1
|
Seaver EC, de Jong DM. Regeneration in the Segmented Annelid Capitella teleta. Genes (Basel) 2021; 12:genes12111769. [PMID: 34828375 PMCID: PMC8623021 DOI: 10.3390/genes12111769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
The segmented worms, or annelids, are a clade within the Lophotrochozoa, one of the three bilaterian superclades. Annelids have long been models for regeneration studies due to their impressive regenerative abilities. Furthermore, the group exhibits variation in adult regeneration abilities with some species able to replace anterior segments, posterior segments, both or neither. Successful regeneration includes regrowth of complex organ systems, including the centralized nervous system, gut, musculature, nephridia and gonads. Here, regenerative capabilities of the annelid Capitella teleta are reviewed. C. teleta exhibits robust posterior regeneration and benefits from having an available sequenced genome and functional genomic tools available to study the molecular and cellular control of the regeneration response. The highly stereotypic developmental program of C. teleta provides opportunities to study adult regeneration and generate robust comparisons between development and regeneration.
Collapse
|
2
|
Rimskaya-Korsakova N, Karaseva N, Pimenov T, Rapp HT, Southward E, Temereva E, Worsaae K. Myogenesis of Siboglinum fiordicum sheds light on body regionalisation in beard worms (Siboglinidae, Annelida). Front Zool 2021; 18:44. [PMID: 34530856 PMCID: PMC8447566 DOI: 10.1186/s12983-021-00426-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/17/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Many annelids, including well-studied species such as Platynereis, show similar structured segments along their body axis (homonomous segmentation). However, numerous annelid species diverge from this pattern and exhibit specialised segments or body regions (heteronomous segmentation). Recent phylogenomic studies and paleontological findings suggest that a heteronomous body architecture may represent an ancestral condition in Annelida. To better understand the segmentation within heteronomous species we describe the myogenesis and mesodermal delineation of segments in Siboglinum fiordicum during development. RESULTS Employing confocal and transmission electron microscopy we show that the somatic longitudinal musculature consists of four separate strands, among which ventrolateral one is the most prominent and is proposed to drive the search movements of the head of the late metatrochophore. The somatic circular musculature lies inside the longitudinal musculature and is predominantly developed at the anterior end of the competent larva to support the burrowing behaviour. Our application of transmission electron microscopy allows us to describe the developmental order of the non-muscular septa. The first septum to form is supported by thick bundles of longitudinal muscles and separates the body into an anterior and a posterior region. The second group of septa to develop further divides the posterior body region (opisthosoma) and is supported by developing circular muscles. At the late larval stage, a septum reinforced by circular muscles divides the anterior body region into a forepart and a trunk segment. The remaining septa and their circular muscles form one by one at the very posterior end of the opisthosoma. CONCLUSIONS The heteronomous Siboglinum lacks the strict anterior to posterior sequence of segment formation as it is found in the most studied annelid species. Instead, the first septum divides the body into two body regions before segments are laid down in first the posterior opisthosoma and then in the anterior body, respectively. Similar patterns of segment formation are described for the heteronomous chaetopterid Chaetopterus variopedatus and serpulid Hydroides elegans and may represent an adaptation of these annelids to the settlement and transition to the sedentarian-tubiculous mode of life.
Collapse
Affiliation(s)
| | - Nadezda Karaseva
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Timofei Pimenov
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Hans Tore Rapp
- Centre for Geobiology and Department of Biology, University of Bergen, Bergen, Norway
| | - Eve Southward
- Marine Biological Association of the U.K., Citadel Hill, Plymouth, PL1 2PB, UK
| | - Elena Temereva
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Carrillo-Baltodano AM, Meyer NP. Decoupling brain from nerve cord development in the annelid Capitella teleta: Insights into the evolution of nervous systems. Dev Biol 2017; 431:134-144. [DOI: 10.1016/j.ydbio.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/17/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
4
|
Brunet T, Lauri A, Arendt D. Did the notochord evolve from an ancient axial muscle? The axochord hypothesis. Bioessays 2015; 37:836-50. [PMID: 26172338 PMCID: PMC5054868 DOI: 10.1002/bies.201500027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/20/2022]
Abstract
The origin of the notochord is one of the key remaining mysteries of our evolutionary ancestry. Here, we present a multi‐level comparison of the chordate notochord to the axochord, a paired axial muscle spanning the ventral midline of annelid worms and other invertebrates. At the cellular level, comparative molecular profiling in the marine annelids P. dumerilii and C. teleta reveals expression of similar, specific gene sets in presumptive axochordal and notochordal cells. These cells also occupy corresponding positions in a conserved anatomical topology and undergo similar morphogenetic movements. At the organ level, a detailed comparison of bilaterian musculatures reveals that most phyla form axochord‐like muscles, suggesting that such a muscle was already present in urbilaterian ancestors. Integrating comparative evidence at the cell and organ level, we propose that the notochord evolved by modification of a ventromedian muscle followed by the assembly of an axial complex supporting swimming in vertebrate ancestors.
