treatments. The expression of IL33 (p < 0.001), IL5 (p < 0.001), IL6 (p < 0.001), and IL17A (p < 0.01) was significantly decreased in the ESWT, ADSCs, and Combination groups as compared with ONFH group. The IL33 receptor ST2 was significantly increased after treatment (p < 0.001) as compared with ONFH group. The Combination group (p < 0.01) decreased the expression of IL6 better than the ESWT and ADSCs groups. CONCLUSION ESWT, ADSCs and combination therapy significantly protected articular cartilage and subchondral bone of early rat ONFH by modulating the expression of pro-inflammatory cytokines including, IL33 and its receptor ST2, IL5, IL6, and IL17A.
Collapse
Affiliation(s)
- Shan-Ling Hsu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shun-Wun Jhan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chieh-Cheng Hsu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-No Wu
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-En Aurea Kuo
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung, Taiwan
| | - Hung-Wen Chiu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung, Taiwan.
| |
Collapse
|
38
|
Gherghel R, Macovei LA, Burlui MA, Cardoneanu A, Rezus II, Mihai IR, Rezus E. Osteoarthritis—The Role of Mesenchymal Stem Cells in Cartilage Regeneration. APPLIED SCIENCES 2023; 13:10617. [DOI: 10.3390/app131910617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Osteoarthritis (OA) is a condition that can cause substantial pain, loss of joint function, and a decline in quality of life in patients. Numerous risk factors, including aging, genetics, and injury, have a role in the onset of OA, characterized by structural changes within the joints. Most therapeutic approaches focus on the symptoms and try to change or improve the structure of the joint tissues. Even so, no treatments have been able to stop or slow the progression of OA or give effective and long-lasting relief of symptoms. In the absence of disease-modifying drugs, regenerative medicine is being investigated as a possible treatment that can change the course of OA by changing the structure of damaged articular cartilage. In regenerative therapy for OA, mesenchymal stem cells (MSCs) have been the mainstay of translational investigations and clinical applications. In recent years, MSCs have been discovered to be an appropriate cell source for treating OA due to their ability to expand rapidly in culture, their nontumorigenic nature, and their ease of collection. MSCs’ anti-inflammatory and immunomodulatory capabilities may provide a more favorable local environment for the regeneration of injured articular cartilage, which was thought to be one of the reasons why they were seen as more suited for OA. In addition to bone marrow, MSCs have also been isolated from adipose tissue, synovium, umbilical cord, cord blood, dental pulp, placenta, periosteum, and skeletal muscle. Adipose tissue and bone marrow are two of the most essential tissues for therapeutic MSCs. Positive preclinical and clinical trial results have shown that, despite current limitations and risks, MSC-based therapy is becoming a promising approach to regenerative medicine in treating OA.
