1
|
Song Z, Li S, Shang Z, Lv W, Cheng X, Meng X, Chen R, Zhang S, Zhang R. Integrating multi-omics data to analyze the potential pathogenic mechanism of CTSH gene involved in type 1 diabetes in the exocrine pancreas. Brief Funct Genomics 2024; 23:406-417. [PMID: 38050341 DOI: 10.1093/bfgp/elad052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin-producing pancreatic islet beta cells. Despite significant advancements, the precise pathogenesis of the disease remains unknown. This work integrated data from expression quantitative trait locus (eQTL) studies with Genome wide association study (GWAS) summary data of T1D and single-cell transcriptome data to investigate the potential pathogenic mechanisms of the CTSH gene involved in T1D in exocrine pancreas. Using the summary data-based Mendelian randomization (SMR) approach, we obtained four potential causative genes associated with T1D: BTN3A2, PGAP3, SMARCE1 and CTSH. To further investigate these genes'roles in T1D development, we validated them using a scRNA-seq dataset from pancreatic tissues of both T1D patients and healthy controls. The analysis showed a significantly high expression of the CTSH gene in T1D acinar cells, whereas the other three genes showed no significant changes in the scRNA-seq data. Moreover, single-cell WGCNA analysis revealed the strongest positive correlation between the module containing CTSH and T1D. In addition, we found cellular ligand-receptor interactions between the acinar cells and different cell types, especially ductal cells. Finally, based on functional enrichment analysis, we hypothesized that the CTSH gene in the exocrine pancreas enhances the antiviral response, leading to the overexpression of pro-inflammatory cytokines and the development of an inflammatory microenvironment. This process promotes β cells injury and ultimately the development of T1D. Our findings offer insights into the underlying pathogenic mechanisms of T1D.
Collapse
Affiliation(s)
- Zerun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Shuai Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Zhenwei Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Xin Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Rui Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Shuhao Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| |
Collapse
|
2
|
Zhao K, Shi Y, Yu J, Yu L, Mael A, Li Y, Kolton A, Joyce T, Odorico J, Berggren PO, Yang SN. Intracameral Microimaging of Maturation of Human iPSC Derivatives into Islet Endocrine Cells. Cell Transplant 2022; 31:9636897211066508. [PMID: 35156411 PMCID: PMC8848082 DOI: 10.1177/09636897211066508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We exploited the anterior chamber of the eye (ACE) of immunodeficient mice as an ectopic site for both transplantation and microimaging of engineered surrogate islets from human induced pluripotent stem cells (hiPSC-SIs). These islets contained a majority of insulin-expressing cells, positive or negative for PDX1 and NKX6.1, and a minority of glucagon- or somatostatin-positive cells. Single, non-aggregated hiPSC-SIs were satisfactorily engrafted onto the iris. They underwent gradual vascularization and progressively increased their light scattering signals, reflecting the abundance of zinc-insulin crystal packaged inside mature insulin secretory granules. Intracameral hiPSC-SIs retrieved from recipients showed enhanced insulin immunofluorescence in correlation with the parallel increase in overall vascularization and light backscattering during the post-transplantation period. This approach enables longitudinal, nondestructive and intravital microimaging of cell fates, engraftment, vascularization and mature insulin secretory granules of single hiPSC-SI grafts, and may offer a feasible and reliable means to screen compounds for promoting in vivo hiPSC-SI maturation.
Collapse
Affiliation(s)
- Kaixuan Zhao
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Jia Yu
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Lina Yu
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Amber Mael
- Regenerative Medical Solutions, Inc., Madison, WI, USA
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | | | - Thomas Joyce
- Regenerative Medical Solutions, Inc., Madison, WI, USA
| | - Jon Odorico
- Regenerative Medical Solutions, Inc., Madison, WI, USA
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| |
Collapse
|
3
|
Luce S, Guinoiseau S, Gadault A, Letourneur F, Nitschke P, Bras M, Vidaud M, Charneau P, Larger E, Colli ML, Eizirik DL, Lemonnier F, Boitard C. A Humanized Mouse Strain That Develops Spontaneously Immune-Mediated Diabetes. Front Immunol 2021; 12:748679. [PMID: 34721418 PMCID: PMC8551915 DOI: 10.3389/fimmu.2021.748679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 12/03/2022] Open
Abstract
To circumvent the limitations of available preclinical models for the study of type 1 diabetes (T1D), we developed a new humanized model, the YES-RIP-hB7.1 mouse. This mouse is deficient of murine major histocompatibility complex class I and class II, the murine insulin genes, and expresses as transgenes the HLA-A*02:01 allele, the diabetes high-susceptibility HLA-DQ8A and B alleles, the human insulin gene, and the human co-stimulatory molecule B7.1 in insulin-secreting cells. It develops spontaneous T1D along with CD4+ and CD8+ T-cell responses to human preproinsulin epitopes. Most of the responses identified in these mice were validated in T1D patients. This model is amenable to characterization of hPPI-specific epitopes involved in T1D and to the identification of factors that may trigger autoimmune response to insulin-secreting cells in human T1D. It will allow evaluating peptide-based immunotherapy that may directly apply to T1D in human and complete preclinical model availability to address the issue of clinical heterogeneity of human disease.
