1
|
Al-Maamari A, Sultan M, Ding S, Yuxin D, Wang MY, Su S. Mechanisms and implications of histamine-induced reactions and complications. Allergol Immunopathol (Madr) 2025; 53:122-139. [PMID: 40342122 DOI: 10.15586/aei.v53i3.1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 05/11/2025]
Abstract
Histamine, classified as a biogenic amine, plays a crucial role in both pro-inflammatory and immune regulatory processes, thereby establishing itself as a key mediator in allergic diseases and immune responses. This review provides an exhaustive analysis of the structure, function, and regulation of histamine, with particular emphasis on its interaction with four receptor subtypes: histamine H1 receptor (H1R), histamine H2 receptor (H2R), histamine H3 receptor (H3R), and histamine H4 receptor (H4R), all of which are instrumental in mediating a variety of physiological processes, including neurotransmitter release, modulation of immune responses, and gastric acid secretion. The review explores intracellular signaling pathways mediated by the activation of these receptors, highlighting the complex cascades involved in immediate- and delayed-type hypersensitivity reactions. It also examines the broad spectrum of histamine-induced complications, focusing on their effects on the gastrointestinal, cardiovascular, respiratory, and central nervous systems, and emphasizes histamine's potential to cause vascular dysfunction and other pathological changes. Furthermore, the role of histamine in inflammation and immune responses is explored, particularly in the context of allergic diseases such as asthma, allergic rhinitis, and atopic dermatitis. The review also covers pharmacological interventions targeting histamine receptors, including the use of antihistamines and mast cell stabilizers, which are critical for the treatment of symptoms and the inhibition of the progression of histamine-related conditions. Finally, the review addresses emerging research and future directions, identifying potential areas for innovation and improved therapeutic strategies. This comprehensive overview not only deepens understanding of histamine's multifaceted roles in health and disease, but also underscores the importance of developing advanced diagnostic tools and targeted treatments for histamine-associated disorders.
Collapse
Affiliation(s)
- Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Marwa Sultan
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Shanshan Ding
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Duan Yuxin
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Meng-Yao Wang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Suwen Su
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China;
| |
Collapse
|
2
|
Nikolouli E, Mommert S, Dawodu DM, Schaper-Gerhardt K, Stark H, Dittrich-Breiholz O, Gutzmer R, Werfel T. The stimulation of TH2 cells results in increased IL-5 and IL-13 production via the H 4 receptor. Allergy 2024. [PMID: 38853666 DOI: 10.1111/all.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease resulting in decreased quality of life. Histamine and specifically the H4 receptor play a key role in the inflammatory process in AD and serve as targets for novel therapeutic approaches. OBJECTIVE In the present study we aimed to elucidate the immunopathological mechanisms with which the H4 receptor impacts TH2 cells and contributes to AD pathophysiology. METHODS Total CD4+ T cells obtained from healthy or AD individuals and in vitro differentiated TH2 cells were cultured under different conditions and the mRNA expression or protein production of target molecules were determined using quantitative real-time PCR and ELISA. RESULTS H4 receptor mRNA expression was upregulated concentration dependent upon IL-4 stimulation in in vitro differentiated TH2 cells progressively during the differentiation. Transcriptomic analysis of in vitro differentiated TH2 versus TH1 cells revealed that the H4 receptor among other genes represents one of the highly upregulated genes in TH2 cells. Most importantly, increased amounts of IL-5 and IL-13 mRNA expression were detected in in vitro differentiated TH2 cells as well as protein secretion in the presence of histamine or of the H4 receptor-selective-agonist when compared to the untreated control. CONCLUSION We show for the first time an H4 receptor dependent upregulation of the pro-inflammatory cytokines IL-5 and IL-13 in human TH2 cells by histamine. This suggests that the blockade of the H4 receptor may lead to downregulation of these cytokines and amelioration of AD symptoms as reported in first clinical studies.
Collapse
Affiliation(s)
- Eirini Nikolouli
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Susanne Mommert
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | | | - Katrin Schaper-Gerhardt
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum Campus Minden, Minden, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Ralf Gutzmer
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum Campus Minden, Minden, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Wong TK, Choi YG, Li PH, Chow BKC, Kumar M. MRGPRX2 antagonist GE1111 attenuated DNFB-induced atopic dermatitis in mice by reducing inflammatory cytokines and restoring skin integrity. Front Immunol 2024; 15:1406438. [PMID: 38817611 PMCID: PMC11137259 DOI: 10.3389/fimmu.2024.1406438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterised by itching, erythema, and epidermal barrier dysfunction. The pathogenesis of AD is complex and multifactorial; however,mast cell (MC) activation has been reported to be one of the crucial mechanisms in the pathogenesis of AD. The MC receptor Mas related G protein-coupled receptor-X2 (MRGPRX2) has been identified as a prominent alternative receptor to the IgE receptor in causing MC activation and the subsequent release of inflammatory mediators. The current study aimed to evaluate the therapeutic effect of a novel small molecule MRGPRX2 antagonist GE1111 in AD using in vitro and in vivo approaches. Methods We developed an in vitro cell culture disease model by using LAD-2 MC, HaCaT keratinocytes and RAW 264.7 macrophage cell lines. We challenged keratinocytes and macrophage cells with CST-14 treated MC supernatant in the presence and absence of GE1111 and measured the expression of tight junction protein claudin 1, inflammatory cytokines and macrophage phagocytosis activity through immunohistochemistry, western blotting, RT-qPCR and fluorescence imaging techniques. In addition to this, we developed a DFNB-induced AD model in mice and evaluated the protective effect and underlying mechanism of GE1111. Results and Discussion Our in vitro findings demonstrated a potential therapeutic effect of GE1111, which inhibits the expression of TSLP, IL-13, MCP-1, TNF-a, and IL-1ß in MC and keratinocytes. In addition to this, GE1111 was able to preserve the expression of claudin 1 in keratinocytes and the phagocytotic activity of macrophage cells. The in vivo results demonstrated that GE1111 treatment significantly reduced phenotypic changes associated with AD (skin thickening, scaling, erythema and epidermal thickness). Furthermore, immunohistochemical analysis demonstrated that GE1111 treatment preserved the expression of the tight junction protein Involucrin and reduced the expression of the inflammatory mediator periostin in the mouse model of AD. These findings were supported by gene and protein expression analysis, where GE1111 treatment reduced the expression of TSLP, IL-13, and IL-1ß, as well as downstream signalling pathways of MRGPRX2 in AD skin lesions. In conclusion, our findings provide compelling in vitro and in vivo evidence supporting the contribution of MRGPRX2-MC interaction with keratinocytes and macrophages in the pathogenesis of AD.
Collapse
Affiliation(s)
- Trevor K. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Faculty of Health Sciences, McMaster University, Hamliton, ON, Canada
| | - Ye Gi Choi
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Philip H. Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mukesh Kumar
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Acharya M, Gautam R, Yang S, Jo J, Maharjan A, Lee D, Ghimire NP, Min B, Kim C, Kim H, Heo Y. Evaluation of Artemisia dubia folium extract-mediated immune efficacy through developing a murine model for acute and chronic stages of atopic dermatitis. Lab Anim Res 2024; 40:13. [PMID: 38582857 PMCID: PMC10999079 DOI: 10.1186/s42826-024-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a biphasic type of skin inflammation characterized by a predominance of type-2 (TH2) and type-1 (TH1) helper T cell-biased immune responses at the acute and persistent chronic phases, respectively. The present study was aimed to evaluate the efficacy of Artemisia dubia folium extract (ADFE) on AD-like skin lesions through developing a murine model for acute and chronic stages of AD. To induce acute phase AD, the dorsal skin of BALB/c mice was sensitized twice a week with 1% 2, 4-dinitrochlorobenzene (DNCB), followed by challenge (twice) in the following week with 0.2% DNCB. To induce persistent chronic AD, some mice were challenged twice a week for 4 more weeks. After the second challenge, the dorsal skin was exposed to 3% ADFE (five times per week) for 2 weeks (acute phase) or 4 weeks (persistent chronic phase). RESULTS The paradigm of TH2 or TH1 predominance at the acute and chronic phase, respectively, was observed in this mouse model. During the acute phase, we observed an increased IL-4/IFN-γ ratio in splenic culture supernatants, an increased IgG1/IgG2a ratio in serum, and elevated serum IgE levels; however, the skew toward TH2 responses was diminished during the chronic stage. Compared with vehicle controls, ADFE reduced the IL-4/IFN-γ and IgG1/IgG2a ratios in acute AD, but both ratios increased during the chronic stage. CONCLUSIONS Our results suggest that ADFE concomitantly suppresses the TH2 predominant response in acute AD, as well as the TH1 predominant response in chronic AD. Thus, ADFE is a candidate therapeutic for AD.
Collapse
Affiliation(s)
- Manju Acharya
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - Ravi Gautam
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - SuJeong Yang
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - JiHun Jo
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - Anju Maharjan
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - DaEun Lee
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | | | - ByeongSun Min
- College of Pharmacy, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - ChangYul Kim
- Department of Toxicology, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yong Heo
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea.
- Department of Toxicology, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea.
| |
Collapse
|
5
|
Cai H, Wen H, Li J, Lu L, Zhao W, Jiang X, Bai R. Small-molecule agents for treating skin diseases. Eur J Med Chem 2024; 268:116269. [PMID: 38422702 DOI: 10.1016/j.ejmech.2024.116269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Skin diseases are a class of common and frequently occurring diseases that significantly impact daily lives. Currently, the limited effective therapeutic drugs are far from meeting the clinical needs; most drugs typically only provide symptomatic relief rather than a cure. Developing small-molecule drugs with improved efficacy holds paramount importance for treating skin diseases. This review aimed to systematically introduce the pathogenesis of common skin diseases in daily life, list related drugs applied in the clinic, and summarize the clinical research status of candidate drugs and the latest research progress of candidate compounds in the drug discovery stage. Also, it statistically analyzed the number of publications and global attention trends for the involved skin diseases. This review might provide practical information for researchers engaged in dermatological drugs and further increase research attention to this disease area.