Collapse
Affiliation(s)
- Robert Gherghel
- Department of Orthopedics and Trauma Surgery, Piatra Neamt Emergency Hospital, 700115 Piatra Neamt, Romania
| | - Luana Andreea Macovei
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Maria-Alexandra Burlui
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Anca Cardoneanu
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Ioana-Irina Rezus
- Department of Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Ioana Ruxandra Mihai
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
39
|
Li Y, Li H, Wang L, Xie W, Yuan D, Wen Z, Zhang T, Lai J, Xiong Z, Shan Y, Jiang W. The p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop mediates vasoactive intestinal peptide effects on osteoarthritis chondrocytes. Int Immunopharmacol 2023; 122:110518. [PMID: 37392568 DOI: 10.1016/j.intimp.2023.110518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Loss and dysfunction of articular chondrocytes, which disrupt the homeostasis of extracellular matrix formation and breakdown, promote the onset of osteoarthritis (OA). Targeting inflammatory pathways is an important therapeutic strategy for OA. Vasoactive intestinal peptide (VIP) is an immunosuppressive neuropeptide with potent anti-inflammatory effects; however, its role and mechanism in OA remain unclear. In this study, microarray expression profiling from the Gene Expression Omnibus database and integrative bioinformatics analyses were performed to identify differentially expressed lncRNAs in OA samples. qRT-PCR validation of the top ten different expressed lncRNAs indicated that the expression level of intergenic non-protein coding RNA 2203 (LINC02203, also named LOC727924) was the highest in OA cartilage compared to normal cartilage. Hence, the LOC727924 function was further investigated. LOC727924 was upregulated in OA chondrocytes, with a dominant sub-localization in the cytoplasm. In OA chondrocytes, LOC727924 knockdown boosted cell viability, suppressed cell apoptosis, reactive oxygen species (ROS) accumulation, increased aggrecan and collagen II, decreased matrix metallopeptidase (MMP)-3/13 and ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS)-4/5 levels, and reduced the levels of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). LOC727924 could interact with the microRNA 26a (miR-26a)/ karyopherin subunit alpha 3 (KPNA3) axis by competitively targeting miR-26a for KPNA3 binding, therefore down-regulating miR-26a and upregulating KPNA3; in OA chondrocytes, miR-26a inhibition partially abolished LOC727924 knockdown effects on chondrocytes. miR-26a inhibited the nuclear translocation of p65 through targeting KPNA3 and p65 transcriptionally activated LOC727924, forming a p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop to modulate OA chondrocyte phenotypes. In vitro, VIP improved OA chondrocyte proliferation and functions, down-regulated LOC727924, KPNA3, and p65 expression, and upregulated miR-26a expression; in vivo, VIP ameliorated destabilization of the medial meniscus (DMM)-induced damages on the mouse knee joint, down-regulated KPNA3, inhibited the nuclear translocation of p65. In conclusion, the p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop modulates OA chondrocyte apoptosis, ROS accumulation, extracellular matrix (ECM) deposition, and inflammatory response in vitro and OA development in vivo, being one of the mechanisms mediating VIP ameliorating OA.
Collapse
Affiliation(s)
- Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lijie Wang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dongliang Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Zeqin Wen
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tiancheng Zhang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jieyu Lai
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Zixuan Xiong
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Yunhan Shan
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Wei Jiang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| |
Collapse
|
40
|
Meehan RT, Gill MT, Hoffman ED, Coeshott CM, Galvan MD, Wolf ML, Amigues IA, Kastsianok LM, Regan EA, Crooks JL, Czuczman GJ, Knight V. Ultrasound-Guided Injections of HYADD4 for Knee Osteoarthritis Improves Pain and Functional Outcomes at 3, 6, and 12 Months without Changes in Measured Synovial Fluid, Serum Collagen Biomarkers, or Most Synovial Fluid Biomarker Proteins at 3 Months. J Clin Med 2023; 12:5541. [PMID: 37685608 PMCID: PMC10488758 DOI: 10.3390/jcm12175541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Prior studies have demonstrated improved efficacy when intra-articular (IA) therapeutics are injected using ultrasound (US) guidance. The aim of this study was to determine if clinical improvement in pain and function after IA hyaluronic acid injections using US is associated with changes in SF volumes and biomarker proteins at 3 months. METHODS 49 subjects with symptomatic knee OA, BMI < 40, and KL radiographic grade II or III participated. Subjects with adequate aspirated synovial fluid (SF) volumes received two US-guided IA-HA injections of HYADD4 (24 mg/3 mL) 7 days apart. Clinical evaluations at 3, 6, and 12 months included WOMAC, VAS, PCS scores, 6 MWD, and US-measured SF depth. SF and blood were collected at 3 months and analyzed for four serum OA biomarkers and fifteen SF proteins. RESULTS Statistical differences were observed at 3, 6, and 12 months compared to baseline values, with improvements at 12 months for WOMAC scores (50%), VAS (54%), and PCS scores (24%). MMP10 levels were lower at 3 months without changes in SF volumes, serum levels of C2C, COMP, HA, CPII, or SF levels of IL-1 ra, IL-4, 6, 7, 8, 15, 18, ILGFBP-1, 3, and MMP 1, 2, 3, 8, 9. Baseline clinical features or SF biomarker protein levels did not predict responsiveness at 3 months. CONCLUSIONS Clinical improvements were observed at 12 months using US needle guidance for IA HA, whereas only one SF protein biomarker protein was different at 3 months. Larger studies are needed to identify which SF biomarkers will predict which individual OA patients will receive the greatest benefit from IA therapeutics.