Collapse
Affiliation(s)
- Sandrine Luce
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Sophie Guinoiseau
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Alexis Gadault
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Franck Letourneur
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France
| | | | - Marc Bras
- Medical Faculty, Paris University, Paris, France
| | - Michel Vidaud
- Biochemistry and Molecular Genetics Department, Cochin Hospital, Paris, France
| | - Pierre Charneau
- Molecular Virology and Vaccinology, Pasteur Institute, Paris, France
| | - Etienne Larger
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Diabetology Department, Cochin Hospital, Paris, France
| | - Maikel L Colli
- Université Libre de Bruxelles (ULB) Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- Université Libre de Bruxelles (ULB) Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.,Diabetes Center, Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, United States
| | - François Lemonnier
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Christian Boitard
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France.,Diabetology Department, Cochin Hospital, Paris, France
| |
Collapse
|
4
|
Yang Y, Sun K, Liu W, Li X, Tian W, Shuai P, Zhu X. The phosphatidylserine flippase β-subunit Tmem30a is essential for normal insulin maturation and secretion. Mol Ther 2021; 29:2854-2872. [PMID: 33895325 PMCID: PMC8417432 DOI: 10.1016/j.ymthe.2021.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
The processing, maturation, and secretion of insulin are under precise regulation, and dysregulation causes profound defects in glucose handling, leading to diabetes. Tmem30a is the β subunit of the phosphatidylserine (PS) flippase, which maintains the membrane asymmetric distribution of PS. Tmem30a regulates cell survival and the localization of subcellular structures and is thus critical to the normal function of multiple physiological systems. Here, we show that conditional knockout of Tmem30a specifically in pancreatic islet β cells leads to obesity, hyperglycemia, glucose intolerance, hyperinsulinemia, and insulin resistance in mice, due to insufficient insulin release. Moreover, we reveal that Tmem30a plays an essential role in clathrin-mediated vesicle transport between the trans Golgi network (TGN) and the plasma membrane (PM), which comprises immature secretory granule (ISG) budding at the TGN. We also find that Tmem30a deficiency impairs clathrin-mediated vesicle budding and thus blocks both insulin maturation in ISGs and the transport of glucose-sensing Glut2 to the PM. Collectively, these disruptions compromise both insulin secretion and glucose sensitivity, thus contributing to impairments in glucose-stimulated insulin secretion. Taken together, our data demonstrate an important role of Tmem30a in insulin maturation and glucose metabolic homeostasis and suggest the importance of membrane phospholipid distribution in metabolic disorders.
Collapse
Affiliation(s)
- Yeming Yang
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiao Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wanli Tian
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Ping Shuai
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China.
| | - Xianjun Zhu
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China; Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China; Department of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu, Hennan 476100, China.
| |
Collapse
|
5
|
Viloria K, Hewison M, Hodson DJ. Vitamin D binding protein/GC-globulin: a novel regulator of alpha cell function and glucagon secretion. J Physiol 2021; 600:1119-1133. [PMID: 33719063 DOI: 10.1113/jp280890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
The contribution of glucagon to type 1 and type 2 diabetes has long been known, but the underlying defects in alpha cell function are not well-described. During both disease states, alpha cells respond inappropriately to stimuli, leading to dysregulated glucagon secretion, impaired glucose tolerance and hypoglycaemia. The mechanisms involved in this dysfunction are complex, but possibly include changes in alpha cell glucose-sensing, alpha cell de-differentiation, paracrine feedback, as well as alpha cell mass. However, the molecular underpinnings of alpha cell failure are still poorly understood. Recent transcriptomic analyses have identified vitamin D binding protein (DBP), encoded by GC/Gc, as an alpha cell signature gene. DBP is highly localized to the liver and alpha cells and is virtually absent from other tissues and cell types under non-pathological conditions. While the vitamin D transportation role of DBP is well characterized in the liver and circulation, its function in alpha cells remains more enigmatic. Recent work reveals that loss of DBP leads to smaller and hyperplastic alpha cells, which secrete less glucagon in response to low glucose concentration, despite vitamin D sufficiency. Alpha cells lacking DBP display impaired Ca2+ fluxes and Na+ conductance, as well as changes in glucagon granule distribution. Underlying these defects is an increase in the ratio of cytoskeletal F-actin to G-actin, highlighting a novel intracellular actin scavenging role for DBP in islets.
Collapse
Affiliation(s)
- Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Field SL, Marrero MG, Dado-Senn B, Skibiel AL, Ramos PM, Scheffler TL, Laporta J. Peripheral serotonin regulates glucose and insulin metabolism in Holstein dairy calves. Domest Anim Endocrinol 2021; 74:106519. [PMID: 32739765 DOI: 10.1016/j.domaniend.2020.106519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
Peripheral serotonin regulates energy metabolism in several mammalian species, however, the potential contribution of serotonergic mechanisms as metabolic and endocrine regulators in growing dairy calves remain unexplored. Objectives were to characterize the role of serotonin in glucose and insulin metabolism in dairy calves with increased serotonin bioavailability. Milk replacer was supplemented with saline, 5-hydroxytryptophan (90 mg/d), or fluoxetine (40 mg/d) for 10-d (n = 8/treatment). Blood was collected daily during supplementation and on days 2, 7, and 14 during withdrawal. Calves were euthanized after 10-d supplementation or 14-d withdrawal periods to harvest liver and pancreas tissue. 5-hydroxytryptophan increased circulating insulin concentrations during the supplementation period, whereas both treatments increased circulating glucose concentration during the withdrawal period. The liver and pancreas of preweaned calves express serotonin factors (ie, TPH1, SERT, and cell surface receptors), indicating their ability to synthesize, uptake, and respond to serotonin. Supplementation of 5-hydroxytryptophan increased hepatic and pancreatic serotonin concentrations. After the withdrawal period, fluoxetine cleared from the pancreas but not liver tissue. Supplementation of 5-hydroxytryptophan upregulated hepatic mRNA expression of serotonin receptors (ie, 5-HTR1B, -1D, -2A, and -2B), and downregulated pancreatic 5-HTR1F mRNA and insulin-related proteins (ie, Akt and pAkt). Fluoxetine-supplemented calves had fewer pancreatic islets per microscopic field with reduced insulin intensity, whereas 5-hydroxytryptophan supplemented calves had increased islet number and area with greater insulin and serotonin and less glucagon intensities. After the 14-d withdrawal of 5-hydroxytryptophan, hepatic mRNA expression of glycolytic and gluconeogenic enzymes were simultaneously downregulated. Improving serotonin bioavailability could serve as a potent regulator of endocrine and metabolic processes in dairy calves.