Collapse
Affiliation(s)
- Thibaut Brunet
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonella Lauri
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
5
|
Lauri A, Brunet T, Handberg-Thorsager M, Fischer AHL, Simakov O, Steinmetz PRH, Tomer R, Keller PJ, Arendt D. Development of the annelid axochord: insights into notochord evolution. Science 2014; 345:1365-8. [PMID: 25214631 DOI: 10.1126/science.1253396] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The origin of chordates has been debated for more than a century, with one key issue being the emergence of the notochord. In vertebrates, the notochord develops by convergence and extension of the chordamesoderm, a population of midline cells of unique molecular identity. We identify a population of mesodermal cells in a developing invertebrate, the marine annelid Platynereis dumerilii, that converges and extends toward the midline and expresses a notochord-specific combination of genes. These cells differentiate into a longitudinal muscle, the axochord, that is positioned between central nervous system and axial blood vessel and secretes a strong collagenous extracellular matrix. Ancestral state reconstruction suggests that contractile mesodermal midline cells existed in bilaterian ancestors. We propose that these cells, via vacuolization and stiffening, gave rise to the chordate notochord.
Collapse
Affiliation(s)
- Antonella Lauri
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg
| | - Thibaut Brunet
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg
| | - Mette Handberg-Thorsager
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg. Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Antje H L Fischer
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg
| | - Oleg Simakov
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg
| | - Patrick R H Steinmetz
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg
| | - Raju Tomer
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg. Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Philipp J Keller
- Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg. Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
HELM CONRAD, SCHEMEL SINA, BLEIDORN CHRISTOPH. Temporal Plasticity in Annelid Development-Ontogeny ofPhyllodoce groenlandica(Phyllodocidae, Annelida) Reveals Heterochronous Patterns. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:166-78. [DOI: 10.1002/jez.b.22492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 11/09/2022]
Affiliation(s)
- CONRAD HELM
- Molecular Evolution & Systematics of Animals; Institute of Biology, University of Leipzig; Leipzig; Germany
| | - SINA SCHEMEL
- Molecular Evolution & Systematics of Animals; Institute of Biology, University of Leipzig; Leipzig; Germany
| | - CHRISTOPH BLEIDORN
- Molecular Evolution & Systematics of Animals; Institute of Biology, University of Leipzig; Leipzig; Germany
| |
Collapse
|
7
|
Chandramouli KH, Soo L, Qian PY. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I. Proteome Sci 2011; 9:51. [PMID: 21888661 PMCID: PMC3180302 DOI: 10.1186/1477-5956-9-51] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles. RESULTS Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles. CONCLUSION It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes.