Collapse
Affiliation(s)
- Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Liuxin Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenxuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
6
|
Shao Y, Wang D, Zhu Y, Xiao Z, Jin T, Peng L, Shen Y, Tang H. Molecular mechanisms of pruritus in prurigo nodularis. Front Immunol 2023; 14:1301817. [PMID: 38077377 PMCID: PMC10701428 DOI: 10.3389/fimmu.2023.1301817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Pruritus is the most common symptom of dermatological disorders, and prurigo nodularis (PN) is notorious for intractable and severe itching. Conventional treatments often yield disappointing outcomes, significantly affecting patients' quality of life and psychological well-being. The pathogenesis of PN is associated with a self-sustained "itch-scratch" vicious cycle. Recent investigations of PN-related itch have partially revealed the intricate interactions within the cutaneous neuroimmune network; however, the underlying mechanism remains undetermined. Itch mediators play a key role in pruritus amplification in PN and understanding their action mechanism will undoubtedly lead to the development of novel targeted antipruritic agents. In this review, we describe a series of pruritogens and receptors involved in mediating itching in PN, including cytokines, neuropeptides, extracellular matrix proteins, vasculogenic substances, ion channels, and intracellular signaling pathways. Moreover, we provide a prospective outlook on potential therapies based on existing findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Xu RQ, Ma L, Chen T, Zhang WX, Chang K, Wang J. Sophorolipid inhibits histamine-induced itch by decreasing PLC/IP3R signaling pathway activation and modulating TRPV1 activity. Sci Rep 2023; 13:7957. [PMID: 37198299 DOI: 10.1038/s41598-023-35158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/13/2023] [Indexed: 05/19/2023] Open
Abstract
Biosurfactants are attracting much interest due to their potential application as therapeutic agents in the medical and cosmetic field. Previous studies have demonstrated that biosurfactant such as sophorolipid (SL) exhibits immunomodulatory effects. In this article, we found the potential of sophorolipid for inhibiting histamine-induced itch and preliminarily explored its molecular basis. First, behavioral tests indicated that SL can remit the histamine-induced scratching behaviors of mice. Second, SL can suppress the the calcium influx induced by histamine, HTMT and VUF8430 in HaCaT cells. RT-PCR analysis showed that the histamine-induced upregulation of mRNA levels of phospholipase Cγ1, 1,4,5-trisphosphate receptor (IP3R), and protein kinase Cα can be inhibted by SL, suggesting that SL may impede the PLC/IP3R signaling pathway activated by histamine. In further tests, the capsaicin-induced calcium influx can also be inhibited by SL. The immunofluorescence and molecular docking analysis indicated that SL acts as an inhibitor of transient receptor potential vanilloid-1 (TRPV1) activation to decrease calcium influx against stimuli. In summary, these results revealed that SL may inhibit histamine-induced itch by decreasing PLC/IP3R signaling pathway activation and modulating TRPV1 activity. This paper indicates that SL can be a useful treatment for histamine-dependent itch.
Collapse
Affiliation(s)
- Rui-Qi Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ling Ma
- Adolph Innovation Laboratory, Guangzhou Degu Personal Care Products Co., Ltd., Guangzhou, 510000, China.
| | - Timson Chen
- Adolph Innovation Laboratory, Guangzhou Degu Personal Care Products Co., Ltd., Guangzhou, 510000, China
| | - Wei-Xiong Zhang
- Adolph Innovation Laboratory, Guangzhou Degu Personal Care Products Co., Ltd., Guangzhou, 510000, China
| | - Kuan Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Jing Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Tsuji G, Yamamura K, Kawamura K, Kido-Nakahara M, Ito T, Nakahara T. Novel Therapeutic Targets for the Treatment of Atopic Dermatitis. Biomedicines 2023; 11:biomedicines11051303. [PMID: 37238974 DOI: 10.3390/biomedicines11051303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that significantly impacts quality of life. The pathogenesis of AD is a complex combination of skin barrier dysfunction, type II immune response, and pruritus. Progress in the understanding of the immunological mechanisms of AD has led to the recognition of multiple novel therapeutic targets. For systemic therapy, new biologic agents that target IL-13, IL-22, IL-33, the IL-23/IL-17 axis, and OX40-OX40L are being developed. Binding of type II cytokines to their receptors activates Janus kinase (JAK) and its downstream signal, namely signal transduction and activator of transcription (STAT). JAK inhibitors block the activation of the JAK-STAT pathway, thereby blocking the signaling pathways mediated by type II cytokines. In addition to oral JAK inhibitors, histamine H4 receptor antagonists are under investigation as small-molecule compounds. For topical therapy, JAK inhibitors, aryl hydrocarbon receptor modulators, and phosphodiesterase-4 inhibitors are being approved. Microbiome modulation is also being examined for the treatment of AD. This review outlines current and future directions for novel therapies of AD that are currently being investigated in clinical trials, focusing on their mechanisms of action and efficacy. This supports the accumulation of data on advanced treatments for AD in the new era of precision medicine.
Collapse
Affiliation(s)
- Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuhiko Yamamura
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Koji Kawamura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Nakahara
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Uluckan Ö, Bruno S, Wang Y, Wack N, Wilzopolski J, Goetschy JF, Delucis-Bronn C, Urban B, Fehlmann D, Stark H, Hauchard A, Roussel E, Kempf D, Kaupmann K, Raulf F, Bäumer W, Röhn TA, Zerwes HG. Adriforant is a functional antagonist of histamine receptor 4 and attenuates itch and skin inflammation in mice. Eur J Pharmacol 2023; 945:175533. [PMID: 36690055 DOI: 10.1016/j.ejphar.2023.175533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Histamine has been postulated to play a role in atopic dermatitis via histamine receptor 4, mediating pruritic and inflammatory effects. The H4R antagonist adriforant (PF-3893787 or ZPL389) indicated clinical efficacy in a Ph2a study in atopic dermatitis. Preclinical investigations of adriforant had been scarce as experiments in transfectants with H4R from several species suggested partial agonism, not seen in human cells. OBJECTIVE During the Ph2b trial in AD, we performed experiments to understand the pharmacology of adriforant in primary murine cells and in vivo models. We assessed its effects on ERK phosphorylation and transcriptional changes in bone marrow-derived mast cells, histamine-dependent Ca2+ flux in neurons and histamine-induced itch response. In addition, its impact on MC903-induced skin inflammation was evaluated. RESULTS We show that, contrary to transfectants, adriforant is a competitive antagonist of the murine histamine receptor 4, antagonizes histamine-induced ERK phosphorylation, normalizes histamine-induced transcriptional changes in mast cells and reduces histamine-dependent Ca2+ flux in neurons. Administration to mice reduces acute histamine-induced itch response. In addition, adriforant ameliorates inflammation in the mouse MC903 model. CONCLUSIONS Our results suggest that functional inhibition of histamine receptor 4 by adriforant reduces itch and inflammation in vivo. The effects observed in mice, however, did not translate to clinical efficacy in patients as the Ph2b clinical trial with adriforant did not meet pre-specified efficacy endpoints. Given the complex pathogenesis of AD, antagonism of histamine receptor 4 alone appears insufficient to reduce disease severity in AD patients, despite the effects seen in mouse models.
Collapse
Affiliation(s)
- Özge Uluckan
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Sandro Bruno
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Yichen Wang
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Nathalie Wack
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Jenny Wilzopolski
- Institut für Pharmakologie und Toxikologie, Veterinärmedizin, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany; Bundesinstitut für Risikobewertung, Experimentelle Toxikologie und ZEBET, Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Jean-Francois Goetschy
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Corinne Delucis-Bronn
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Beatrice Urban
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Dominique Fehlmann
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Alice Hauchard
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Elsa Roussel
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Dominique Kempf
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Klemens Kaupmann
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Friedrich Raulf
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Wolfgang Bäumer
- Institut für Pharmakologie und Toxikologie, Veterinärmedizin, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - Till A Röhn
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Hans Günter Zerwes
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland.
| |
Collapse
|
10
|
Haddad EB, Cyr SL, Arima K, McDonald RA, Levit NA, Nestle FO. Current and Emerging Strategies to Inhibit Type 2 Inflammation in Atopic Dermatitis. Dermatol Ther (Heidelb) 2022; 12:1501-1533. [PMID: 35596901 PMCID: PMC9276864 DOI: 10.1007/s13555-022-00737-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/30/2022] Open
Abstract
Type 2 immunity evolved to combat helminth infections by orchestrating a combined protective response of innate and adaptive immune cells and promotion of parasitic worm destruction or expulsion, wound repair, and barrier function. Aberrant type 2 immune responses are associated with allergic conditions characterized by chronic tissue inflammation, including atopic dermatitis (AD) and asthma. Signature cytokines of type 2 immunity include interleukin (IL)-4, IL-5, IL-9, IL-13, and IL-31, mainly secreted from immune cells, as well as IL-25, IL-33, and thymic stromal lymphopoietin, mainly secreted from tissue cells, particularly epithelial cells. IL-4 and IL-13 are key players mediating the prototypical type 2 response; IL-4 initiates and promotes differentiation and proliferation of naïve T-helper (Th) cells toward a Th2 cell phenotype, whereas IL-13 has a pleiotropic effect on type 2 inflammation, including, together with IL-4, decreased barrier function. Both cytokines are implicated in B-cell isotype class switching to generate immunoglobulin E, tissue fibrosis, and pruritus. IL-5, a key regulator of eosinophils, is responsible for eosinophil growth, differentiation, survival, and mobilization. In AD, IL-4, IL-13, and IL-31 are associated with sensory nerve sensitization and itch, leading to scratching that further exacerbates inflammation and barrier dysfunction. Various strategies have emerged to suppress type 2 inflammation, including biologics targeting cytokines or their receptors, and Janus kinase inhibitors that block intracellular cytokine signaling pathways. Here we review type 2 inflammation, its role in inflammatory diseases, and current and future therapies targeting type 2 pathways, with a focus on AD. INFOGRAPHIC.
Collapse
Affiliation(s)
| | - Sonya L Cyr
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | - Noah A Levit
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | |
Collapse
|
11
|
Antwi S, Oduro-Mensah D, Obiri DD, Osafo N, Antwi AO, Ansah HO, Ocloo A, Okine LKNA. Hydro-ethanol extract of Holarrhena floribunda stem bark exhibits anti-anaphylactic and anti-oedematogenic effects in murine models of acute inflammation. BMC Complement Med Ther 2022; 22:80. [PMID: 35305615 PMCID: PMC8934059 DOI: 10.1186/s12906-022-03565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Holarrhena floribunda (G.Don) T.Durand & Schinz stem bark has anecdotal use in Ghanaian folk medicine for the management of inflammatory conditions. This study was conducted to investigate the in vivo anti-inflammatory activity of the bark extract using models of acute inflammation in male Sprague Dawley rats, C57BL/6 mice and ICR mice. METHODS A 70% hydro-ethanol extract of the stem bark (HFE) was evaluated at doses of 5-500 mg/kg bw. Local anaphylaxis was modelled by the pinnal cutaneous anaphylactic test. Systemic anaphylaxis or sepsis were modeled by compound 48/80 or lipopolysaccharide, respectively. Clonidine-induced catalepsy was used to investigate the effect on histamine signaling. Anti-oedematogenic effect was assessed by induction with carrageenan. Effects on mediators of biphasic acute inflammation were studied using histamine and serotonin (early phase) or prostaglandin E2 (late phase). RESULTS HFE demonstrated anti-inflammatory and/or anti-oedematogenic activity comparable to standard doses of aspirin and diclofenac (inhibitors of cyclooxygenases-1 and -2), chlorpheniramine (histamine H1-receptor antagonist), dexamethasone (glucocorticoid receptor agonist), granisetron (serotonin receptor antagonist) and sodium cromoglycate (inhibitor of mast cell degranulation). All observed HFE bioactivities increased with dose. CONCLUSIONS The data provide evidence that the extract of H. floribunda stem bark has anti-anaphylactic and anti-oedematogenic effects; by interfering with signalling or metabolism of histamine, serotonin and prostaglandin E2 which mediate the progression of inflammation. The anti-inflammatory and antihistaminic activities of HFE may be relevant in the context of the management of COVID-19.