Collapse
Affiliation(s)
- S L Field
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - M G Marrero
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - B Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - A L Skibiel
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - P M Ramos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - T L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - J Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
7
|
Lee D, Rubakhin SS, Kusmartseva I, Wasserfall C, Atkinson MA, Sweedler JV. Removing Formaldehyde‐Induced Peptidyl Crosslinks Enables Mass Spectrometry Imaging of Peptide Hormone Distributions from Formalin‐Fixed Paraffin‐Embedded Tissues. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dong‐Kyu Lee
- Department of Chemistry and Beckman institute for Advanced Science and Technology University of Illinois at Urbana-Champaign 405 S. Mathews Ave. Urbana IL 61801 USA
| | - Stanislav S. Rubakhin
- Department of Chemistry and Beckman institute for Advanced Science and Technology University of Illinois at Urbana-Champaign 405 S. Mathews Ave. Urbana IL 61801 USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine College of Medicine University of Florida Gainesville FL 32610 USA
| | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine College of Medicine University of Florida Gainesville FL 32610 USA
| | - Mark A. Atkinson
- Department of Pathology, Immunology and Laboratory Medicine College of Medicine University of Florida Gainesville FL 32610 USA
| | - Jonathan V. Sweedler
- Department of Chemistry and Beckman institute for Advanced Science and Technology University of Illinois at Urbana-Champaign 405 S. Mathews Ave. Urbana IL 61801 USA
| |
Collapse
|
8
|
Lee DK, Rubakhin SS, Kusmartseva I, Wasserfall C, Atkinson MA, Sweedler JV. Removing Formaldehyde-Induced Peptidyl Crosslinks Enables Mass Spectrometry Imaging of Peptide Hormone Distributions from Formalin-Fixed Paraffin-Embedded Tissues. Angew Chem Int Ed Engl 2020; 59:22584-22590. [PMID: 32762062 DOI: 10.1002/anie.202008847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Linking molecular and chemical changes to human disease states depends on the availability of appropriate clinical samples, mostly preserved as formalin-fixed paraffin-embedded (FFPE) specimens stored in tissue banks. Mass spectrometry imaging (MSI) enables the visualization of the spatiotemporal distribution of molecules in biological samples. However, MSI is not effective for imaging FFPE tissues because of the chemical modifications of analytes, including complex crosslinking between nucleophilic moieties. Here we used an MS-compatible inorganic nucleophile, hydroxylamine hydrochloride, to chemically reverse inter- and intra-crosslinks from endogenous molecules. The analyte restoration appears specific for formaldehyde-reactive amino acids. This approach enabled the MSI-assisted localization of pancreatic peptides expressed in the alpha, beta, and gamma cells. Pancreatic islet-like distributions of islet hormones were observed in human FFPE tissues preserved for more than five years, demonstrating that samples from biobanks can effectively be investigated with MSI.
Collapse
Affiliation(s)
- Dong-Kyu Lee
- Department of Chemistry and Beckman institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Stanislav S Rubakhin
- Department of Chemistry and Beckman institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 S. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
9
|
Elizondo DM, Brandy NZ, da Silva RL, de Moura TR, Lipscomb MW. Allograft inflammatory factor-1 in myeloid cells drives autoimmunity in type 1 diabetes. JCI Insight 2020; 5:136092. [PMID: 32434993 DOI: 10.1172/jci.insight.136092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022] Open
Abstract
Allograft inflammatory factor-1 (AIF1) is a calcium-responsive cytoplasmic scaffold protein that directs hematopoiesis and immune responses within dendritic cells (DC) and macrophages. Although the role of AIF1 in transplant rejection and rheumatoid arthritis has been explored, little is known about its role in type 1 diabetes. Here, we show that in vivo silencing of AIF1 in NOD mice restrained infiltration of immune cells into the pancreas and inhibited diabetes incidence. Analyses of FACS-sorted CD45neg nonleukocyte populations from resected pancreatic islets showed markedly higher expression of insulin in the AIF1-silenced groups. Evaluation of CD45+ leukocytes revealed diminished infiltration of effector T cells and DC in the absence of AIF1. Transcriptional profiling further revealed a marked decrease in cDC1 DC-associated genes CD103, BATF3, and IRF8, which are required for orchestrating polarized type 1 immunity. Reduced T cell numbers within the islets were observed, with concomitant lower levels of IFN-γ and T-bet in AIF1-silenced cohorts. In turn, there was a reciprocal increase in functionally suppressive pancreas-resident CD25+Foxp3+CD4+ Tregs. Taken together, results show that AIF1 expression in myeloid cells plays a pivotal role in promoting type 1 diabetes and that its suppression restrains insulitis by shifting the immune microenvironment toward tolerance.
Collapse
Affiliation(s)
- Diana M Elizondo
- Department of Biology, Howard University, Washington, DC, USA.,Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Ricardo L da Silva
- Department of Biology, Howard University, Washington, DC, USA.,Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
| | - Tatiana R de Moura
- Department of Morphology, Universidade Federal de Sergipe, São Cristovão, Brazil
| | | |
Collapse
|
10
|
Butcher MJ, Trevino MB, Imai Y, Galkina EV. Characterization of Islet Leukocyte Populations in Human and Murine Islets by Flow Cytometry. Methods Mol Biol 2020; 2076:185-197. [PMID: 31586328 PMCID: PMC9255050 DOI: 10.1007/978-1-4939-9882-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An increasing body of evidence indicates that a local islet immune response is not only limited to type 1 diabetes, but also is associated with islet dysfunction in type 2 diabetes. Recently, the presence of pancreatic CD68+ macrophages within islet tissues was demonstrated by RT-PCR and immunohistochemical methods. However, the precise profile and activation status of intraislet leukocytes, which are present in both murine and human islets, are poorly defined. Here, we describe a detailed flow cytometry protocol designed to analyze both human and murine islets for intraislet leukocytes and leukocyte subsets. This approach permits the simultaneous identification of multiple intraislet leukocyte subsets, as well as their activation statuses. The use of flow cytometry-based approaches will advance the field of islet biology and help to identify unique changes in the immune cell composition that accompanies pathological islet inflammation and dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Matthew J Butcher
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Michelle B Trevino
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Yumi Imai
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
11
|
Li K, Song WJ, Wu X, Gu DY, Zang P, Gu P, Lu B, Shao JQ. Associations of serum glucagon levels with glycemic variability in type 1 diabetes with different disease durations. Endocrine 2018; 61:473-481. [PMID: 29916102 DOI: 10.1007/s12020-018-1641-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Glucagon has been recognized as a pivotal factor implicated in the pathophysiology ofdiabetes. The purpose of this study is to investigate the dynamic secretion levels of serum glucagon (GLA) in patients with type 1 diabetes mellitus (T1DM) with different courses of disease, and to analyze its correlation with blood glucose fluctuation. METHODS This observational study included 55 T1DM patients and divided into 3 groups according to the courses of disease. Group 1(the disease duration <1 year), Group 2(1≤the disease durations≤5), 3(the disease durations >5 years). All patients underwent a 100g standard steamed buns meal test,measuring the levels of serum glucose, glucagon, insulin, C-peptide in different points of time, and 48 of the total patients used continuous glucose monitoring system (CGMS) to monitor blood glucose. RESULTS The fasting glucagon level in Group 1 was significantly higher than it in Group 2. Furthermore, the GLA1h, the GLA3h and the AUCGLA0-3h in Group 1 were greatly larger than those in Group 3. Referring to glycemic variability, the LBGI, AUC of hypoglycemia, the percentage of hypoglycemia time andthe times of nocturnal hypoglycemia in Group 1 were significantly lower than those in Group 3. Moreover,the fasting glucagon level was the independent factors to SD and MAGE. The AUCGLA0-3h were negatively correlated with MODD, LBGI, GRADE-hypo and AUC of nocturnal hypoglycemia. CONCLUSIONS It is concluded that glucagon secretory function impairs with duration of type 1 diabetes extended and correlates to glycemic fluctuation, especially hypoglycemia.
