1
|
Langendorf RE, Estes JA, Watson JC, Kenner MC, Hatfield BB, Tinker MT, Waddle E, DeMarche ML, Doak DF. Dynamic and context-dependent keystone species effects in kelp forests. Proc Natl Acad Sci U S A 2025; 122:e2413360122. [PMID: 40030028 PMCID: PMC11912371 DOI: 10.1073/pnas.2413360122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/11/2024] [Indexed: 03/19/2025] Open
Abstract
Sea otters are an iconic keystone predator that can maintain kelp forests by preying on grazing invertebrates such as sea urchins. However, the effects of sea otters on kelp forests vary over their geographic range. Here, we analyze two 30-y datasets on kelp forest communities during the reintroduction of sea otters along the west coast of Vancouver Island, BC, Canada, and around San Nicolas Island, CA. We developed a community model to estimate species interactions as dynamic rates, varying with community state. We find evidence of a classic trophic cascade off Vancouver Island; the arrival of otters quickly led to depletion of urchins and recovery of kelp. However, this cascade was muted around San Nicolas Island, with otters, urchins, and kelp all coexisting at intermediate densities for multiple years. Our models show that this difference came from a pulse of strong otter impacts on urchins following recolonization off Vancouver Island, but not off San Nicolas Island. The mean effects of otters on urchins and urchins on kelp were not stronger in the north, indicating that interaction dynamics and not average interaction strength are key to explaining differences in community trajectories. We also find stronger multistep interaction chains in the south, arising from competitive interactions that indirectly buffered otter effects. These findings shed light on long-standing hypotheses about how interspecific interactions can alter the function of keystone species across community contexts. More broadly, we show how community change can be more accurately predicted by considering dynamic interaction strengths.
Collapse
Affiliation(s)
- Ryan E. Langendorf
- Department of Environmental Studies, University of Colorado, Boulder, CO80309
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO80309
| | - James A. Estes
- United States Geological Survey, Western Ecological Research Center, Santa Cruz, CA95060
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95060
| | - Jane C. Watson
- Biology Department, Vancouver Island University, Nanaimo, BCV9R 5S5, Canada
| | - Michael C. Kenner
- United States Geological Survey, Western Ecological Research Center, Santa Cruz, CA95060
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95060
| | - Brian B. Hatfield
- United States Geological Survey, Western Ecological Research Center, Santa Cruz, CA95060
| | - M. Tim Tinker
- United States Geological Survey, Western Ecological Research Center, Santa Cruz, CA95060
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95060
- Nhydra Ecological Consulting, Head of St. Margaret’s Bay, NSB3Z 2G6, Canada
| | - Ellen Waddle
- Department of Environmental Studies, University of Colorado, Boulder, CO80309
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80303
| | | | - Daniel F. Doak
- Department of Environmental Studies, University of Colorado, Boulder, CO80309
| |
Collapse
|
2
|
Quod JP, Séré M, Hewson I, Roth L, Bronstein O. Spread of a sea urchin disease to the Indian Ocean causes widespread mortalities-Evidence from Réunion Island. Ecology 2025; 106:e4476. [PMID: 39568163 PMCID: PMC11731499 DOI: 10.1002/ecy.4476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/05/2024] [Accepted: 09/11/2024] [Indexed: 11/22/2024]
Affiliation(s)
- Jean-Pascal Quod
- ARVAM, Technopole de la Réunion, Sainte-Clotilde, Réunion Island, France
| | - Mathieu Séré
- Réunion University and Technology Institute, Biological Engineering, Saint Pierre, Réunion Island, France
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Lachan Roth
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
- The Inter University Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Omri Bronstein
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Johnstone J, Suzuki I, Davis RW, Konno N, Murayama K, Ochiai S, Mitani Y. The effect of a harmful algal bloom (Karenia selliformis) on the benthic invertebrate community and the sea otter (Enhydra lutris) diet in eastern Hokkaido. PLoS One 2024; 19:e0303126. [PMID: 39570999 PMCID: PMC11581392 DOI: 10.1371/journal.pone.0303126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
In recent decades, the locally extinct sea otter (Enhydra lutris lutris) has been recolonizing the coast of eastern Hokkaido. Their diet includes benthic invertebrates such as bivalves, sea urchins, snails, and chitons. In the fall of 2021, a harmful algal bloom (HAB) of Karenia selliformis occurred across Hokkaido's northern and eastern coasts, leading to a massive mortality of sea urchins. This dinoflagellate produces a neurotoxin (gymnodimine) implicated in shellfish poisoning. To determine the effect of the HAB on the marine community, we conducted benthic surveys using SCUBA and visually monitored the prey items of the sea otters in the affected area from 2020 to 2023. Following the HAB, we observed an 82% decrease in benthic sea urchin density (number m2), leading to their complete absence from the diet of sea otters. Conversely, bivalve density increased six-fold, accompanied by a nearly two-fold rise in their percentage in the sea otters' diet. Minimal changes were observed in the density of chitons and snails, with no significant alteration in the sea otters' diet. Despite these changes, the impact of the HAB on otters' dietary preferences was temporary, as the percentage of dietary sea urchins began recovering one year later. Sea otters augmented their diet with bivalves to compensate for the reduced availability of sea urchins during the HAB with no apparent effects on the number of sea otters or their health. Our results highlight the adaptability of sea otters to adjust their diet according to prey availability.
Collapse
Affiliation(s)
- Jackson Johnstone
- Graduate School of Environmental Science, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Ippei Suzuki
- Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Akkeshi, Hokkaido, Japan
| | - Randall William Davis
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Natsuki Konno
- Graduate School of Environmental Science, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Kyohei Murayama
- Graduate School of Environmental Science, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Satsuki Ochiai
- Graduate School of Environmental Science, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Yoko Mitani
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Morton JP, Hensel MJS, DeLaMater DS, Angelini C, Atkins RL, Prince KD, Williams SL, Boyd AD, Parsons J, Resetarits EJ, Smith CS, Valdez S, Monnet E, Farhan R, Mobilian C, Renzi J, Smith D, Craft C, Byers JE, Alber M, Pennings SC, Silliman BR. Mesopredator release moderates trophic control of plant biomass in a Georgia salt marsh. Ecology 2024:e4452. [PMID: 39468868 DOI: 10.1002/ecy.4452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 10/30/2024]
Abstract
Predators regulate communities through top-down control in many ecosystems. Because most studies of top-down control last less than a year and focus on only a subset of the community, they may miss predator effects that manifest at longer timescales or across whole food webs. In southeastern US salt marshes, short-term and small-scale experiments indicate that nektonic predators (e.g., blue crab, fish, terrapins) facilitate the foundational grass, Spartina alterniflora, by consuming herbivorous snails and crabs. To test both how nekton affect marsh processes when the entire animal community is present, and how prior results scale over time, we conducted a 3-year nekton exclusion experiment in a Georgia salt marsh using replicated 19.6 m2 plots. Our nekton exclusions increased densities of plant-grazing snails and juvenile deposit-feeding fiddler crab and, in Year 2, reduced predation on tethered juvenile snails, indicating that nektonic predators control these key macroinvertebrates. However, in Year 3, densities of mesopredatory benthic mud crabs increased threefold in nekton exclusions, erasing the tethered snails' predation refuge. Nekton exclusion had no effect on Spartina biomass, likely because the observed mesopredator release suppressed grazing snail densities and elevated densities of fiddler crabs, whose burrowing alleviates soil stresses. Structural equation modeling supported the hypotheses that nektonic predators and mesopredators control invertebrate communities, with nektonic predators having stronger total effects on Spartina than mud crabs by controlling densities of species that both suppress (grazers) and facilitate (fiddler crabs) plant growth. These findings highlight that salt marshes can be resilient to multiyear reductions in nektonic predators if mesopredators are present and that multiple pathways of trophic control manifest in different ways over time to mediate community dynamics. These results highlight that larger scale and longer-term experiments can illuminate community dynamics not previously understood, even in well-studied ecosystems such as salt marshes.
Collapse
Affiliation(s)
- Joseph P Morton
- Duke University Marine Lab, Beaufort, North Carolina, USA
- Department of Environmental Engineering Sciences, Center for Coastal Solutions, University of Florida, Gainesville, Florida, USA
| | - Marc J S Hensel
- Department of Biological Sciences, Virginia Institute of Marine Sciences, College of William and Mary, Gloucester, Virginia, USA
| | | | - Christine Angelini
- Department of Environmental Engineering Sciences, Center for Coastal Solutions, University of Florida, Gainesville, Florida, USA
| | - Rebecca L Atkins
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Kimberly D Prince
- Department of Environmental Engineering Sciences, Center for Coastal Solutions, University of Florida, Gainesville, Florida, USA
| | | | - Anjali D Boyd
- Duke University Marine Lab, Beaufort, North Carolina, USA
| | - Jennifer Parsons
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Emlyn J Resetarits
- Department of Biological Sciences, Barnard College, Columbia University, New York, New York, USA
| | - Carter S Smith
- Duke University Marine Lab, Beaufort, North Carolina, USA
| | | | - Evan Monnet
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Roxanne Farhan
- Deptartment of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Courtney Mobilian
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Julianna Renzi
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Dontrece Smith
- Deptartment of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Christopher Craft
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - James E Byers
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Merryl Alber
- Deptartment of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | |
Collapse
|
5
|
Chevallay M, Guinet C, Goulet-Tran D, Jeanniard du Dot T. Sealing the deal - Antarctic fur seals' active hunting tactics to capture small evasive prey revealed by miniature sonar tags. J Exp Biol 2024; 227:jeb246937. [PMID: 38634142 DOI: 10.1242/jeb.246937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
The ability of predators to adopt hunting tactics that minimise escape reactions from prey is crucial for efficient foraging, and depends on detection capabilities and locomotor performance of both predators and prey. Here, we investigated the efficiency of a small pinniped, the Antarctic fur seal (Arctocephalus gazella) at exploiting their small prey by describing for the first time their fine-scale predator-prey interactions. We compared these with those from another diving predator, the southern elephant seal (Mirounga leonina) that forage on the same prey type. We used data recorded by a newly developed sonar tag that combines active acoustics with ultrahigh-resolution movement sensors to study simultaneously the fine-scale behaviour of both Antarctic fur seals and prey during predator-prey interactions in more than 1200 prey capture events for eight female Antarctic fur seals. Our results showed that Antarctic fur seals and their prey detect each other at the same time, i.e. 1-2 s before the strike, forcing Antarctic fur seals to display reactive fast-moving chases to capture their prey. In contrast, southern elephant seals detect their prey up to 10 s before the strike, allowing them to approach their prey stealthily without triggering an escape reaction. The active hunting tactics used by Antarctic fur seals is probably very energy consuming compared with the stalking tactics used by southern elephant seals but might be compensated for by the consumption of faster-moving larger prey. We suggest that differences in manoeuvrability, locomotor performance and detection capacities and in pace of life between Antarctic fur seals and southern elephant seals might explain these differences in hunting styles.