Collapse
Affiliation(s)
- Kondethimmanahalli H Chandramouli
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | | | | |
Collapse
|
8
|
KRISTOF ALEN, WOLLESEN TIM, MAIOROVA ANASTASSYAS, WANNINGER ANDREAS. Cellular and muscular growth patterns during sipunculan development. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316B:227-40. [PMID: 21246707 PMCID: PMC4682194 DOI: 10.1002/jez.b.21394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/04/2010] [Accepted: 12/01/2010] [Indexed: 11/07/2022]
Abstract
Sipuncula is a lophotrochozoan taxon with annelid affinities, albeit lacking segmentation of the adult body. Here, we present data on cell proliferation and myogenesis during development of three sipunculan species, Phascolosoma agassizii, Thysanocardia nigra, and Themiste pyroides. The first anlagen of the circular body wall muscles appear simultaneously and not subsequently as in the annelids. At the same time, the rudiments of four longitudinal retractor muscles appear. This supports the notion that four introvert retractors were part of the ancestral sipunculan bodyplan. The longitudinal muscle fibers form a pattern of densely arranged fibers around the retractor muscles, indicating that the latter evolved from modified longitudinal body wall muscles. For a short time interval, the distribution of S-phase mitotic cells shows a metameric pattern in the developing ventral nerve cord during the pelagosphera stage. This pattern disappears close to metamorphic competence. Our findings are congruent with data on sipunculan neurogenesis, as well as with recent molecular analyses that place Sipuncula within Annelida, and thus strongly support a segmental ancestry of Sipuncula.
Collapse
Affiliation(s)
- ALEN KRISTOF
- Department of Biology, Research Group for Comparative Zoology, University of Copenhagen, Copenhagen, Denmark
| | - TIM WOLLESEN
- Department of Biology, Research Group for Comparative Zoology, University of Copenhagen, Copenhagen, Denmark
| | | | - ANDREAS WANNINGER
- Department of Biology, Research Group for Comparative Zoology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Semmler H, Wanninger A. Myogenesis in two polyclad platyhelminths with indirect development, Pseudoceros canadensis and Stylostomum sanjuania. Evol Dev 2010; 12:210-21. [PMID: 20433460 DOI: 10.1111/j.1525-142x.2010.00405.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myogenesis of two representatives of Platyhelminthes, Stylostomum sanjuania and Pseudoceros canadensis, was followed from egg deposition until well-differentiated free-swimming larval stages, using F-actin staining and confocal laserscanning microscopy. Zonulae adhaerentes are the only structures to stain before 50% of development between egg deposition and hatching in S. sanjuania, and before 67% of development in P. canadenis. Subsequently, irregular fibers appear in the embryo, followed by a helicoid muscle close to the apical pole. Three longitudinal muscle pairs form, of which the dorsal pair remains more pronounced than the others. Gradually, new muscles form by branching or from double-stranded muscle zones adjacent to existing muscles. This results in an elaborate muscular bodywall that consists of a single helicoid muscle as well as multiple circular and longitudinal muscles. Diverse retractor muscles insert at the sphincter muscles around the stomodeum. The overall arrangement and formation mode of the larval musculature appears very similar in both species, although only P. canadensis has a primary circular muscle posterior to the helicoid muscle. Muscle formation in the apical region of the embryo precedes that at the abapical pole and the primary longitudinal muscles form slightly later than the primary circular muscles. Myogenesis and larval myoanatomy appears highly conserved among polyclad flatworms, but differs significantly from that of other trochozoan clades. Our data suggest that the larval muscular ground pattern of polyclad larvae comprises a bodywall consisting of a helicoid muscle, circular and longitudinal muscles, several retractor muscles, and sphincter muscles around the stomodeum.
Collapse
Affiliation(s)
- Henrike Semmler
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | | |
Collapse
|
10
|
Brinkmann N, Wanninger A. Capitellid connections: contributions from neuromuscular development of the maldanid polychaete Axiothella rubrocincta (Annelida). BMC Evol Biol 2010; 10:168. [PMID: 20529306 PMCID: PMC2897808 DOI: 10.1186/1471-2148-10-168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 06/08/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Numerous phylogenetic analyses on polychaete annelids suggest a taxon Capitellida that comprises the three families Maldanidae, Arenicolidae and Capitellidae. Recent molecular studies support the position of the Echiura, traditionally ranked as a separate phylum, within the capitellids. In order to test the robustness of this molecular-based hypothesis we take a different approach using comparative analyses of nervous and muscle system development in the maldanid Axiothella rubrocincta. Employing immunocytochemistry in combination with confocal laserscanning microscopy, we broaden the database on capitellid organogenesis, thereby incorporating classical histological data in our analysis. Besides assessing possible shared features with the echiurans, we also discuss the variability of neural and muscular characters within the Capitellida. RESULTS The scaffold of the adult central nervous system, which is already established in early developmental stages of Axiothella, consists of cerebral commissures that give rise to simple circumesophageal connectives with fused ventral and dorsal roots and a single ventral neurite bundle. From the latter arise segmental neurites that innervate the peripheral bodywall. Since there is no observable regular pattern, and individual neurites are lost during ontogeny, their exact arrangement remains elusive. The pharynx is encircled by a prominent stomatogastric nerve ring, with a pair of anterior and lateral proboscis neurites directly connecting it to the central nervous system. One pair of ventral and one pair of dorsal longitudinal muscles form the earliest rudiments of the bodywall musculature in late larval stages, while a continuous layer of circular muscles is lacking throughout ontogeny. CONCLUSIONS Comparative neurodevelopmental analysis of capitellid and echiuran species reveals several common characters, including simple circumesophageal connectives, a single fused ventral nerve strand, and a stomatogastric ring nerve, that support a close relationship of both taxa, thus corroborating recent molecular phylogenetic analyses. The data on myogenesis show that four longitudinal muscle bands most likely represent an ancestral character not only for the Capitellida, but for the Annelida in general. Whether or not circular muscles are part of the annelid groundpattern remains uncertain.