Collapse
Affiliation(s)
- Stephen Antwi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Pharmacology/Toxicology Department, Centre for Plant Medicine Research (CPMR), Mampong-Akuapem, Ghana
| | - Daniel Oduro-Mensah
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.
| | - David Darko Obiri
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Newman Osafo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Aaron Opoku Antwi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Helena Owusu Ansah
- Pharmacology/Toxicology Department, Centre for Plant Medicine Research (CPMR), Mampong-Akuapem, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Laud K N-A Okine
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
12
|
Development of Phenothiazine Hybrids with Potential Medicinal Interest: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010276. [PMID: 35011508 PMCID: PMC8746661 DOI: 10.3390/molecules27010276] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
The molecular hybridization approach has been used to develop compounds with improved efficacy by combining two or more pharmacophores of bioactive scaffolds. In this context, hybridization of various relevant pharmacophores with phenothiazine derivatives has resulted in pertinent compounds with diverse biological activities, interacting with specific or multiple targets. In fact, the development of new drugs or drug candidates based on phenothiazine system has been a promising approach due to the diverse activities associated with this tricyclic system, traditionally present in compounds with antipsychotic, antihistaminic and antimuscarinic effects. Actually, the pharmacological actions of phenothiazine hybrids include promising antibacterial, antifungal, anticancer, anti-inflammatory, antimalarial, analgesic and multi-drug resistance reversal properties. The present review summarizes the progress in the development of phenothiazine hybrids and their biological activity.
Collapse
|
13
|
Anti-Allergic Effects of Myrciaria dubia (Camu-Camu) Fruit Extract by Inhibiting Histamine H1 and H4 Receptors and Histidine Decarboxylase in RBL-2H3 Cells. Antioxidants (Basel) 2021; 11:antiox11010104. [PMID: 35052608 PMCID: PMC8773304 DOI: 10.3390/antiox11010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/21/2022] Open
Abstract
Although Myrciaria dubia (camu-camu) has been shown to exert anti-oxidant and anti-inflammatory effects in both in vitro and in vivo studies, its use in allergic responses has not been elucidated. In the present study, the anti-allergic effect of 70% ethanol camu-camu fruit extract was tested on calcium ionophore (A23187)-induced allergies in RBL-2H3 cells. The RBL-2H3 cells were induced with 100 nM A23187 for 6 h, followed by a 1 h camu-camu fruit extract treatment. A23187 sanitization exacerbated mast cell degranulation; however, camu-camu fruit extract decreased the release of histamine and β-hexosaminidase, which are considered as key biomarkers in cell degranulation. Camu-camu fruit extract inhibited cell exocytosis by regulating the calcium/nuclear factor of activated T cell (NFAT) signaling. By downregulating the activation of mitogen-activated protein kinase (MAPK) signaling, camu-camu fruit extract hindered the activation of both histamine H1 and H4 receptors and inhibited histidine decarboxylase (HDC) expression by mediating its transcription factors KLF4/SP1 and GATA2/MITF. In A23187-induced ROS overproduction, camu-camu fruit extract activated nuclear factor erythroid-2-related factor 2 (Nrf2) to protect mast cells against A23187-induced oxidative stress. These findings indicate that camu-camu fruit extract can be developed to act as a mast cell stabilizer and an anti-histamine. This work also “opens the door” to new investigations using natural products to achieve breakthroughs in allergic disorder treatment.
Collapse
|
14
|
Aloka N, Handa S, Shrivastava N, Mahajan R, De D. Addition of oral Fexofenadine to topical therapy leads to a significantly greater reduction in the serum IL-31 levels in mild to moderate pediatric atopic dermatitis. Clin Exp Dermatol 2021; 47:724-729. [PMID: 34826148 DOI: 10.1111/ced.15032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recent evidence has suggested that oral antihistamines could have a beneficial role in atopic dermatitis (AD) due to their anti-inflammatory action. Hence, we aimed to evaluate the effectiveness of adding an oral second generation, non-sedating, H1 antihistamine (Fexofenadine) to topical treatment in AD. MATERIALS AND METHODS In this prospective randomized study, a total of 50 patients with a diagnosis of mild to moderate atopic dermatitis were recruited and randomized into two groups A (appropriate topical treatment combined with oral fexofenadine) and B (appropriate topical treatment without oral fexofenadine). Both groups received the respective treatments for a duration of 8 weeks. RESULTS There was no significant difference between the two groups in terms of SCORAD and the 5-D Itch Score at any of the time points (2 weeks, 4 weeks, 8 weeks). However, the serum IL-31 (ng/ml) decreased significantly from baseline in the fexofenadine group after 8 weeks of treatment. CONCLUSIONS Although we could not conclusively confirm the clinical efficacy of adding oral fexofenadine to topical treatment in AD, serological evaluation indicates that fexofenadine treatment can lead to significant lowering of serum IL-31 levels in AD patients.
Collapse
Affiliation(s)
- N Aloka
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - S Handa
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - N Shrivastava
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - R Mahajan
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - D De
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| |
Collapse
|
15
|
Toyama S, Tominaga M, Takamori K. Connections between Immune-Derived Mediators and Sensory Nerves for Itch Sensation. Int J Mol Sci 2021; 22:12365. [PMID: 34830245 PMCID: PMC8624544 DOI: 10.3390/ijms222212365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.
Collapse
Affiliation(s)
- Sumika Toyama
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
- Department of Dermatology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Chiba 279-0021, Japan
| |
Collapse
|
16
|
Comparison of structural components and functional mechanisms within the skin vs. the conjunctival surface. Curr Opin Allergy Clin Immunol 2021; 21:472-479. [PMID: 34387279 DOI: 10.1097/aci.0000000000000775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight and compare the structural and functional differences between the ocular surface and the skin. The goal is to further understand how these components interact from an immunobiological standpoint, which may inform future therapeutic uses. RECENT FINDINGS Treatment agents, such as Dupilumab and Apremilast are traditionally indicated for integumentary conditions, such as atopic dermatitis and psoriasis, respectively. Both were also found to have potent effects on the conjunctival surface and ocular glands, which may be attributed to the similarities in structure. SUMMARY Surfaces of the eyes and the skin are found to have similar composition in terms of immunohistology, steroidogenic properties, and allergic mechanisms. These translate directly into both the adverse effects and therapeutic benefits that overlap when treating these surfaces.
Collapse
|
17
|
Salvati L, Cosmi L, Annunziato F. From Emollients to Biologicals: Targeting Atopic Dermatitis. Int J Mol Sci 2021; 22:10381. [PMID: 34638722 PMCID: PMC8508966 DOI: 10.3390/ijms221910381] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease and significantly impacts patients' lives, particularly in its severe forms. AD clinical presentation varies over the course of the disease, throughout different age groups, and across ethnicities. AD is characterized by a spectrum of clinical phenotypes as well as endotypes. Starting from the current description of AD pathogenesis, this review explores the rationale of approved AD therapies from emollients to biologicals and introduces novel promising drugs.
Collapse
Affiliation(s)
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.S.); (F.A.)
| | | |
Collapse
|
18
|
Yang CC, Hung YL, Li HJ, Lin YF, Wang SJ, Chang DC, Pu CM, Hung CF. Quercetin inhibits histamine-induced calcium influx in human keratinocyte via histamine H4 receptors. Int Immunopharmacol 2021; 96:107620. [PMID: 33862555 DOI: 10.1016/j.intimp.2021.107620] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022]
Abstract
Histamine is released from mast cells when tissues are inflamed or stimulated by allergens. Activation of histamine receptors and calcium influx via TRPV1 could be related to histamine-induced itch and skin inflammation. Quercetin is known to have anti-inflammatory and anti-itching effects. This study aims to understand whether quercetin can directly affect histamine-induced calcium influx in human keratinocyte. In it, we investigated quercetin, which acts on histamine-induced intracellular free calcium ([Ca2+]i) elevation in human keratinocyte. Changes in [Ca2+]i were measured using spectrofluorometry and confocal Imaging. We detected the expression of IL-8 after treatment of quercetin using qRT-PCR and evaluated its anti-itching effect in BALB/c mice. We also performed a docking study to estimate the binding affinity of quercetin to H4 receptors. We found that quercetin pretreatment decreased histamine-induced [Ca2+]i elevation in a concentration-dependent manner. The inhibitory effect of quercetin on histamine-induced [Ca2+]i elevation was blocked by JNJ7777120, a selective H4 antagonist, as well as by U73122, a PLC inhibitor, and by GF109203X, a PKC inhibitor. We also found that H4 agonist (4-methylhistamine)-induced [Ca2+]i elevation could be inhibited by quercetin. Moreover, the selective TRPV1 blocker capsazepine significantly suppressed the quercetin-mediated inhibition of histamine-induced [Ca2+]i elevation, whereas the TRPV4 blocker GSK2193874 had no effect. Last, quercetin decreased histamine and H4 agonist-induced IL-8 expression in keratinocyte and inhibited the scratching behavior-induced compound 48/80 in BALB/c mice. The molecular docking study also showed that quercetin exhibited high binding affinities with H4 receptors (autodock scores for H4 = -8.7 kcal/mol). These data suggest that quercetin could decrease histamine 4 receptor-induced calcium influx through the TRPV1 channel and could provide a molecular mechanism of quercetin in anti-itching, anti-inflammatory, and unpleasant sensations.
Collapse
Affiliation(s)
- Chung-Chi Yang
- Division of Cardiovascular Medicine, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan.
| | - Yen-Ling Hung
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Hsin-Ju Li
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Ya-Fan Lin
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan.
| | - Der-Chen Chang
- Department of Mathematics and Statistics and Department of Computer Science, Georgetown University, Washington, DC 20057, USA.
| | - Chi-Ming Pu
- School of Medicine, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan; Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan.
| | - Chi-Feng Hung
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan; Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
19
|
Tanio M, Nakamura T, Kusunoki H, Ideguchi K, Nakashima K, Hamaguchi I. Validation of HPLC Method for Determination of Histamine in Human Immunoglobulin Formulations. J AOAC Int 2021; 103:1223-1229. [PMID: 33241404 DOI: 10.1093/jaoacint/qsaa017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/22/2020] [Accepted: 02/18/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Histamine fixed-immunoglobulin formulations, which consisted of 0.15 µg of histamine dihydrochloride and 12 mg of human immunoglobulin in a vial, are used for anti-allergic treatments, and controlling the amounts of histamine in the formulations is essential to avoid histamine intoxication. OBJECTIVE A high-performance liquid chromatography (HPLC) method for determination of histamine contents of the formulations was established and validated. METHODS Histamine extracted from the formulation was labeled with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and was analyzed by gradient elution HPLC with UV detection at 260 nm. RESULTS The method showed linearity in the range 0.8-2.4 µM (R > 0.999), accuracy (100.1-105.8% recovery), and precision (relative standard deviation ≤ 1.93%). The validated method was applied for five lots of the pharmaceutical, and their histamine contents were determined to be 0.149-0.155 µg/vial. CONCLUSIONS These results indicated that the validated method is useful to control amounts of histamine in biopharmaceutical products. HIGHLIGHTS The HPLC method was developed for quantitative determination of histamine content of the histamine fixed-immunoglobulin formulations.