Collapse
Affiliation(s)
- Mathilde Chevallay
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France
| | - Didier Goulet-Tran
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France
| | - Tiphaine Jeanniard du Dot
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France
| |
Collapse
|
6
|
Hanley ME, Firth LB, Foggo A. Victim of changes? Marine macroalgae in a changing world. ANNALS OF BOTANY 2024; 133:1-16. [PMID: 37996092 PMCID: PMC10921835 DOI: 10.1093/aob/mcad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Marine macroalgae ('seaweeds') are a diverse and globally distributed group of photosynthetic organisms that together generate considerable primary productivity, provide an array of different habitats for other organisms, and contribute many important ecosystem functions and services. As a result of continued anthropogenic stress on marine systems, many macroalgal species and habitats face an uncertain future, risking their vital contribution to global productivity and ecosystem service provision. SCOPE After briefly considering the remarkable taxonomy and ecological distribution of marine macroalgae, we review how the threats posed by a combination of anthropogenically induced stressors affect seaweed species and communities. From there we highlight five critical avenues for further research to explore (long-term monitoring, use of functional traits, focus on early ontogeny, biotic interactions and impact of marine litter on coastal vegetation). CONCLUSIONS Although there are considerable parallels with terrestrial vascular plant responses to the many threats posed by anthropogenic stressors, we note that the impacts of some (e.g. habitat loss) are much less keenly felt in the oceans than on land. Nevertheless, and in common with terrestrial plant communities, the impact of climate change will inevitably be the most pernicious threat to the future persistence of seaweed species, communities and service provision. While understanding macroalgal responses to simultaneous environmental stressors is inevitably a complex exercise, our attempt to highlight synergies with terrestrial systems, and provide five future research priorities to elucidate some of the important trends and mechanisms of response, may yet offer some small contribution to this goal.
Collapse
Affiliation(s)
- Mick E Hanley
- School of Biological and Marine Sciences, University of Plymouth, UK
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, UK
| | - Andy Foggo
- School of Biological and Marine Sciences, University of Plymouth, UK
| |
Collapse
|
7
|
Hollarsmith JA, Cornett JC, Evenson E, Tugaw A. A century of canopy kelp persistence and recovery in the Gulf of Alaska. ANNALS OF BOTANY 2024; 133:105-116. [PMID: 37832150 PMCID: PMC10921840 DOI: 10.1093/aob/mcad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND AIMS Coastal Alaska contains vast kelp habitat that supports diverse marine and human communities. Over the past century, the North Pacific Ocean has undergone oceanographic and ecological regime shifts that have the potential to influence the structure and function of kelp ecosystems strongly. However, the remoteness and complexity of the glacially carved region precludes the regular monitoring efforts that would be necessary to detect such changes. METHODS To begin to fill this critical knowledge gap, we drew upon historical and modern surveys to analyse the change in spatial coverage and species composition of canopy kelp between two time points (1913 and the early 2000s to 2010s). We also incorporated decadal surveys on sea otter range expansion following complete extirpation and reintroduction to assess the influence of sea otter recovery on the spatial extent of canopy kelp. KEY RESULTS We found increases in the spatial extent of canopy kelp throughout the Gulf of Alaska where there was coverage from both surveys. Kelp in Southcentral Alaska showed extensive recovery after the catastrophic Novarupta volcano. Kelp in Southeast Alaska showed persistence and spatial increase that closely matched increases in the range of sea otters. Observations of thermally tolerant kelp species increased more than observations of cold-adapted species between the two surveys. CONCLUSIONS Contrary to trends observed at lower latitudes, the kelp forests that ring the Gulf of Alaska have been remarkably stable and even increased in the past century, despite oceanographic and ecosystem changes. To improve monitoring, we propose identification of sentinel kelp beds for regular monitoring to detect changes to these iconic and foundational canopy kelp species more readily.
Collapse
Affiliation(s)
- Jordan A Hollarsmith
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 17109 Point Lena Loop Road, Juneau, AK 99801, USA
| | - Juliana C Cornett
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 17109 Point Lena Loop Road, Juneau, AK 99801, USA
- Alaska Sea Grant, University of Alaska Fairbanks, 218 O’Neill Building, PO Box 755040, Fairbanks, AK 99775, USA
| | - Emily Evenson
- Washington State University, 1815 Wilson Road, Pullman, WA 99163, USA
- Cooperative Institute for Climate, Ocean, & Ecosystem Studies, University of Washington, 3737 Brooklyn Avenue NE, Seattle, WA 98105, USA and
| | - Alex Tugaw
- University of Alaska Southeast, 11066 Auke Lake Way, Juneau, AK 99801, USA
| |
Collapse
|
8
|
Kanishka AM, Blanchard W, Lavery TH, Robinson NM, Dexter N, Dickman CR, MacGregor C, Lindenmayer DB. Environmental variables influence patterns of mammal co-occurrence following introduced predator control. PLoS One 2023; 18:e0292919. [PMID: 38032980 PMCID: PMC10688647 DOI: 10.1371/journal.pone.0292919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/02/2023] [Indexed: 12/02/2023] Open
Abstract
Co-occurring species often overlap in their use of resources and can interact in complex ways. However, shifts in environmental conditions or resource availability can lead to changes in patterns of species co-occurrence, which may be exacerbated by global escalation of human disturbances to ecosystems, including conservation-directed interventions. We investigated the relative abundance and co-occurrence of two naturally sympatric mammal species following two forms of environmental disturbance: wildfire and introduced predator control. Using 14 years of abundance data from repeat surveys at long-term monitoring sites in south-eastern Australia, we examined the association between a marsupial, the common brushtail possum Trichosurus vulpecula, and a co-occurring native rodent, the bush rat Rattus fuscipes. We asked: In a fox-controlled environment, are the abundances of common brushtail possums and bush rats affected by environmental disturbance and each other's presence? Using Bayesian regression models, we tested hypotheses that the abundance of each species would vary with changes in environmental and disturbance variables, and that the negative association between bush rats and common brushtail possums was stronger than the association between bush rats and disturbance. Our analyses revealed that bush rat abundance varied greatly in relation to environmental and disturbance variables, whereas common brushtail possums showed relatively limited variation in response to the same variables. There was a negative association between common brushtail possums and bush rats, but this association was weaker than the initial decline and subsequent recovery of bush rats in response to wildfires. Using co-occurrence analysis, we can infer negative relationships in abundance between co-occurring species, but to understand the impacts of such associations, and plan appropriate conservation measures, we require more information on interactions between the species and environmental variables. Co-occurrence can be a powerful and novel method to diagnose threats to communities and understand changes in ecosystem dynamics.
Collapse
Affiliation(s)
- Aurelie M. Kanishka
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Wade Blanchard
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Tyrone H. Lavery
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Natasha M. Robinson
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
- Conservation and Restoration Science Branch, Science, Economics and Insights Division, NSW Department of Planning and Environment, Australia
| | - Nick Dexter
- Booderee National Park, Jervis Bay Territory, Australia
| | - Chris R. Dickman
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Christopher MacGregor
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - David B. Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
9
|
Veenhof RJ, Coleman MA, Champion C, Dworjanyn SA. Urchin grazing of kelp gametophytes in warming oceans. JOURNAL OF PHYCOLOGY 2023; 59:838-855. [PMID: 37432133 DOI: 10.1111/jpy.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
Sea urchins can cause extensive damage to kelp forests, and their overgrazing can create extensive barren areas, leading to a loss of biodiversity. Barrens may persist when the recruitment of kelp, which occurs through the microscopic haploid gametophyte stage, is suppressed. However, the ecology of kelp gametophytes is poorly understood, and here we investigate if grazing by juvenile urchins on kelp gametophytes can suppress kelp recruitment and if this is exacerbated by climate change. We compared grazing of Ecklonia radiata gametophytes by two species of juvenile urchins, the tropical Tripneustes gratilla and the temperate Centrostephanus rodgersii, at winter (19°C), summer (23°C), and ocean warming (26°C) temperatures for the low-latitude range edge of E. radiata, which is vulnerable to ocean warming. We examined the rate of recovery of gametophytes following grazing and determined whether they survived and formed sporophytes after ingestion by sea urchins. Both T. gratilla and C. rodgersii grazed E. radiata gametophytes, reducing their abundance compared to no grazing controls. Surprisingly, temperature did not influence grazing rates, but gametophytes did not recover from grazing in the ocean warming (26°C) treatment. Gametophytes survived ingestion by both species of sea urchin and formed sporophytes after ingestion by T. gratilla, but not C. rodgersii. These results suggest complex grazer-gametophyte interactions, in which both negative (reduced abundance and poor recovery with warming) and positive (facilitated recruitment) effects are possible. Small grazers may play a more important role in kelp ecosystem function than previously thought and should be considered in our understanding of alternate stable states.
Collapse
Affiliation(s)
- Reina J Veenhof
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Curtis Champion
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Symon A Dworjanyn
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
10
|
Salomon AK, Okamoto DK, Wilson ḴBJ, Tommy Happynook H, Mack WA, Allan Davidson SH, Guujaaw G, L Humchitt WWH, Happynook TM, Cox WC, Gillette HF, Christiansen NS, Dragon D, Kobluk HM, Lee LC, Tinker MT, Silver JJ, Armitage D, McKechnie I, MacNeil A, Hillis D, Muhl EK, Gregr EJ, Commander CJC, Augustine A. Disrupting and diversifying the values, voices and governance principles that shape biodiversity science and management. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220196. [PMID: 37246378 DOI: 10.1098/rstb.2022.0196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/01/2023] [Indexed: 05/30/2023] Open
Abstract
With climate, biodiversity and inequity crises squarely upon us, never has there been a more pressing time to rethink how we conceptualize, understand and manage our relationship with Earth's biodiversity. Here, we describe governance principles of 17 Indigenous Nations from the Northwest Coast of North America used to understand and steward relationships among all components of nature, including humans. We then chart the colonial origins of biodiversity science and use the complex case of sea otter recovery to illuminate how ancestral governance principles can be mobilized to characterize, manage and restore biodiversity in more inclusive, integrative and equitable ways. To enhance environmental sustainability, resilience and social justice amid today's crises, we need to broaden who benefits from and participates in the sciences of biodiversity by expanding the values and methodologies that shape such initiatives. In practice, biodiversity conservation and natural resource management need to shift from centralized, siloed approaches to those that can accommodate plurality in values, objectives, governance systems, legal traditions and ways of knowing. In doing so, developing solutions to our planetary crises becomes a shared responsibility. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Anne K Salomon
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Daniel K Okamoto
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32303, USA
| | | | - Hiininaasim Tommy Happynook
- Department of Anthropology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, Canada V8W 2Y2
| | | | | | - Gidansda Guujaaw
- Haida Nation, Skidegate, Haida Gwaii, British Columbia, Canada V0T 1S1
| | | | | | | | | | | | - Dianna Dragon
- Che:k:tles7et'h' Nation, Kyuquot, British Columbia, Canada VOP 1J0
| | - Hannah M Kobluk
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Lynn C Lee
- Gwaii Haanas National Park Reserve, National Marine Conservation Area Reserve, and Haida Heritage Site, 60 Second Beach Road, Skidegate, British Columbia, Canada V0T 1S1
| | - M Tim Tinker
- Nhydra Ecological Consulting, 11 Parklea Drive, Head of St Margarets Bay, Nova Scotia, Canada B3Z 2G6
| | - Jennifer J Silver
- Geography, Environment and Geomatics, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Derek Armitage
- School of Environment, Resources and Sustainability, University of Waterloo, 200 University Ave W, Waterloo, Ontario, Canada N2L 3G1
| | - Iain McKechnie
- Department of Anthropology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, Canada V8W 2Y2
| | - Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Dylan Hillis
- Department of Anthropology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, Canada V8W 2Y2
| | - Ella-Kari Muhl
- School of Environment, Resources and Sustainability, University of Waterloo, 200 University Ave W, Waterloo, Ontario, Canada N2L 3G1
| | - Edward J Gregr
- Institute for Resources Environment, and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
- Scitech Environmental Consulting 2136 Napier St., Vancouver, British Columbia, Canada V5L 2N9
| | - Christian J C Commander
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32303, USA
| | - Arianna Augustine
- Stz'uminus Nation, 1041-B Trunk Rd, Duncan, British Columbia, Canada V9L 2S4
| |
Collapse
|
11
|
Jordaan RK, Oosthuizen WC, Reisinger RR, de Bruyn PJN. The effect of prey abundance and fisheries on the survival, reproduction, and social structure of killer whales ( Orcinus orca) at subantarctic Marion Island. Ecol Evol 2023; 13:e10144. [PMID: 37284666 PMCID: PMC10239896 DOI: 10.1002/ece3.10144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Most marine apex predators are keystone species that fundamentally influence their ecosystems through cascading top-down processes. Reductions in worldwide predator abundances, attributed to environmental- and anthropogenic-induced changes to prey availability and negative interactions with fisheries, can have far-reaching ecosystem impacts. We tested whether the survival of killer whales (Orcinus orca) observed at Marion Island in the Southern Indian Ocean correlated with social structure and prey variables (direct measures of prey abundance, Patagonian toothfish fishery effort, and environmental proxies) using multistate models of capture-recapture data spanning 12 years (2006-2018). We also tested the effect of these same variables on killer whale social structure and reproduction measured over the same period. Indices of social structure had the strongest correlation with survival, with higher sociality associated with increased survival probability. Survival was also positively correlated with Patagonian toothfish fishing effort during the previous year, suggesting that fishery-linked resource availability is an important determinant of survival. No correlation between survival and environmental proxies of prey abundance was found. At-island prey availability influenced the social structure of Marion Island killer whales, but none of the variables explained variability in reproduction. Future increases in legal fishing activity may benefit this population of killer whales through the artificial provisioning of resources they provide.