Collapse
Affiliation(s)
- Nora Brinkmann
- Department of Biology, Research Group for Comparative Zoology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Andreas Wanninger
- Department of Biology, Research Group for Comparative Zoology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Worsaae K, Rouse GW. The simplicity of males: dwarf males of four species of Osedax (Siboglinidae; Annelida) investigated by confocal laser scanning microscopy. J Morphol 2010; 271:127-42. [PMID: 19658166 DOI: 10.1002/jmor.10786] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dwarf males of the bone-eating worms Osedax (Siboglinidae, Annelida) have been proposed to develop from larvae that settle on females rather than on bone. The apparent arrest in somatic development and resemblance of the males to trochophore larvae has been posited as an example of paedomorphosis. Here, we present the first investigation of the entire muscle and nervous system in dwarf males of Osedax frankpressi, O. roseus, O. rubiplumus, and O. "spiral" analyzed by multistaining and confocal laser scanning microscopy. Sperm shape and spermiogenesis, the sperm duct and internal and external ciliary patterns were likewise visualized. The males of all four species possess morphological traits typical of newly settled siboglinid larvae: a prostomium, a peristomium with a prototroch, one elongate segment and a second shorter segment. Each segment has a ring of eight long-handled hooked chaetae. The longitudinal muscles are distributed as evenly spaced strands forming a grid with the thin outer circular muscles. Oblique protractor and retractor muscles are associated with each of the chaetal sacs. The nervous system comprises a cerebral ganglion, a prototroch nerve ring, paired dorsolateral longitudinal nerves, five ventral longitudinal nerves with paired, posterior ganglia and a terminal commissure, as well as a net of fine peripheral transverse plexuses surrounding the first segment. Internal ciliation occurs as paired ventrolateral bands along the first segment. The bands appear to lead the free mature sperm to a ciliated duct and seminal vesicle lying just behind the prototroch region. A duct then runs from the seminal vesicle into the dorsal part of the prostomium. The similarity of Osedax males to the larvae of Osedax and other siboglinid annelids as well as similarities shown here to the neuromuscular organization seen in other annelid larvae supports the hypothesis of paedomorphosis in males of Osedax.