Collapse
Affiliation(s)
- Richard T. Meehan
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Mary T. Gill
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Eric D. Hoffman
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Claire M. Coeshott
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Manuel D. Galvan
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Molly L. Wolf
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Isabelle A. Amigues
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Liudmila M. Kastsianok
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Elizabeth A. Regan
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - James L. Crooks
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Gregory J. Czuczman
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
- Radiology Imaging Associates, Englewood, CO 80112, USA
| | - Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, CU Anschutz School of Medicine, University of Colorado, Aurora, CO 80045, USA;
| |
Collapse
|
41
|
Zhang W, Wang T, Xue Y, Zhan B, Lai Z, Huang W, Peng X, Zhou Y. Research progress of extracellular vesicles and exosomes derived from mesenchymal stem cells in the treatment of oxidative stress-related diseases. Front Immunol 2023; 14:1238789. [PMID: 37646039 PMCID: PMC10461809 DOI: 10.3389/fimmu.2023.1238789] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
There is growing evidence that mesenchymal stem cell-derived extracellular vesicles and exosomes can significantly improve the curative effect of oxidative stress-related diseases. Mesenchymal stem cell extracellular vesicles and exosomes (MSC-EVs and MSC-Exos) are rich in bioactive molecules and have many biological regulatory functions. In this review, we describe how MSC-EVs and MSC-Exos reduce the related markers of oxidative stress and inflammation in various systemic diseases, and the molecular mechanism of MSC-EVs and MSC-Exos in treating apoptosis and vascular injury induced by oxidative stress. The results of a large number of experimental studies have shown that both local and systemic administration can effectively inhibit the oxidative stress response in diseases and promote the survival and regeneration of damaged parenchymal cells. The mRNA and miRNAs in MSC-EVs and MSC-Exos are the most important bioactive molecules in disease treatment, which can inhibit the apoptosis, necrosis and oxidative stress of lung, heart, kidney, liver, bone, skin and other cells, and promote their survive and regenerate.
Collapse
Affiliation(s)
- Wenwen Zhang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Tingyu Wang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanye Xue
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Bingbing Zhan
- School of Pharmaceutical Sciences, Guangdong Medical University, Dongguan, China
| | - Zengjie Lai
- The Second Clinical Medical College of Guangdong Medical University, Dongguan, China
| | - Wenjie Huang
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, China
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| | - Yanfang Zhou
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
42
|
Zhang Y, Liu D, Vithran DTA, Kwabena BR, Xiao W, Li Y. CC chemokines and receptors in osteoarthritis: new insights and potential targets. Arthritis Res Ther 2023; 25:113. [PMID: 37400871 PMCID: PMC10316577 DOI: 10.1186/s13075-023-03096-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease accompanied by the activation of innate and adaptive immune systems-associated inflammatory responses. Due to the local inflammation, the expression of various cytokines was altered in affected joints, including CC motif chemokine ligands (CCLs) and their receptors (CCRs). As essential members of chemokines, CCLs and CCRs played an important role in the pathogenesis and treatment of OA. The bindings between CCLs and CCRs on the chondrocyte membrane promoted chondrocyte apoptosis and the release of multiple matrix-degrading enzymes, which resulted in cartilage degradation. In addition, CCLs and CCRs had chemoattractant functions to attract various immune cells to osteoarthritic joints, further leading to the aggravation of local inflammation. Furthermore, in the nerve endings of joints, CCLs and CCRs, along with several cellular factors, contributed to pain hypersensitivity by releasing neurotransmitters in the spinal cord. Given this family's diverse and complex functions, targeting the functional network of CCLs and CCRs is a promising strategy for the prognosis and treatment of OA in the future.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | | | - Bosomtwe Richmond Kwabena