Collapse
Affiliation(s)
- Rowan K. Jordaan
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| | - W. Chris Oosthuizen
- Centre for Statistics in Ecology, the Environment (SEEC)University of Cape TownCape TownSouth Africa
| | - Ryan R. Reisinger
- Ocean and Earth ScienceUniversity of Southampton, National Oceanography Centre SouthamptonSouthamptonUK
| | - P. J. Nico de Bruyn
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
12
|
LaRoche NL, King SL, Fergusson EA, Eckert GL, Pearson HC. Macronutrient composition of sea otter diet with respect to recolonization, life history, and season in southern Southeast Alaska. Ecol Evol 2023; 13:e10042. [PMID: 37153015 PMCID: PMC10154889 DOI: 10.1002/ece3.10042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
The sea otter (Enhydra lutris) population of Southeast Alaska has been growing at a higher rate than other regions along the Pacific coast. While good for the recovery of this endangered species, rapid population growth of this apex predator can create a human-wildlife conflict, negatively impacting commercial and subsistence fishing. Previous foraging studies throughout the sea otter range have shown they will reduce invertebrate prey biomass when recolonizing an area. The goal of this study was to examine and quantify the energy content of sea otter diets through direct foraging observations and prey collection. Our study area, Prince of Wales Island in southern Southeast Alaska, exhibits a gradient of sea otter recolonization, thus providing a natural experiment to test diet change in regions with different recolonization histories. Sea otter prey items were collected in three seasons (spring, summer, and winter) to measure caloric value and lipid and protein content. We observed 3523 sea otter dives during the spring and summer. A majority of the sea otter diet consisted of clams. Sea otters in newly recolonized areas had lower diet diversity, higher energetic intake rates (EIR, kcal/min), and prey had higher energy content (kcal/g). Females with pups had the highest diet diversity and the lowest EIR. Sea otter EIR were higher in the fall and winter vs. spring and summer. Sea cucumber energy and lipid content appeared to correspond with times when sea otters consumed the highest proportion of sea cucumbers. These caloric variations are an important component of understanding ecosystem-level effects sea otters have in the nearshore environment.
Collapse
Affiliation(s)
- Nicole L. LaRoche
- College of Fisheries and Ocean SciencesUniversity of Alaska FairbanksJuneauAlaskaUSA
| | - Sydney L. King
- Department of Natural SciencesUniversity of Alaska SoutheastJuneauAlaskaUSA
| | - Emily A. Fergusson
- NOAA National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| | - Ginny L. Eckert
- College of Fisheries and Ocean SciencesUniversity of Alaska FairbanksJuneauAlaskaUSA
| | - Heidi C. Pearson
- College of Fisheries and Ocean SciencesUniversity of Alaska FairbanksJuneauAlaskaUSA
- Department of Natural SciencesUniversity of Alaska SoutheastJuneauAlaskaUSA
| |
Collapse
|
13
|
Leach CB, Weitzman BP, Bodkin JL, Esler D, Esslinger GG, Kloecker KA, Monson DH, Womble JN, Hooten MB. Revealing the extent of sea otter impacts on bivalve prey through multi-trophic monitoring and mechanistic models. J Anim Ecol 2023. [PMID: 37081640 DOI: 10.1111/1365-2656.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
Sea otters are apex predators that can exert considerable influence over the nearshore communities they occupy. Since facing near extinction in the early 1900s, sea otters are making a remarkable recovery in Southeast Alaska, particularly in Glacier Bay, the largest protected tidewater glacier fjord in the world. The expansion of sea otters across Glacier Bay offers both a challenge to monitoring and stewardship and an unprecedented opportunity to study the top-down effect of a novel apex predator across a diverse and productive ecosystem. Our goal was to integrate monitoring data across trophic levels, space, and time to quantify and map the predator-prey interaction between sea otters and butter clams Saxidomus gigantea, one of the dominant large bivalves in Glacier Bay and a favoured prey of sea otters. We developed a spatially-referenced mechanistic differential equation model of butter clam dynamics that combined both environmental drivers of local population growth and estimates of otter abundance from aerial survey data. We embedded this model in a Bayesian statistical framework and fit it to clam survey data from 43 intertidal and subtidal sites across Glacier Bay. Prior to substantial sea otter expansion, we found that butter clam density was structured by an environmental gradient driven by distance from glacier (represented by latitude) and a quadratic effect of current speed. Estimates of sea otter attack rate revealed spatial heterogeneity in sea otter impacts and a negative relationship with local shoreline complexity. Sea otter exploitation of productive butter clam habitat substantially reduced the abundance and altered the distribution of butter clams across Glacier Bay, with potential cascading consequences for nearshore community structure and function. Spatial variation in estimated sea otter predation processes further suggests that community context and local environmental conditions mediate the top-down influence of sea otters on a given prey. Overall, our framework provides high-resolution insights about the interaction among components of this food web and could be applied to a variety of other systems involving invasive species, epidemiology or migration.
Collapse
Affiliation(s)
- Clinton B Leach
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Benjamin P Weitzman
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, Alaska, USA
| | - James L Bodkin
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Daniel Esler
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | | | | | - Daniel H Monson
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Jamie N Womble
- Southeast Alaska Inventory and Monitoring Network, National Park Service, Juneau, Alaska, USA
- Glacier Bay Field Station, National Park Service, Juneau, Alaska, USA
| | - Mevin B Hooten
- Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
14
|
Burgos T, Salesa J, Fedriani JM, Escribano-Ávila G, Jiménez J, Krofel M, Cancio I, Hernández-Hernández J, Rodríguez-Siles J, Virgós E. Top-down and bottom-up effects modulate species co-existence in a context of top predator restoration. Sci Rep 2023; 13:4170. [PMID: 36914804 PMCID: PMC10011582 DOI: 10.1038/s41598-023-31105-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Mesopredators abundance is often limited by top-order predators and also by key food resources. However, the contribution of these bidirectional forces to structure carnivore community is still unclear. Here, we studied how the presence and absence of an apex predator which is currently recovering its former distribution range, the Iberian lynx (Lynx pardinus), determined the absolute abundance and fine-scale spatiotemporal avoidance mechanisms of two sympatric mesocarnivores (stone marten Martes foina and common genet Genetta genetta) with different dietary plasticity. We hypothesized that the lynx causes a mesopredator suppression and subordinate predators develop segregation strategies in respect to their trophic niche breadth. We placed 120 camera-traps in Southern Spain for 8 months in two consecutive years to estimate mesocarnivore abundances by using SCR Bayesian models, prey availability and assess spatio-temporal patterns. We found that the lynx reduced mesocarnivore abundance up to 10 times. Stone marten, a mesopredator with a broad food resources spectrum, showed a total spatial exclusion with the apex predator. Meanwhile, fine-scale avoidance mechanisms allowed the genet to persist in low density inside lynx territories, probably taking advantage of high availability of its preferred prey. Thus, the strength of these top-down and bottom-up effects was rather species-specific. Given the recent recovery of large carnivore populations worldwide, variation in suppression levels on different mesopredator species could modify ecosystem functions provided by the carnivore community in contrasting ways.
Collapse
Affiliation(s)
- Tamara Burgos
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Rey Juan Carlos University, Madrid, Spain.
| | - Javier Salesa
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Rey Juan Carlos University, Madrid, Spain
| | - Jose María Fedriani
- Centro de Investigaciones sobre Desertificación CIDE, CSIC-UVEG-GV, Carretera de Moncada a Náquera, km 4,5., 46113, Moncada, Valencia, Spain
- Estación Biológica de Doñana (EBD - CSIC), Seville, Spain
| | - Gema Escribano-Ávila
- Biodiversity, Ecology and Evolution Department. Biological Science Faculty, Universidad Complutense de Madrid. Ciudad Universitaria, C/ José Antonio Novais 12, Madrid, Spain
| | - José Jiménez
- Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), 13071, Ciudad Real, Spain
| | - Miha Krofel
- Department for Forestry, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Inmaculada Cancio
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Rey Juan Carlos University, Madrid, Spain
- Asociación de Estudio y Conservación de Fauna Harmusch, C/San Antón 15, 1°, 13580, Almodóvar del Campo, Ciudad Real, Spain
| | - Javier Hernández-Hernández
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Rey Juan Carlos University, Madrid, Spain
- Road Ecology Lab, Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Javier Rodríguez-Siles
- Asociación de Estudio y Conservación de Fauna Harmusch, C/San Antón 15, 1°, 13580, Almodóvar del Campo, Ciudad Real, Spain
| | - Emilio Virgós
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
15
|
Roopnarine PD, Banker RMW, Sampson SD. Impact of the extinct megaherbivore Steller's sea cow (Hydrodamalis gigas) on kelp forest resilience. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.983558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Giant kelp forests off the west coast of North America are maintained primarily by sea otter (Enhydra lutris) and sunflower sea star (Pycnopodia helianthoides) predation of sea urchins. Human hunting of sea otters in historical times, together with a marine heat wave and sea star wasting disease epidemic in the past decade, devastated these predators, leading to widespread occurrences of urchin barrens. Since the late Neogene, species of the megaherbivorous sirenian Hydrodamalis ranged throughout North Pacific giant kelp forests. The last species, H. gigas, was driven to extinction by human hunting in the mid-eighteen century. H. gigas was an obligate kelp canopy browser, and its body size implies that it would have had a significant impact on the system. Here, we hypothesize that sea cow browsing may have enhanced forest resilience. We tested this hypothesis with a mathematical model, comparing historical and modern community responses to marine heat waves and sea star wasting disease. Results indicate that forest communities were highly resistant to marine heat waves, yet susceptible to sea star wasting disease, and to disease in combination with warming. Resistance was greatest among systems with both sea cows and sea otters present. The model additionally predicts that historical communities may have exhibited delayed transitions after perturbation and faster recovery times. Sea cow browsing may therefore have enhanced resilience against modern perturbations. We propose that operationalizing these findings by mimicking sea cow herbivory could enhance kelp forest resilience.