Collapse
Affiliation(s)
- Ke Li
- Department of Endocrinology, Jinling Hospital, Southern Medical University, 305 Zhongshan East Road, Nanjing, Jiangsu Province, 210002, China
| | - Wen-Jing Song
- Department of Endocrinology, Jinling Hospital, Southern Medical University, 305 Zhongshan East Road, Nanjing, Jiangsu Province, 210002, China
| | - Xia Wu
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, 305 Zhongshan East Road, Nanjing, Jiangsu Province, 210002, China
| | - Dan-Yang Gu
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, 305 Zhongshan East Road, Nanjing, Jiangsu Province, 210002, China
| | - Pu Zang
- Department of Endocrinology, Jinling Hospital, Southern Medical University, 305 Zhongshan East Road, Nanjing, Jiangsu Province, 210002, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, Southern Medical University, 305 Zhongshan East Road, Nanjing, Jiangsu Province, 210002, China
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, Southern Medical University, 305 Zhongshan East Road, Nanjing, Jiangsu Province, 210002, China.
| | - Jia-Qing Shao
- Department of Endocrinology, Jinling Hospital, Southern Medical University, 305 Zhongshan East Road, Nanjing, Jiangsu Province, 210002, China.
| |
Collapse
|
12
|
Takahashi N, Chujo D, Tsujimoto T, Kajio H. Short-term changes in pancreatic α-cell function after the onset of fulminant type 1 diabetes. J Diabetes Investig 2018; 9:636-637. [PMID: 29750106 PMCID: PMC5934243 DOI: 10.1111/jdi.12706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 12/01/2022] Open
Affiliation(s)
- Nobuyuki Takahashi
- Department of Diabetes, Endocrinology, and Metabolism Center Hospital National Center for Global Health and Medicine Tokyo Japan.,Department of Internal Medicine Graduate School of Medicine and Faculty of Medicine The University of Tokyo Tokyo Japan
| | - Daisuke Chujo
- Department of Diabetes, Endocrinology, and Metabolism Center Hospital National Center for Global Health and Medicine Tokyo Japan
| | - Tetsuro Tsujimoto
- Department of Diabetes, Endocrinology, and Metabolism Center Hospital National Center for Global Health and Medicine Tokyo Japan
| | - Hiroshi Kajio
- Department of Diabetes, Endocrinology, and Metabolism Center Hospital National Center for Global Health and Medicine Tokyo Japan
| |
Collapse
|
13
|
Tsuchiya Y, Saito M, Kadokura H, Miyazaki JI, Tashiro F, Imagawa Y, Iwawaki T, Kohno K. IRE1-XBP1 pathway regulates oxidative proinsulin folding in pancreatic β cells. J Cell Biol 2018; 217:1287-1301. [PMID: 29507125 PMCID: PMC5881499 DOI: 10.1083/jcb.201707143] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/06/2017] [Accepted: 01/22/2018] [Indexed: 11/22/2022] Open
Abstract
In mammalian pancreatic β cells, the IRE1α-XBP1 pathway is constitutively and highly activated under physiological conditions. To elucidate the precise role of this pathway, we constructed β cell-specific Ire1α conditional knockout (CKO) mice and established insulinoma cell lines in which Ire1α was deleted using the Cre-loxP system. Ire1α CKO mice showed the typical diabetic phenotype including impaired glycemic control and defects in insulin biosynthesis postnatally at 4-20 weeks. Ire1α deletion in pancreatic β cells in mice and insulinoma cells resulted in decreased insulin secretion, decreased insulin and proinsulin contents in cells, and decreased oxidative folding of proinsulin along with decreased expression of five protein disulfide isomerases (PDIs): PDI, PDIR, P5, ERp44, and ERp46. Reconstitution of the IRE1α-XBP1 pathway restored the proinsulin and insulin contents, insulin secretion, and expression of the five PDIs, indicating that IRE1α functions as a key regulator of the induction of catalysts for the oxidative folding of proinsulin in pancreatic β cells.
Collapse
Affiliation(s)
- Yuichi Tsuchiya
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michiko Saito
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Japan.,Bio-science Research Center, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroshi Kadokura
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Japan.,Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Jun-Ichi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Fumi Tashiro
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Imagawa
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Japan.,Department of Molecular and Cellular Biology, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Kenji Kohno
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
14
|
Abstract
Type 1 diabetes is characterized by selective loss of beta cells and insulin secretion, which significantly impact glucose homeostasis. However, this progressive disease is also associated with dysfunction of the alpha cell component of the islet, which can exacerbate hyperglycemia due to paradoxical hyperglucagonemia or lead to severe hypoglycemia as a result of failed counterregulation. In this review, the physiology of alpha cell secretion and the potential mechanisms underlying alpha cell dysfunction in type 1 diabetes will be explored. Because type 1 diabetes is a progressive disease, a synthesized timeline of aberrant alpha cell function will be presented as an attempt to delineate the natural history of type 1 diabetes with respect to the alpha cell.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO 63104, United States.
