1
|
Zhu M, Huang Q, Li H, Zhao Y, Guo H, Wang T, Liu X, Huang Y, Hu J, Fang C, Huang J. The impact of site-specific DNA methylation in KCNJ11 promoter on type 2 diabetes. Heliyon 2024; 10:e39934. [PMID: 39584094 PMCID: PMC11585805 DOI: 10.1016/j.heliyon.2024.e39934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Aims This study explores the correlation between site-specific methylation levels of the KCNJ11 promoter and type 2 diabetes mellitus (T2DM), analyzing potential molecular mechanisms. Methods Thirty patients newly diagnosed with T2DM and 30 healthy controls were selected to determine the CpG methylation levels in the promoter region of the KCNJ11 gene using the bisulfite assay. The online software JASPAR was used to predict transcription factors binding to differentially methylated sites. Key transcription factors were further validated through quantitative PCR (q-PCR) and chromatin immunoprecipitation followed by PCR (ChIP-PCR). Results Methylation at multiple CpG sites within the KCNJ11 gene promoter was generally reduced in newly diagnosed T2DM patients compared with healthy individuals. The methylation status of CpG-471, a site crucial for the binding of the transcription factor TCF12, emerged as potentially influential in T2DM pathogenesis. This reduction in methylation at CpG-471 may enhance TCF12 binding, thereby altering KCNJ11 expression. Conclusion Hypomethylation of specific CpG sites in the promoter region of the KCNJ11 gene in patients with incipient T2DM potentially contributes to the disease's pathogenesis. This hypomethylation may influence TCF12 binding, with potential regulatory effects on KCNJ11 expression and pancreatic beta-cell function, though further studies are needed to confirm the exact mechanisms involved.
Collapse
Affiliation(s)
- Mengmeng Zhu
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Qiaoliang Huang
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu, 215000, China
| | - Heng Li
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yujie Zhao
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heming Guo
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Tao Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Xiaodan Liu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Yun Huang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Jian Huang
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
2
|
Peart LA, Draper M, Tarasov AI. The impact of GLP-1 signalling on the energy metabolism of pancreatic islet β-cells and extrapancreatic tissues. Peptides 2024; 178:171243. [PMID: 38788902 DOI: 10.1016/j.peptides.2024.171243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Glucagon-like peptide-1 signalling impacts glucose homeostasis and appetite thereby indirectly affecting substrate availability at the whole-body level. The incretin canonically produces an insulinotropic effect, thereby lowering blood glucose levels by promoting the uptake and inhibiting the production of the sugar by peripheral tissues. Likewise, GLP-1 signalling within the central nervous system reduces the appetite and food intake, whereas its gastric effect delays the absorption of nutrients, thus improving glycaemic control and reducing the risk of postprandial hyperglycaemia. We review the molecular aspects of the GLP-1 signalling, focusing on its impact on intracellular energy metabolism. Whilst the incretin exerts its effects predominantly via a Gs receptor, which decodes the incretin signal into the elevation of intracellular cAMP levels, the downstream signalling cascades within the cell, acting on fast and slow timescales, resulting in an enhancement or an attenuation of glucose catabolism, respectively.
Collapse
Affiliation(s)
- Leah A Peart
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Matthew Draper
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
3
|
Turbitt J, Moffett RC, Brennan L, Johnson PRV, Flatt PR, McClenaghan NH, Tarasov AI. Molecular determinants and intracellular targets of taurine signalling in pancreatic islet β-cells. Acta Physiol (Oxf) 2024; 240:e14101. [PMID: 38243723 DOI: 10.1111/apha.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
AIM Despite its abundance in pancreatic islets of Langerhans and proven antihyperglycemic effects, the impact of the essential amino acid, taurine, on islet β-cell biology has not yet received due consideration, which prompted the current studies exploring the molecular selectivity of taurine import into β-cells and its acute and chronic intracellular interactions. METHODS The molecular aspects of taurine transport were probed by exposing the clonal pancreatic BRIN BD11 β-cells and primary mouse and human islets to a range of the homologs of the amino acid (assayed at 2-20 mM), using the hormone release and imaging of intracellular signals as surrogate read-outs. Known secretagogues were employed to profile the interaction of taurine with acute and chronic intracellular signals. RESULTS Taurine transporter TauT was expressed in the islet β-cells, with the transport of taurine and homologs having a weak sulfonate specificity but significant sensitivity to the molecular weight of the transporter. Taurine, hypotaurine, homotaurine, and β-alanine enhanced insulin secretion in a glucose-dependent manner, an action potentiated by cytosolic Ca2+ and cAMP. Acute and chronic β-cell insulinotropic effects of taurine were highly sensitive to co-agonism with GLP-1, forskolin, tolbutamide, and membrane depolarization, with an unanticipated indifference to the activation of PKC and CCK8 receptors. Pre-culturing with GLP-1 or KATP channel inhibitors sensitized or, respectively, desensitized β-cells to the acute taurine stimulus. CONCLUSION Together, these data demonstrate the pathways whereby taurine exhibits a range of beneficial effects on insulin secretion and β-cell function, consistent with the antidiabetic potential of its dietary low-dose supplementation.
Collapse
Affiliation(s)
- Julie Turbitt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Lorraine Brennan
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Republic of Ireland
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Oxford Biomedical Research Centre (OxBRC), Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Republic of Ireland
| | | |
Collapse
|
4
|
Ashcroft FM. KATP Channels and the Metabolic Regulation of Insulin Secretion in Health and Disease: The 2022 Banting Medal for Scientific Achievement Award Lecture. Diabetes 2023; 72:693-702. [PMID: 37815796 PMCID: PMC10202764 DOI: 10.2337/dbi22-0030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/28/2023] [Indexed: 10/11/2023]
Abstract
Diabetes is characterized by elevation of plasma glucose due to an insufficiency of the hormone insulin and is associated with both inadequate insulin secretion and impaired insulin action. The Banting Medal for Scientific Achievement Commemorates the work of Sir Frederick Banting, a member of the team that first used insulin to treat a patient with diabetes almost exactly one hundred years ago on 11 January 1922. This article is based on my Banting lecture of 2022 and concerns the mechanism of glucose-stimulated insulin secretion from pancreatic β-cells, with an emphasis on the metabolic regulation of the KATP channel. This channel plays a central role in insulin release. Its closure in response to metabolically generated changes in the intracellular concentrations of ATP and MgADP stimulates β-cell electrical activity and insulin granule exocytosis. Activating mutations in KATP channel genes that impair the ability of the channel to respond to ATP give rise to neonatal diabetes. Impaired KATP channel regulation may also play a role in type 2 diabetes. I conjecture that KATP channel closure in response to glucose is reduced because of impaired glucose metabolism, which fails to generate a sufficient increase in ATP. Consequently, glucose-stimulated β-cell electrical activity is less. As ATP is also required for insulin granule exocytosis, both reduced exocytosis and less β-cell electrical activity may contribute to the reduction in insulin secretion. I emphasize that what follows is not a definitive review of the topic but a personal account of the contribution of my team to the field that is based on my Banting lecture.