Collapse
|
16
|
Rogers AD, Appeltans W, Assis J, Ballance LT, Cury P, Duarte C, Favoretto F, Hynes LA, Kumagai JA, Lovelock CE, Miloslavich P, Niamir A, Obura D, O'Leary BC, Ramirez-Llodra E, Reygondeau G, Roberts C, Sadovy Y, Steeds O, Sutton T, Tittensor DP, Velarde E, Woodall L, Aburto-Oropeza O. Discovering marine biodiversity in the 21st century. ADVANCES IN MARINE BIOLOGY 2022; 93:23-115. [PMID: 36435592 DOI: 10.1016/bs.amb.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We review the current knowledge of the biodiversity of the ocean as well as the levels of decline and threat for species and habitats. The lack of understanding of the distribution of life in the ocean is identified as a significant barrier to restoring its biodiversity and health. We explore why the science of taxonomy has failed to deliver knowledge of what species are present in the ocean, how they are distributed and how they are responding to global and regional to local anthropogenic pressures. This failure prevents nations from meeting their international commitments to conserve marine biodiversity with the results that investment in taxonomy has declined in many countries. We explore a range of new technologies and approaches for discovery of marine species and their detection and monitoring. These include: imaging methods, molecular approaches, active and passive acoustics, the use of interconnected databases and citizen science. Whilst no one method is suitable for discovering or detecting all groups of organisms many are complementary and have been combined to give a more complete picture of biodiversity in marine ecosystems. We conclude that integrated approaches represent the best way forwards for accelerating species discovery, description and biodiversity assessment. Examples of integrated taxonomic approaches are identified from terrestrial ecosystems. Such integrated taxonomic approaches require the adoption of cybertaxonomy approaches and will be boosted by new autonomous sampling platforms and development of machine-speed exchange of digital information between databases.
Collapse
Affiliation(s)
- Alex D Rogers
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom.
| | - Ward Appeltans
- Intergovernmental Oceanographic Commission of UNESCO, Oostende, Belgium
| | - Jorge Assis
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Lisa T Ballance
- Marine Mammal Institute, Oregon State University, Newport, OR, United States
| | | | - Carlos Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Kingdom of Saudi Arabia
| | - Fabio Favoretto
- Autonomous University of Baja California Sur, La Paz, Baja California Sur, Mexico
| | - Lisa A Hynes
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Joy A Kumagai
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Patricia Miloslavich
- Scientific Committee on Oceanic Research (SCOR), College of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States; Departamento de Estudios Ambientales, Universidad Simón Bolívar, Venezuela & Scientific Committee for Oceanic Research (SCOR), Newark, DE, United States
| | - Aidin Niamir
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | | | - Bethan C O'Leary
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom; Department of Environment and Geography, University of York, York, United Kingdom
| | - Eva Ramirez-Llodra
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Gabriel Reygondeau
- Yale Center for Biodiversity Movement and Global Change, Yale University, New Haven, CT, United States; Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Callum Roberts
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Yvonne Sadovy
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong
| | - Oliver Steeds
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Tracey Sutton
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania Beach, FL, United States
| | | | - Enriqueta Velarde
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Veracruz, Mexico
| | - Lucy Woodall
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom; Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
17
|
Estes JA, Vermeij GJ. History's legacy: Why future progress in ecology demands a view of the past. Ecology 2022; 103:e3788. [PMID: 35718755 DOI: 10.1002/ecy.3788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022]
Abstract
History has profoundly affected the composition, distribution, and abundances of species in contemporary ecosystems. A full understanding of how ecosystems work and change must therefore take history into account. We offer four well-studied examples illustrating how a knowledge of history has strengthened interpretations of modern systems: the development of molluscan antipredatory defenses in relation to shell-breaking predators; the North Pacific kelp ecosystem with sea otters, smaller predators, sea urchins, and large herbivores; estuarine ecosystems affected by the decline in oysters and other suspension feeders; and the legacy of extinct large herbivores and frugivores in tropical American forests. Many current ecological problems would greatly benefit from a historical perspective. We highlight four of these: soil depletion and tree stunting in forests related to the disappearance of large consumers; the spread of anoxic dead zones in the ocean, which we argue could be mitigated by restoring predator and suspension-feeding guilds; ocean acidification, which would be alleviated by more nutrient recycling by consumers in the aerobic ecosystem; and the relation between species diversity and keystone predators, a foundational concept that is complicated by simplified trophic relationships in modern ecosystems.
Collapse
Affiliation(s)
- James A Estes
- Ecology and Evolutionary Biology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Geerat J Vermeij
- Earth and Planetary Science, University of California-Davis, Davis, California, USA
| |
Collapse
|
18
|
MacGregor KA, Johnson LE. Seascapes and foraging success: Movement and resource discovery by a benthic marine herbivore. Ecol Evol 2022; 12:e9243. [PMID: 36110878 PMCID: PMC9465196 DOI: 10.1002/ece3.9243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/20/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Spatially concentrated resources result in patch-based foraging, wherein the detection and choice of patches as well as the process of locating and exploiting resource patches involve moving through an explicit landscape composed of both resources and barriers to movement. An understanding of behavioral responses to resources and barriers is key to interpreting observed ecological patterns. We examined the process of resource discovery in the context of a heterogeneous seascape using sea urchins and drift kelp in urchin barrens as a model system. Under field conditions, we manipulated both the presence of a highly valuable resource (drift kelp) and a barrier to movement (sandy substratum) to test the interacting influence of these two factors on the process of resource discovery in barren grounds by urchins. We removed all foraging urchins (Strongylocentrotus droebachiensis) from replicate areas and monitored urchin recolonization and kelp consumption. We tested two hypotheses: (1) unstable substratum is a barrier to urchin movement and (2) the movement behavior of sea urchins is modified by the presence of drift kelp. Very few urchins were found on sand, sand was a permeable barrier to urchin movement, and the permeability of this barrier varied between sites. In general, partial recolonization occurred strikingly rapidly, but sand slowed the consumption of drift kelp by limiting the number of urchins. Differences in the permeability of sand barriers between sites could be driven by differences in the size structure of urchin populations, indicating size-specific environmental effects on foraging behavior. We demonstrate the influence of patchy seascapes in modulating grazing intensity in barren grounds through modifications of foraging behavior. Behavioral processes modified by environmental barriers play an important role in determining grazing pressure, the existence of refuges for new algal recruits, and ultimately the dynamics of urchin-algal interactions in barren grounds.
Collapse
Affiliation(s)
- Kathleen A. MacGregor
- Département de BiologieUniversité LavalQuébecQuébecCanada
- Institut Maurice‐LamontagnePêches et Océans CanadaMont‐JoliQuébecCanada
| | | |
Collapse
|
19
|
Donham EM, Strope LT, Hamilton SL, Kroeker KJ. Coupled changes in pH, temperature, and dissolved oxygen impact the physiology and ecology of herbivorous kelp forest grazers. GLOBAL CHANGE BIOLOGY 2022; 28:3023-3039. [PMID: 35133693 DOI: 10.1111/gcb.16125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Understanding species' responses to upwelling may be especially important in light of ongoing environmental change. Upwelling frequency and intensity are expected to increase in the future, while ocean acidification and deoxygenation are expected to decrease the pH and dissolved oxygen (DO) of upwelled waters. However, the acute effects of a single upwelling event and the integrated effects of multiple upwelling events on marine organisms are poorly understood. Here, we use in situ measurements of pH, temperature, and DO to characterize the covariance of environmental conditions within upwelling-dominated kelp forest ecosystems. We then test the effects of acute (0-3 days) and chronic (1-3 months) upwelling on the performance of two species of kelp forest grazers, the echinoderm, Mesocentrotus franciscanus, and the gastropod, Promartynia pulligo. We exposed organisms to static conditions in a regression design to determine the shape of the relationship between upwelling and performance and provide insights into the potential effects in a variable environment. We found that respiration, grazing, growth, and net calcification decline linearly with increasing upwelling intensity for M. francicanus over both acute and chronic timescales. Promartynia pulligo exhibited decreased respiration, grazing, and net calcification with increased upwelling intensity after chronic exposure, but we did not detect an effect over acute timescales or on growth after chronic exposure. Given the highly correlated nature of pH, temperature, and DO in the California Current, our results suggest the relationship between upwelling intensity and growth in the 3-month trial could potentially be used to estimate growth integrated over long-term dynamic oceanographic conditions for M. franciscanus. Together, these results indicate current exposure to upwelling may reduce species performance and predicted future increases in upwelling frequency and intensity could affect ecosystem function by modifying the ecological roles of key species.
Collapse
Affiliation(s)
- Emily M Donham
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Lauren T Strope
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, San Jose, California, USA
| | - Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
20
|
Donadio E, Di Martino S, Heinonen S. Rewilding Argentina: lessons for the 2030 biodiversity targets. Nature 2022; 603:225-227. [DOI: 10.1038/d41586-022-00631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Gorra TR, Garcia SCR, Langhans MR, Hoshijima U, Estes JA, Raimondi PT, Tinker MT, Kenner MC, Kroeker KJ. Southeast Alaskan kelp forests: inferences of process from large-scale patterns of variation in space and time. Proc Biol Sci 2022; 289:20211697. [PMID: 35042419 PMCID: PMC8767212 DOI: 10.1098/rspb.2021.1697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 12/04/2022] Open
Abstract
Humans were considered external drivers in much foundational ecological research. A recognition that humans are embedded in the complex interaction networks we study can provide new insight into our ecological paradigms. Here, we use time-series data spanning three decades to explore the effects of human harvesting on otter-urchin-kelp trophic cascades in southeast Alaska. These effects were inferred from variation in sea urchin and kelp abundance following the post fur trade repatriation of otters and a subsequent localized reduction of otters by human harvest in one location. In an example of a classic trophic cascade, otter repatriation was followed by a 99% reduction in urchin biomass density and a greater than 99% increase in kelp density region wide. Recent spatially concentrated harvesting of otters was associated with a localized 70% decline in otter abundance in one location, with urchins increasing and kelps declining in accordance with the spatial pattern of otter occupancy within that region. While the otter-urchin-kelp trophic cascade has been associated with alternative community states at the regional scale, this research highlights how small-scale variability in otter occupancy, ostensibly due to spatial variability in harvesting or the risk landscape for otters, can result in within-region patchiness in these community states.
Collapse
Affiliation(s)
- Torrey R. Gorra
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Sabrina C. R. Garcia
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Michael R. Langhans
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Umihiko Hoshijima
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - James A. Estes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Pete T. Raimondi
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - M. Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Michael C. Kenner
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Kristy J. Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
22
|
Gene Expression Profiles in Two Razor Clam Populations: Discerning Drivers of Population Status. Life (Basel) 2021; 11:life11121288. [PMID: 34947819 PMCID: PMC8706173 DOI: 10.3390/life11121288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
With rapidly changing marine ecosystems, shifts in abundance and distribution are being documented for a variety of intertidal species. We examined two adjacent populations of Pacific razor clams (Siliqua patula) in lower Cook Inlet, Alaska. One population (east) supported a sport and personal use fishery, but this has been closed since 2015 due to declines in abundance, and the second population (west) continues to support commercial and sport fisheries. We used gene expression to investigate potential causes of the east side decline, comparing razor clam physiological responses between east and west Cook Inlet. The target gene profile used was developed for razor clam populations in Alaska based on physiological responses to environmental stressors. In this study, we identified no differences of gene expression between east and west populations, leading to two potential conclusions: (1) differences in factors capable of influencing physiology exist between the east and west and are sufficient to influence razor clam populations but are not detected by the genes in our panel, or (2) physiological processes do not account for the differences in abundance, and other factors such as predation or changes in habitat may be impacting the east Cook Inlet population.