| |
Collapse
|
15
|
Buchwald P, Tamayo-Garcia A, Ramamoorthy S, Garcia-Contreras M, Mendez AJ, Ricordi C. Comprehensive Metabolomics Study To Assess Longitudinal Biochemical Changes and Potential Early Biomarkers in Nonobese Diabetic Mice That Progress to Diabetes. J Proteome Res 2017; 16:3873-3890. [PMID: 28799767 DOI: 10.1021/acs.jproteome.7b00512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A global nontargeted longitudinal metabolomics study was carried out in male and female NOD mice to characterize the time-profile of the changes in the metabolic signature caused by onset of type 1 diabetes (T1D) and identify possible early biomarkers in T1D progressors. Metabolomics profiling of samples collected at five different time-points identified 676 and 706 biochemicals in blood and feces, respectively. Several metabolites were expressed at significantly different levels in progressors at all time-points, and their proportion increased strongly following onset of hyperglycemia. At the last time-point, when all progressors were diabetic, a large percentage of metabolites had significantly different levels: 57.8% in blood and 27.8% in feces. Metabolic pathways most strongly affected included the carbohydrate, lipid, branched-chain amino acid, and oxidative ones. Several biochemicals showed considerable (>4×) change. Maltose, 3-hydroxybutyric acid, and kojibiose increased, while 1,5-anhydroglucitol decreased more than 10-fold. At the earliest time-point (6-week), differences between the metabolic signatures of progressors and nonprogressors were relatively modest. Nevertheless, several compounds had significantly different levels and show promise as possible early T1D biomarkers. They include fatty acid phosphocholine derivatives from the phosphatidylcholine subpathway (elevated in both blood and feces) as well as serotonin, ribose, and arabinose (increased) in blood plus 13-HODE, tocopherol (increased), diaminopimelate, valerate, hydroxymethylpyrimidine, and dulcitol (decreased) in feces. A combined metabolic signature based on these compounds might serve as an early predictor of T1D-progressors.
Collapse
|
16
|
Cechin SR, Lopez-Ocejo O, Karpinsky-Semper D, Buchwald P. Biphasic decline of β-cell function with age in euglycemic nonobese diabetic mice parallels diabetes onset. IUBMB Life 2015; 67:634-44. [PMID: 26099053 DOI: 10.1002/iub.1391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/27/2015] [Indexed: 01/10/2023]
Abstract
A gradual decline in insulin response is known to precede the onset of type 1 diabetes (T1D). To track age-related changes in the β-cell function of nonobese diabetic (NOD) mice, the most commonly used animal model for T1D, and to establish differences between those who do and do not become hyperglycemic, we performed a long-term longitudinal oral glucose tolerance test (OGTT) study (10-42 weeks) in combination with immunofluorescence imaging of islet morphology and cell proliferation. We observed a clear biphasic decline in insulin secretion (AUC0-30 min ) even in euglycemic animals. A first phase (10-28 weeks) consisted of a relatively rapid decline and paralleled diabetes development in the same cohort of animals. This was followed by a second phase (29-42 weeks) during which insulin secretion declined much slower while no additional animals became diabetic. Blood glucose profiles showed a corresponding, but less pronounced change: the area under the concentration curve (AUC0-150 min ) increased with age, and fit with a bilinear model indicated a rate-change in the trendline around 28 weeks. In control NOD scids, no such changes were observed. Islet morphology also changed with age as islets become surrounded by mononuclear infiltrates, and, in all mice, islets with immune cell infiltration around them showed increased β-cell proliferation. In conclusion, insulin secretion declines in a biphasic manner in all NOD mice. This trend, as well as increased β-cell proliferation, is present even in the NODs that never become diabetic, whereas, it is absent in control NOD scid mice.
Collapse
Affiliation(s)
- Sirlene R Cechin
- Diabetes Research Institute, Miller School of Medicine, University of Miami, FL, USA
| | - Omar Lopez-Ocejo
- Diabetes Research Institute, Miller School of Medicine, University of Miami, FL, USA
| | | | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, FL, USA.,Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL, USA
| |
Collapse
|
17
|
Chmelova H, Cohrs CM, Chouinard JA, Petzold C, Kuhn M, Chen C, Roeder I, Kretschmer K, Speier S. Distinct roles of β-cell mass and function during type 1 diabetes onset and remission. Diabetes 2015; 64:2148-60. [PMID: 25605805 DOI: 10.2337/db14-1055] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/10/2015] [Indexed: 11/13/2022]
Abstract
Cure of type 1 diabetes (T1D) by immune intervention at disease onset depends on the restoration of insulin secretion by endogenous β-cells. However, little is known about the potential of β-cell mass and function to recover after autoimmune attack ablation. Using a longitudinal in vivo imaging approach, we show how functional status and mass of β-cells adapt in response to the onset and remission of T1D. We demonstrate that infiltration reduces β-cell mass prior to onset and, together with emerging hyperglycemia, affects β-cell function. After immune intervention, persisting hyperglycemia prevents functional recovery but promotes β-cell mass increase in mouse islets. When blood glucose levels return to normoglycemia β-cell mass expansion stops, and subsequently glucose tolerance recovers in combination with β-cell function. Similar to mouse islets, human islets exhibit cell exhaustion and recovery in response to transient hyperglycemia. However, the effect of hyperglycemia on human islet mass increase is minor and transient. Our data demonstrate a major role of functional exhaustion and recovery of β-cells during T1D onset and remission. Therefore, these findings support early intervention therapy for individuals with T1D.
Collapse
Affiliation(s)
- Helena Chmelova
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus of Technische Universität Dresden, German Centre for Diabetes Research (DZD), Dresden, Germany
| | - Christian M Cohrs
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus of Technische Universität Dresden, German Centre for Diabetes Research (DZD), Dresden, Germany
| | - Julie A Chouinard
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus of Technische Universität Dresden, German Centre for Diabetes Research (DZD), Dresden, Germany
| | - Cathleen Petzold
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Matthias Kuhn
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Chunguang Chen
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus of Technische Universität Dresden, German Centre for Diabetes Research (DZD), Dresden, Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus of Technische Universität Dresden, German Centre for Diabetes Research (DZD), Dresden, Germany
| | - Stephan Speier
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus of Technische Universität Dresden, German Centre for Diabetes Research (DZD), Dresden, Germany
| |
Collapse
|
18
|
Mukherjee G, Chaparro RJ, Schloss J, Smith C, Bando CD, DiLorenzo TP. Glucagon-reactive islet-infiltrating CD8 T cells in NOD mice. Immunology 2015; 144:631-40. [PMID: 25333865 DOI: 10.1111/imm.12415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023] Open
Abstract
Type 1 diabetes is characterized by T-cell-mediated destruction of the insulin-producing β cells in pancreatic islets. A number of islet antigens recognized by CD8 T cells that contribute to disease pathogenesis in non-obese diabetic (NOD) mice have been identified; however, the antigenic specificities of the majority of the islet-infiltrating cells have yet to be determined. The primary goal of the current study was to identify candidate antigens based on the level and specificity of expression of their genes in mouse islets and in the mouse β cell line MIN6. Peptides derived from the candidates were selected based on their predicted ability to bind H-2K(d) and were examined for recognition by islet-infiltrating T cells from NOD mice. Several proteins, including those encoded by Abcc8, Atp2a2, Pcsk2, Peg3 and Scg2, were validated as antigens in this way. Interestingly, islet-infiltrating T cells were also found to recognize peptides derived from proglucagon, whose expression in pancreatic islets is associated with α cells, which are not usually implicated in type 1 diabetes pathogenesis. However, type 1 diabetes patients have been reported to have serum autoantibodies to glucagon, and NOD mouse studies have shown a decrease in α cell mass during disease pathogenesis. Our finding of islet-infiltrating glucagon-specific T cells is consistent with these reports and suggests the possibility of α cell involvement in development and progression of disease.