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
43
|
Zhang X, Wang Z, Wang B, Li J, Yuan H. lncRNA OIP5-AS1 attenuates the osteoarthritis progression in IL-1β-stimulated chondrocytes. Open Med (Wars) 2023; 18:20230721. [PMID: 37333451 PMCID: PMC10276615 DOI: 10.1515/med-2023-0721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
In view of the association between long noncoding RNA OIP5-AS1 and osteoarthritis (OA) pathology, the corresponding potential mechanism is worthy of exploration. Primary chondrocytes were identified by morphological observation and immunohistochemical staining of collagen II. The association between OIP5-AS1 and miR-338-3p was analyzed by StarBase and dual-luciferase reporter assay. After the expression of OIP5-AS1 or miR-338-3p in interleukin (IL)-1β-stimulated primary chondrocytes and CHON-001 cells was manipulated, cell viability, proliferation, apoptosis rate, apoptosis-related protein (cleaved caspase-9, Bax) expressions, extracellular matrix (ECM) (matrix metalloproteinase (MMP)-3, MMP-13, aggrecan, and collagen II), PI3K/AKT pathway, and mRNA expressions of inflammatory factors (IL-6 and IL-8), OIP5-AS1, and miR-338-3p were determined by cell counting kit-8, EdU, flow cytometry, Western blot, and quantitative reverse transcription-polymerase chain reaction. As a result, the expression of OIP5-AS1 was downregulated in IL-1β-activated chondrocytes, while miR-338-3p was overexpressed. OIP5-AS1 overexpression reversed the effects of IL-1β on viability, proliferation, apoptosis, ECM degradation, and inflammation in chondrocytes. However, OIP5-AS1 knockdown exhibited opposite effects. Interestingly, the effects of OIP5-AS1 overexpression were partially offset by miR-338-3p overexpression. Furthermore, OIP5-AS1 overexpression blocked the PI3K/AKT pathway by modulating miR-338-3p expression. In sum, OIP5-AS1 promotes viability and proliferation, and inhibits apoptosis and ECM degradation in IL-1β-activated chondrocytes by targeting miR-338-3p through blocking the PI3K/AKT pathway, indicating an attractive strategy for OA treatment.
Collapse
Affiliation(s)
- Xuefeng Zhang
- The First Clinical Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
- Department of Pain, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| | - Zhikun Wang
- Department of Orthopedics, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| | - Binbin Wang
- Department of Pain, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| | - Jingyi Li
- Department of Pain, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| | - Hui Yuan
- Department of Pain, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| |
Collapse
|
44
|
Meng C, Na Y, Han C, Ren Y, Liu M, Ma P, Bai R. Exosomal miR-429 derived from adipose-derived stem cells ameliorated chondral injury in osteoarthritis via autophagy by targeting FEZ2. Int Immunopharmacol 2023; 120:110315. [PMID: 37245297 DOI: 10.1016/j.intimp.2023.110315] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/19/2023] [Accepted: 05/07/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is the most prevalent musculoskeletal disease, imposing a significant public health burden. Exosomes might be an effective means of treating OA. PURPOSE To investigate the role of exosomes from adipose tissue-derived stromal cells (ADSCs) in OA. We explored whether exosomes from ADSCs could be absorbed by OA chondrocytes, whether there were differences in miR-429 expression in the exosomes of ADSCs and chondrocytes, and whether ADSC exosomal miR-429 could enhance chondrocyte proliferation to exert therapeutic effects in OA. STUDY DESIGN Controlled laboratory study. METHODS ADSCs were isolated and