Collapse
Affiliation(s)
- Michikazu Tanio
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Toru Nakamura
- KM biologics company, 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto, 860-8568, Japan
| | - Hideki Kusunoki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Kyohei Ideguchi
- KM biologics company, 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto, 860-8568, Japan
| | - Kazuyuki Nakashima
- KM biologics company, 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto, 860-8568, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| |
Collapse
|
20
|
Sintsova O, Gladkikh I, Klimovich A, Palikova Y, Palikov V, Styshova O, Monastyrnaya M, Dyachenko I, Kozlov S, Leychenko E. TRPV1 Blocker HCRG21 Suppresses TNF-α Production and Prevents the Development of Edema and Hypersensitivity in Carrageenan-Induced Acute Local Inflammation. Biomedicines 2021; 9:biomedicines9070716. [PMID: 34201624 PMCID: PMC8301426 DOI: 10.3390/biomedicines9070716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/09/2023] Open
Abstract
Currently the TRPV1 (transient receptor potential vanilloid type 1) channel is considered to be one of the main targets for pro-inflammatory mediators including TNF-α. Similarly, the inhibition of TRPV1 activity in the peripheral nervous system affects pro-inflammatory mediator production and enhances analgesia in total. In this study, the analgesic and anti-inflammatory effects of HCRG21, the first peptide blocker of TRPV1, were demonstrated in a mice model of carrageenan-induced paw edema. HCRG21 in doses of 0.1 and 1 mg/kg inhibited edema formation compared to the control, demonstrated complete edema disappearance in 24 h in a dose of 1 mg/kg, and effectively reduced the productionof TNF-α in both doses examined. ELISA analysis of blood taken 24 h after carrageenan administration showed a dramatic cytokine value decrease to 25 pg/mL by HCRG21 versus 100 pg/mL in the negative control group, which was less than the TNF-α level in the intact group (40 pg/mL). The HCRG21 demonstrated potent analgesic effects on the models of mechanical and thermal hyperalgesia in carrageenan-induced paw edema. The HCRG21 relief effect was comparable to that of indomethacin taken orally in a dose of 5 mg/kg, but was superior to this nonsteroidal anti-inflammatory drug (NSAID) in duration (which lasted 24 h) in the mechanical sensitivity experiment. The results confirm the existence of a close relationship between TRPV1 activity and TNF-α production once again, and prove the superior pharmacological potential of TRPV1 blockers and the HCRG21 peptide in particular.
Collapse
Affiliation(s)
- Oksana Sintsova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, 690022 Vladivostok, Russia; (I.G.); (A.K.); (O.S.); (M.M.); (E.L.)
- Correspondence: ; Tel.: +7-(914)-718-59-18
| | - Irina Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, 690022 Vladivostok, Russia; (I.G.); (A.K.); (O.S.); (M.M.); (E.L.)
| | - Anna Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, 690022 Vladivostok, Russia; (I.G.); (A.K.); (O.S.); (M.M.); (E.L.)
| | - Yulia Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.P.); (V.P.); (I.D.)
| | - Viktor Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.P.); (V.P.); (I.D.)
| | - Olga Styshova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, 690022 Vladivostok, Russia; (I.G.); (A.K.); (O.S.); (M.M.); (E.L.)
| | - Margarita Monastyrnaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, 690022 Vladivostok, Russia; (I.G.); (A.K.); (O.S.); (M.M.); (E.L.)
| | - Igor Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.P.); (V.P.); (I.D.)
| | - Sergey Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, 690022 Vladivostok, Russia; (I.G.); (A.K.); (O.S.); (M.M.); (E.L.)
| |
Collapse
|
21
|
A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds. Biomed Pharmacother 2021; 140:111741. [PMID: 34087696 DOI: 10.1016/j.biopha.2021.111741] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/24/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Atopic dermatitis (AD) is considered a great challenge for human communities and imposes both physiological and mental burdens on patients. Natural products have widely been used to treat a wide range of diseases, including cancer, gastrointestinal diseases, asthma, neurological disorders, and infections. To seek potential natural products against AD, in the current review, we searched the terms "atopic dermatitis" and "natural product" in Pubmed, Medline, Web of Science,Science Direct, Embase, EBSCO, CINAHL, ACS. The results show that many natural products, especially puerarin, ferulic acid and ginsenosides, cound protect against AD. Meanwhile, we discussed the therapeutic mechanisms and showed that the natural products exert their anti-inflammatory effects by suppressing the quantity and activity of many inflammatory cell types and cytokines, including neutrophils, monocytes, lymphocytes, Langerhans cells, interleukins (ILs, including IL-1α, IL-1β, IL-4), TNF-α, and TSLP, IgE. via inhibition of JAK/STAT, MAPKs and NF-κB signaling pathways, thereby, halting the inflammatory cascade. Future investigations should focus on studies with more reflective of the clinical characteristics and demographics, so as to develop natural products that will be hopefully available for the treatment of human AD disease.
Collapse
|
22
|
Gladkikh IN, Sintsova OV, Leychenko EV, Kozlov SA. TRPV1 Ion Channel: Structural Features, Activity Modulators, and Therapeutic Potential. BIOCHEMISTRY (MOSCOW) 2021; 86:S50-S70. [PMID: 33827400 DOI: 10.1134/s0006297921140054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although TRPV1 ion channel has been attracting researchers' attention for many years, its functions in animal organisms, the principles of regulation, and the involvement in pathological processes have not yet been fully clarified. Mutagenesis experiments and structural studies have identified the structural features of the channel and binding sites for its numerous ligands; however, these studies are far from conclusion. This review summarizes recent achievements in the TRPV1 research with special focus on structural and functional studies of the channel and on its ligands, which are extremely diverse in their nature and interaction specificity to TRPV1. Particular attention was given to the effects of numerous endogenous agonists and antagonists that can fine-tune the channel sensitivity to its usual activators, such as capsaicin, heat, acids, or their combination. In addition to the pain sensing not covered in this review, the TRPV1 channel was found to be involved in the regulation of many important physiological and pathological processes and, therefore, can be considered as a promising therapeutic target in the treatment of various diseases, such as pneumonia, ischemia, diabetes, epilepsy, schizophrenia, psoriasis, etc.
Collapse
Affiliation(s)
- Irina N Gladkikh
- Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Oksana V Sintsova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Elena V Leychenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Sergey A Kozlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
23
|
Catherine J, Roufosse F. What does elevated TARC/CCL17 expression tell us about eosinophilic disorders? Semin Immunopathol 2021; 43:439-458. [PMID: 34009399 PMCID: PMC8132044 DOI: 10.1007/s00281-021-00857-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Eosinophilic disorders encompass a large spectrum of heterogeneous diseases sharing the presence of elevated numbers of eosinophils in blood and/or tissues. Among these disorders, the role of eosinophils can vary widely, ranging from a modest participation in the disease process to the predominant perpetrator of tissue damage. In many cases, eosinophilic expansion is polyclonal, driven by enhanced production of interleukin-5, mainly by type 2 helper cells (Th2 cells) with a possible contribution of type 2 innate lymphoid cells (ILC2s). Among the key steps implicated in the establishment of type 2 immune responses, leukocyte recruitment toward inflamed tissues is particularly relevant. Herein, the contribution of the chemo-attractant molecule thymus and activation-regulated chemokine (TARC/CCL17) to type 2 immunity will be reviewed. The clinical relevance of this chemokine and its target, C-C chemokine receptor 4 (CCR4), will be illustrated in the setting of various eosinophilic disorders. Special emphasis will be put on the potential diagnostic, prognostic, and therapeutic implications related to activation of the TARC/CCL17-CCR4 axis.
Collapse
Affiliation(s)
- Julien Catherine
- Department of Internal Medicine, Hôpital Erasme, 808 Route de Lennik, 1070, Brussels, Belgium. .,Institute for Medical Immunology, Université Libre de Bruxelles, 6041 Gosselies, Brussels, Belgium.
| | - Florence Roufosse
- Department of Internal Medicine, Hôpital Erasme, 808 Route de Lennik, 1070, Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles, 6041 Gosselies, Brussels, Belgium
| |
Collapse
|
24
|
Tick-human interactions: from allergic klendusity to the α-Gal syndrome. Biochem J 2021; 478:1783-1794. [PMID: 33988703 DOI: 10.1042/bcj20200915] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Ticks and the pathogens they transmit, including bacteria, viruses, protozoa, and helminths, constitute a growing burden for human and animal health worldwide. The ability of some animal species to acquire resistance to blood-feeding by ticks after a single or repeated infestation is known as acquired tick resistance (ATR). This resistance has been associated to tick-specific IgE response, the generation of skin-resident memory CD4+ T cells, basophil recruitment, histamine release, and epidermal hyperplasia. ATR has also been associated with protection to tick-borne tularemia through allergic klendusity, a disease-escaping ability produced by the development of hypersensitivity to an allergen. In addition to pathogen transmission, tick infestation in humans is associated with the α-Gal syndrome (AGS), a type of allergy characterized by an IgE response against the carbohydrate Galα1-3Gal (α-Gal). This glycan is present in tick salivary proteins and on the surface of tick-borne pathogens such as Borrelia burgdorferi and Anaplasma phagocytophilum, the causative agents of Lyme disease and granulocytic anaplasmosis. Most α-Gal-sensitized individuals develop IgE specific against this glycan, but only a small fraction develop the AGS. This review summarizes our current understanding of ATR and its impact on the continuum α-Gal sensitization, allergy, and the AGS. We propose that the α-Gal-specific IgE response in humans is an evolutionary adaptation associated with ATR and allergic klendusity with the trade-off of developing AGS.
Collapse
|
25
|
Bang CH, Song JY, Song YM, Lee JH, Park YM, Lee JY. Production of IL-31 in CD45RO +CLA +H4R + T Cells in Atopic Dermatitis. J Clin Med 2021; 10:jcm10091976. [PMID: 34064490 PMCID: PMC8124489 DOI: 10.3390/jcm10091976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022] Open
Abstract
IL-31 is involved in pruritus in atopic dermatitis (AD) and the pathogenesis of AD. However, the mechanism of IL-31 production is not fully understood. We sought to investigate the association between CD45RO+CLA+H4R+ T cells and IL-31 production. Immunofluorescence studies were performed retrospectively on punch-biopsy specimens from five people with AD and three healthy controls. In addition, blood samples were collected prospectively from eight patients with AD and eight healthy controls for sorting CD45RO+CLA+H4R+ T cells. There was no overlap of patients between the biopsy group and the blood sampling group. Sorted cells were stimulated with 4-methylhistamine (4MH), and the level of IL-31 was measured by an enzyme-linked immunosorbent assay. Immunofluorescence showed co-localization of H4R and IL-31 in lesional AD skin but not in normal skin of healthy controls. The proportion of CLA+H4R+ T cells among CD3+CD45RO+ lymphocytes was 18.3 ± 6.2% in patients with AD and 11.2 ± 7.6% in healthy controls. In the AD group, production of IL-31 by CD45RO+CLA+H4R+ T cells increased from 32.4 ± 13.3 pg/mL to 47.5 ± 18.7 pg/mL by 4MH stimulation after 24 h (p < 0.001). However, in the control group, production of IL-31 was 20.1 ± 10.6 pg/mL without and 22.1 ± 9.3 pg/mL with 4MH stimulation (p > 0.05). According to our study, CD45RO+CLA+H4R+ T cells are an important source of IL-31 in AD, and may be a target for treatment of IL-31-induced pruritus.