Collapse
Affiliation(s)
- Katrine Worsaae
- Marine Biological Laboratory, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
| | | |
Collapse
|
12
|
Brinkmann N, Wanninger A. Integrative analysis of polychaete ontogeny: cell proliferation patterns and myogenesis in trochophore larvae ofSabellaria alveolata. Evol Dev 2010; 12:5-15. [DOI: 10.1111/j.1525-142x.2009.00386.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Hunnekuhl VS, Bergter A, Purschke G, Paululat A. Development and embryonic pattern of body wall musculature in the crassiclitellateEisenia andrei(Annelida, Clitellata). J Morphol 2009; 270:1122-36. [DOI: 10.1002/jmor.10749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Wanninger A. Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the tetraneuralia concept. THE BIOLOGICAL BULLETIN 2009; 216:293-306. [PMID: 19556595 DOI: 10.1086/bblv216n3p293] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite the large variation in adult bodyplan phenotypes, a worm-shaped morphology is considered plesiomorphic for both Lophotrochozoa and Bilateria. Although almost all larval and adult lophotrochozoan worms have serially arranged ring muscles in their body wall, a comparison of their ontogeny reveals no less than six different developmental pathways that lead to this homogenous arrangement of ring muscles. However, in all taxa, with the exception of chaetodermomorph molluscs and the segmented annelids, ring muscle development starts with synchronous formation of certain pioneer myocytes, which is thus considered basal for Lophotrochozoa. Recent studies on spiralian neurogenesis revealed remnants of ancestral segmentation in echiurans and sipunculans, thus confirming molecular phylogenetic studies that propose a close relationship of these three taxa. Larval entoprocts exhibit a mosaic of larval and adult molluscan characters and, among other apomorphies, share with polyplacophoran Mollusca a complex larval apical organ and a tetraneurous nervous system, strongly suggesting a monophyletic assemblage of Entoprocta and Mollusca. The term Tetraneuralia is proposed herein for this lophotrochozoan clade. Overall, formation of the lophotrochozoan neuromuscular bodyplan appears as a highly dynamic process on both the ontogenetic and the evolutionary timescales, highlighting the importance of insights into these processes for reconstructing ancestral bodyplan features and phylogenetic relationships.
Collapse
Affiliation(s)
- Andreas Wanninger
- University of Copenhagen, Department of Biology, Research Group for Comparative Zoology, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
15
|
Bolaños DM, Litvaitis MK. Embryonic muscle development in direct and indirect developing marine flatworms (Platyhelminthes, Polycladida). Evol Dev 2009; 11:290-301. [DOI: 10.1111/j.1525-142x.2009.00331.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Altenburger A, Wanninger A. Comparative larval myogenesis and adult myoanatomy of the rhynchonelliform (articulate) brachiopods Argyrotheca cordata, A. cistellula, and Terebratalia transversa. Front Zool 2009; 6:3. [PMID: 19192287 PMCID: PMC2645390 DOI: 10.1186/1742-9994-6-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 02/03/2009] [Indexed: 11/11/2022] Open
Abstract
Background Despite significant methodological progress, Brachiopoda remains one of the lophotrochozoan phyla for which no recent ontogenetic data employing modern methodologies such as fluorescence labelling and confocal microscopy are available. This is particularly astonishing given the ongoing controversy concerning its phylogenetic position. In order to contribute new morphogenetic data for phylogenetic and evolutionary inferences, we describe herein the ontogeny and myoanatomy of larvae and adults of the rhynchonelliform brachiopods Argyrotheca cordata, A. cistellula, and Terebratalia transversa using fluorescence F-actin labelling combined with confocal laserscanning microscopy. Results Fully grown larvae of A. cordata and T. transversa consist of three distinct body regions, namely an apical lobe, a mantle lobe with four bundles of setae, and a pedicle lobe. Myogenesis is very similar in these two species. The first anlagen of the musculature develop in the pedicle lobe, followed by setae muscles and the mantle lobe musculature. Late-stage larvae show a network of strong pedicle muscles, central mantle muscles, longitudinal muscles running from the mantle to the pedicle lobe, setae pouch muscles, setae muscles, a U-shaped muscle, serial mantle muscles, and apical longitudinal as well as apical transversal muscles. Fully developed A. cistellula larvae differ from the former species in that they have only two visible body lobes and lack setae. Nevertheless, we found corresponding muscle systems to all muscles present in the former two species, except for the musculature associated with the setae, in larvae of A. cistellula. With our survey of the adult myoanatomy of A. cordata and A. cistellula and the juvenile muscular architecture of T. transversa we confirm the presence of adductors, diductors, dorsal and ventral pedicle adjustors, mantle margin muscles, a distinct musculature of the intestine, and striated muscle fibres in the tentacles for all three species. Conclusion Our data indicate that larvae of rhynchonelliform brachiopods share a common muscular bodyplan and are thus derived from a common ancestral larval type. Comparison of the muscular phenotype of rhynchonelliform larvae to that of the other two lophophorate phyla, Phoronida and Ectoprocta, does not indicate homology of individual larval muscles. This may be due to an early evolutionary split of the ontogenetic pathways of Brachiopoda, Phoronida, and Ectoprocta that gave rise to the morphological diversity of these phyla.