cultured from 4-week-old Sprague-Dawley rats. ADSCs and chondrocytes were identified by flow cytometry assay and fluorescent staining, respectively. The exosomes were extracted and identified. Exosome transport was verified by cell staining and co-culture. Beclin 1, collagen II, LC3-II/I, miR-429, and FEZ2 mRNA and protein expression were investigated with real-time PCR and western blotting, respectively. Chondrocyte proliferation was investigated with Cell Counting Kit-8 (CCK-8) assay. The association between miR-429 and FEZ2 was verified with luciferase assay. A rat OA model was established and rat knee joint cartilage tissue was examined with hematoxylin-eosin and toluidine blue staining. RESULTS Both ADSCs and chondrocytes secreted exosomes and ADSC-derived exosomes could be absorbed by the chondrocytes. ADCS exosomes contained higher miR-429 levels than chondrocyte exosomes. The luciferase assay demonstrated that miR-429 directly targeted FEZ2. Compared with the OA group, miR-429 promoted chondrocyte proliferation while FEZ2 decreased it. miR-429 promoted autophagy by targeting FEZ2 to ameliorate cartilage injury. In vivo, miR-429 promoted autophagy to alleviate OA by targeting FEZ2. CONCLUSION ADSC exosomes could be beneficial for OA and could be absorbed by chondrocytes to promote chondrocyte proliferation through miR-429. miR-429 ameliorated cartilage injury in OA by targeting FEZ2 and promoting autophagy.
Collapse
Affiliation(s)
- Chenyang Meng
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yuyan Na
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Changxu Han
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yizhong Ren
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ming Liu
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Penglei Ma
- Anesthesia Surgical Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Rui Bai
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
45
|
Sconza C, Di Matteo B, Queirazza P, Dina A, Amenta R, Respizzi S, Massazza G, Ammendolia A, Kon E, de Sire A. Ozone Therapy versus Hyaluronic Acid Injections for Pain Relief in Patients with Knee Osteoarthritis: Preliminary Findings on Molecular and Clinical Outcomes from a Randomized Controlled Trial. Int J Mol Sci 2023; 24:ijms24108788. [PMID: 37240135 DOI: 10.3390/ijms24108788] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Ozone therapy (OT) is used for the treatment of multiple musculoskeletal disorders. In recent years, there has been a growing interest in its use for the treatment of osteoarthritis (OA). The aim of this double-blind randomized controlled trial was to evaluate the efficacy of OT compared with hyaluronic acid (HA) injections for pain relief in patients with knee OA. Patients with knee OA for at least three months were included and randomly assigned to receive three intra-articular injections of ozone or HA (once a week). Patients were assessed at baseline and at 1, 3, and 6 months after the injections for pain, stiffness, and function using the WOMAC LK 3.1, the NRS, and the KOOS questionnaire. Out of 55 patients assessed for eligibility, 52 participants were admitted to the study and randomly assigned into the 2 groups of treatment. During the study, eight patients dropped out. Thus, a total of 44 patients, reached the endpoint of the study at 6 months. Both Group A and B consisted of 22 patients. At 1-month follow-up after injections, both treatment groups improved statistically significantly from baseline in all outcomes measured. At 3 months, improvements remained similarly consistent for Group A and Group B. At 6-month follow-up, the outcomes were comparable between the 2 groups, showing only a worsening trend in pain. No significant differences were found between the two groups in pain scores. Both therapies have proven to be safe, with the few recorded adverse events being mild and self-limiting. OT has demonstrated similar results to HA injections, proving to be a safe approach with significant effects on pain control in patients affected by knee OA. Due to its anti-inflammatory and analgesic effects, ozone might be considered as a potential treatment for OA.