Collapse
|
23
|
|
24
|
Wilman EA. Kelp Forests: Catastrophes, Resilience, and Management. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.674792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Resilient kelp forests provide foundation habitat for marine ecosystems and are indicators of the ecosystems’ sustainable natural capital. Loss of resilience and imperfectly reversible catastrophic shifts from kelp forests to urchin barrens, due to pollution or loss of a top predator, are part of an ecological tipping point phenomenon, and involve a loss in sustainable natural capital. Management controls to prevent or reverse these shifts and losses are classified in a number of ways. Systemic controls eliminate the cause of the problem. Symptomatic controls use leverage points for more direct control of the populations affected, urchin harvesting or culling, or kelp enhancement. There is a distinction between ongoing structural (press) controls versus temporary or intermittent perturbation (pulse) controls, and one between shift preventing versus shift reversing or restorative controls. Adaptive management and the options it creates both focus on reductions in uncertainty and control policies with the flexibility to take advantage of those reductions. The various management distinctions are most easily understood by modeling the predator-urchin-kelp marine ecosystem. This paper develops a mathematical model of the ecosystem that has the potential for two different catastrophic shifts between equilibria. Pulse disturbances, originating from exogenous abiotic factors or population dynamics elsewhere in the metacommunity, can activate shifts. A measure of probabilistic resilience is developed and used as part of an assessment of the ecosystem’s sustainable stock of natural capital. With perturbation outcomes clustered around the originating equilibrium, hysteresis is activated, resulting imperfect reversibility of catastrophic shifts, and a loss in natural capital. The difficulty of reversing a shift from kelp forest to urchin barren, with an associated loss in sustainable natural capital, is an example. Management controls are modeled. I find that systemic and symptomatic, and press and pulse, controls can be complementary. Restorative controls tend to be more difficult or costly than preventative ones. Adaptive management, favoring flexible, often preventative, controls, creates option value, lowering control costs and/or losses in sustainable natural capital. Two cases are used to illustrate, Tasmania, Australia and Haida Gwaii, Canada.
Collapse
|
25
|
Larson S, Lowry D, Dulvy NK, Wharton J, Galván-Magaña F, Sianipar AB, Lowe CG, Meyer E. Current and future considerations for shark conservation in the Northeast and Eastern Central Pacific Ocean. ADVANCES IN MARINE BIOLOGY 2021; 90:1-49. [PMID: 34728053 DOI: 10.1016/bs.amb.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sharks are iconic and ecologically important predators found in every ocean. Because of their ecological role as predators, some considered apex predators, and concern over the stability of their populations due to direct and indirect overfishing, there has been an increasing amount of work focussed on shark conservation, and other elasmobranchs such as skates and rays, around the world. Here we discuss many aspects of current shark science and conservation and the path to the future of shark conservation in the Northeastern and Eastern Central Pacific. We explore their roles in ecosystems as keystone species; the conservation measures and laws in place at the international, national, regional and local level; the conservation status of sharks and rays in the region, fisheries for sharks in the Northcentral Pacific specifically those that target juveniles and the implications to shark conservation; a conservation success story: the recovery of Great White Sharks in the Northeast Pacific; public perceptions of sharks and the roles zoos and aquariums play in shark conservation; and the path to the future of shark conservation that requires bold partnerships, local stakeholders and innovative measures.
Collapse
Affiliation(s)
- Shawn Larson
- Seattle Aquarium, Conservation Programs and Partnerships, Seattle, WA, United States.
| | - Dayv Lowry
- National Marine Fisheries Service, West Coast Region, Protected Resources Division, Lacey, WA, United States
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Jim Wharton
- Seattle Aquarium, Conservation Engagement and Learning, Seattle, WA, United States
| | - Felipe Galván-Magaña
- Instituto Politécnico National, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | - Abraham B Sianipar
- Murdoch University, School of Veterinary and Life Sciences, Perth, WA, Australia
| | - Christopher G Lowe
- California State University Long Beach Shark Lab, Long Beach, CA, United States
| | - Erin Meyer
- Seattle Aquarium, Conservation Programs and Partnerships, Seattle, WA, United States
| |
Collapse
|
26
|
Falkenberg LJ, Scanes E, Ducker J, Ross PM. Biotic habitats as refugia under ocean acidification. CONSERVATION PHYSIOLOGY 2021; 9:coab077. [PMID: 34540232 PMCID: PMC8445512 DOI: 10.1093/conphys/coab077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Habitat-forming organisms have an important role in ameliorating stressful conditions and may be of particular relevance under a changing climate. Increasing CO2 emissions are driving a range of environmental changes, and one of the key concerns is the rapid acceleration of ocean acidification and associated reduction in pH. Such changes in seawater chemistry are anticipated to have direct negative effects on calcifying organisms, which could, in turn, have negative ecological, economic and human health impacts. However, these calcifying organisms do not exist in isolation, but rather are part of complex ecosystems. Here, we use a qualitative narrative synthesis framework to explore (i) how habitat-forming organisms can act to restrict environmental stress, both now and in the future; (ii) the ways their capacity to do so is modified by local context; and (iii) their potential to buffer the effects of future change through physiological processes and how this can be influenced by management adopted. Specifically, we highlight examples that consider the ability of macroalgae and seagrasses to alter water carbonate chemistry, influence resident organisms under current conditions and their capacity to do so under future conditions, while also recognizing the potential role of other habitats such as adjacent mangroves and saltmarshes. Importantly, we note that the outcome of interactions between these functional groups will be context dependent, influenced by the local abiotic and biotic characteristics. This dependence provides local managers with opportunities to create conditions that enhance the likelihood of successful amelioration. Where individuals and populations are managed effectively, habitat formers could provide local refugia for resident organisms of ecological and economic importance under an acidifying ocean.
Collapse
Affiliation(s)
- Laura J Falkenberg
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - James Ducker
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| |
Collapse
|
27
|
Perälä T, Uusi-Heikkilä S, Kuparinen A. Return of the Apex Predator — How Brown Trout (Salmo trutta) Re-Establishment Shapes an Ecosystem. ANN ZOOL FENN 2021. [DOI: 10.5735/086.058.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tommi Perälä
- Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Silva Uusi-Heikkilä
- Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Anna Kuparinen
- Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| |
Collapse
|
28
|
Wilson RR, St. Martin M, Beatty WS. A hierarchical distance sampling model to estimate spatially explicit sea otter density. Ecosphere 2021. [DOI: 10.1002/ecs2.3666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ryan R. Wilson
- U.S. Fish and Wildlife Service Marine Mammals Management 1011 E. Tudor Rd. Anchorage Alaska 99503 USA
| | - Michelle St. Martin
- U.S. Fish and Wildlife Service Marine Mammals Management 1011 E. Tudor Rd. Anchorage Alaska 99503 USA
| | - William S. Beatty
- U.S. Fish and Wildlife Service Marine Mammals Management 1011 E. Tudor Rd. Anchorage Alaska 99503 USA
| |
Collapse
|
29
|
Tinker MT, Bodkin JL, Bowen L, Ballachey B, Bentall G, Burdin A, Coletti H, Esslinger G, Hatfield BB, Kenner MC, Kloecker K, Konar B, Miles AK, Monson DH, Murray MJ, Weitzman BP, Estes JA. Sea otter population collapse in southwest Alaska: assessing ecological covariates, consequences, and causal factors. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Martin Tim Tinker
- U.S. Geological Survey Western Ecological Research Center 2885 Mission St. Santa Cruz California 95060 USA
| | - James L. Bodkin
- U.S. Geological Survey Alaska Science Center 4210 University Dr. Anchorage Alaska 99508 USA
| | - Lizabeth Bowen
- U.S. Geological Survey Western Ecological Research Center 3020 State University Drive Sacramento California 95819 USA
| | - Brenda Ballachey
- U.S. Geological Survey Alaska Science Center 4210 University Dr. Anchorage Alaska 99508 USA
| | - Gena Bentall
- Sea Otter Savvy 1961 Main St. 199 Watsonville California 95076 USA
| | - Alexander Burdin
- Kamchatka Branch of Pacific Geographical Institute FED Russian Academy of Sciences Partizanskaya, 6 Petropavlovsk‐Kamchatsky 683000 Russia
| | - Heather Coletti
- Southwest Alaska Inventory and Monitoring Network National Park Service 4175 Geist Rd. Fairbanks Alaska 99709 USA
| | - George Esslinger
- U.S. Geological Survey Alaska Science Center 4210 University Dr. Anchorage Alaska 99508 USA
| | - Brian B. Hatfield
- U.S. Geological Survey Western Ecological Research Center 2885 Mission St. Santa Cruz California 95060 USA
| | - Michael C. Kenner
- U.S. Geological Survey Western Ecological Research Center 2885 Mission St. Santa Cruz California 95060 USA
| | - Kimberly Kloecker
- U.S. Geological Survey Alaska Science Center 4210 University Dr. Anchorage Alaska 99508 USA
| | - Brenda Konar
- College of Fisheries and Ocean Sciences University of Alaska Fairbanks PO Box 757220 Fairbanks Alaska 99775 USA
| | - A. Keith Miles
- U.S. Geological Survey Western Ecological Research Center 3020 State University Drive Sacramento California 95819 USA
| | - Daniel H. Monson
- U.S. Geological Survey Alaska Science Center 4210 University Dr. Anchorage Alaska 99508 USA
| | | | - Benjamin P. Weitzman
- U.S. Geological Survey Alaska Science Center 4210 University Dr. Anchorage Alaska 99508 USA
| | - James A. Estes
- Department of Ecology and Evolutionary Biology University of California 130 McAllister Way Santa Cruz California 95060 USA
| |
Collapse
|
30
|
Boyce PN, McLoughlin PD. Ecological Interactions Involving Feral Horses and Predators: Review with Implications for Biodiversity Conservation. J Wildl Manage 2021. [DOI: 10.1002/jwmg.21995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Paul N. Boyce
- Department of Biology University of Saskatchewan 112 Science Place Saskatoon SK S7N 5E2 Canada
| | - Philip D. McLoughlin
- Department of Biology University of Saskatchewan 112 Science Place Saskatoon SK S7N 5E2 Canada
| |
Collapse
|
31
|
Bertocci I, De Oliveira Martins MI, Meyer HS, Gómez OB, Maggi E, Arenas F. Resurvey of sea urchins and mussels at protected and harvested shores a decade after: A beyond-BACI approach. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105347. [PMID: 33965722 DOI: 10.1016/j.marenvres.2021.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/15/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Comparing temporal patterns of distribution and abundance of target organisms between protected and harvested shores is essential to assess the extant effectiveness of marine protected areas (MPAs) and whether it is maintained through time. By means of an adapted Beyond-BACI approach, we compared the short- and long-term patterns of variation in the abundance of the sea urchin Paracentrotus lividus and the mussel Mytilus galloprovincialis at a protected shore (within the Parque Litoral Norte MPA, Portugal) and at three adjacent shores subject to intense harvesting over a decadal interval. Despite the existence of the MPA for more than 30 years, we did not obtain clear evidence of its persistent or recent effectiveness on intertidal species of commercial interest. We suggest the need for refining management options along the northern Portuguese coast, possibly by better enforcing current regulations and reconsidering the present design of protection schemes. Moreover, the adopted analytical approach may represent a methodological reference for similar investigations in systems where the perturbation of interest (protection or disturbance) would not occur at a given time during the course of the study, but has been operating since before the first sampling occasion and maintained until subsequent surveys.