Collapse
Affiliation(s)
- Gayatri Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
19
|
Plesner A, ten Holder JT, Verchere CB. Islet remodeling in female mice with spontaneous autoimmune and streptozotocin-induced diabetes. PLoS One 2014; 9:e102843. [PMID: 25101835 PMCID: PMC4125302 DOI: 10.1371/journal.pone.0102843] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/21/2014] [Indexed: 02/04/2023] Open
Abstract
Islet alpha- and delta-cells are spared autoimmune destruction directed at beta-cells in type 1 diabetes resulting in an apparent increase of non-beta endocrine cells in the islet core. We determined how islet remodeling in autoimmune diabetes compares to streptozotocin (STZ)-induced diabetes. Islet cell mass, proliferation, and immune cell infiltration in pancreas sections from diabetic NOD mice and mice with STZ-induced diabetes was assessed using quantitative image analysis. Serial sections were stained for various beta-cell markers and Ngn3, typically restricted to embryonic tissue, was only upregulated in diabetic NOD mouse islets. Serum levels of insulin, glucagon and GLP-1 were measured to compare hormone levels with respect to disease state. Total pancreatic alpha-cell mass did not change as autoimmune diabetes developed in NOD mice despite the proportion of islet area comprised of alpha- and delta-cells increased. By contrast, alpha- and delta-cell mass was increased in mice with STZ-induced diabetes. Serum levels of glucagon reflected these changes in alpha-cell mass: glucagon levels remained constant in NOD mice over time but increased significantly in STZ-induced diabetes. Increased serum GLP-1 levels were found in both models of diabetes, likely due to alpha-cell expression of prohormone convertase 1/3. Alpha- or delta-cell mass in STZ-diabetic mice did not normalize by replacement of insulin via osmotic mini-pumps or islet transplantation. Hence, the inflammatory milieu in NOD mouse islets may restrict alpha-cell expansion highlighting important differences between these two diabetes models and raising the possibility that increased alpha-cell mass might contribute to the hyperglycemia observed in the STZ model.
Collapse
Affiliation(s)
- Annette Plesner
- Departments of Pathology and Laboratory Medicine, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Joris T. ten Holder
- Departments of Pathology and Laboratory Medicine, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - C. Bruce Verchere
- Departments of Pathology and Laboratory Medicine, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Artificial Islets From Hybrid Spheroids of Three Pancreatic Cell Lines. Transplant Proc 2014; 46:1156-60. [DOI: 10.1016/j.transproceed.2013.11.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/22/2013] [Indexed: 11/23/2022]
|
21
|
Yip L, Taylor C, Whiting CC, Fathman CG. Diminished adenosine A1 receptor expression in pancreatic α-cells may contribute to the pathology of type 1 diabetes. Diabetes 2013; 62:4208-19. [PMID: 24264405 PMCID: PMC3837064 DOI: 10.2337/db13-0614] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prediabetic NOD mice exhibit hyperglucagonemia, possibly due to an intrinsic α-cell defect. Here, we show that the expression of a potential glucagon inhibitor, the adenosine A1 receptor (Adora1), is gradually diminished in α-cells of NOD mice, autoantibody-positive (AA(+)) and overtly type 1 diabetic (T1D) patients during the progression of disease. We demonstrated that islet inflammation was associated with loss of Adora1 expression through the alternative splicing of Adora1. Expression of the spliced variant (Adora1-Var) was upregulated in the pancreas of 12-week-old NOD versus age-matched NOD.B10 (non-diabetes-susceptible) control mice and was detected in the pancreas of AA(+) patients but not in control subjects or overtly diabetic patients, suggesting that inflammation drives the splicing of Adora1. We subsequently demonstrated that Adora1-Var expression was upregulated in the islets of NOD.B10 mice after exposure to inflammatory cytokines and in the pancreas of NOD.SCID mice after adoptive transfer of activated autologous splenocytes. Adora1-Var encodes a dominant-negative N-terminal truncated isoform of Adora1. The splicing of Adora1 and loss of Adora1 expression on α-cells may explain the hyperglucagonemia observed in prediabetic NOD mice and may contribute to the pathogenesis of human T1D and NOD disease.
Collapse
|
22
|
Boerner BP, George NM, Targy NM, Sarvetnick NE. TGF-β superfamily member Nodal stimulates human β-cell proliferation while maintaining cellular viability. Endocrinology 2013; 154:4099-112. [PMID: 23970788 PMCID: PMC3800770 DOI: 10.1210/en.2013-1197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In an effort to expand human islets and enhance allogeneic islet transplant for the treatment of type 1 diabetes, identifying signaling pathways that stimulate human β-cell proliferation is paramount. TGF-β superfamily members, in particular activin-A, are likely involved in islet development and may contribute to β-cell proliferation. Nodal, another TGF-β member, is present in both embryonic and adult rodent islets. Nodal, along with its coreceptor, Cripto, are pro-proliferative factors in certain cell types. Although Nodal stimulates apoptosis of rat insulinoma cells (INS-1), Nodal and Cripto signaling have not been studied in the context of human islets. The current study investigated the effects of Nodal and Cripto on human β-cell proliferation, differentiation, and viability. In the human pancreas and isolated human islets, we observed Nodal mRNA and protein expression, with protein expression observed in β and α-cells. Cripto expression was absent from human islets. Furthermore, in cultured human islets, exogenous Nodal stimulated modest β-cell proliferation and inhibited α-cell proliferation with no effect on cellular viability, apoptosis, or differentiation. Nodal stimulated the phosphorylation of mothers against decapentaplegic (SMAD)-2, with no effect on AKT or MAPK signaling, suggesting phosphorylated SMAD signaling was involved in β-cell proliferation. Cripto had no effect on human islet cell proliferation, differentiation, or viability. In conclusion, Nodal stimulates human β-cell proliferation while maintaining cellular viability. Nodal signaling warrants further exploration to better understand and enhance human β-cell proliferative capacity.