Collapse
Affiliation(s)
- Chul Hwan Bang
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
| | - Ji Young Song
- Program of Immunology & Microbiology, Department of Biomedicine & Health Science, Graduate School, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea;
| | - Yu Mee Song
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
| | - Young Min Park
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
| | - Jun Young Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (C.H.B.); (Y.M.S.); (J.H.L.); (Y.M.P.)
- Correspondence: ; Tel.: +82-2-2258-6222
| |
Collapse
|
26
|
Yoshikawa S, Miyake K, Kamiya A, Karasuyama H. The role of basophils in acquired protective immunity to tick infestation. Parasite Immunol 2021; 43:e12804. [PMID: 33124059 PMCID: PMC8244031 DOI: 10.1111/pim.12804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023]
Abstract
Ticks are blood-feeding ectoparasites that transmit a variety of pathogens to host animals and humans, causing severe infectious diseases such as Lyme disease. In a certain combination of animal and tick species, tick infestation elicits acquired immunity against ticks in the host, which can reduce the ability of ticks to feed on blood and to transmit pathogens in the following tick infestations. Therefore, our understanding of the cellular and molecular mechanisms of acquired tick resistance (ATR) can advance the development of anti-tick vaccines to prevent tick infestation and tick-borne diseases. Basophils are a minor population of white blood cells circulating in the bloodstream and are rarely observed in peripheral tissues under steady-state conditions. Basophils have been reported to accumulate at tick-feeding sites during re-infestation in cattle, rabbits, guinea pigs and mice. Selective ablation of basophils resulted in a loss of ATR in guinea pigs and mice, illuminating the essential role of basophils in the manifestation of ATR. In this review, we discuss the recent advance in the elucidation of the cellular and molecular mechanisms underlying basophil recruitment to the tick-feeding site and basophil-mediated ATR.
Collapse
Affiliation(s)
- Soichiro Yoshikawa
- Department of Cellular PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity LaboratoryTMDU Advanced Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Atsunori Kamiya
- Department of Cellular PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity LaboratoryTMDU Advanced Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
27
|
Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci 2021; 22:ijms22094589. [PMID: 33925601 PMCID: PMC8123885 DOI: 10.3390/ijms22094589] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are best-known as key effector cells of immediate-type allergic reactions that may even culminate in life-threatening anaphylactic shock syndromes. However, strategically positioned at the host–environment interfaces and equipped with a plethora of receptors, MCs also play an important role in the first-line defense against pathogens. Their main characteristic, the huge amount of preformed proinflammatory mediators embedded in secretory granules, allows for a rapid response and initiation of further immune effector cell recruitment. The same mechanism, however, may account for detrimental overshooting responses. MCs are not only detrimental in MC-driven diseases but also responsible for disease exacerbation in other inflammatory disorders. Focusing on the skin as the largest immune organ, we herein review both beneficial and detrimental functions of skin MCs, from skin barrier integrity via host defense mechanisms to MC-driven inflammatory skin disorders. Moreover, we emphasize the importance of IgE-independent pathways of MC activation and their role in sustained chronic skin inflammation and disease exacerbation.
Collapse
Affiliation(s)
- Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Johanna Kotrba
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Konstantinos Katsoulis-Dimitriou
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
- Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
28
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
29
|
Umehara Y, Kiatsurayanon C, Trujillo-Paez JV, Chieosilapatham P, Peng G, Yue H, Nguyen HLT, Song P, Okumura K, Ogawa H, Niyonsaba F. Intractable Itch in Atopic Dermatitis: Causes and Treatments. Biomedicines 2021; 9:biomedicines9030229. [PMID: 33668714 PMCID: PMC7996203 DOI: 10.3390/biomedicines9030229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Itch or pruritus is the hallmark of atopic dermatitis and is defined as an unpleasant sensation that evokes the desire to scratch. It is also believed that itch is a signal of danger from various environmental factors or physiological abnormalities. Because histamine is a well-known substance inducing itch, H1-antihistamines are the most frequently used drugs to treat pruritus. However, H1-antihistamines are not fully effective against intractable itch in patients with atopic dermatitis. Given that intractable itch is a clinical problem that markedly decreases quality of life, its treatment in atopic dermatitis is of high importance. Histamine-independent itch may be elicited by various pruritogens, including proteases, cytokines, neuropeptides, lipids, and opioids, and their cognate receptors, such as protease-activated receptors, cytokine receptors, Mas-related G protein-coupled receptors, opioid receptors, and transient receptor potential channels. In addition, cutaneous hyperinnervation is partly involved in itch sensitization in the periphery. It is believed that dry skin is a key feature of intractable itch in atopic dermatitis. Treatment of the underlying conditions that cause itch is necessary to improve the quality of life of patients with atopic dermatitis. This review describes current insights into the pathophysiology of itch and its treatment in atopic dermatitis.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Chanisa Kiatsurayanon
- Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok 10400, Thailand;
| | - Juan Valentin Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Panjit Chieosilapatham
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
- Faculty of International Liberal Arts, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
30
|
Ruppenstein A, Limberg MM, Loser K, Kremer AE, Homey B, Raap U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front Med (Lausanne) 2021; 8:627985. [PMID: 33681256 PMCID: PMC7930738 DOI: 10.3389/fmed.2021.627985] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Pruritus is a common, but very challenging symptom with a wide diversity of underlying causes like dermatological, systemic, neurological and psychiatric diseases. In dermatology, pruritus is the most frequent symptom both in its acute and chronic form (over 6 weeks in duration). Treatment of chronic pruritus often remains challenging. Affected patients who suffer from moderate to severe pruritus have a significantly reduced quality of life. The underlying physiology of pruritus is very complex, involving a diverse network of components in the skin including resident cells such as keratinocytes and sensory neurons as well as transiently infiltrating cells such as certain immune cells. Previous research has established that there is a significant crosstalk among the stratum corneum, nerve fibers and various immune cells, such as keratinocytes, T cells, basophils, eosinophils and mast cells. In this regard, interactions between receptors on cutaneous and spinal neurons or on different immune cells play an important role in the processing of signals which are important for the transmission of pruritus. In this review, we discuss the role of various receptors involved in pruritus and inflammation, such as TRPV1 and TRPA1, IL-31RA and OSMR, TSLPR, PAR-2, NK1R, H1R and H4R, MRGPRs as well as TrkA, with a focus on interaction between nerve fibers and different immune cells. Emerging evidence shows that neuro-immune interactions play a pivotal role in mediating pruritus-associated inflammatory skin diseases such as atopic dermatitis, psoriasis or chronic spontaneous urticaria. Targeting these bidirectional neuro-immune interactions and the involved pruritus-specific receptors is likely to contribute to novel insights into the underlying pathogenesis and targeted treatment options of pruritus.
Collapse
Affiliation(s)
- Aylin Ruppenstein
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Loser
- Division of Immunology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, Oldenburg Clinic, Oldenburg, Germany
| |
Collapse
|
31
|
Wang T, Tao J, Fang Y, Ma C. The role of pruriceptors in enhancing sensitivity to pruritogens in a murine chronic compression model of dorsal root ganglion. Mol Brain 2021; 14:15. [PMID: 33468207 PMCID: PMC7814616 DOI: 10.1186/s13041-021-00730-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic pruritus is a symptom that commonly observed in neurological diseases. It has been hypothesized that the chronic pruritus may result from sensitization of itch-signaling pathways but the mechanisms remain obscure. In this study, we established a mouse model of chronic compression of dorsal root ganglion (CCD) and injected various pruritogenic and algogenic agents intradermally to the calf skin ipsilateral to the compressed dorsal root ganglion (DRG). Compared to the naïve mice, a significant increase in itch-related behaviors was observed in the CCD mice after the injection of pruritogens including histamine and BAM8-22, but not after the injection of capsaicin, although all the above agents evoked enhanced pain-related behaviors toward the injected site. In addition, we investigated if pruritogen-evoked activities of DRG neurons were enhanced in this model. In vivo calcium imaging revealed that compressed DRG neurons exhibited enhanced responses to histamine and BAM8-22. Immunoflorescent staining also showed that the histamine receptor H1 and the capsaicin receptor TRPV1 were significantly upregulated in DRG neurons. Our findings indicated that the sensitization of primary pruriceptive neurons may underlie the enhanced itch sensation after chronic compression of DRG in the mice, and may play a role in chronic pruritus in neurological diseases.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Capsaicin/adverse effects
- Cattle
- Chronic Disease
- Disease Models, Animal
- Ganglia, Spinal/diagnostic imaging
- Ganglia, Spinal/pathology
- Histamine/adverse effects
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Nerve Compression Syndromes/complications
- Nerve Compression Syndromes/metabolism
- Nerve Compression Syndromes/pathology
- Neurons/metabolism
- Pain/pathology
- Peptide Fragments/adverse effects
- Pruritus/metabolism
- Pruritus/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Histamine H1/metabolism
- Receptors, Histamine H4/metabolism
- TRPV Cation Channels/metabolism
- Up-Regulation/genetics
- Mice
Collapse
Affiliation(s)
- Tao Wang
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
| | - Jin Tao
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
| | - Yehong Fang
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
| | - Chao Ma
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
32
|
Gunter NV, Teh SS, Lim YM, Mah SH. Natural Xanthones and Skin Inflammatory Diseases: Multitargeting Mechanisms of Action and Potential Application. Front Pharmacol 2020; 11:594202. [PMID: 33424605 PMCID: PMC7793909 DOI: 10.3389/fphar.2020.594202] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of skin inflammatory diseases such as atopic dermatitis, acne, psoriasis, and skin cancers generally involve the generation of oxidative stress and chronic inflammation. Exposure of the skin to external aggressors such as ultraviolet (UV) radiation and xenobiotics induces the generation of reactive oxygen species (ROS) which subsequently activates immune responses and causes immunological aberrations. Hence, antioxidant and anti-inflammatory agents were considered to be potential compounds to treat skin inflammatory diseases. A prime example of such compounds is xanthone (xanthene-9-one), a class of natural compounds that possess a wide range of biological activities including antioxidant, anti-inflammatory, antimicrobial, cytotoxic, and chemotherapeutic effects. Many studies reported various mechanisms of action by xanthones for the treatment of skin inflammatory diseases. These mechanisms of action commonly involve the modulation of various pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNF-α), as well as anti-inflammatory cytokines such as IL-10. Other mechanisms of action include the regulation of NF-κB and MAPK signaling pathways, besides immune cell recruitment via modulation of chemokines, activation, and infiltration. Moreover, disease-specific activity contributed by xanthones, such as antibacterial action against Propionibacterium acnes and Staphylococcus epidermidis for acne treatment, and numerous cytotoxic mechanisms involving pro-apoptotic and anti-metastatic effects for skin cancer treatment have been extensively elucidated. Furthermore, xanthones have been reported to modulate pathways responsible for mediating oxidative stress and inflammation such as PPAR, nuclear factor erythroid 2-related factor and prostaglandin cascades. These pathways were also implicated in skin inflammatory diseases. Xanthones including the prenylated α-mangostin (2) and γ-mangostin (3), glucosylated mangiferin (4) and the caged xanthone gambogic acid (8) are potential lead compounds to be further developed into pharmaceutical agents for the treatment of skin inflammatory diseases. Future studies on the structure-activity relationships, molecular mechanisms, and applications of xanthones for the treatment of skin inflammatory diseases are thus highly recommended.