Collapse
Affiliation(s)
- Iacopo Bertocci
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Marta Isabel De Oliveira Martins
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Novo Terminal de Cruzeiros, Avenida General Norton de Matos Sn, P-4450-208, Matosinhos, Portugal
| | - Hugo Sainz Meyer
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Novo Terminal de Cruzeiros, Avenida General Norton de Matos Sn, P-4450-208, Matosinhos, Portugal
| | - Oscar Babé Gómez
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Novo Terminal de Cruzeiros, Avenida General Norton de Matos Sn, P-4450-208, Matosinhos, Portugal
| | - Elena Maggi
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy
| | - Francisco Arenas
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Novo Terminal de Cruzeiros, Avenida General Norton de Matos Sn, P-4450-208, Matosinhos, Portugal
| |
Collapse
|
32
|
Eisaguirre JM, Williams PJ, Lu X, Kissling ML, Beatty WS, Esslinger GG, Womble JN, Hooten MB. Diffusion modeling reveals effects of multiple release sites and human activity on a recolonizing apex predator. MOVEMENT ECOLOGY 2021; 9:34. [PMID: 34193294 PMCID: PMC8247183 DOI: 10.1186/s40462-021-00270-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/01/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Reintroducing predators is a promising conservation tool to help remedy human-caused ecosystem changes. However, the growth and spread of a reintroduced population is a spatiotemporal process that is driven by a suite of factors, such as habitat change, human activity, and prey availability. Sea otters (Enhydra lutris) are apex predators of nearshore marine ecosystems that had declined nearly to extinction across much of their range by the early 20th century. In Southeast Alaska, which is comprised of a diverse matrix of nearshore habitat and managed areas, reintroduction of 413 individuals in the late 1960s initiated the growth and spread of a population that now exceeds 25,000. METHODS Periodic aerial surveys in the region provide a time series of spatially-explicit data to investigate factors influencing this successful and ongoing recovery. We integrated an ecological diffusion model that accounted for spatially-variable motility and density-dependent population growth, as well as multiple population epicenters, into a Bayesian hierarchical framework to help understand the factors influencing the success of this recovery. RESULTS Our results indicated that sea otters exhibited higher residence time as well as greater equilibrium abundance in Glacier Bay, a protected area, and in areas where there is limited or no commercial fishing. Asymptotic spread rates suggested sea otters colonized Southeast Alaska at rates of 1-8 km/yr with lower rates occurring in areas correlated with higher residence time, which primarily included areas near shore and closed to commercial fishing. Further, we found that the intrinsic growth rate of sea otters may be higher than previous estimates suggested. CONCLUSIONS This study shows how predator recolonization can occur from multiple population epicenters. Additionally, our results suggest spatial heterogeneity in the physical environment as well as human activity and management can influence recolonization processes, both in terms of movement (or motility) and density dependence.
Collapse
Affiliation(s)
- Joseph M Eisaguirre
- Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, NV, USA.
- United States Fish & Wildlife Service, Marine Mammals Management, Anchorage, AK, USA.
| | - Perry J Williams
- Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, NV, USA
| | - Xinyi Lu
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Michelle L Kissling
- United States Fish & Wildlife Service, Marine Mammals Management, Anchorage, AK, USA
- Present address: Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - William S Beatty
- United States Fish & Wildlife Service, Marine Mammals Management, Anchorage, AK, USA
- Present address: U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | | | - Jamie N Womble
- Southeast Alaska Inventory and Monitoring Network, National Park Service, Juneau, AK, USA
- Glacier Bay Field Station, National Park Service, Juneau, AK, USA
| | - Mevin B Hooten
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
- Colorado Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey, Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
33
|
Bayer MO, Lowe WH. Top-Down Effects of Salamanders on Macroinvertebrates in Fishless Headwater Streams. HERPETOLOGICA 2021. [DOI: 10.1655/herpetologica-d-20-00054.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Miriam O. Bayer
- Wildlife Biology Program, University of Montana, College of Forestry and Conservation, Missoula, MT 59812, USA
| | - Winsor H. Lowe
- Wildlife Biology Program, University of Montana, College of Forestry and Conservation, Missoula, MT 59812, USA
| |
Collapse
|
34
|
Raymond WW, Hughes BB, Stephens TA, Mattson CR, Bolwerk AT, Eckert GL. Testing the generality of sea otter‐mediated trophic cascades in seagrass meadows. OIKOS 2021. [DOI: 10.1111/oik.07681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wendel W. Raymond
- College of Fisheries and Ocean Sciences, Univ. of Alaska Fairbanks Fairbanks AK USA
| | - Brent B. Hughes
- College of Fisheries and Ocean Sciences, Univ. of Alaska Fairbanks Fairbanks AK USA
- Dept of Biology, Sonoma State Univ. Rohnert Park CA USA
| | - Tiffany A. Stephens
- College of Fisheries and Ocean Sciences, Univ. of Alaska Fairbanks Fairbanks AK USA
| | - Catherine R. Mattson
- College of Fisheries and Ocean Sciences, Univ. of Alaska Fairbanks Fairbanks AK USA
| | - Ashley T. Bolwerk
- College of Fisheries and Ocean Sciences, Univ. of Alaska Fairbanks Fairbanks AK USA
| | - Ginny L. Eckert
- College of Fisheries and Ocean Sciences, Univ. of Alaska Fairbanks Fairbanks AK USA
| |
Collapse
|
35
|
Patch isolation and periodic environmental disturbances have idiosyncratic effects on local and regional population variabilities in meta-food chains. THEOR ECOL-NETH 2021. [DOI: 10.1007/s12080-021-00510-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractWhile habitat loss is a known key driver of biodiversity decline, the impact of other landscape properties, such as patch isolation, is far less clear. When patch isolation is low, species may benefit from a broader range of foraging opportunities, but are at the same time adversely affected by higher predation pressure from mobile predators. Although previous approaches have successfully linked such effects to biodiversity, their impact on local and metapopulation dynamics has largely been ignored. Since population dynamics may also be affected by environmental disturbances that temporally change the degree of patch isolation, such as periodic changes in habitat availability, accurate assessment of its link with isolation is highly challenging. To analyze the effect of patch isolation on the population dynamics on different spatial scales, we simulate a three-species meta-food chain on complex networks of habitat patches and assess the average variability of local populations and metapopulations, as well as the level of synchronization among patches. To evaluate the impact of periodic environmental disturbances, we contrast simulations of static landscapes with simulations of dynamic landscapes in which 30 percent of the patches periodically become unavailable as habitat. We find that increasing mean patch isolation often leads to more asynchronous population dynamics, depending on the parameterization of the food chain. However, local population variability also increases due to indirect effects of increased dispersal mortality at high mean patch isolation, consequently destabilizing metapopulation dynamics and increasing extinction risk. In dynamic landscapes, periodic changes of patch availability on a timescale much slower than ecological interactions often fully synchronize the dynamics. Further, these changes not only increase the variability of local populations and metapopulations, but also mostly overrule the effects of mean patch isolation. This may explain the often small and inconclusive impact of mean patch isolation in natural ecosystems.
Collapse
|
36
|
Lélias ML, Lemasson A, Lodé T. Social organization of otters in relation to their ecology. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Otter species are known to fluctuate intraspecifically from a solitary lifestyle to group-living arrangements. By examining what is known about habitat use and foraging style in otters of 13 different species, based on 93 studied sites, we assessed (1) the relationship between social habits and preferred habitats, (2) the relationship between species and prey preferences, and (3) the effect of predator avoidance on their social organization in order to assess the socio-ecological factors influencing otters. Females remain the core of their social stability. We show the major influence of habitats and feeding strategies (i.e. socio-ecology) of otters. The different species of solitary otters most often inhabit linear environments, such as freshwater ecosystems or wave-exposed marine coasts, and their habitat is often subject to disturbances that fragment their functional continuity. Social otters are more often found in extensive habitats with high plant cover, regular food resources and in areas with large predators compared to solitary species. The maintenance of regular resources and the fact that the main trophic resources are replenished rapidly might be determining factors driving sociality. Group-living and bachelor congregations among otters can also respond to pressure from large predators. This suggests that foraging, habitat use and the presence of large predators may be the drivers of sociality in otters. We conclude that most otters have a greater social potential than previously assumed, which is confirmed by their various vocalizations recently described.
Collapse
Affiliation(s)
| | - Alban Lemasson
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) – UMR 6552, Rennes, France
| | - Thierry Lodé
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) – UMR 6552, Rennes, France
| |
Collapse
|
37
|
Toscano BJ, Rudolf VHW. Developmental Change in Predators Drives Different Community Configurations. Am Nat 2021; 197:719-731. [PMID: 33989140 DOI: 10.1086/714049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractTheoreticians who first observed alternative stable states in simple ecological models warned of grave implications for unexpected and irreversible collapses of natural systems (i.e., regime shifts). Recent ecosystem-level shifts engendering considerable economic losses have validated this concern, positioning bistability at the vanguard of coupled human-environment systems management. While the perturbations that induce regime shifts are known, the ecological forces that uphold alternative stable states are often unresolved or complex and system specific. Thus, the search continues for general mechanisms that can produce alternative stable states under realistic conditions. Integrating model predictions with long-term zooplankton community experiments, we show that the core feature of ontogenetic development, food-dependent maturation, enables a single community to reach different configurations within the same constant environment. In one configuration, predators regulate prey to foster coexistence, while in the other, prey counterintuitively exclude their predators via maturation-limiting competition. The concordance of these findings with the unique outcome and underlying mechanism of a general model provides empirical evidence that developmental change, a fundamental property of life, can support bistability of natural systems.
Collapse
|
38
|
Nelms SE, Alfaro-Shigueto J, Arnould JPY, Avila IC, Bengtson Nash S, Campbell E, Carter MID, Collins T, Currey RJC, Domit C, Franco-Trecu V, Fuentes MMPB, Gilman E, Harcourt RG, Hines EM, Hoelzel AR, Hooker SK, Johnston DW, Kelkar N, Kiszka JJ, Laidre KL, Mangel JC, Marsh H, Maxwell SM, Onoufriou AB, Palacios DM, Pierce GJ, Ponnampalam LS, Porter LJ, Russell DJF, Stockin KA, Sutaria D, Wambiji N, Weir CR, Wilson B, Godley BJ. Marine mammal conservation: over the horizon. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01115] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Marine mammals can play important ecological roles in aquatic ecosystems, and their presence can be key to community structure and function. Consequently, marine mammals are often considered indicators of ecosystem health and flagship species. Yet, historical population declines caused by exploitation, and additional current threats, such as climate change, fisheries bycatch, pollution and maritime development, continue to impact many marine mammal species, and at least 25% are classified as threatened (Critically Endangered, Endangered or Vulnerable) on the IUCN Red List. Conversely, some species have experienced population increases/recoveries in recent decades, reflecting management interventions, and are heralded as conservation successes. To continue these successes and reverse the downward trajectories of at-risk species, it is necessary to evaluate the threats faced by marine mammals and the conservation mechanisms available to address them. Additionally, there is a need to identify evidence-based priorities of both research and conservation needs across a range of settings and taxa. To that effect we: (1) outline the key threats to marine mammals and their impacts, identify the associated knowledge gaps and recommend actions needed; (2) discuss the merits and downfalls of established and emerging conservation mechanisms; (3) outline the application of research and monitoring techniques; and (4) highlight particular taxa/populations that are in urgent need of focus.