Collapse
Affiliation(s)
- Frances M. Ashcroft
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, U.K
| |
Collapse
|
5
|
Turbitt J, Brennan L, Moffett RC, Flatt PR, Johnson PRV, Tarasov AI, McClenaghan NH. NKCC transport mediates the insulinotropic effects of taurine and other small neutral amino acids. Life Sci 2023; 316:121402. [PMID: 36669678 DOI: 10.1016/j.lfs.2023.121402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
AIMS Despite its high concentration in pancreatic islets of Langerhans and broad range of antihyperglycemic effects, the route facilitating the import of dietary taurine into pancreatic β-cell and mechanisms underlying its insulinotropic activity are unclear. We therefore studied the impact of taurine on beta-cell function, alongside that of other small neutral amino acids, L-alanine and L-proline. MAIN METHODS Pharmacological profiling of insulin secretion was conducted using clonal BRIN BD11 β-cells, the impact of taurine on the metabolic fate of glucose carbons was assessed using NMR and the findings were verified by real-time imaging of Ca2+ dynamics in the cytosol of primary mouse and human islet beta-cells. KEY FINDINGS In our hands, taurine, alanine and proline induced secretory responses that were dependent on the plasma membrane depolarisation, import of Ca2+, homeostasis of K+ and Na+ as well as on cell glycolytic and oxidative metabolism. Taurine shifted the balance between the oxidation and anaplerosis towards the latter, in BRIN BD11 beta-cells. Furthermore, the amino acid signalling was significantly attenuated by inhibition of Na+-K+-Cl- symporter (NKCC). SIGNIFICANCE These data suggest that taurine, like L-alanine and L-proline, acutely induces glucose-dependent insulin-secretory responses by modulating electrogenic Na+ transport, with potential role of intracellular K+ and Cl- in the signal transduction. The acute action delineated would be consistent with antidiabetic potential of dietary taurine supplementation.
Collapse
Affiliation(s)
- Julie Turbitt
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK
| | - Lorraine Brennan
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - R Charlotte Moffett
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK.
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK.
| | - Paul R V Johnson
- Nuffeld Department of Surgical Sciences, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, OX3 7LE Oxford, UK; Oxford Biomedical Research Centre (OxBRC), UK.
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK; Nuffeld Department of Surgical Sciences, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, OX3 7LE Oxford, UK; Oxford Biomedical Research Centre (OxBRC), UK.
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK; Department of Life Sciences, Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland.
| |
Collapse
|
6
|
Sarnobat D, Moffett RC, Ma J, Flatt PR, McClenaghan NH, Tarasov AI. Taurine rescues pancreatic β-cell stress by stimulating α-cell transdifferentiation. Biofactors 2023. [PMID: 36714992 DOI: 10.1002/biof.1938] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023]
Abstract
The semi-essential ubiquitous amino acid taurine has been shown to alleviate obesity and hyperglycemia in humans; however, the pathways underlying the antidiabetic actions have not been characterized. We explored the effect of chronic taurine exposure on cell biology of pancreatic islets, in degenerative type 1-like diabetes. The latter was modeled by small dose of streptozotocin (STZ) injection for 5 days in mice, followed by a 10-day administration of taurine (2% w/v, orally) in the drinking water. Taurine treatment opposed the detrimental changes in islet morphology and β-/α-cell ratio, induced by STZ diabetes, coincidentally with a significant 3.9 ± 0.7-fold enhancement of proliferation and 40 ± 5% reduction of apoptosis in β-cells. In line with these findings, the treatment counteracted an upregulation of antioxidant (Sod1, Sod2, Cat, Gpx1) and downregulation of islet expansion (Ngn3, Itgb1) genes induced by STZ, in a pancreatic β-cell line. At the same time, taurine enhanced the transdifferentiation of α-cells into β-cells by 2.3 ± 0.8-fold, echoed in strong non-metabolic elevation of cytosolic Ca2+ levels in pancreatic α-cells. Our data suggest a bimodal effect of dietary taurine on islet β-cell biology, which combines the augmentation of α-/β-cell transdifferentiation with downregulation of apoptosis. The dualism of action, stemming presumably from the intra- and extracellular modality of the signal, is likely to explain the antidiabetic potential of taurine supplementation.
Collapse
Affiliation(s)
- Dipak Sarnobat
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | | |
Collapse
|
7
|
Khan D, Moffett RC, Flatt PR, Tarasov AI. Classical and non-classical islet peptides in the control of β-cell function. Peptides 2022; 150:170715. [PMID: 34958851 DOI: 10.1016/j.peptides.2021.170715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022]
Abstract
The dual role of the pancreas as both an endocrine and exocrine gland is vital for food digestion and control of nutrient metabolism. The exocrine pancreas secretes enzymes into the small intestine aiding digestion of sugars and fats, whereas the endocrine pancreas secretes a cocktail of hormones into the blood, which is responsible for blood glucose control and regulation of carbohydrate, protein and fat metabolism. Classical islet hormones, insulin, glucagon, pancreatic polypeptide and somatostatin, interact in an autocrine and paracrine manner, to fine-tube the islet function and insulin secretion to the needs of the body. Recently pancreatic islets have been reported to express a number of non-classical peptide hormones involved in metabolic signalling, whose major production site was believed to reside outside pancreas, e.g. in the small intestine. We highlight the key non-classical islet peptides, and consider their involvement, together with established islet hormones, in regulation of stimulus-secretion coupling as well as proliferation, survival and transdifferentiation of β-cells. We furthermore focus on the paracrine interaction between classical and non-classical islet hormones in the maintenance of β-cell function. Understanding the functional relationships between these islet peptides might help to develop novel, more efficient treatments for diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| | - R Charlotte Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Andrei I Tarasov
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
8
|
Sarnobat D, Charlotte Moffett R, Flatt PR, Irwin N, Tarasov AI. GABA and insulin but not nicotinamide augment α- to β-cell transdifferentiation in insulin-deficient diabetic mice. Biochem Pharmacol 2022; 199:115019. [DOI: 10.1016/j.bcp.2022.115019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/30/2022]
|
9
|
Sarnobat D, Moffett RC, Flatt PR, Tarasov AI. Effects of first-line diabetes therapy with biguanides, sulphonylurea and thiazolidinediones on the differentiation, proliferation and apoptosis of islet cell populations. J Endocrinol Invest 2022; 45:95-103. [PMID: 34191257 PMCID: PMC8741670 DOI: 10.1007/s40618-021-01620-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022]
Abstract
AIMS Metformin, rosiglitazone and sulfonylureas enhance either insulin action or secretion and thus have been used extensively as early stage anti-diabetic medication, independently of the aetiology of the disease. When administered to newly diagnosed diabetes patients, these drugs produce variable results. Here, we examined the effects of the three early stage oral hypoglycaemic agents in mice with diabetes induced by multiple low doses of streptozotocin, focusing specifically on the developmental biology of pancreatic islets. METHODS Streptozotocin-treated diabetic mice expressing a fluorescent reporter specifically in pancreatic islet α-cells were administered the biguanide metformin (100 mg/kg), thiazolidinedione rosiglitazone (10 mg/kg), or sulfonylurea tolbutamide (20 mg/kg) for 10 days. We assessed the impact of the treatment on metabolic status of the animals as well as on the morphology, proliferative potential and transdifferentiation of pancreatic islet cells, using immunofluorescence. RESULTS The effect of the therapy on the islet cells varied depending on the drug and included enhanced pancreatic islet β-cell proliferation, in case of metformin and rosiglitazone; de-differentiation of α-cells and β-cell apoptosis with tolbutamide; increased relative number of β-cells and bi-hormonal insulin + glucagon + cells with metformin. These effects were accompanied by normalisation of food and fluid intake with only minor effects on glycaemia at the low doses of the agents employed. CONCLUSIONS Our data suggest that metformin and rosiglitazone attenuate the depletion of the β-cell pool in the streptozotocin-induced diabetes, whereas tolbutamide exacerbates the β-cell apoptosis, but is likely to protect β-cells from chronic hyperglycaemia by directly elevating insulin secretion.