Collapse
Affiliation(s)
| | - Soek Sin Teh
- Engineering and Processing Division, Energy and Environment Unit, Malaysian Palm Oil Board, Kajang, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia.,Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Siau Hui Mah
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
33
|
Choi DS, Ji Y, Jang Y, Lee WJ, Shim WS. Crotamiton, an Anti-Scabies Agent, Suppresses Histamine- and Chloroquine-Induced Itch Pathways in Sensory Neurons and Alleviates Scratching in Mice. Biomol Ther (Seoul) 2020; 28:569-575. [PMID: 32536619 PMCID: PMC7585633 DOI: 10.4062/biomolther.2020.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 11/05/2022] Open
Abstract
Crotamiton is an anti-scabies drug, but it was recently found that crotamiton also suppresses non-scabietic itching in mice. However, the underlying mechanism is largely unclear. Therefore, aim of the study is to investigate mechanisms of the anti-pruritic effect of crotamiton for non-scabietic itching. Histamine and chloroquine are used as non-scabietic pruritogens. The effect of crotamiton was identified using fluorometric intracellular calcium assays in HEK293T cells and primary cultured dorsal root ganglion (DRG) neurons. Further in vivo effect was evaluated by scratching behavior tests. Crotamiton strongly inhibited histamine-induced calcium influx in HEK293T cells, expressing both histamine receptor 1 (H1R) and transient receptor potential vanilloid 1 (TRPV1), as a model of histamine-induced itching. Similarly, it also blocked chloroquine-induced calcium influx in HEK293T cells, expressing both Mas-related G-protein-coupled receptor A3 (MRGPRA3) and transient receptor potential A1 (TRPA1), as a model of histamine-independent itching. Furthermore, crotamiton also suppressed both histamine- and chloroquine-induced calcium influx in primary cultures of mouse DRG. Additionally, crotamiton strongly suppressed histamine- and chloroquine-induced scratching in mice. Overall, it was found that crotamiton has an anti-pruritic effect against non-scabietic itching by histamine and chloroquine. Therefore, crotamiton may be used as a general anti-pruritic agent, irrespective of the presence of scabies.
Collapse
Affiliation(s)
- Da-Som Choi
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.,Gachon Institute of Pharmaceutical Sciences, Incheon 21936, Republic of Korea
| | - Yeounjung Ji
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.,Gachon Institute of Pharmaceutical Sciences, Incheon 21936, Republic of Korea
| | - Yongwoo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul 04736, Republic of Korea
| | - Wook-Joo Lee
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.,Gachon Institute of Pharmaceutical Sciences, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.,Gachon Institute of Pharmaceutical Sciences, Incheon 21936, Republic of Korea
| |
Collapse
|
34
|
Karasuyama H, Miyake K, Yoshikawa S. Immunobiology of Acquired Resistance to Ticks. Front Immunol 2020; 11:601504. [PMID: 33154758 PMCID: PMC7591762 DOI: 10.3389/fimmu.2020.601504] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Ticks are blood-sucking arthropods of great importance in the medical and veterinary fields worldwide. They are considered second only to mosquitos as vectors of pathogenic microorganisms that can cause serious infectious disorders, such as Lyme borreliosis and tick-borne encephalitis. Hard (Ixodid) ticks feed on host animals for several days and inject saliva together with pathogens to hosts during blood feeding. Some animal species can acquire resistance to blood-feeding by ticks after a single or repeated tick infestation, resulting in decreased weights and numbers of engorged ticks or the death of ticks in subsequent infestations. Importantly, this acquired tick resistance (ATR) can reduce the risk of pathogen transmission from pathogen-infected ticks to hosts. This is the basis for the development of tick antigen-targeted vaccines to forestall tick infestation and tick-borne diseases. Accumulation of basophils is detected in the tick re-infested skin lesion of animals showing ATR, and the ablation of basophils abolishes ATR in mice and guinea pigs, illustrating the critical role for basophils in the expression of ATR. In this review article, we provide a comprehensive overview of recent advances in our understanding of the cellular and molecular mechanisms responsible for the development and manifestation of ATR, with a particular focus on the role of basophils.
Collapse
Affiliation(s)
- Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Soichiro Yoshikawa
- Department of Cellular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
35
|
Shoji J. Ocular allergy test and biomarkers on the ocular surface: Clinical test for evaluating the ocular surface condition in allergic conjunctival diseases. Allergol Int 2020; 69:496-504. [PMID: 32563624 DOI: 10.1016/j.alit.2020.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Allergic conjunctival diseases (ACDs) are inflammatory diseases of the conjunctiva and cornea caused predominantly by the IgE-mediated immediate hypersensitivity response. Allergic conjunctival diseases include allergic conjunctivitis, vernal keratoconjunctivitis (VKC), atopic keratoconjunctivitis (AKC), and giant papillary conjunctivitis. In clinical practice of ACDs, an ocular allergy test using biomarker measurement is a crucial examination technique for diagnosing, evaluating severity, and determining the efficacy of medical treatment. The ocular allergy test includes the tear test for evaluating the concentration of biomarkers in tears and an ocular surface test for assessing the expression levels of messenger ribonucleic acid (mRNA) biomarkers on the ocular surface. The clinical usefulness of several biomarkers has been demonstrated in patients with ACDs; specifically, eosinophil cationic protein and eotaxin-2 as eosinophilic inflammation biomarkers; interleukin-4 and thymus and activation regulated chemokine (CCL17/TARC) as Th2 inflammation biomarkers; eotaxin, tumor necrosis factor-alpha and soluble IL-6 receptor as giant papillae biomarkers; and osteopontin and periostin as allergic inflammation and remodeling biomarkers. Furthermore, the ocular allergy test, quantitative evaluation methods using biomarkers have allowed for better understanding of the immunological and pathophysiological mechanisms of ACDs. Therefore, the search for a biomarker is important to make an ocular allergy test useful. In previous ocular allergy tests, the biomarkers for allergic inflammation in patients with chronic ACDs including VKC and AKC were substantial. However, the selection of biomarkers associated with the early phase reaction of immediate hypersensitivity and innate immunity responses needs to be addressed in future investigations.
Collapse
Affiliation(s)
- Jun Shoji
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, 30-1 Ohyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
36
|
Abstract
Chronic pruritus, defined as an unpleasant sensation resulting in a need to scratch that lasts more than 6 weeks, is a prevalent and bothersome symptom associated with both cutaneous and systemic conditions. Due to complex pathogenesis and profuse contributing factors, chronic pruritus therapy remains challenging. Regardless of the well-established antipruritic properties of classic pharmacotherapy (topical therapy, phototherapy and systemic therapy), these methods often provide insufficient relief for affected individuals. Owing to the growing interest in the field of pruritic research, further experimental and clinical data have emerged, continuously supporting the possibility of instigating novel therapeutic measures. This review covers the most relevant current modalities remaining under investigation that possess promising perspectives of approval in the near future, especially opioidergic drugs (mu-opioid antagonists and kappa-opioid agonists), neurokinin-1 receptor antagonists, biologic drugs, Janus kinase inhibitors, ileal bile acid transporter inhibitors, aryl hydrocarbon receptor agonists and histamine H4 receptor antagonists.
Collapse
Affiliation(s)
- Radomir Reszke
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 1 Chalubinskiego Street, 50-368, Wrocław, Poland
| | - Piotr Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 1 Chalubinskiego Street, 50-368, Wrocław, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 1 Chalubinskiego Street, 50-368, Wrocław, Poland.
| |
Collapse
|
37
|
Kahremany S, Hofmann L, Gruzman A, Cohen G. Advances in Understanding the Initial Steps of Pruritoceptive Itch: How the Itch Hits the Switch. Int J Mol Sci 2020; 21:ijms21144883. [PMID: 32664385 PMCID: PMC7402353 DOI: 10.3390/ijms21144883] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pruritoceptive (dermal) itch was long considered an accompanying symptom of diseases, a side effect of drug applications, or a temporary sensation induced by invading pruritogens, as produced by the stinging nettle. Due to extensive research in recent years, it was possible to provide detailed insights into the mechanism of itch mediation and modulation. Hence, it became apparent that pruritus is a complex symptom or disease in itself, which requires particular attention to improve patients’ health. Here, we summarize recent findings in pruritoceptive itch, including how this sensation is triggered and modulated by diverse endogenous and exogenous pruritogens and their receptors. A differentiation between mediating pruritogen and modulating pruritogen seems to be of great advantage to understand and decipher the molecular mechanism of itch perception. Only a comprehensive view on itch sensation will provide a solid basis for targeting this long-neglected adverse sensation accompanying numerous diseases and many drug side effects. Finally, we identify critical aspects of itch perception that require future investigation.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Correspondence:
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel
| |
Collapse
|
38
|
Neuroinflammatory Gene Expression Pattern Is Similar between Allergic Rhinitis and Atopic Dermatitis but Distinct from Atopic Asthma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7196981. [PMID: 32596360 PMCID: PMC7305544 DOI: 10.1155/2020/7196981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 11/18/2022]
Abstract
Methods In the study, we included 86 children diagnosed with atopic asthma (n = 25), allergic rhinitis (n = 20), and atopic dermatitis (n = 20) and healthy control subjects (n = 21) of Caucasian origin from the Polish population. The blood leukocyte expression of 31 genes involved in neuroinflammatory response (neurotrophins, their receptors, neuropeptides, and histamine signaling pathway) was analysed using TaqMan low-density arrays. The relative expression of selected proteins from plasma was done using TaqMan Protein Assays. Statistical analysis was done using Statistica. Results Blood expression of 31 genes related to neuroimmune interactions showed significant increase in both allergic diseases, allergic rhinitis and atopic dermatitis, in comparison to the control group. We found 12 genes significantly increased in allergic rhinitis and 9 genes in which the expression was elevated in atopic dermatitis. Moreover, 9 genes with changed expression in atopic dermatitis overlapped with those in allergic rhinitis. Atopic asthma showed 5 genes with altered expression. The peripheral expression of neuroinflammatory genes in the human study was verified in target tissues (nasal epithelium and skin) in a rat model of allergic inflammation. Conclusions A common pattern of neuroinflammatory gene expression between allergic rhinitis and atopic dermatitis may reflect similar changes in sensory nerve function during chronic allergic inflammation.