Collapse
Affiliation(s)
- SE Nelms
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
| | - J Alfaro-Shigueto
- ProDelphinus, Jose Galvez 780e, Miraflores, Perú
- Facultad de Biologia Marina, Universidad Cientifica del Sur, Lima, Perú
| | - JPY Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - IC Avila
- Grupo de Ecología Animal, Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Colombia
| | - S Bengtson Nash
- Environmental Futures Research Institute (EFRI), Griffith University, Nathan Campus, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - E Campbell
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
- ProDelphinus, Jose Galvez 780e, Miraflores, Perú
| | - MID Carter
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, UK
| | - T Collins
- Wildlife Conservation Society, 2300 Southern Blvd., Bronx, NY 10460, USA
| | - RJC Currey
- Marine Stewardship Council, 1 Snow Hill, London, EC1A 2DH, UK
| | - C Domit
- Laboratory of Ecology and Conservation, Marine Study Center, Universidade Federal do Paraná, Brazil
| | - V Franco-Trecu
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Uruguay
| | - MMPB Fuentes
- Marine Turtle Research, Ecology and Conservation Group, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | - E Gilman
- Pelagic Ecosystems Research Group, Honolulu, HI 96822, USA
| | - RG Harcourt
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - EM Hines
- Estuary & Ocean Science Center, San Francisco State University, 3150 Paradise Dr. Tiburon, CA 94920, USA
| | - AR Hoelzel
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - SK Hooker
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, UK
| | - DW Johnston
- Duke Marine Lab, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - N Kelkar
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur PO, Bangalore 560064, Karnataka, India
| | - JJ Kiszka
- Department of Biological Sciences, Coastlines and Oceans Division, Institute of Environment, Florida International University, Miami, FL 33199, USA
| | - KL Laidre
- Polar Science Center, APL, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA
| | - JC Mangel
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
- ProDelphinus, Jose Galvez 780e, Miraflores, Perú
| | - H Marsh
- James Cook University, Townsville, QLD 48111, Australia
| | - SM Maxwell
- School of Interdisciplinary Arts and Sciences, University of Washington Bothell, Bothell WA 98011, USA
| | - AB Onoufriou
- School of Biology, University of St Andrews, Fife, KY16 8LB, UK
- Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - DM Palacios
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, OR, 97365, USA
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97330, USA
| | - GJ Pierce
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Cientificas, Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain
| | - LS Ponnampalam
- The MareCet Research Organization, 40460 Shah Alam, Malaysia
| | - LJ Porter
- SMRU Hong Kong, University of St. Andrews, Hong Kong
| | - DJF Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, UK
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - KA Stockin
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - D Sutaria
- School of Interdisciplinary Arts and Sciences, University of Washington Bothell, Bothell WA 98011, USA
| | - N Wambiji
- Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa-80100, Kenya
| | - CR Weir
- Ketos Ecology, 4 Compton Road, Kingsbridge, Devon, TQ7 2BP, UK
| | - B Wilson
- Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, UK
| | - BJ Godley
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
| |
Collapse
|
39
|
Kone DV, Tinker MT, Torres LG. Informing sea otter reintroduction through habitat and human interaction assessment. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sea otters Enhydra lutris have been absent from Oregon, USA, following their extirpation over a century ago. Stakeholder groups and native tribes are advocating for reintroduction to restore historic populations. We investigated the potential for successful reintroduction by: (1) estimating expected equilibrium sea otter densities as a function of habitat variables to assess sea otter habitat in Oregon; and (2) spatially relating areas of high expected densities to human activities (e.g. fisheries, recreation, vessel activity, protected areas) to anticipate potential disturbance or fishery resource competition. We estimated that 4538 (1742-8976; 95% CI) sea otters could exist in Oregon, with higher expected abundance (N = 1551) and densities (x̄ = 2.45 km-2) within the southern region. Most core habitat areas (97%), representing clusters of high expected densities, overlapped with some form of human activity. While commercial shipping and tow lanes overlapped little (1%) with core habitat areas, recreational activities (58%) and fisheries (76%) had a higher degree of overlap, posing higher disturbance risk. We anticipate higher resource competition potential with the commercial red sea urchin fishery (67% of harvest areas) than the commercial Dungeness crab fishery (9% of high-catch crabbing grounds). Our study presents the first published carrying capacity estimate for sea otters in Oregon and can provide population recovery targets, focus attention on ecological and socioeconomic considerations, and help to inform a recovery plan for a resident sea otter population. Our findings suggest current available habitat may be sufficient to support a sea otter population, but resource managers may need to further investigate and consider whether current human activities might conflict with reestablishment in Oregon, if plans for a reintroduction continue.
Collapse
Affiliation(s)
- DV Kone
- College of Earth, Ocean, and Atmospheric Science, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Drive, Newport, OR 97365, USA
- California Ocean Science Trust, 1111 Broadway, Oakland, CA 94607, USA
| | - MT Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - LG Torres
- Department of Fisheries and Wildlife, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Drive, Newport, OR 97365, USA
| |
Collapse
|
40
|
Gabara SS, Konar BH, Edwards MS. Biodiversity loss leads to reductions in community‐wide trophic complexity. Ecosphere 2021. [DOI: 10.1002/ecs2.3361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Scott S. Gabara
- Department of Biology & Coastal Marine Institute Laboratory San Diego State University San Diego California92182USA
- Department of Environmental Science and Policy University of California Davis California95616USA
| | - Brenda H. Konar
- College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks Alaska99775USA
| | - Matthew S. Edwards
- Department of Biology & Coastal Marine Institute Laboratory San Diego State University San Diego California92182USA
| |
Collapse
|
41
|
Tinker MT, Yee JL, Laidre KL, Hatfield BB, Harris MD, Tomoleoni JA, Bell TW, Saarman E, Carswell LP, Miles AK. Habitat Features Predict Carrying Capacity of a Recovering Marine Carnivore. J Wildl Manage 2021. [DOI: 10.1002/jwmg.21985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Tim Tinker
- U.S. Geological Survey, Western Ecological Research Center Santa Cruz Field Station 2885 Mission Street Santa Cruz CA 95060 USA
| | - Julie L. Yee
- U.S. Geological Survey, Western Ecological Research Center Santa Cruz Field Station 2885 Mission Street Santa Cruz CA 95060 USA
| | - Kristin L. Laidre
- Polar Science Center, Applied Physics Laboratory University of Washington 1013 NE 40th Street Seattle WA 98105 USA
| | - Brian B. Hatfield
- U.S. Geological Survey, Western Ecological Research Center Santa Cruz Field Station 2885 Mission Street Santa Cruz CA 95060 USA
| | - Michael D. Harris
- California Department of Fish and Wildlife Office of Spill Prevention and Response—Veterinary Services 1385 Main Street Morro Bay CA 93442 USA
| | - Joseph A. Tomoleoni
- U.S. Geological Survey, Western Ecological Research Center Santa Cruz Field Station 2885 Mission Street Santa Cruz CA 95060 USA
| | - Tom W. Bell
- Earth Research Institute University of California, Santa Barbara, Santa Barbara California 93106 USA
| | - Emily Saarman
- Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Long Marine Laboratory, 115 McAllister Way University of California Santa Cruz CA 95060 USA
| | | | - A. Keith Miles
- U.S. Geological Survey Western Ecological Research Center 3020 State University Drive Sacramento CA 95819 USA
| |
Collapse
|
42
|
Ausilio G, Sand H, Månsson J, Mathisen KM, Wikenros C. Ecological Effects of Wolves in Anthropogenic Landscapes: The Potential for Trophic Cascades Is Context-Dependent. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.577963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, large predators have made a comeback across large parts of Europe. However, little is known about the impact that recolonizing predators may have on ecosystems with high degrees of anthropogenic influence. In Scandinavia, wolves (Canis lupus) now inhabit areas affected by intense forestry practices and their main prey, moose (Alces alces), are exposed to significant human hunting pressure. We used long-term datasets to investigate whether the return of wolves has affected moose distribution (i.e., presence and abundance) as well as browsing damage (i.e., presence and intensity) by moose on Scots pine (Pinus sylvestris). We found that the probability of moose presence and abundance increased with time since wolf territory establishment and was higher inside wolf territories than outside. Additionally, the probability of browsing damage was also higher inside wolf territories compared to outside, but wolf occurrence had no effect on browsing damage intensity. We suggest two possible underlying mechanisms behind these results: (1) wolves might select to establish territories in areas with higher moose abundance, increasing their probability of encounters, and/or (2) hunters within wolf territories reduce the number of harvested moose to compensate for wolf predation. This study highlights that the return of large predators to landscapes with strong anthropogenic influence may result in alternative effects than those described in studies on trophic cascades located in protected areas.
Collapse
|
43
|
Benkendorf DJ, Whiteman HH. Omnivore density affects community structure through multiple trophic cascades. Oecologia 2021; 195:397-407. [PMID: 33392792 DOI: 10.1007/s00442-020-04836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Omnivores can dampen trophic cascades by feeding at multiple trophic levels, yet few studies have evaluated how intraspecific variation of omnivores influences community structure. The speckled dace (Rhinichthys osculus) is a common and omnivorous minnow that consumes algae and invertebrates. We studied effects of size and size structure on top-down control by dace and how effects scaled with density. Dace were manipulated in a mesocosm experiment and changes in invertebrate and algal communities and ecosystem function were monitored. Omnivores affected experimental communities via two distinct trophic pathways (benthic and pelagic). In the benthic pathway, dace reduced macroinvertebrate biomass, thereby causing density-mediated indirect effects that led to increased benthic algal biomass. Dace also reduced pelagic predatory macroinvertebrate biomass (hemipterans), thereby increasing the abundance of emerging insects. The effect of dace and hemipterans on emerging insects was mediated by a non-linear response to dace with peak emergence at intermediate dace density. In contrast with recent studies, omnivore size and size structure had no clear effect, indicating that small and large dace in our experiment shared similar functional roles. Our results support that the degree to which omnivores dampen trophic cascades depends on their relative effect on multiple trophic levels, such that the more omnivorous a predator is, the more likely cascades will be dampened. Availability of abundant macroinvertebrates, and the absence of top predators, may have shifted dace diets from primary to secondary consumption, strengthening density-dependent trophic cascades. Both omnivore density and dietary shifts are important factors influencing omnivore-mediated communities.
Collapse
Affiliation(s)
- Donald J Benkendorf
- Watershed Studies Institute, Murray State University, Murray, KY, 42071, USA. .,Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA. .,High Lonesome Institute, De Beque, CO, 81630, USA. .,Department of Watershed Sciences, Utah State University, 5210 Old Main Hill, Logan, UT, 84322-5210, USA.
| | - Howard H Whiteman
- Watershed Studies Institute, Murray State University, Murray, KY, 42071, USA.,Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA.,High Lonesome Institute, De Beque, CO, 81630, USA
| |
Collapse
|
44
|
Albertson LK, MacDonald MJ, Tumolo BB, Briggs MA, Maguire Z, Quinn S, Sanchez-Ruiz JA, Veneros J, Burkle LA. Uncovering patterns of freshwater positive interactions using meta-analysis: Identifying the roles of common participants, invasive species and environmental context. Ecol Lett 2020; 24:594-607. [PMID: 33368953 DOI: 10.1111/ele.13664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 01/20/2023]
Abstract
Positive interactions are sensitive to human activities, necessitating synthetic approaches to elucidate broad patterns and predict future changes if these interactions are altered or lost. General understanding of freshwater positive interactions has been far outpaced by knowledge of these important relationships in terrestrial and marine ecosystems. We conducted a global meta-analysis to evaluate the magnitude of positive interactions across freshwater habitats. In 340 studies, we found substantial positive effects, with facilitators increasing beneficiaries by, on average, 81% across all taxa and response variables. Mollusks in particular were commonly studied as both facilitators and beneficiaries. Amphibians were one group benefiting the most from positive interactions, yet few studies investigated amphibians. Invasive facilitators had stronger positive effects on beneficiaries than non-invasive facilitators. We compared positive effects between high- and low-stress conditions and found no difference in the magnitude of benefit in the subset of studies that manipulated stressors. Future areas of research include understudied facilitators and beneficiaries, the stress gradient hypothesis, patterns across space or time and the influence of declining taxa whose elimination would jeopardise fragile positive interaction networks. Freshwater positive interactions occur among a wide range of taxa, influence populations, communities and ecosystem processes and deserve further exploration.