Collapse
Affiliation(s)
- Brian P Boerner
- MD, and Nora E. Sarvetnick, PhD, University of Nebraska Medical Center, 985965 Nebraska Medical Center, Omaha, Nebraska 68198-5965. ; or
| | | | | | | |
Collapse
|
23
|
Kim DH, Lee JC, Lee MK, Kim KW, Lee MS. Treatment of autoimmune diabetes in NOD mice by Toll-like receptor 2 tolerance in conjunction with dipeptidyl peptidase 4 inhibition. Diabetologia 2012; 55:3308-17. [PMID: 23011352 DOI: 10.1007/s00125-012-2723-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/09/2012] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS We have shown that chronic administration of the Toll-like receptor 2 (TLR2) agonist Pam3CSK(4) prevents diabetes in NOD mice by inducing TLR2 tolerance of dendritic cells (DCs). We have also reported that a novel dipeptidyl peptidase 4 (DPP4) inhibitor, DA-1229, could increase beta cell mass. Here we investigated whether a combination of DPP4 inhibition, with beneficial effects on beta cell mass, and TLR2 tolerisation, protecting beta cells from autoimmune destruction, could treat a model of established type 1 diabetes. METHODS Diabetic NOD mice were treated with 100 μg Pam3CSK(4), administered three times a week for 3 weeks, in combination with feeding with chow containing 0.3% DA-1229. Beta cell mass and proliferation were studied by immunohistochemistry. DC tolerance was assessed by studying diabetogenic CD4(+) T cell priming after adoptive transfer and expression of costimulatory molecules on DCs by flow cytometry. RESULTS We observed reversal of diabetes in NOD mice by Pam3CSK(4)+DA-1229 but not by either Pam3CSK(4) or DA-1229 alone. Beta cell mass and the number of proliferating beta cells were significantly enhanced by Pam3CSK(4)+DA-1229, but not by either Pam3CSK(4) or DA-1229 alone. Diabetogenic T cell priming by DCs and upregulation of costimulatory molecules after ex vivo stimulation were attenuated in mice treated with Pam3CSK(4)+DA-1229, indicating DC tolerance. The relative proportions of CD4(+) T cells, CD8(+) T cells, B cells, DCs, macrophages and regulatory T cells, and T-helper polarisation were unchanged by treatment with Pam3CSK(4)+DA-1229. CONCLUSIONS/INTERPRETATION These data demonstrate that a combination of TLR2 tolerisation and DPP4 inhibition can reverse early-onset diabetes in NOD mice.
Collapse
Affiliation(s)
- D-H Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Kangnam-ku, Seoul, Korea
| | | | | | | | | |
Collapse
|
24
|
Soleimanpour SA, Hirshberg B, Bunnell DJ, Sumner AE, Ader M, Remaley AT, Rother KI, Rickels MR, Harlan DM. Metabolic function of a suboptimal transplanted islet mass in nonhuman primates on rapamycin monotherapy. Cell Transplant 2011; 21:1297-304. [PMID: 22080915 PMCID: PMC3508173 DOI: 10.3727/096368911x603620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although islet transplantation may restore insulin independence to individuals with type 1 diabetes mellitus, most have abnormal glucose tolerance. We asked whether the defective glucose tolerance is due to inadequate β-cell mass or to impaired insulin sensitivity. We performed metabolic studies on four cynomolgus primates before inducing diabetes with streptozotocin (STZ), then again 2-3 weeks after restoring insulin independence via intrahepatic islet transplantation utilizing a calcineurin inhibitor-free immunosuppressive regimen (induction with rabbit antithymocyte globulin and maintenance therapy with rapamycin). Engrafted β-cell mass was assessed by acute insulin and C-peptide responses to glucose (AIR(glu) and ACR(glu)) and arginine (AIR(arg) and ACR(arg)). Insulin sensitivity (S(I)) was determined in naive and transplanted primates from an intravenous glucose tolerance test using the minimal model. α-Cell function was determined by the acute glucagon response to arginine (AGR(arg)). Glucose tolerance (K(g)) decreased from 4.1 ± 0.5%/min in naive primates to 1.8 ± 0.3%/min in transplanted primates (p < 0.01). Following transplantation, AIR(glu) was 28.7 ± 13.1 μU/ml compared to 169.9 ± 43.1 μU/ml (p < 0.03) in the naive condition, ACR(glu) was 14.5 ± 6.0 ng/ml compared to 96.5 ± 17.0 ng/ml naive (p < 0.01), AIR(arg) was 29.1 ± 13.1 μU/ml compared to 91.4 ± 28.2 μU/ml naive (p < 0.05), and ACR(arg) was 1.11 ± 0.51 ng/ml compared to 2.79 ± 0.77 ng/ml naive (p < 0.05). S(I) did not differ from naive to posttransplant states. AGR(arg) was reduced in transplanted primates (349 ± 118 pg/ml) when compared to both naive (827 ± 354 pg/ml) and post-STZ diabetic primates (1020 ± 440 pg/ml) (p < 0.01 for both comparisons). These data suggest that impaired glucose tolerance observed in islet transplant recipients is secondary to low functional β-cell mass and not to insulin resistance shortly after transplant. Furthermore, improved glycemic control achieved via islet transplantation over the diabetic state might be attained, in part, via reduced glucagon secretion.