Collapse
|
39
|
Mehta P, Miszta P, Rzodkiewicz P, Michalak O, Krzeczyński P, Filipek S. Enigmatic Histamine Receptor H 4 for Potential Treatment of Multiple Inflammatory, Autoimmune, and Related Diseases. Life (Basel) 2020; 10:E50. [PMID: 32344736 PMCID: PMC7235846 DOI: 10.3390/life10040050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
The histamine H4 receptor, belonging to the family of G-protein coupled receptors, is an increasingly attractive drug target. It plays an indispensable role in many cellular pathways, and numerous H4R ligands are being studied for the treatment of several inflammatory, allergic, and autoimmune disorders, including pulmonary fibrosis. Activation of H4R is involved in cytokine production and mediates mast cell activation and eosinophil chemotaxis. The importance of this receptor has also been shown in inflammatory models: peritonitis, respiratory tract inflammation, colitis, osteoarthritis, and rheumatoid arthritis. Recent studies suggest that H4R acts as a modulator in cancer, neuropathic pain, vestibular disorders, and type-2 diabetes, however, its role is still not fully understood.
Collapse
Affiliation(s)
- Pakhuri Mehta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| | - Przemysław Rzodkiewicz
- Department of General and Experimental Pathology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Olga Michalak
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 01-793 Warsaw, Poland; (O.M.); (P.K.)
| | - Piotr Krzeczyński
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 01-793 Warsaw, Poland; (O.M.); (P.K.)
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| |
Collapse
|
40
|
Sastre J, Baldrich ES, Armario Hita JC, Herráez L, Jáuregui I, Martín-Santiago A, Ortiz de Frutos J, Silvestre JF, Valero A. Consensus on the Clinical Approach to Moderate-to-Severe Atopic Dermatitis in Spain: A Delphi Survey. Dermatol Res Pract 2020; 2020:1524293. [PMID: 32318104 PMCID: PMC7166259 DOI: 10.1155/2020/1524293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/18/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The purpose of this study was to gather information on the current assessment and management of patients with moderate-to-severe AD in routine daily practice. METHODS A cross-sectional two-round Delphi survey with the participation of dermatologists and allergologists throughout Spain was conducted. They completed a 46-item questionnaire, and consensus was defined when responses of ≥80% of participants coincided in the categories of a 5-point Likert scale for that item. RESULTS A total of 105 specialists (aged 40-59 years) completed the two rounds. Participants agreed regarding the consideration of AD as a multifaceted disease and the differences in clinical presentation of AD according to the patient's age. It is recommendable to perform a skin biopsy to exclude early stage T-cell cutaneous lymphoma, psoriasis, or dermatitis herpetiformis, among others (99.1%). Also, consensus was reached regarding the use of the SCORAD index to quantify the severity of the disease (86.7%), the use of wet wraps to increase the effect of topical corticosteroids (90.4%), the usefulness of proactive treatment during follow-up (85.6%) and tacrolimus ointment (91.2%) to reduce new flares, and the fact that crisaborole is not the treatment of choice for severe AD (92.4%). AD was not considered a contraindication for immunotherapy in patients with allergic respiratory diseases (92.4%). In patients with severe AD, the use of immune response modifier drugs (97.6%) or phototherapy (92.8%) does not sufficiently cover their treatment needs. Consensus was also obtained regarding the role of the new biologic drugs (93.6%) targeting cytokines involved in the Th2 inflammatory pathway (92.0%) and the potential role of dupilumab as first-line treatment (90.4%) in moderate-to-severe AD patients. CONCLUSION This study contributes a reference framework to the care of AD patients. There is no diagnostic test or biomarkers to direct treatment or to assess the severity of the disease, and many therapeutic challenges remain.
Collapse
Affiliation(s)
- Joaquín Sastre
- Service of Allergy, Fundación Jiménez Díaz, Madrid, CIBERES, Instituto Carlos III, Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - L. Herráez
- Service of Allergy, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ignacio Jáuregui
- Service of Allergy, Hospital Universitario Cruces, Barakaldo, Vizcaya, Spain
| | | | | | | | - Antonio Valero
- Section of Allergy, Hospital Clinic i Provincial de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Munera-Campos M, Carrascosa J. Innovación en dermatitis atópica: de la patogenia a la terapéutica. ACTAS DERMO-SIFILIOGRAFICAS 2020; 111:205-221. [DOI: 10.1016/j.ad.2019.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
|
42
|
Munera-Campos M, Carrascosa J. Innovation in Atopic Dermatitis: From Pathogenesis to Treatment. ACTAS DERMO-SIFILIOGRAFICAS 2020. [DOI: 10.1016/j.adengl.2020.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
Massari NA, Nicoud MB, Medina VA. Histamine receptors and cancer pharmacology: an update. Br J Pharmacol 2020; 177:516-538. [PMID: 30414378 PMCID: PMC7012953 DOI: 10.1111/bph.14535] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
In the present review, we will discuss the recent advances in the understanding of the role of histamine and histamine receptors in cancer biology. The controversial role of the histaminergic system in different neoplasias including gastric, colorectal, oesophageal, oral, pancreatic, liver, lung, skin, blood and breast cancers will be reviewed. The expression of histamine receptor subtypes, with special emphasis on the histamine H4 receptor, in different cell lines and human tumours, the signal transduction pathways and the associated biological responses as well as the in vivo treatment of experimental tumours with pharmacological ligands will be described. The presented evidence demonstrates that histamine regulates cancer-associated biological processes during cancer development in multiple cell types, including neoplastic cells and cells in the tumour micro-environment. The outcome will depend on tumour cell type, the level of expression of histamine receptors, signal transduction associated with these receptors, tumour micro-environment and histamine metabolism, reinforcing the complexity of cancer disease. Findings show the pivotal role of H4 receptors in the development and progression of many types of cancers, and considering its immunomodulatory properties, the H4 receptor appears to be the most promising molecular therapeutic target for cancer treatment within the histamine receptor family. Furthermore, the H4 receptor is differentially expressed in tumours compared with normal tissues, and in most cancer types in which data are available, H4 receptor expression is associated with clinicopathological characteristics, suggesting that H4 receptors might represent a novel cancer biomarker. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Noelia A Massari
- Department of Immunology, School of Natural and Health SciencesNational University of Patagonia San Juan BoscoComodoro RivadaviaArgentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Laboratory of Radioisotopes, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina
| |
Collapse
|
44
|
Sahid MNA, Liu S, Mogi M, Maeyama K. Tachykinin-1 receptor antagonism suppresses substance-P- and compound 48/80-induced mast cell activation from rat mast cells expressing functional mas-related GPCR B3. Inflamm Res 2020; 69:289-298. [PMID: 31993675 DOI: 10.1007/s00011-020-01319-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/21/2019] [Accepted: 01/09/2020] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Mice and rats are important animal models for mast cell (MC) study. However, rat Mas-related-GPCR-B3 receptor (MRGPRB3) has been less studied than its mouse counterpart. Therefore, we aimed to characterize rat MRGPRB3. METHODS Mrgprb3 mRNA expression was assessed in peritoneal cells (RPCs) and peritoneal MCs (RPMCs) of wild-type rats, RPCs of MC-deficient rats, and RBL-2H3 cells by reverse-transcriptase polymerase chain reaction (RT-PCR). RPMCs, MRGPRX2-transfected and non-transfected RBL-2H3 cells were activated by 15-30 min incubation with DNP-BSA, substance-P (SP), or compound-48/80. L732138 or CP96344 was used as a tachykinin/neurokinin-1-receptor antagonist. Histamine release from MCs was measured by HPLC fluorometry. RESULTS Mrgprb3 mRNA expression was found in all cells, with the highest level in wild-type RPCs. All cells responded to DNP-BSA, but only MRGPRX2-transfected-RBL-2H3 cells and RPMCs responded to all activators. L732138 (0.1-10 μM) and CP96344 (1-100 μM) suppressed SP (10 μM)-induced RPMC activation. L732138 inhibition was dose independent, whereas CP96344 inhibition occurred in a dose-dependent manner. Additionally, only CP96344 suppressed SP (100 μM)- and compound-48/80 (10 μg/mL)-induced RPMC activation. CONCLUSIONS RPMCs expressing functional MRGPRB3 response upon MRGPRX2 ligands to regulated MC-mediated activities. It`s provide novel insights for future pseudo-allergic studies in rodents.
Collapse
Affiliation(s)
- Muhammad N A Sahid
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Toon, Ehime, 791-0295, Japan. .,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | - Shuang Liu
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Masaki Mogi
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Kazutaka Maeyama
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
45
|
Siiskonen H, Harvima I. Mast Cells and Sensory Nerves Contribute to Neurogenic Inflammation and Pruritus in Chronic Skin Inflammation. Front Cell Neurosci 2019; 13:422. [PMID: 31619965 PMCID: PMC6759746 DOI: 10.3389/fncel.2019.00422] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
The intimate interaction between mast cells and sensory nerves can be illustrated by the wheal and surrounding flare in an urticarial reaction in human skin. This reaction is typically associated with an intense itch at the reaction site. Upon activation, cutaneous mast cells release powerful mediators, such as histamine, tryptase, cytokines, and growth factors that can directly stimulate corresponding receptors on itch-mediating sensory nerves. These include, e.g., H1- and H4-receptors, protease-activated receptor-2, IL-31 receptor, and the high-affinity receptor of nerve growth factor (TrkA). On the other hand, sensory nerves can release neuropeptides, including substance P and vasoactive intestinal peptide, that are able to stimulate mast cells to release mediators leading to potentiation of the reciprocal interaction, inflammation, and itch. Even though mast cells are well recognized for their role in allergic skin whealing and urticaria, increasing evidence supports the reciprocal function between mast cells and sensory nerves in neurogenic inflammation in chronic skin diseases, such as psoriasis and atopic dermatitis, which are often characterized by distressing itch, and exacerbated by psychological stress. Increased morphological contacts between mast cells and sensory nerves in the lesional skin in psoriasis and atopic dermatitis as well as experimental models in mice and rats support the essential role for mast cell-sensory nerve communication in consequent pruritus. Therefore, we summarize here the present literature pointing to a close association between mast cells and sensory nerves in pruritic skin diseases as well as review the essential supporting findings on pruritic models in mice and rats.
Collapse
Affiliation(s)
- Hanna Siiskonen
- Department of Dermatology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Ilkka Harvima
- Department of Dermatology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
46
|
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory skin disease characterized by pruritus, inflammatory erythematous skin lesions, and skin-barrier defect. Current mainstay treatments of emollients, steroids, calcineurin inhibitors, and immunosuppressants have limited efficacy and potentially serious side effects. Recent advances and understanding of the pathogenesis of AD have resulted in new therapies that target specific pathways with increased efficacy and the potential for less systemic side effects. New FDA-approved therapies for AD are crisaborole and dupilumab. The JAK-STAT inhibitors (baricitinib, upadacitinib, PF-04965842, ASN002, tofacitinib, ruxolitinib, and delgocitinib) have the most promising results of the emerging therapies. Other drugs with potential include the aryl hydrocarbon receptor modulating agent tapinarof, the IL-4/IL-13 antagonists lebrikizumab and tralokinumab, and the IL-31Rα antagonist nemolizumab. In this review, new and emerging AD therapies will be discussed along with their mechanisms of action and their potential based on clinical study data.