Collapse
Affiliation(s)
- D Sarnobat
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - R C Moffett
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - P R Flatt
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - A I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK.
| |
Collapse
|
10
|
Imaging Meets Cytometry: Analyzing Heterogeneous Functional Microscopic Data from Living Cell Populations. J Imaging 2021; 7:jimaging7010009. [PMID: 34460580 PMCID: PMC8321243 DOI: 10.3390/jimaging7010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/27/2022] Open
Abstract
Biological tissue consists of populations of cells exhibiting different responses to pharmacological stimuli. To probe the heterogeneity of cell function, we propose a multiplexed approach based on real‐time imaging of the secondary messenger levels within each cell of the tissue, followed by extraction of the changes of single‐cell fluorescence over time. By utilizing a piecewise baseline correction, we were able to quantify the effects of multiple pharmacological stimuli added and removed sequentially to pancreatic islets of Langerhans, thereby performing a deep functional profiling for each cell within the islet. Cluster analysis based on the functional profile demonstrated dose‐dependent changes in statistical inter‐relationships between islet cell populations. We therefore believe that the functional cytometric approach can be used for routine quantitative profiling of the tissue for drug screening or pathological testing.
Collapse
|
11
|
Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. New insights into K ATP channel gene mutations and neonatal diabetes mellitus. Nat Rev Endocrinol 2020; 16:378-393. [PMID: 32376986 DOI: 10.1038/s41574-020-0351-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
The ATP-sensitive potassium channel (KATP channel) couples blood levels of glucose to insulin secretion from pancreatic β-cells. KATP channel closure triggers a cascade of events that results in insulin release. Metabolically generated changes in the intracellular concentrations of adenosine nucleotides are integral to this regulation, with ATP and ADP closing the channel and MgATP and MgADP increasing channel activity. Activating mutations in the genes encoding either of the two types of KATP channel subunit (Kir6.2 and SUR1) result in neonatal diabetes mellitus, whereas loss-of-function mutations cause hyperinsulinaemic hypoglycaemia of infancy. Sulfonylurea and glinide drugs, which bind to SUR1, close the channel through a pathway independent of ATP and are now the primary therapy for neonatal diabetes mellitus caused by mutations in the genes encoding KATP channel subunits. Insight into the molecular details of drug and nucleotide regulation of channel activity has been illuminated by cryo-electron microscopy structures that reveal the atomic-level organization of the KATP channel complex. Here we review how these structures aid our understanding of how the various mutations in the genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCC8) lead to a reduction in ATP inhibition and thereby neonatal diabetes mellitus. We also provide an update on known mutations and sulfonylurea therapy in neonatal diabetes mellitus.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samuel Usher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Lee SM, Baik J, Nguyen D, Nguyen V, Liu S, Hu Z, Abbott GW. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus. FASEB J 2017; 31:2674-2685. [PMID: 28280005 DOI: 10.1096/fj.201601347] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023]
Abstract
Type 2 diabetes mellitus (T2DM) represents a rapidly increasing threat to global public health. T2DM arises largely from obesity, poor diet, and lack of exercise, but it also involves genetic predisposition. Here we report that the KCNE2 potassium channel transmembrane regulatory subunit is expressed in human and mouse pancreatic β cells. Kcne2 deletion in mice impaired glucose tolerance as early as 5 wk of age in pups fed a Western diet, ultimately causing diabetes. In adult mice fed normal chow, skeletal muscle expression of insulin receptor β and insulin receptor substrate 1 were down-regulated 2-fold by Kcne2 deletion, characteristic of T2DM. Kcne2 deletion also caused extensive pancreatic transcriptome changes consistent with facets of T2DM, including endoplasmic reticulum stress, inflammation, and hyperproliferation. Kcne2 deletion impaired β-cell insulin secretion in vitro up to 8-fold and diminished β-cell peak outward K+ current at positive membrane potentials, but also left-shifted its voltage dependence and slowed inactivation. Interestingly, we also observed an aging-dependent reduction in β-cell outward currents in both Kcne2+/+ and Kcne2-/- mice. Our results demonstrate that KCNE2 is required for normal β-cell electrical activity and insulin secretion, and that Kcne2 deletion causes T2DM. KCNE2 may regulate multiple K+ channels in β cells, including the T2DM-linked KCNQ1 potassium channel α subunit.-Lee, S. M., Baik, J., Nguyen, D., Nguyen, V., Liu, S., Hu, Z., Abbott, G. W. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Soo Min Lee
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Jasmine Baik
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Dara Nguyen
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Victoria Nguyen
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Shiwei Liu
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Zhaoyang Hu
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA;
| |
Collapse
|
13
|
Vedovato N, Cliff E, Proks P, Poovazhagi V, Flanagan SE, Ellard S, Hattersley AT, Ashcroft FM. Neonatal diabetes caused by a homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensitivity markedly affect diabetes risk. Diabetologia 2016; 59:1430-1436. [PMID: 27118464 PMCID: PMC4901145 DOI: 10.1007/s00125-016-3964-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Abstract
AIMS/HYPOTHESIS The pancreatic ATP-sensitive potassium (KATP) channel plays a pivotal role in linking beta cell metabolism to insulin secretion. Mutations in KATP channel genes can result in hypo- or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, respectively. To date, all patients affected by neonatal diabetes due to a mutation in the pore-forming subunit of the channel (Kir6.2, KCNJ11) are heterozygous for the mutation. Here, we report the first clinical case of neonatal diabetes caused by a homozygous KCNJ11 mutation. METHODS A male patient was diagnosed with diabetes shortly after birth. At 5 months of age, genetic testing revealed he carried a homozygous KCNJ11 mutation, G324R, (Kir6.2-G324R) and he was successfully transferred to sulfonylurea therapy (0.2 mg kg(-1) day(-1)). Neither heterozygous parent was affected. Functional properties of wild-type, heterozygous and homozygous mutant KATP channels were examined after heterologous expression in Xenopus oocytes. RESULTS Functional studies indicated that the Kir6.2-G324R mutation reduces the channel ATP sensitivity but that the difference in ATP inhibition between homozygous and heterozygous channels is remarkably small. Nevertheless, the homozygous patient developed neonatal diabetes, whereas the heterozygous parents were, and remain, unaffected. Kir6.2-G324R channels were fully shut by the sulfonylurea tolbutamide, which explains why the patient's diabetes was well controlled by sulfonylurea therapy. CONCLUSIONS/INTERPRETATION The data demonstrate that tiny changes in KATP channel activity can alter beta cell electrical activity and insulin secretion sufficiently to cause diabetes. They also aid our understanding of how the Kir6.2-E23K variant predisposes to type 2 diabetes.