Collapse
Affiliation(s)
- Andreas Altenburger
- University of Copenhagen, Department of Biology, Research Group for Comparative Zoology, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark.
| | | |
Collapse
|
17
|
|
18
|
Bergter A, Brubacher JL, Paululat A. Muscle formation during embryogenesis of the polychaete Ophryotrocha diadema (Dorvilleidae) - new insights into annelid muscle patterns. Front Zool 2008; 5:1. [PMID: 18171469 PMCID: PMC2254616 DOI: 10.1186/1742-9994-5-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 01/02/2008] [Indexed: 11/10/2022] Open
Abstract
Background The standard textbook information that annelid musculature consists of oligochaete-like outer circular and inner longitudinal muscle-layers has recently been called into question by observations of a variety of complex muscle systems in numerous polychaete taxa. To clarify the ancestral muscle arrangement in this taxon, we compared myogenetic patterns during embryogenesis of Ophryotrocha diadema with available data on oligochaete and polychaete myogenesis. This work addresses the conflicting views on the ground pattern of annelids, and adds to our knowledge of the evolution of lophotrochozoan taxa. Results Somatic musculature in Ophryotrocha diadema can be classified into the trunk, prostomial/peristomial, and parapodial muscle complexes. The trunk muscles comprise strong bilateral pairs of distinct dorsal and ventral longitudinal strands. The latter are the first to differentiate during myogenesis. They originate within the peristomium and grow posteriorly through the continuous addition of myocytes. Later, the longitudinal muscles also expand anteriorly and form a complex arrangement of prostomial muscles. Four embryonic parapodia differentiate in an anterior-to-posterior progression, significantly contributing to the somatic musculature. Several diagonal and transverse muscles are present dorsally. Some of the latter are situated external to the longitudinal muscles, which implies they are homologous to the circular muscles of oligochaetes. These circular fibers are only weakly developed, and do not appear to form complete muscle circles. Conclusion Comparison of embryonic muscle patterns showed distinct similarities between myogenetic processes in Ophryotrocha diadema and those of oligochaete species, which allows us to relate the diverse adult muscle arrangements of these annelid taxa to each other. These findings provide significant clues for the interpretation of evolutionary changes in annelid musculature.
Collapse
Affiliation(s)
- Annette Bergter
- Department of Zoology, University of Osnabrueck, Barbarastr, 11, D-49069 Osnabrueck, Germany.
| | | | | |
Collapse
|
19
|
Bergter A, Hunnekuhl VS, Schniederjans M, Paululat A. Evolutionary aspects of pattern formation during clitellate muscle development. Evol Dev 2007; 9:602-17. [DOI: 10.1111/j.1525-142x.2007.00184.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Nielsen C, Haszprunar G, Ruthensteiner B, Wanninger A. Early development of the aplacophoran mollusc Chaetoderma. ACTA ZOOL-STOCKHOLM 2007. [DOI: 10.1111/j.1463-6395.2007.00270.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Bergter A, Paululat A. Pattern of body-wall muscle differentiation during embryonic development ofEnchytraeus coronatus (Annelida: Oligochaeta; Enchytraeidae). J Morphol 2007; 268:537-49. [PMID: 17437296 DOI: 10.1002/jmor.10532] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The plesiomorphic arrangement of body-wall musculature within the annelids is still under discussion. While polychaete groups show a great variety of patterns in their somatic muscles, the musculature of soil-living oligochaetes was thought to represent the characteristic pattern in annelids. Oligochaete body-wall muscles consist of an outer continuous layer of circular and an inner continuous layer of longitudinal muscles, forming a closed tube. Since designs of adult body musculature are influenced by evolutionary changes, additional patterns found during embryogenesis can give further information about possible plesiomorphic features. In oligochaetes, detailed cell-lineage analyses document the origin of the mesoderm and consequently the muscles, but later processes of muscle formation remain unclear. In the present work, body-wall muscle differentiation was monitored during embryogenesis of thesoil-living oligochaete Enchytraeus coronatus (Annelida) by phalloidin staining. Primary circular muscles form in a discrete anterior-to-posterior segmental pattern, whereas emerging longitudinal muscles are restricted to one ventral and one dorsal pair of primary strands, which continuously elongate towards posterior. These primary muscles establish an initial muscle-template. Secondary circular and longitudinal muscles subsequently differentiate in the previous spaces later in development. The prominent ventral primary longitudinal muscle strands on both sides eventually meet at the ventral midline due to neurulation, which moves the ventral nerve cord into a coelomic position, closing the muscle layers into a complete tube. This early embryonic pattern in E. coronatus resembles the adult body-wall muscle arrangements in several polychaete groups as well as muscle differentiation during embryonic development of the polychaete Capitella sp. I.