Collapse
Affiliation(s)
- Lindsey K Albertson
- Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, MT, 59717, USA
| | - Michael J MacDonald
- Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, MT, 59717, USA
| | - Benjamin B Tumolo
- Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, MT, 59717, USA
| | - Michelle A Briggs
- Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, MT, 59717, USA
| | - Zachary Maguire
- Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, MT, 59717, USA
| | - Sierra Quinn
- Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, MT, 59717, USA
| | - Jose A Sanchez-Ruiz
- Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, MT, 59717, USA
| | - Jaris Veneros
- Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, MT, 59717, USA
| | - Laura A Burkle
- Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, MT, 59717, USA
| |
Collapse
|
45
|
Beas-Luna R, Micheli F, Woodson CB, Carr M, Malone D, Torre J, Boch C, Caselle JE, Edwards M, Freiwald J, Hamilton SL, Hernandez A, Konar B, Kroeker KJ, Lorda J, Montaño-Moctezuma G, Torres-Moye G. Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes. GLOBAL CHANGE BIOLOGY 2020; 26:6457-6473. [PMID: 32902090 DOI: 10.1111/gcb.15273] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/06/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological responses to environmental change and predicting changes in the structure and functioning of whole ecosystems require large-scale, long-term studies, yet most studies trade spatial extent for temporal duration. We address this shortfall by integrating multiple long-term kelp forest monitoring datasets to evaluate biogeographic patterns and rates of change of key functional groups (FG) along the west coast of North America. Analysis of data from 469 sites spanning Alaska, USA, to Baja California, Mexico, and 373 species (assigned to 18 FG) reveals regional variation in responses to both long-term (2006-2016) change and a recent marine heatwave (2014-2016) associated with two atmospheric and oceanographic anomalies, the "Blob" and extreme El Niño Southern Oscillation (ENSO). Canopy-forming kelps appeared most sensitive to warming throughout their range. Other FGs varied in their responses among trophic levels, ecoregions, and in their sensitivity to heatwaves. Changes in community structure were most evident within the southern and northern California ecoregions, while communities in the center of the range were more resilient. We report a poleward shift in abundance of some key FGs. These results reveal major, ongoing region-wide changes in productive coastal marine ecosystems in response to large-scale climate variability, and the potential loss of foundation species. In particular, our results suggest that coastal communities that are dependent on kelp forests will be more impacted in the southern portion of the California Current region, highlighting the urgency of implementing adaptive strategies to sustain livelihoods and ensure food security. The results also highlight the value of multiregional integration and coordination of monitoring programs for improving our understanding of marine ecosystems, with the goal of informing policy and resource management in the future.
Collapse
Affiliation(s)
| | - Fiorenza Micheli
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA
| | - C Brock Woodson
- College of Engineering, University of Georgia, Athens, GA, USA
| | - Mark Carr
- University of California, Santa Cruz, CA, USA
| | - Dan Malone
- University of California, Santa Cruz, CA, USA
| | - Jorge Torre
- Comunidad y Biodiversidad A.C., La Paz, Mexico
| | - Charles Boch
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Southwest Fisheries Science Center, NOAA, San Diego, CA, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | | | - Jan Freiwald
- University of California, Santa Cruz, CA, USA
- Reef Check California, Marina del Rey, CA, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | | | | | | | - Julio Lorda
- Universidad Autónoma de Baja California, Ensenada, Mexico
- Tijuana River National Estuarine Research Reserve, Imperial Beach, CA, USA
| | | | | |
Collapse
|
46
|
Edwards MS, Konar B. Trophic downgrading reduces spatial variability on rocky reefs. Sci Rep 2020; 10:18079. [PMID: 33093542 PMCID: PMC7581756 DOI: 10.1038/s41598-020-75117-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/05/2020] [Indexed: 11/09/2022] Open
Abstract
Trophic downgrading in coastal waters has occurred globally during recent decades. On temperate rocky reefs, this has resulted in widespread kelp deforestation and the formation of sea urchin barrens. We hypothesize that the intact kelp forest communities are more spatially variable than the downgraded urchin barren communities, and that these differences are greatest at small spatial scales where the influence of competitive and trophic interactions is strongest. To address this, benthic community surveys were done in kelp forests and urchin barrens at nine islands spanning 1230 km of the Aleutian Archipelago where the loss of predatory sea otters has resulted in the trophic downgrading of the region’s kelp forests. We found more species and greater total spatial variation in community composition within the kelp forests than in the urchin barrens. Further, the kelp forest communities were most variable at small spatial scales (within each forest) and least variable at large spatial scales (among forests on different islands), while the urchin barren communities followed the opposite pattern. This trend was consistent for different trophic guilds (primary producers, grazers, filter feeders, predators). Together, this suggests that Aleutian kelp forests create variable habitats within their boundaries, but that the communities within these forests are generally similar across the archipelago. In contrast, urchin barrens exhibit relatively low variability within their boundaries, but these communities vary substantially among different barrens across the archipelago. We propose this represents a shift from small-scale biological control to large-scale oceanographic control of these communities.
Collapse
Affiliation(s)
- Matthew S Edwards
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.
| | - Brenda Konar
- Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, USA
| |
Collapse
|
47
|
Rasher DB, Steneck RS, Halfar J, Kroeker KJ, Ries JB, Tinker MT, Chan PTW, Fietzke J, Kamenos NA, Konar BH, Lefcheck JS, Norley CJD, Weitzman BP, Westfield IT, Estes JA. Keystone predators govern the pathway and pace of climate impacts in a subarctic marine ecosystem. Science 2020; 369:1351-1354. [PMID: 32913100 DOI: 10.1126/science.aav7515] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 07/20/2020] [Indexed: 01/10/2024]
Abstract
Predator loss and climate change are hallmarks of the Anthropocene yet their interactive effects are largely unknown. Here, we show that massive calcareous reefs, built slowly by the alga Clathromorphum nereostratum over centuries to millennia, are now declining because of the emerging interplay between these two processes. Such reefs, the structural base of Aleutian kelp forests, are rapidly eroding because of overgrazing by herbivores. Historical reconstructions and experiments reveal that overgrazing was initiated by the loss of sea otters, Enhydra lutris (which gave rise to herbivores capable of causing bioerosion), and then accelerated with ocean warming and acidification (which increased per capita lethal grazing by 34 to 60% compared with preindustrial times). Thus, keystone predators can mediate the ways in which climate effects emerge in nature and the pace with which they alter ecosystems.
Collapse
Affiliation(s)
- Douglas B Rasher
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA.
| | - Robert S Steneck
- Darling Marine Center, University of Maine, Walpole, ME 04573, USA
| | - Jochen Halfar
- University of Toronto, Mississauga, Ontario L5L 1C6, Canada
| | | | - Justin B Ries
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - M Tim Tinker
- University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Western Ecological Research Center, U.S. Geological Survey, Santa Cruz, CA 95060, USA
| | - Phoebe T W Chan
- University of Toronto, Mississauga, Ontario L5L 1C6, Canada
- Bjerknes Centre for Climate Research, University of Bergen, Bergen 5007, Norway
| | - Jan Fietzke
- GEOMAR Helmholtz Centre for Ocean Research, Kiel D-24148, Germany
| | | | - Brenda H Konar
- University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | | | | | - Benjamin P Weitzman
- University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- Alaska Science Center, U.S. Geological Survey, Anchorage, AK 99508, USA
| | - Isaac T Westfield
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - James A Estes
- University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
48
|
Brown CM, Paxton AB, Taylor JC, Van Hoeck RV, Fatzinger MH, Silliman BR. Short-term changes in reef fish community metrics correlate with variability in large shark occurrence. FOOD WEBS 2020. [DOI: 10.1016/j.fooweb.2020.e00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Abstract
Vergés and Campbell introduce the kelp forest ecosystem.
Collapse
Affiliation(s)
- Adriana Vergés
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia; Sydney Institute of Marine Science, Mosman, NSW 2088, Australia.
| | - Alexandra H Campbell
- USC Seaweed Research Group, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| |
Collapse
|
50
|
Morris RL, Hale R, Strain EMA, Reeves SE, Vergés A, Marzinelli EM, Layton C, Shelamoff V, Graham TDJ, Chevalier M, Swearer SE. Key Principles for Managing Recovery of Kelp Forests through Restoration. Bioscience 2020. [DOI: 10.1093/biosci/biaa058] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractThere is increasing interest in mitigating the loss of kelp forests through restoration, but this has received scant attention relative to other coastal habitats. We evaluate current knowledge centered on key restoration principles to provide guidelines for best practice in kelp restoration. The cause and scale of degradation is fundamental in determining if kelp can be restored and the methods required to promote reestablishment. Removal of stressors may be adequate to achieve restoration goals where degradation is not too widespread or acute. Extensive losses of kelp forests will often require active reseeding of areas because of the low dispersal ability of many kelp species. Restoration efforts have generally taken a trial-and-error approach at experimental scales to develop techniques for establishing individuals. Furthermore, studies that inform cost–benefit analysis and the appropriate spatial scales for restoration of sustainable kelp forests are urgently needed for prioritizing and scaling up restoration efforts globally.
Collapse
Affiliation(s)
- Rebecca L Morris
- National Centre for Coasts and Climate at the University of Melbourne, Parkville, Australia
| | - Robin Hale
- School of BioSciences, University of Melbourne, Parkville, Australia during this work
- Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, in Heidelberg, Australia
| | - Elisabeth M A Strain
- National Centre for Coasts and Climate at the University of Melbourne, Parkville, Australia
| | | | - Adriana Vergés
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences at the University of New South Wales, in Sydney, Australia
- Sydney Institute of Marine Science, Sydney, Australia
| | - Ezequiel M Marzinelli
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Australia
- Sydney Institute of Marine Science, Sydney, Australia
- EMM is also affiliated with the University of Sydney's School of Life and Environmental Sciences, Coastal and Marine Ecosystems, in Sydney, Australia, and with the Singapore Centre for Environmental Life Sciences Engineering, at Nanyang Technological University, in Singapore. Mathilde Chevalier is affiliated with Agrocampus Ouest, in Rennes, France
| | - Cayne Layton
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Australia
| | - Victor Shelamoff
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Australia
| | - Tristan D J Graham
- National Centre for Coasts and Climate at the University of Melbourne, Parkville, Australia
| | - Mathilde Chevalier
- National Centre for Coasts and Climate at the University of Melbourne, Parkville, Australia
| | - Stephen E Swearer
- National Centre for Coasts and Climate at the University of Melbourne, Parkville, Australia
| |
Collapse
|