Collapse
Affiliation(s)
- Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Edward Cliff
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
14
|
Nita II, Hershfinkel M, Kantor C, Rutter GA, Lewis EC, Sekler I. Pancreatic β-cell Na+ channels control global Ca2+ signaling and oxidative metabolism by inducing Na+ and Ca2+ responses that are propagated into mitochondria. FASEB J 2014; 28:3301-12. [PMID: 24719357 DOI: 10.1096/fj.13-248161] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Communication between the plasma membrane and mitochondria is essential for initiating the Ca(2+) and metabolic signals required for secretion in β cells. Although voltage-dependent Na(+) channels are abundantly expressed in β cells and activated by glucose, their role in communicating with mitochondria is unresolved. Here, we combined fluorescent Na(+), Ca(2+), and ATP imaging, electrophysiological analysis with tetrodotoxin (TTX)-dependent block of the Na(+) channel, and molecular manipulation of mitochondrial Ca(2+) transporters to study the communication between Na(+) channels and mitochondria. We show that TTX inhibits glucose-dependent depolarization and blocks cytosolic Na(+) and Ca(2+) responses and their propagation into mitochondria. TTX-sensitive mitochondrial Ca(2+) influx was largely blocked by knockdown of the mitochondrial Ca(2+) uniporter (MCU) expression. Knockdown of the mitochondrial Na(+)/Ca(2+) exchanger (NCLX) and Na(+) dose response analysis demonstrated that NCLX mediates the mitochondrial Na(+) influx and is tuned to sense the TTX-sensitive cytosolic Na(+) responses. Finally, TTX blocked glucose-dependent mitochondrial Ca(2+) rise, mitochondrial metabolic activity, and ATP production. Our results show that communication of the Na(+) channels with mitochondria shape both global Ca(2+) and metabolism signals linked to insulin secretion in β cells.- Nita, I. I., Hershfinkel, M., Kantor, C., Rutter, G. A., Lewis, E. C., Sekler, I. Pancreatic β-cell Na(+) channels control global Ca(2+) signaling and oxidative metabolism by inducing Na(+) and Ca(2+) responses that are propagated into mitochondria.
Collapse
Affiliation(s)
| | | | - Chase Kantor
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Eli C Lewis
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; and
| | | |
Collapse
|
15
|
Mollajew R, Toloe J, Mironov SL. Single KATP channel opening in response to stimulation of AMPA/kainate receptors is mediated by Na+ accumulation and submembrane ATP and ADP changes. J Physiol 2013; 591:2593-609. [PMID: 23507878 DOI: 10.1113/jphysiol.2012.248369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Excessive stimulation of glutamatergic receptors (GluRs) can overexcite neurons. This can be dampened by KATP channels linking metabolic and neuronal activities, but the cross-talk has not yet been examined on the single channel level. In the brainstem and hippocampal neurons, GluR agonists augmented the open state probability (Popen) of KATP channels with relative efficacy: kainate AMPA > NMDA > t-ACPD. Inhibition of calcium influx and chelation of intracellular calcium did not modify the effects. Kainate did not augment production of reactive oxygen species measured with roGFP1. H2O2 slightly increased Popen, but GluR effects were not modified. GluR actions were abolished in Na(+)-free solutions and after blockade of Na(+)-K(+)-ATPase. KATP channels in open-cell patch-clamp measurements were inhibited by ATP, stimulated by ADP, and kainate was effective only in the presence of ATP. GluR stimulation enhanced ATP consumption that decreased submembrane ATP levels, whereas metabolic poisoning diminished bulk ATP. Modelling showed strong ATP depletion and ADP accumulation near the membrane, and both effects contributed to Popen increases after GluR stimulation. Kainate and hypoxia activated KATP channels in the functional brainstem slices. Inhibition of aerobic ATP production and GluR stimulation were about equally effective in KATP channel opening during hypoxia. Induction of seizure-like activity in hippocampal slices with Mg(2+)-free solutions was accompanied by ATP decrease and KATP channel opening. We propose that KATP channels and GluRs are functionally coupled that can regulate long-lasting changes of neuronal activity in the CNS neurons.
Collapse
Affiliation(s)
- R Mollajew
- DFG-Center of Molecular Physiology of the Brain, Institute of Neuro- and Sensory Physiology, Georg-August-University, Göttingen 37073, Germany
| | | | | |
Collapse
|
16
|
Han B, Shi X, Peng Q, Gao W. Study on Genetic Variance of miR-541 in Type 1 Diabetes. ISRN ENDOCRINOLOGY 2012; 2012:630861. [PMID: 23304544 PMCID: PMC3530230 DOI: 10.5402/2012/630861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/25/2012] [Indexed: 01/13/2023]
Abstract
Genetic susceptibility plays a key role in type 1 diabetes development. Because miR-541 gene was located within the associated chromosome loci and its target genes include the diabetes-associated gene neurogenin3, this study aimed to investigate whether miR-541 had type 1 diabetes-associated genetic variations. Type 1 diabetes children and healthy volunteers were recruited; direct sequencing was performed in initial 69 patients and 46 volunteers. We identified 1 reported SNP (rs12893725) and 3 novel genetic variations, for the candidate -404 G→T variation, restriction fragment length polymorphism (RFLP) was performed in total 247 diabetes children and 212 healthy volunteers, a different distribution trait of allele frequencies was found between the two groups, and further clinical analysis found no significant correlation between clinical parameter and genotypes among patients. In addition, by luciferase reporter assay, -404 was found to be within putative promoter region of pre-miR-541; although mutation of G→T has no effect on promoter activity, a significant secondary structure alteration may possibly influence its processing and transcription. In conclusion, we identified 3 novel genetic variations in putative promoter of miR-541 in type 1 diabetes patients; -404 G→T of miR-541 is a potential T1D-associated genetic variation.
Collapse
Affiliation(s)
- Bei Han
- Department of Endocrinology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | | | | | | |
Collapse
|
17
|
Tarasov AI, Semplici F, Ravier MA, Bellomo EA, Pullen TJ, Gilon P, Sekler I, Rizzuto R, Rutter GA. The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells. PLoS One 2012; 7:e39722. [PMID: 22829870 PMCID: PMC3400633 DOI: 10.1371/journal.pone.0039722] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/25/2012] [Indexed: 01/09/2023] Open
Abstract
Glucose induces insulin release from pancreatic β-cells by stimulating ATP synthesis, membrane depolarisation and Ca2+ influx. As well as activating ATP-consuming processes, cytosolic Ca2+ increases may also potentiate mitochondrial ATP synthesis. Until recently, the ability to study the role of mitochondrial Ca2+ transport in glucose-stimulated insulin secretion has been hindered by the absence of suitable approaches either to suppress Ca2+ uptake into these organelles, or to examine the impact on β-cell excitability. Here, we have combined patch-clamp electrophysiology with simultaneous real-time imaging of compartmentalised changes in Ca2+ and ATP/ADP ratio in single primary mouse β-cells, using recombinant targeted (Pericam or Perceval, respectively) as well as entrapped intracellular (Fura-Red), probes. Through shRNA-mediated silencing we show that the recently-identified mitochondrial Ca2+ uniporter, MCU, is required for depolarisation-induced mitochondrial Ca2+ increases, and for a sustained increase in cytosolic ATP/ADP ratio. By contrast, silencing of the mitochondrial Na+-Ca2+ exchanger NCLX affected the kinetics of glucose-induced changes in, but not steady state values of, cytosolic ATP/ADP. Exposure to gluco-lipotoxic conditions delayed both mitochondrial Ca2+ uptake and cytosolic ATP/ADP ratio increases without affecting the expression of either gene. Mitochondrial Ca2+ accumulation, mediated by MCU and modulated by NCLX, is thus required for normal glucose sensing by pancreatic β-cells, and becomes defective in conditions mimicking the diabetic milieu.