Collapse
Affiliation(s)
- Cristiano Sconza
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Berardo Di Matteo
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Paolo Queirazza
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Arianna Dina
- Physical Medicine and Rehabilitation, University of Milan, 20122 Milan, Italy
| | - Roberta Amenta
- Department of Rehabilitation, Casa di Cura Villa Aurelia, 96100 Syracuse, Italy
| | - Stefano Respizzi
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Giuseppe Massazza
- Division of Physical Medicine and Rehabilitation, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Alessandro de Sire
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| |
Collapse
|
46
|
Boldeanu MV, Boldeanu L, Cristea OM, Ciobanu DA, Poenariu SI, Dijmărescu AL, Bărbulescu AL, Pădureanu V, Sas TN, Dinescu ȘC, Vreju FA, Popoviciu HV, Ionescu RA. MMP-13, VEGF, and Disease Activity in a Cohort of Rheumatoid Arthritis Patients. Diagnostics (Basel) 2023; 13:1653. [PMID: 37175043 PMCID: PMC10184131 DOI: 10.3390/diagnostics13091653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Identifying certain serum biomarkers associated with the degree of rheumatoid arthritis (RA) activity can provide us with a more accurate view of the evolution, prognosis, and future quality of life for these patients. Our aim was to analyze the presence and clinical use of matrix metalloproteinase-13 (MMP-13), along with vascular endothelial growth factor (VEGF) and well-known cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) for patients with RA. We also wanted to identify the possible correlations between MMP-13 and these serological markers, as well as their relationship with disease activity indices, quality of life, and ultrasonographic evaluation. For this purpose, we analyzed serum samples of 34 RA patients and 12 controls. In order to assess serum concentrations for MMP-13, VEGF, TNF-α, and IL-6, we used the enzyme-linked immunosorbent assay (ELISA) technique. Our results concluded that higher levels of MMP-13, VEGF, TNF-α, and IL-6 were present in the serum of RA patients compared to controls, with statistical significance. We furthermore identified moderately positive correlations between VEGF, MMP-13, and disease activity indices, as well as with the ultrasound findings. We also observed that VEGF had the best accuracy (97.80%), for differentiating patients with moderate disease activity. According to the data obtained in our study, that although MMP-13, TNF-α and C-reactive protein (CRP) have the same sensitivity (55.56%), MMP-13 has a better specificity (86.67%) in the diagnosis of patients with DAS28(4v) CRP values corresponding to moderate disease activity. Thus, MMP-13 can be used as a biomarker that can differentiate patients with moderate or low disease activity. VEGF and MMP-13 can be used as additional parameters, along with TNF-α and IL-6, that can provide the clinician a better picture of the inflammatory process, disease activity, and structural damage in patients with RA. Our data can certainly constitute a start point for future research and extended studies with multicenter involvement, to support the selection of individualized and accurate therapeutic management strategies for our patients.
Collapse
Affiliation(s)
- Mihail Virgil Boldeanu
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Lidia Boldeanu
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (L.B.); (O.M.C.)
| | - Oana Mariana Cristea
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (L.B.); (O.M.C.)
| | - Dana Alexandra Ciobanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.A.C.); (S.I.P.)
| | - Sabin Ioan Poenariu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.A.C.); (S.I.P.)