Collapse
Affiliation(s)
- Annette Bergter
- Department of Zoology, University of Osnabrück, Barbarastr. 11, D-49069 Osnabrück, Germany
| | | |
Collapse
|
22
|
McDougall C, Chen WC, Shimeld SM, Ferrier DEK. The development of the larval nervous system, musculature and ciliary bands of Pomatoceros lamarckii (Annelida): heterochrony in polychaetes. Front Zool 2006; 3:16. [PMID: 17032451 PMCID: PMC1615870 DOI: 10.1186/1742-9994-3-16] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/10/2006] [Indexed: 11/20/2022] Open
Abstract
Background To understand the evolution of animals it is essential to have taxon sampling across a representative spread of the animal kingdom. With the recent rearrangement of most of the Bilateria into three major clades (Ecdysozoa, Lophotrochozoa and Deuterostomia) it has become clear that the Lophotrochozoa are relatively poorly represented in our knowledge of animal development, compared to the Ecdysozoa and Deuterostomia. We aim to contribute towards redressing this balance with data on the development of the muscular, nervous and ciliary systems of the annelid Pomatoceros lamarckii (Serpulidae). We compare our data with other lophotrochozoans. Results P. lamarckii develops locomotory and feeding structures that enable it to become a swimming, planktotrophic larva within 24 hours. Formation of the trochophore includes development of a prototroch, metatroch and neurotroch, development of apical and posterior nervous elements at similar times, and development of musculature around the ciliary bands and digestive tract prior to development of any body wall muscles. The adult nervous and muscular systems are essentially preformed in the late larva. Interestingly, the muscular systems of the larvae and juvenile worms do not include the circular muscles of the body wall, which are considered to be plesiomorphic for annelids, although the possibility that circular muscles develop after these stages cannot be ruled out at this point. Conclusion A comparison between polychaetes shows variability in the timing (heterochrony) of development of body wall muscles and elements of the nervous system. These heterochronies are one route for evolution of different life history strategies, such as adaptations to feeding requirements.
Collapse
Affiliation(s)
- Carmel McDougall
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | - Wei-Chung Chen
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | | | - David EK Ferrier
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
23
|
Wanninger A, Koop D, Bromham L, Noonan E, Degnan BM. Nervous and muscle system development in Phascolion strombus (Sipuncula). Dev Genes Evol 2005; 215:509-18. [PMID: 16133569 DOI: 10.1007/s00427-005-0012-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 06/03/2005] [Indexed: 11/28/2022]
Abstract
Recent interpretations of developmental gene expression patterns propose that the last common metazoan ancestor was segmented, although most animal phyla show no obvious signs of segmentation. Developmental studies of non-model system trochozoan taxa may shed light on this hypothesis by assessing possible cryptic segmentation patterns. In this paper, we present the first immunocytochemical data on the ontogeny of the nervous system and the musculature in the sipunculan Phascolion strombus. Myogenesis of the first anlagen of the body wall ring muscles occurs synchronously and not subsequently from anterior to posterior as in segmented spiralian taxa (i.e. annelids). The number of ring muscles remains constant during the initial stages of body axis elongation. In the anterior-posteriorly elongated larva, newly formed ring muscles originate along the entire body axis between existing myocytes, indicating that repeated muscle bands do not form from a posterior growth zone. During neurogenesis, the Phascolion larva expresses a non-metameric, paired, ventral nerve cord that fuses in the mid-body region in the late-stage elongated larva. Contrary to other trochozoans, Phascolion lacks any larval serotonergic structures. However, two to three FMRFamide-positive cells are found in the apical organ. In addition, late larvae show commissure-like neurones interconnecting the two ventral nerve cords, while early juveniles exhibit a third, medially placed FMRFamidergic ventral nerve. Although we did not find any indications for cryptic segmentation, certain neuro-developmental traits in Phascolion resemble the conditions found in polychaetes (including echiurans) and myzostomids and support a close relationship of Sipuncula and Annelida.