Collapse
Affiliation(s)
- Andrei I. Tarasov
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Francesca Semplici
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Magalie A. Ravier
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- Institut de Génomique Fonctionnelle, INSERM U661, CNRS UMR5203, Université Montpellier I et II, Montpellier, France
| | - Elisa A. Bellomo
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Timothy J. Pullen
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes and Nutrition, Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium
| | - Israel Sekler
- Department of Physiology, Faculty of Health Sciences, Ben Gurion University, Beer-Sheva, Israel
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Guy A. Rutter
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Männikkö R, Stansfeld PJ, Ashcroft AS, Hattersley AT, Sansom MSP, Ellard S, Ashcroft FM. A conserved tryptophan at the membrane-water interface acts as a gatekeeper for Kir6.2/SUR1 channels and causes neonatal diabetes when mutated. J Physiol 2011; 589:3071-83. [PMID: 21540348 PMCID: PMC3145925 DOI: 10.1113/jphysiol.2011.209700] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/26/2011] [Indexed: 12/20/2022] Open
Abstract
We identified a novel heterozygous mutation, W68R, in the Kir6.2 subunit of the ATP-sensitive potassium (KATP) channel, in a patient with transient neonatal diabetes. This tryptophan is absolutely conserved in mammalian Kir channels. The functional effects of mutations at residue 68 of Kir6.2 were studied by heterologous expression in Xenopus oocytes, and by homology modelling. We found the Kir6.2-W68R mutation causes a small reduction in ATP inhibition in the heterozygous state and an increase in the whole-cell KATP current. This can explain the clinical phenotype of the patient. The effect of the mutation was not charge or size dependent, the order of potency for ATP inhibition being W
Collapse
Affiliation(s)
- Roope Männikkö
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Lang V, Light PE. The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes. Pharmgenomics Pers Med 2010; 3:145-61. [PMID: 23226049 PMCID: PMC3513215 DOI: 10.2147/pgpm.s6969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Indexed: 12/14/2022] Open
Abstract
Neonatal diabetes mellitus (NDM) is a monogenic disorder caused by mutations in genes involved in regulation of insulin secretion from pancreatic β-cells. Mutations in the KCNJ11 and ABCC8 genes, encoding the adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel Kir6.2 and SUR1 subunits, respectively, are found in ∼50% of NDM patients. In the pancreatic β-cell, K(ATP) channel activity couples glucose metabolism to insulin secretion via cellular excitability and mutations in either KCNJ11 or ABCC8 genes alter K(ATP) channel activity, leading to faulty insulin secretion. Inactivation mutations decrease K(ATP) channel activity and stimulate excessive insulin secretion, leading to hyperinsulinism of infancy. In direct contrast, activation mutations increase K(ATP) channel activity, resulting in impaired insulin secretion, NDM, and in severe cases, developmental delay and epilepsy. Many NDM patients with KCNJ11 and ABCC8 mutations can be successfully treated with sulfonylureas (SUs) that inhibit the K(ATP) channel, thus replacing the need for daily insulin injections. There is also strong evidence indicating that SU therapy ameliorates some of the neurological defects observed in patients with more severe forms of NDM. This review focuses on the molecular and cellular mechanisms of mutations in the K(ATP) channel that underlie NDM. SU pharmacogenomics is also discussed with respect to evaluating whether patients with certain K(ATP) channel activation mutations can be successfully switched to SU therapy.
Collapse
Affiliation(s)
- Veronica Lang
- Department of Pharmacology and Alberta Diabetes Institute, Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Peter E Light
- Department of Pharmacology and Alberta Diabetes Institute, Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Proks P, de Wet H, Ashcroft FM. Activation of the K(ATP) channel by Mg-nucleotide interaction with SUR1. J Gen Physiol 2010; 136:389-405. [PMID: 20876358 PMCID: PMC2947056 DOI: 10.1085/jgp.201010475] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/03/2010] [Indexed: 01/30/2023] Open
Abstract
The mechanism of adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel activation by Mg-nucleotides was studied using a mutation (G334D) in the Kir6.2 subunit of the channel that renders K(ATP) channels insensitive to nucleotide inhibition and has no apparent effect on their gating. K(ATP) channels carrying this mutation (Kir6.2-G334D/SUR1 channels) were activated by MgATP and MgADP with an EC(50) of 112 and 8 µM, respectively. This activation was largely suppressed by mutation of the Walker A lysines in the nucleotide-binding domains of SUR1: the remaining small (∼10%), slowly developing component of MgATP activation was fully inhibited by the lipid kinase inhibitor LY294002. The EC(50) for activation of Kir6.2-G334D/SUR1 currents by MgADP was lower than that for MgATP, and the time course of activation was faster. The poorly hydrolyzable analogue MgATPγS also activated Kir6.2-G334D/SUR1. AMPPCP both failed to activate Kir6.2-G334D/SUR1 and to prevent its activation by MgATP. Maximal stimulatory concentrations of MgATP (10 mM) and MgADP (1 mM) exerted identical effects on the single-channel kinetics: they dramatically elevated the open probability (P(O) > 0.8), increased the mean open time and the mean burst duration, reduced the frequency and number of interburst closed states, and eliminated the short burst states. By comparing our results with those obtained for wild-type K(ATP) channels, we conclude that the MgADP sensitivity of the wild-type K(ATP) channel can be described quantitatively by a combination of inhibition at Kir6.2 (measured for wild-type channels in the absence of Mg(2+)) and activation via SUR1 (determined for Kir6.2-G334D/SUR1 channels). However, this is not the case for the effects of MgATP.
Collapse
Affiliation(s)
- Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England, UK
| | | | | |
Collapse
|
21
|
Clark R, Proks P. ATP-sensitive potassium channels in health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:165-92. [PMID: 20217498 DOI: 10.1007/978-90-481-3271-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ATP-sensitive potassium (K(ATP)) channel plays a crucial role in insulin secretion and thus glucose homeostasis. K(ATP) channel activity in the pancreatic beta-cell is finely balanced; increased activity prevents insulin secretion, whereas reduced activity stimulates insulin release. The beta-cell metabolism tightly regulates K(ATP) channel gating, and if this coupling is perturbed, two distinct disease states can result. Diabetes occurs when the K(ATP) channel fails to close in response to increased metabolism, whereas congenital hyperinsulinism results when K(ATP) channels remain closed even at very low blood glucose levels. In general there is a good correlation between the magnitude of K(ATP) current and disease severity. Mutations that cause a complete loss of K(ATP) channels in the beta-cell plasma membrane produce a severe form of congenital hyperinsulinism, whereas mutations that partially impair channel function produce a milder phenotype. Similarly mutations that greatly reduce the ATP sensitivity of the K(ATP) channel lead to a severe form of neonatal diabetes with associated neurological complications, whilst mutations that cause smaller shifts in ATP sensitivity cause neonatal diabetes alone. This chapter reviews our current understanding of the pancreatic beta-cell K(ATP) channel and highlights recent structural, functional and clinical advances.