| | - Anda Lorena Dijmărescu
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Andreea Lili Bărbulescu
- Department of Pharmacology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Vlad Pădureanu
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Teodor Nicuşor Sas
- Department of Radiology and Imaging, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ștefan Cristian Dinescu
- Department of Rheumatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Florentin Ananu Vreju
- Department of Rheumatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Horațiu Valeriu Popoviciu
- Department of Rheumatology, BFK and Medical Rehabilitation, University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Răzvan Adrian Ionescu
- Third Internal Medicine Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
47
|
Cho C, Oh H, Lee JS, Kang LJ, Oh EJ, Hwang Y, Kim SJ, Bae YS, Kim EJ, Kang HC, Choi WI, Yang S. Prussian blue nanozymes coated with Pluronic attenuate inflammatory osteoarthritis by blocking c-Jun N-terminal kinase phosphorylation. Biomaterials 2023; 297:122131. [PMID: 37119581 DOI: 10.1016/j.biomaterials.2023.122131] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disorder associated with inflammation, functional disability, and high socioeconomic costs. The development of effective therapies against inflammatory OA has been limited owing to its complex and multifactorial nature. The efficacy of Prussian blue nanozymes coated with Pluronic (PPBzymes), US Food and Drug Administration-approved components, and their mechanisms of action have been described in this study, and PPBzymes have been characterized as a new OA therapeutic. Spherical PPBzymes were developed via nucleation and stabilization of Prussian blue inside Pluronic micelles. A uniformly distributed diameter of approximately 204 nm was obtained, which was maintained after storage in an aqueous solution and biological buffer. This indicates that PPBzymes are stable and could have biomedical applications. In vitro data revealed that PPBzymes promote cartilage generation and reduce cartilage degradation. Moreover, intra-articular injections with PPBzymes into mouse joints revealed their long-term stability and effective uptake into the cartilage matrix. Furthermore, intra-articular PPBzymes injections attenuated cartilage degradation without exhibiting cytotoxicity toward the synovial membrane, lungs, and liver. Notably, based on proteome microarray data, PPBzymes specifically block the JNK phosphorylation, which modulates inflammatory OA pathogenesis. These findings indicate that PPBzymes might represent a biocompatible and effective nanotherapeutic for obstructing JNK phosphorylation.
Collapse
Affiliation(s)
- Chanmi Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Li-Jung Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea; AI-Superconvergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Eun-Jeong Oh
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea; Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Yiseul Hwang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Ho Chul Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
48
|
Rahman MM, Watton PN, Neu CP, Pierce DM. A chemo-mechano-biological modeling framework for cartilage evolving in health, disease, injury, and treatment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107419. [PMID: 36842346 DOI: 10.1016/j.cmpb.2023.107419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Osteoarthritis (OA) is a pervasive and debilitating disease, wherein degeneration of cartilage features prominently. Despite extensive research, we do not yet understand the cause or progression of OA. Studies show biochemical, mechanical, and biological factors affect cartilage health. Mechanical loads influence synthesis of biochemical constituents which build and/or break down cartilage, and which in turn affect mechanical loads. OA-associated biochemical profiles activate cellular activity that disrupts homeostasis. To understand the complex interplay among mechanical stimuli, biochemical signaling, and cartilage function requires integrating vast research on experimental mechanics and mechanobiology-a task approachable only with computational models. At present, mechanical models of cartilage generally lack chemo-biological effects, and biochemical models lack coupled mechanics, let alone interactions over time. METHODS We establish a first-of-its kind virtual cartilage: a modeling framework that considers time-dependent, chemo-mechano-biologically induced turnover of key constituents resulting from biochemical, mechanical, and/or biological activity. We include the "minimally essential" yet complex chemical and mechanobiological mechanisms. Our 3-D framework integrates a constitutive model for the mechanics of cartilage with a novel model of homeostatic adaptation by chondrocytes to pathological mechanical stimuli, and a new application of anisotropic growth (loss) to simulate degradation clinically observed as cartilage thinning. RESULTS Using a single set of representative parameters, our simulations of immobilizing and overloading successfully captured loss of cartilage quantified experimentally. Simulations of immobilizing, overloading, and injuring cartilage predicted dose-dependent recovery of cartilage when treated with suramin, a proposed therapeutic for OA. The modeling framework prompted us to add growth factors to the suramin treatment, which predicted even better recovery. CONCLUSIONS Our flexible framework is a first step toward computational investigations of how cartilage and chondrocytes mechanically and biochemically evolve in degeneration of OA and respond to pharmacological therapies. Our framework will enable future studies to link physical activity and resulting mechanical stimuli to progression of OA and loss of cartilage function, facilitating new fundamental understanding of the complex progression of OA and elucidating new perspectives on causes, treatments, and possible preventions.