Collapse
Affiliation(s)
- Henry L Nguyen
- Department of Dermatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55902, USA
| | - Katelyn R Anderson
- Department of Dermatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55902, USA
| | - Megha M Tollefson
- Department of Dermatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55902, USA.
| |
Collapse
|
47
|
Belinskaia DA, Belinskaia MA, Barygin OI, Vanchakova NP, Shestakova NN. Psychotropic Drugs for the Management of Chronic Pain and Itch. Pharmaceuticals (Basel) 2019; 12:ph12020099. [PMID: 31238561 PMCID: PMC6631469 DOI: 10.3390/ph12020099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical observations have shown that patients with chronic neuropathic pain or itch exhibit symptoms of increased anxiety, depression and cognitive impairment. Such patients need corrective therapy with antidepressants, antipsychotics or anticonvulsants. It is known that some psychotropic drugs are also effective for the treatment of neuropathic pain and pruritus syndromes due to interaction with the secondary molecular targets. Our own clinical studies have identified antipruritic and/or analgesic efficacy of the following compounds: tianeptine (atypical tricyclic antidepressant), citalopram (selective serotonin reuptake inhibitor), mianserin (tetracyclic antidepressant), carbamazepine (anticonvulsant), trazodone (serotonin antagonist and reuptake inhibitor), and chlorprothixene (antipsychotic). Venlafaxine (serotonin-norepinephrine reuptake inhibitor) is known to have an analgesic effect too. The mechanism of such effect of these drugs is not fully understood. Herein we review and correlate the literature data on analgesic/antipruritic activity with pharmacological profile of these compounds.
Collapse
Affiliation(s)
- Daria A Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Mariia A Belinskaia
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Oleg I Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Nina P Vanchakova
- Department of Pedagogy and Psychology, Faculty of Postgraduate Education, First Pavlov State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia.
| | - Natalia N Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| |
Collapse
|
48
|
Neurite Outgrowth and Morphological Changes Induced by 8-trans Unsaturation of Sphingadienine in kCer Molecular Species. Int J Mol Sci 2019; 20:ijms20092116. [PMID: 31035716 PMCID: PMC6540580 DOI: 10.3390/ijms20092116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Konjac ceramide (kCer), which consists of plant-type molecular species of characteristic shingoid bases and fatty acids, is prepared from konjac glucosylceramide GlcCer by chemoenzymatical deglucosylation. kCer activates the semaphorin 3A (Sema3A) signaling pathway, inducing collapsin response mediator protein 2 (CRMP2) phosphorylation. This results in neurite outgrowth inhibition and morphological changes in remaining long neurites in PC12 cells. Whether a specific molecular species of kCer can bind to the Sema3A receptor (Neuropilin1, Nrp1) and activate the Sema3A signaling pathway remains unknown. Here, we prepared kCer molecular species using endoglycoceramidase I-mediated deglucosylation and examined neurite outgrowth and phosphorylation of collapsin response mediator protein 2 in nerve growth factor (NGF)-primed cells. The 8-trans unsaturation of sphingadienine of kCer was essential for Sema3A-like signaling pathway activation. Conversely, 8-cis unsaturation of kCer molecular species had no effect on Sema3A-like activation, and neurite outgrowth inhibition resulted in remaining short neurites. In addition, α-hydroxylation of fatty acids was not associated with the Sema3A-like activity of the kCer molecular species. These results suggest that 8-trans or 8-cis isomerization of sphingadienine determines the specific interactions at the ligand-binding site of Nrp1.
Collapse
|
49
|
Tatarkiewicz J, Rzodkiewicz P, Żochowska M, Staniszewska A, Bujalska-Zadrożny M. New antihistamines - perspectives in the treatment of some allergic and inflammatory disorders. Arch Med Sci 2019; 15:537-553. [PMID: 30899308 PMCID: PMC6425212 DOI: 10.5114/aoms.2017.68534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/13/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jan Tatarkiewicz
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Rzodkiewicz
- Department of Biochemistry and Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of General and Experimental Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Żochowska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Staniszewska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
50
|
Matterne U, Böhmer MM, Weisshaar E, Jupiter A, Carter B, Apfelbacher CJ, Cochrane Skin Group. Oral H1 antihistamines as 'add-on' therapy to topical treatment for eczema. Cochrane Database Syst Rev 2019; 1:CD012167. [PMID: 30666626 PMCID: PMC6360926 DOI: 10.1002/14651858.cd012167.pub2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The symptoms of eczema can lead to sleeplessness and fatigue and may have a substantial impact on quality of life. Use of oral H1 antihistamines (H1 AH) as adjuvant therapy alongside topical agents is based on the idea that combining the anti-inflammatory effects of topical treatments with the blocking action of histamine on its receptors in the skin by H1 AH (to reduce the principal symptom of itch) might magnify or intensify the effect of treatment. Also, it would be unethical to compare oral H1 AH alone versus no treatment, as topical treatment is the standard management for this condition. OBJECTIVES To assess the effects of oral H1 antihistamines as 'add-on' therapy to topical treatment in adults and children with eczema. SEARCH METHODS We searched the following databases up to May 2018: the Cochrane Skin Group Specialised Register, CENTRAL, MEDLINE, Embase, and the GREAT database (Global Resource of EczemA Trials; from inception). We searched five trials registers and checked the reference lists of included and excluded studies for further references to relevant randomised controlled trials (RCTs). We also searched the abstracts of four conference proceedings held between 2000 and 2018. SELECTION CRITERIA We sought RCTs assessing oral H1 AH as 'add-on' therapy to topical treatment for people with eczema compared with topical treatment plus placebo or no additional treatment as add-on therapy. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures. Primary outcome measures were 'Mean change in patient-assessed symptoms of eczema' and 'Proportion of participants reporting adverse effects and serious adverse events'. Secondary outcomes were 'Mean change in physician-assessed clinical signs', 'Mean change in quality of life', and 'Number of eczema flares'. MAIN RESULTS We included 25 studies (3285 randomised participants). Seventeen studies included 1344 adults, and eight studies included 1941 children. Most studies failed to report eczema severity at baseline, but they were conducted in secondary care settings, so it is likely that they recruited patients with more severe cases of eczema. Trial duration was between three days and 18 months. Researchers studied 13 different H1 AH treatments. We could not undertake pooling because of the high level of diversity across studies in terms of duration and dose of intervention, concomitant topical therapy, and outcome assessment. Risk of bias was generally unclear, but five studies had high risk of bias in one domain (attrition, selection, or reporting bias). Only one study measured quality of life, but these results were insufficient for statistical analysis.Although this review assessed 17 comparisons, we summarise here the results of three key comparisons in this review.Cetirizine versus placeboOne study compared cetirizine 0.5 mg/kg/d against placebo over 18 months in 795 children. Study authors did not report patient-assessed symptoms of eczema separately for pruritus. Cetirizine is probably associated with fewer adverse events (mainly mild) (risk ratio (RR) 0.68, 95% confidence interval (CI) 0.46 to 1.01) and the need for slightly less additional H1 AH use as an indication of eczema flare rate (P = 0.035; no further numerical data given). Physician-assessed clinical signs (SCORing Atopic Dermatitis index (SCORAD)) were reduced in both groups, but the difference between groups was reported as non-significant (no P value given). Evidence for this comparison was of moderate quality.One study assessed cetirizine 10 mg/d against placebo over four weeks in 84 adults. Results show no evidence of differences between groups in patient-assessed symptoms of eczema (pruritus measured as part of SCORAD; no numerical data given), numbers of adverse events (RR 1.11, 95% CI 0.50 to 2.45; mainly sedation, other skin-related problems, respiratory symptoms, or headache), or physician-assessed changes in clinical signs, amount of local rescue therapy required, or number of applications as an indicator of eczema flares (no numerical data reported). Evidence for this comparison was of low quality.Fexofenadine versus placeboCompared with placebo, fexofenadine 120 mg/d taken in adults over one week (one study) probably leads to a small reduction in patient-assessed symptoms of pruritus on a scale of 0 to 8 (mean difference (MD) -0.25, 95% CI -0.43 to -0.07; n = 400) and a greater reduction in the ratio of physician-assessed pruritus area to whole body surface area (P = 0.007; no further numerical data given); however, these reductions may not be clinically meaningful. Results suggest probably little or no difference in adverse events (mostly somnolence and headache) (RR 1.05, 95% CI 0.74 to 1.50; n = 411) nor in the amount of 0.1% hydrocortisone butyrate used (co-intervention in both groups) as an indicator of eczema flare, but no numerical data were given. Evidence for this comparison was of moderate quality.Loratadine versus placeboA study of 28 adults compared loratadine 10 mg/d taken over 4 weeks versus placebo. Researchers found no evidence of differences between groups in patient-assessed pruritus, measured by a 100-point visual analogue scale (MD -2.30, 95% CI -20.27 to 15.67); reduction in physician-assessed clinical signs (SCORAD) (MD -4.10, 95% CI -13.22 to 5.02); or adverse events. Study authors reported only one side effect (folliculitis with placebo) (RR 0.25, 95% CI 0.01 to 5.76). Evidence for this comparison was of low quality. Number of eczema flares was not measured for this comparison. AUTHORS' CONCLUSIONS Based on the main comparisons, we did not find consistent evidence that H1 AH treatments are effective as 'add-on' therapy for eczema when compared to placebo; evidence for this comparison was of low and moderate quality. However, fexofenadine probably leads to a small improvement in patient-assessed pruritus, with probably no significant difference in the amount of treatment used to prevent eczema flares. Cetirizine was no better than placebo in terms of physician-assessed clinical signs nor patient-assessed symptoms, and we found no evidence that loratadine was more beneficial than placebo, although all interventions seem safe.The quality of evidence was limited because of poor study design and imprecise results. Future researchers should clearly define the condition (course and severity) and clearly report their methods, especially participant selection and randomisation; baseline characteristics; and outcomes (based on the Harmonising Outcome Measures in Eczema initiative).
Collapse
Affiliation(s)
- Uwe Matterne
- University of RegensburgMedical Sociology, Institute of Epidemiology and Preventive MedicineRegensburgGermany
| | - Merle Margarete Böhmer
- University of RegensburgMedical Sociology, Institute of Epidemiology and Preventive MedicineRegensburgGermany
| | - Elke Weisshaar
- Heidelberg University HospitalDepartment of Clinical Social MedicineThibautstrasse 3HeidelbergGermany69115
| | - Aldrin Jupiter
- Heidelberg University HospitalDepartment of Clinical Social MedicineThibautstrasse 3HeidelbergGermany69115
| | - Ben Carter
- King's College London; Institute of Psychiatry, Psychology & NeuroscienceBiostatistics and Health InformaticsDenmark HillLondonUK
| | - Christian J Apfelbacher
- University of RegensburgMedical Sociology, Institute of Epidemiology and Preventive MedicineRegensburgGermany
| | | |
Collapse
|