Collapse
Affiliation(s)
- Rebecca Clark
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| | | |
Collapse
|
22
|
Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, Koshkin V, Tarasov AI, Carzaniga R, Kronenberger K, Taneja TK, da Silva Xavier G, Libert S, Froguel P, Scharfmann R, Stetsyuk V, Ravassard P, Parker H, Gribble FM, Reimann F, Sladek R, Hughes SJ, Johnson PR, Masseboeuf M, Burcelin R, Baldwin SA, Liu M, Lara-Lemus R, Arvan P, Schuit FC, Wheeler MB, Chimienti F, Rutter GA. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 2009; 58:2070-83. [PMID: 19542200 PMCID: PMC2731533 DOI: 10.2337/db09-0551] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/02/2009] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele. RESEARCH DESIGN AND METHODS Slc30a8 null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles were undertaken using standard protocols. RESULTS ZnT8(-/-) mice displayed age-, sex-, and diet-dependent abnormalities in glucose tolerance, insulin secretion, and body weight. Islets isolated from null mice had reduced granule zinc content and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion, and insulin crystal dissolution, assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8(-/-) islets. Insulin processing was normal. Molecular modeling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn(2+) transport activity than W325 ZnT8 by fluorescence-based assay. CONCLUSIONS ZnT8 is required for normal insulin crystallization and insulin release in vivo but not, remarkably, in vitro. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risks.
Collapse
Affiliation(s)
- Tamara J. Nicolson
- Section of Cell Biology, Division of Medicine, Imperial College London, London, U.K
| | - Elisa A. Bellomo
- Section of Cell Biology, Division of Medicine, Imperial College London, London, U.K
| | | | - Merewyn K. Loder
- Section of Cell Biology, Division of Medicine, Imperial College London, London, U.K
| | - Jocelyn M. Baldwin
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, U.K
| | | | - Vasilij Koshkin
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Andrei I. Tarasov
- Section of Cell Biology, Division of Medicine, Imperial College London, London, U.K
| | | | | | - Tarvinder K. Taneja
- Section of Cell Biology, Division of Medicine, Imperial College London, London, U.K
| | | | | | - Philippe Froguel
- Section of Genomic Medicine, Division of Medicine, Imperial College London, London, U.K
- Centre National de la Recherche Scientifique Unite Mixte de Recherche 8090, Institute of Biology, Lille, France
| | | | | | - Philippe Ravassard
- Centre National de la Recherche Scientifique and Université Pierre et Marie Curie, Paris, France
| | - Helen Parker
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Fiona M. Gribble
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Frank Reimann
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Robert Sladek
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Stephen J. Hughes
- Nuffield Department of Surgery, University of Oxford, Oxfordshire, U.K
| | - Paul R.V. Johnson
- Nuffield Department of Surgery, University of Oxford, Oxfordshire, U.K
| | - Myriam Masseboeuf
- Institut de Medecine Moleculaire de Rangueil, INSERM U858, IFR31, Toulouse III University, CHU Rangueil, Toulouse Cedex, Toulouse, France
| | - Remy Burcelin
- Institut de Medecine Moleculaire de Rangueil, INSERM U858, IFR31, Toulouse III University, CHU Rangueil, Toulouse Cedex, Toulouse, France
| | - Stephen A. Baldwin
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, U.K
| | - Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, Michigan
| | - Roberto Lara-Lemus
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, Michigan
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, Michigan
| | - Frans C. Schuit
- Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michael B. Wheeler
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, U.K
| | - Fabrice Chimienti
- Section of Genomic Medicine, Division of Medicine, Imperial College London, London, U.K
| | - Guy A. Rutter
- Section of Cell Biology, Division of Medicine, Imperial College London, London, U.K
| |
Collapse
|
23
|
Willenborg M, Panten U, Rustenbeck I. Triggering and amplification of insulin secretion by dimethyl alpha-ketoglutarate, a membrane permeable alpha-ketoglutarate analogue. Eur J Pharmacol 2009; 607:41-6. [PMID: 19233162 DOI: 10.1016/j.ejphar.2009.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 01/29/2009] [Accepted: 02/09/2009] [Indexed: 11/24/2022]
Abstract
Cytosolic alpha-ketoglutarate is a potential signalling compound at late steps of stimulus-secretion-coupling in the course of insulin secretion induced by glucose and other fuels. This hypothesis is mainly based on the insulin-releasing effect of the membrane permeable ester dimethyl alpha-ketoglutarate which enters the beta-cell and is cleaved to produce cytosolic monomethyl alpha-ketoglutarate and eventually alpha-ketoglutarate. The present study tested this hypothesis. Insulin release, K(ATP) channel currents, membrane potential, ATP/ADP ratio and fluorescence of NAD(P)H (reduced pyridine nucleotides) were measured in mouse pancreatic islets and beta-cells. At a substimulatory glucose concentration (5 mM), dimethyl alpha-ketoglutarate (15 mM) produced a sustained insulin release, but no change of the islet ATP/ADP ratio and NAD(P)H fluorescence. In the absence of glucose, however, dimethyl alpha-ketoglutarate (15 mM) did not stimulate insulin release although it increased the ATP/ADP ratio and NAD(P)H fluorescence. Insulin secretion induced by a maximally effective concentration of the K(ATP) channel-blocking sulfonylurea glipizide was strongly amplified by dimethyl alpha-ketoglutarate in the presence of 5 mM glucose, but only moderately in the absence of glucose. Dimethyl alpha-ketoglutarate directly inhibited K(ATP) channels in inside-out membrane patches, depolarized the plasma membrane of intact beta-cells and generated action potentials. In conclusion, the stimulation of insulin secretion by extracellularly applied dimethyl alpha-ketoglutarate depends on inhibition of beta-cell K(ATP) channels by direct action of dimethyl alpha-ketoglutarate. The metabolism of alpha-ketoglutarate generated intracellularly by ester cleavage contributes to stimulation of insulin secretion both by indirect K(ATP) channel inhibition (via activation of ATP production) and by an amplifying effect.
Collapse
Affiliation(s)
- Michael Willenborg
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technical University of Braunschweig, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany
| | | | | |
Collapse
|
24
|
Negishi M, Shimomura K, Proks P, Mori M, Shimomura Y. Mechanism of disopyramide-induced hypoglycaemia in a patient with Type 2 diabetes. Diabet Med 2009; 26:76-8. [PMID: 19125764 DOI: 10.1111/j.1464-5491.2008.02619.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Disopyramide, an antiarrhythmia drug, has been reported to cause hypoglycaemia. Pre-existing factors that increase the concentration of the drug in the blood increase the risk of hypoglycaemia. Furthermore, other factors can also increase the risk of hypoglycaemia even when disopyramide levels are in the therapeutic range. It has been proposed that disopyramide-induced hypoglycaemia is caused by inhibition of the pancreatic B-cell K(ATP) channels. CASE REPORT We report a case of severe disopyramide-induced hypoglycaemia in a 62-year-old woman with Type 2 diabetes taking low-dose glimepiride treatment. She had not experienced hypoglycaemia prior to the start of disopyramide therapy. No further hypoglycaemic episodes occurred following withdrawal of disopyramide therapy. FUNCTIONAL STUDY: Current recordings of K(ATP) channels expressed in Xenopus oocytes showed that at their estimated therapeutic concentrations, disopyramide and glimepiride inhibited K(ATP) channels by about 50-60%. However, when both drugs were applied together, K(ATP) channels were almost completely closed (approximately 95%). Such dramatic inhibition of K(ATP) channels is sufficient to cause B-cell membrane depolarization and stimulate insulin secretion. CONCLUSIONS Disopyramide therapy is not recommended for patients treated with K(ATP) channel inhibitors.