Collapse
Affiliation(s)
| | - Paul N Watton
- Department of Computer Science & Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - David M Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
49
|
Panichi V, Bissoli I, D'Adamo S, Flamigni F, Cetrullo S, Borzì RM. NOTCH1: A Novel Player in the Molecular Crosstalk Underlying Articular Chondrocyte Protection by Oleuropein and Hydroxytyrosol. Int J Mol Sci 2023; 24:ijms24065830. [PMID: 36982904 PMCID: PMC10058228 DOI: 10.3390/ijms24065830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, but no effective and safe disease-modifying treatment is available. Risk factors such as age, sex, genetics, injuries and obesity can concur to the onset of the disease, variably triggering the loss of maturational arrest of chondrocytes further sustained by oxidative stress, inflammation and catabolism. Different types of nutraceuticals have been studied for their anti-oxidative and anti-inflammatory properties. Olive-derived polyphenols draw particular interest due to their ability to dampen the activation of pivotal signaling pathways in OA. Our study aims to investigate the effects of oleuropein (OE) and hydroxytyrosol (HT) in in vitro OA models and elucidate their possible effects on NOTCH1, a novel therapeutic target for OA. Chondrocytes were cultured and exposed to lipopolysaccharide (LPS). Detailed analysis was carried out about the OE/HT mitigating effects on the release of ROS (DCHF-DA), the increased gene expression of catabolic and inflammatory markers (real time RT-PCR), the release of MMP-13 (ELISA and Western blot) and the activation of underlying signaling pathways (Western blot). Our findings show that HT/OE efficiently attenuates LPS-induced effects by firstly reducing the activation of JNK and of the NOTCH1 pathway downstream. In conclusion, our study provides molecular bases supporting the dietary supplementation of olive-derived polyphenols to revert/delay the progression of OA.
Collapse
Affiliation(s)
- Veronica Panichi
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Irene Bissoli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Stefania D'Adamo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Flavio Flamigni
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Silvia Cetrullo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
50
|
Fung C, Ficklin M, Okafor CC. Associations between meniscal tears and various degrees of osteoarthritis among dogs undergoing TPLO for cranial cruciate ligament rupture. BMC Res Notes 2023; 16:36. [PMID: 36915203 PMCID: PMC10012516 DOI: 10.1186/s13104-023-06307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the association between meniscal lesions and severity of osteoarthritis (OA) among dogs that underwent Tibial Plateau Leveling Osteotomy (TPLO) for stabilization of cranial cruciate ligament rupture (CrCLR) at the University of Tennessee in 2011-2017. RESULTS There were a total of 252 meniscal tears. Factors associated with diagnosis of medial meniscal tears (MMT) in dogs were severe OA in comparison to no OA (3.8 OR, 2.0-8.0 95% CI, 0.001 p-value), sporting and mixed breed group compared to other breed (3.6 OR, 1.7-7.6 95% CI, 0.004 p-value; 3.2 OR, 1.6-6.6 95% CI, 0.019 p-value, respectively), increasing age (1.1 OR, 1.0-1.2 95% CI, 0.018 p-value), complete CrCLR compared to partial (3.3 OR, 2.1-5.0 95% CI, < 0.001 p-value), and arthrotomy compared to arthroscopy (2.2 OR, 1.4-3.1 95% CI, 0.002 p-value). The factors that did not have significance in predicting MMT were weight, sex, lameness period, and side affected.
Collapse
Affiliation(s)
- Canny Fung
- Blue Pearl Veterinary Partners, 1646 Spring Cypress Rd, 77388, Spring, TX, United States of America.
| | - Michael Ficklin
- Blue Pearl Veterinary Partners, 1646 Spring Cypress Rd, 77388, Spring, TX, United States of America
| | - Chika C Okafor
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee at Knoxville, Room A 326 Veterinary Medical Center Building, 2407 River Drive, 37996, Knoxville, TN, United States of America
| |
Collapse
|