Collapse
Affiliation(s)
- Andreas Wanninger
- Department of Cell Biology and Comparative Zoology, Institute of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark.
| | | | | | | | | |
Collapse
|
24
|
Seaver EC, Thamm K, Hill SD. Growth patterns during segmentation in the two polychaete annelids, Capitella sp. I and Hydroides elegans: comparisons at distinct life history stages. Evol Dev 2005; 7:312-26. [PMID: 15982368 DOI: 10.1111/j.1525-142x.2005.05037.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many animals generate new body segments sequentially from a posterior growth zone, and this is generally thought to be the case for the annelids. Most annelids, including polychaetes, have an indirect life cycle and generate their earliest segments during larval life. We have characterized the nature of the growth zone in two polychaetes, Hydroides elegans and Capitella sp. I, during both larval and juvenile stages of segment formation by examining cell division patterns with 5-bromo-2'-deoxyuridine incorporation. Cell division patterns show commonalities between the two species, even though they have distinct body plans and life history characteristics. In both polychaetes, larval segments arise from a field of dividing cells located in lateral regions of the body, rather than from a localized posterior growth zone. Circumferential expansion of the forming segmental tissue is particularly pronounced in Capitella sp. I. Post-metamorphic segments, in contrast, originate from a classical posterior growth zone, with the exception of four posterior thoracic segments of H. elegans, which appear to arise from an area in the middle of the body, indicating plasticity of segment-generating mechanisms present in different annelid life histories. The distinct nature of larval versus juvenile growth zones in H. elegans and Capitella sp. I raises the question of the mechanistic relationship between these two growth zones. The results of this study increase our understanding of the cellular origins of segments in annelids, and serve as a basis for interpretation of molecular expression patterns associated with segment formation in polychaetes.
Collapse
Affiliation(s)
- Elaine C Seaver
- Kewalo Marine Laboratory, PBRC/University of Hawaii, 41 Ahui St., Honolulu, HI 96813, USA.
| | | | | |
Collapse
|
25
|
Wanninger A. Myo-anatomy of juvenile and adult loxosomatid Entoprocta and the use of muscular body plans for phylogenetic inferences. J Morphol 2004; 261:249-57. [PMID: 15216527 DOI: 10.1002/jmor.10247] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The anatomy of the muscle bauplan in juvenile buds and adult specimens of the solitary loxosomatid entoprocts Loxosoma nielseni and L. annelidicola was studied by means of fluorescence staining of F-actin and confocal laser scanning microscopy. Although the general myo-anatomy of the body wall shows numerous similarities, both species express significant variations in the arrangement of their pedal muscles. In addition, L. annelidicola alone shows a distinct pair of rectum retractor muscles. Circular muscles are absent in the entire body wall of both species, as well as in previously investigated colonial taxa, which is therefore regarded as basal for Entoprocta. This is in striking contrast to the conditions found in other spiralian or lophotrochozoan taxa. The simple morphology of entoproct tentacle muscles, however, coincides with the phoronid-ectoproct condition and may be due to functional constraints of a simple filter-feeding system. This work shows that variations in the muscular anatomy provide useful characters for systematic analyses on species as well as phylum level and thus allow significant insight regarding metazoan body plan evolution. The phenomenon of phenotypic plasticity and its consequences for phylogenetic interpretations, however, must be carefully considered.
Collapse
|
26
|
Hill SD, Boyer BC. HNK-1/N-CAM immunoreactivity correlates with ciliary patterns during development of the polychaete Capitella sp. I. THE BIOLOGICAL BULLETIN 2003; 205:182-184. [PMID: 14583519 DOI: 10.2307/1543242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Susan D Hill
- Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|