Collapse
Affiliation(s)
- M Negishi
- Diabetes and Metabolic Disease Research Centre, Hidaka Hospital, Gunma, Japan.
| | | | | | | | | |
Collapse
|
25
|
Modeling K(ATP) channel gating and its regulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 99:7-19. [PMID: 18983870 DOI: 10.1016/j.pbiomolbio.2008.10.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels couple cell metabolism to plasmalemmal potassium fluxes in a variety of cell types. The activity of these channels is primarily determined by intracellular adenosine nucleotides, which have both inhibitory and stimulatory effects. The role of K(ATP) channels has been studied most extensively in pancreatic beta-cells, where they link glucose metabolism to insulin secretion. Many mutations in K(ATP) channel subunits (Kir6.2, SUR1) have been identified that cause either neonatal diabetes or congenital hyperinsulinism. Thus, a mechanistic understanding of K(ATP) channel behavior is necessary for modeling beta-cell electrical activity and insulin release in both health and disease. Here, we review recent advances in the K(ATP) channel structure and function. We focus on the molecular mechanisms of K(ATP) channel gating by adenosine nucleotides, phospholipids and sulphonylureas and consider the advantages and limitations of various mathematical models of macroscopic and single-channel K(ATP) currents. Finally, we outline future directions for the development of more realistic models of K(ATP) channel gating.
Collapse
|
26
|
DEND mutation in Kir6.2 (KCNJ11) reveals a flexible N-terminal region critical for ATP-sensing of the KATP channel. Biophys J 2008; 95:4689-97. [PMID: 18708460 DOI: 10.1529/biophysj.108.138685] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-sensitive K(+)-channels link metabolism and excitability in neurons, myocytes, and pancreatic islets. Mutations in the pore-forming subunit (Kir6.2; KCNJ11) cause neonatal diabetes, developmental delay, and epilepsy by decreasing sensitivity to ATP inhibition and suppressing electrical activity. Mutations of residue G53 underlie both mild (G53R,S) and severe (G53D) forms of the disease. All examined substitutions (G53D,R,S,A,C,F) reduced ATP-sensitivity, indicating an intolerance of any amino acid other than glycine. Surprisingly, each mutation reduces ATP affinity, rather than intrinsic gating, although structural modeling places G53 at a significant distance from the ATP-binding pocket. We propose that glycine is required in this location for flexibility of the distal N-terminus, and for an induced fit of ATP at the binding site. Consistent with this hypothesis, glycine substitution of the adjacent residue (Q52G) partially rescues ATP affinity of reconstituted Q52G/G53D channels. The results reveal an important feature of the noncanonical ATP-sensing mechanism of K(ATP) channels.
Collapse
|
27
|
Waterfield T, Gloyn AL. Monogenic β-cell dysfunction in children: clinical phenotypes, genetic etiology and mutational pathways. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17455111.2.4.517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Monogenic diabetes accounts for 1–2% of all cases of diabetes mellitus and presentation is often in childhood. Recognizing the clinical features of monogenic β-cell dysfunction prevents misdiagnosis and allows for more effective management and genetic counseling. Monogenic β-cell dysfunction is a diverse collection of clinical phenotypes underpinned by common mutational pathways. Mutations affecting the glycolytic glucokinase enzyme, the mitochondria, the KATP channels and transcription factors have been known for some time. Until recently, the role of endoplasmic reticulum stress was underestimated in the pathogenesis of diabetes. It is becoming increasingly clear that endoplasmic reticulum stress is an important etiological factor in the development of monogenic and polygenic diabetes. In this article, we aim to define the etiology of pediatric monogenic β-cell dysfunction and provide guidance on the investigation and management of children presenting with monogenic β-cell dysfunction.
Collapse
Affiliation(s)
- Thomas Waterfield
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK
| | - Anna L Gloyn
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK
| |
Collapse
|
28
|
Tarasov AI, Nicolson TJ, Riveline JP, Taneja TK, Baldwin SA, Baldwin JM, Charpentier G, Gautier JF, Froguel P, Vaxillaire M, Rutter GA. A rare mutation in ABCC8/SUR1 leading to altered ATP-sensitive K+ channel activity and beta-cell glucose sensing is associated with type 2 diabetes in adults. Diabetes 2008; 57:1595-604. [PMID: 18346985 PMCID: PMC6101196 DOI: 10.2337/db07-1547] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE ATP-sensitive K(+) channels (K(ATP) channels) link glucose metabolism to the electrical activity of the pancreatic beta-cell to regulate insulin secretion. Mutations in either the Kir6.2 or sulfonylurea receptor (SUR) 1 subunit of the channel have previously been shown to cause neonatal diabetes. We describe here an activating mutation in the ABCC8 gene, encoding SUR1, that is associated with the development of type 2 diabetes only in adults. RESEARCH DESIGN AND METHODS Recombinant K(ATP) channel subunits were expressed using pIRES2-based vectors in human embryonic kidney (HEK) 293 or INS1(832/13) cells and the subcellular distribution of c-myc-tagged SUR1 channels analyzed by confocal microscopy. K(ATP) channel activity was measured in inside-out patches and plasma membrane potential in perforated whole-cell patches. Cytoplasmic [Ca(2+)] was imaged using Fura-Red. RESULTS A mutation in ABCC8/SUR1, leading to a Y356C substitution in the seventh membrane-spanning alpha-helix, was observed in a patient diagnosed with hyperglycemia at age 39 years and in two adult offspring with impaired insulin secretion. Single K(ATP) channels incorporating SUR1-Y356C displayed lower sensitivity to MgATP (IC(50) = 24 and 95 micromol/l for wild-type and mutant channels, respectively). Similar effects were observed in the absence of Mg(2+), suggesting an allosteric effect via associated Kir6.2 subunits. Overexpression of SUR1-Y356C in INS1(832/13) cells impaired glucose-induced cell depolarization and increased in intracellular free Ca(2+) concentration, albeit more weakly than neonatal diabetes-associated SUR1 mutants. CONCLUSIONS An ABCC8/SUR1 mutation with relatively minor effects on K(ATP) channel activity and beta-cell glucose sensing causes diabetes in adulthood. These data suggest a close correlation between altered SUR1 properties and clinical phenotype.
Collapse
Affiliation(s)
- Andrei I Tarasov
- Section of Cell Biology, Division of Medicine, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
de Wet H, Rees MG, Shimomura K, Aittoniemi J, Patch AM, Flanagan SE, Ellard S, Hattersley AT, Sansom MSP, Ashcroft FM. Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of ABCC8 causes neonatal diabetes. Proc Natl Acad Sci U S A 2007; 104:18988-92. [PMID: 18025464 PMCID: PMC2141895 DOI: 10.1073/pnas.0707428104] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Indexed: 12/16/2022] Open
Abstract
Gain-of-function mutations in the genes encoding the ATP-sensitive potassium (K(ATP)) channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) are a common cause of neonatal diabetes mellitus. Here we investigate the molecular mechanism by which two heterozygous mutations in the second nucleotide-binding domain (NBD2) of SUR1 (R1380L and R1380C) separately cause neonatal diabetes. SUR1 is a channel regulator that modulates the gating of the pore formed by Kir6.2. K(ATP) channel activity is inhibited by ATP binding to Kir6.2 but is stimulated by MgADP binding, or by MgATP binding and hydrolysis, at the NBDs of SUR1. Functional analysis of purified NBD2 showed that each mutation enhances MgATP hydrolysis by purified isolated fusion proteins of maltose-binding protein and NBD2. Inhibition of ATP hydrolysis by MgADP was unaffected by mutation of R1380, but inhibition by beryllium fluoride (which traps the ATPase cycle in the prehydrolytic state) was reduced. MgADP-dependent activation of K(ATP) channel activity was unaffected. These data suggest that the R1380L and R1380C mutations enhance the off-rate of P(i), thereby enhancing the hydrolytic rate. Molecular modeling studies supported this idea. Because mutant channels were inhibited less strongly by MgATP, this would increase K(ATP) currents in pancreatic beta cells, thus reducing insulin secretion and producing diabetes.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Adenosine Diphosphate/pharmacology
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Amino Acid Substitution
- Arginine/chemistry
- Beryllium/pharmacology
- Binding Sites
- Diabetes Mellitus, Type 1/congenital
- Diabetes Mellitus, Type 1/genetics
- Fluorides/pharmacology
- Humans
- Hydrolysis
- Infant, Newborn
- Insulin/metabolism
- Insulin Secretion
- Ion Channel Gating/drug effects
- Kinetics
- Models, Molecular
- Mutation, Missense
- Point Mutation
- Potassium/metabolism
- Potassium Channels/chemistry
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Potassium Channels, Inwardly Rectifying/antagonists & inhibitors
- Potassium Channels, Inwardly Rectifying/chemistry
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Protein Structure, Tertiary/genetics
- Receptors, Drug/antagonists & inhibitors
- Receptors, Drug/chemistry
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Structure-Activity Relationship
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- Heidi de Wet
- *Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Mathew G. Rees
- *Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Kenju Shimomura
- *Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Jussi Aittoniemi
- *Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom; and
| | - Ann-Marie Patch
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter EX2 5DW, United Kingdom
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter EX2 5DW, United Kingdom
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter EX2 5DW, United Kingdom
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter EX2 5DW, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom; and
| | - Frances M. Ashcroft
- *Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
30
|
Tarasov AI, Girard CA, Larkin B, Tammaro P, Flanagan SE, Ellard S, Ashcroft FM. Functional analysis of two Kir6.2 (KCNJ11) mutations, K170T and E322K, causing neonatal diabetes. Diabetes Obes Metab 2007; 9 Suppl 2:46-55. [PMID: 17919178 DOI: 10.1111/j.1463-1326.2007.00777.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heterozygous activating mutations in Kir6.2 (KCNJ11), the pore-forming subunit of the adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel, are a common cause of neonatal diabetes (ND). We assessed the functional effects of two Kir6.2 mutations associated with ND: K170T and E322K. K(ATP) channels were expressed in Xenopus oocytes, and the heterozygous state was simulated by coexpression of wild-type and mutant Kir6.2 with SUR1 (the beta cell type of sulphonylurea receptor (SUR)). Both mutations reduced the sensitivity of the K(ATP) channel to inhibition by MgATP and enhanced whole-cell K(ATP) currents. In pancreatic beta cells, such an increase in the K(ATP) current is expected to reduce insulin secretion and thereby cause diabetes. The E322K mutation was without effect when Kir6.2 was expressed in the absence of SUR1, suggesting that this residue impairs coupling to SUR1. This is consistent with its predicted location on the outer surface of the tetrameric Kir6.2 pore. The kinetics of K170T channel opening and closing were altered by the mutation, which may contribute to the lower ATP sensitivity. Neither mutation affected the sensitivity of the channel to inhibition by the sulphonylurea tolbutamide, suggesting that patients carrying these mutations may respond to these drugs.
Collapse
Affiliation(s)
- A I Tarasov
- University Laboratory of Physiology, Oxford University, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Ashcroft FM. The Walter B. Cannon Physiology in Perspective Lecture, 2007. ATP-sensitive K+ channels and disease: from molecule to malady. Am J Physiol Endocrinol Metab 2007; 293:E880-9. [PMID: 17652156 DOI: 10.1152/ajpendo.00348.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This essay is based on a lecture given to the American Physiological Society in honor of Walter B. Cannon, an advocate of homeostasis. It focuses on the role of the ATP-sensitive potassium K(+) (K(ATP)) channel in glucose homeostasis and, in particular, on its role in insulin secretion from pancreatic beta-cells. The beta-cell K(ATP) channel comprises pore-forming Kir6.2 and regulatory SUR1 subunits, and mutations in either type of subunit can result in too little or too much insulin release. Here, I review the latest information on the relationship between K(ATP) channel structure and function, and consider how mutations in the K(ATP) channel genes lead to neonatal diabetes or congenital hyperinsulinism.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Dept. of Physiology, Anatomy and Genetics, Univ. of Oxford, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
32
|
van de Bunt M, Gloyn AL. Monogenic disorders of the pancreatic β-cell: personalizing treatment for rare forms of diabetes and hypoglycemia. Per Med 2007; 4:247-259. [DOI: 10.2217/17410541.4.3.247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past 10–20 years, our understanding of the genetic etiology of monogenic disorders of the pancreatic β-cell has greatly improved. This has enabled clinicians to provide patients with more accurate information regarding prognosis and inheritance and has influenced treatment. Maturity-onset diabetes of the young and neonatal diabetes are two such examples. Patients with maturity-onset diabetes of the young due to glucokinase mutations can usually be managed by diet alone, while those affected by HNF-1α and HNF-4α mutations respond well to low doses of sulfonylureas. The identification of mutations in the ATP-dependent potassium channel genes KCNJ11 and ABCC8 as the most common cause of permanent neonatal diabetes has improved treatment regimes for affected children. In addition to enabling patients to stop insulin injections, their glycemic control has also improved. These advances show the importance of unravelling the genetics of a disease to achieve the best individualized treatment for the patients affected.
Collapse
Affiliation(s)
- Martijn van de Bunt
- Oxford University, Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK
| | - Anna L Gloyn
- Oxford University, Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK
| |
Collapse
|
33
|
Meyer-Hermann ME. The electrophysiology of the beta-cell based on single transmembrane protein characteristics. Biophys J 2007; 93:2952-68. [PMID: 17573431 PMCID: PMC1989707 DOI: 10.1529/biophysj.107.106096] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The electrophysiology of beta-cells is at the origin of insulin secretion. beta-Cells exhibit a complex behavior upon stimulation with glucose including repeated bursts and continuous spiking. Mathematical modeling is most suitable to improve knowledge about the function of various transmembrane currents provided the model is based on reliable data. This is the first attempt to build a mathematical model for the beta-cell electrophysiology in a bottom-up approach that relies on single protein conductance data. The results of previous whole-cell-based models are reconsidered. The full simulation including all prominent transmembrane proteins in beta-cells is used to provide a functional interpretation of their role in beta-cell bursting and an updated vantage point of beta-cell electrophysiology. As a result of a number of in silico knock-out and block experiments the novel model makes some unexpected predictions: single-channel conductance data imply that large-conductance calcium-gated potassium currents acquire the potential of driving oscillations at supralarge glucose levels. A more complex burst interruption model is presented. It also turns out that, depending on the species, sodium currents may be more relevant than considered so far. Experiments are proposed to verify these predictions.
Collapse
|