Collapse
|
25
|
Hyperglycemia-induced proliferation of adult human beta cells engrafted into spontaneously diabetic immunodeficient NOD-Rag1null IL2rγnull Ins2Akita mice. Pancreas 2011; 40:1147-9. [PMID: 21926555 PMCID: PMC3176417 DOI: 10.1097/mpa.0b013e31821ffabe] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
26
|
Antkowiak PF, Vandsburger MH, Epstein FH. Quantitative pancreatic β cell MRI using manganese-enhanced Look-Locker imaging and two-site water exchange analysis. Magn Reson Med 2011; 67:1730-9. [PMID: 22189705 DOI: 10.1002/mrm.23139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 06/16/2011] [Accepted: 07/14/2011] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cell imaging would be useful in monitoring the progression of and therapies for diabetes. The purpose of this study was to develop and evaluate quantitative β-cell MRI using manganese (Mn(2+)) labeling of β cells, T1 mapping, and a two-site water exchange model. Normal, pharmacologically-treated, and severely diabetic mice underwent injection of MnCl(2). Pancreatic water proton T1 relaxation was measured using Look-Locker MRI, and two-site water exchange analysis was used to estimate model parameters including the intracellular water proton relaxation rate constant (R1(ic)) and the intracellular fraction as indicators of β-cell function and mass, respectively. Logarithmic plots of T1 relaxation revealed two distinct proton pools relaxing with different T1s, and the two-site water exchange model fit the measured T1 relaxation data better than a monoexponential model. The intracellular R1(ic) time course revealed the kinetics of β-cell Mn(2+) labeling. Pharmacological treatments with nifedipine, tolbutamide, and diazoxide altered R1(ic), indicating that beta cell function was a determinant of Mn(2+) uptake. Intracellular fraction was significantly higher in mice with normal β cell mass than in diabetic mice (14.9% vs. 14.4%, P < 0.05). Two-site water exchange analysis of T1 relaxation of the Mn(2+)-enhanced pancreas is a promising method for quantifying β cell volume fraction and function.
Collapse
Affiliation(s)
- Patrick F Antkowiak
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
27
|
Abstract
OBJECTIVE We tested the hypothesis that an increase in insulin per se, i.e., in the absence of zinc, suppresses glucagon secretion during euglycemia and that a decrease in insulin per se stimulates glucagon secretion during hypoglycemia in humans. RESEARCH DESIGN AND METHODS We measured plasma glucagon concentrations in patients with type 1 diabetes infused with the zinc-free insulin glulisine on three occasions. Glulisine was infused with clamped euglycemia (∼95 mg/dl [5.3 mmol/l]) from 0 to 60 min on all three occasions. Then, glulisine was discontinued with clamped euglycemia or with clamped hypoglycemia (∼55 mg/dl [3.0 mmol/l]) or continued with clamped hypoglycemia from 60 to 180 min. RESULTS Plasma glucagon concentrations were suppressed by -13 ± 3, -9 ± 3, and -12 ± 2 pg/ml (-3.7 ± 0.9, -2.6 ± 0.9, and -3.4 ± 0.6 pmol/l), respectively, (all P < 0.01) during zinc-free hyperinsulinemic euglycemia over the first 60 min. Glucagon levels remained suppressed following a decrease in zinc-free insulin with euglycemia (-14 ± 3 pg/ml [-4.0 ± 0.9 pmol/l]) and during sustained hyperinsulinemia with hypoglycemia (-14 ± 2 pg/ml [-4.0 ± 0.6 pmol/l]) but increased to -3 ± 3 pg/ml (-0.9 ± 0.9 pmol/l) (P < 0.01) following a decrease in zinc-free insulin with hypoglycemia over the next 120 min. CONCLUSIONS These data indicate that an increase in insulin per se suppresses glucagon secretion and a decrease in insulin per se, in concert with a low glucose concentration, stimulates glucagon secretion. Thus, they document that insulin is a β-cell secretory product that, in concert with glucose and among other signals, reciprocally regulates α-cell glucagon secretion in humans.
Collapse
Affiliation(s)
- Benjamin A. Cooperberg
- From the Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Philip E. Cryer
- From the Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
- Corresponding author: Philip E. Cryer,
| |
Collapse
|
28
|
Shen HCJ, Ylaya K, Pechhold K, Wilson A, Adem A, Hewitt SM, Libutti SK. Multiple endocrine neoplasia type 1 deletion in pancreatic alpha-cells leads to development of insulinomas in mice. Endocrinology 2010; 151:4024-30. [PMID: 20555035 PMCID: PMC2940531 DOI: 10.1210/en.2009-1251] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pancreatic alpha- and beta-cells are critical components in regulating blood glucose homeostasis via secretion of glucagon and insulin, respectively. Both cell types are typically localized in the islets of Langerhans. However, little is known about the roles of paracrine interactions that contribute to their physiological functions. The lack of suitable cell lines to study alpha- and beta-cells interactions have led us to develop an alpha-cell-specific Cre-expressing transgenic line utilizing a glucagon promoter sequence, the Glu-Cre transgenic mouse. Here, we demonstrate that the Glu-Cre could specifically and efficiently excise floxed target genes in adult islet alpha-cells. We further showed that deletion of the tumor suppressor gene, multiple endocrine neoplasia type 1 (Men1), in alpha-cells led to tumorigenesis. However, to our surprise, the lack of Men1 in alpha-cells did not result in glucagonomas but rather beta-cell insulinomas. Because deletion of the Men1 alleles was only present in alpha-cells, our data suggested that cross communication between alpha- and beta-cells contributes to tumorigenesis in the absence of Men1. Together, we believed that the new model systems described here will allow future studies to decipher cellular interactions between islet alpha- and beta-cells in a physiological context.
Collapse
Affiliation(s)
- H-C Jennifer Shen
- Tissue Array Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-8322, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Gu C, Stein GH, Pan N, Goebbels S, Hörnberg H, Nave KA, Herrera P, White P, Kaestner KH, Sussel L, Lee JE. Pancreatic beta cells require NeuroD to achieve and maintain functional maturity. Cell Metab 2010; 11:298-310. [PMID: 20374962 PMCID: PMC2855640 DOI: 10.1016/j.cmet.2010.03.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 12/06/2009] [Accepted: 03/16/2010] [Indexed: 12/19/2022]
Abstract
NeuroD, a transactivator of the insulin gene, is critical for development of the endocrine pancreas, and NeuroD mutations cause MODY6 in humans. To investigate the role of NeuroD in differentiated beta cells, we generated mice in which neuroD is deleted in insulin-expressing cells. These mice exhibit severe glucose intolerance. Islets lacking NeuroD respond poorly to glucose and display a glucose metabolic profile similar to immature beta cells, featuring increased expression of glycolytic genes and LDHA, elevated basal insulin secretion and O2 consumption, and overexpression of NPY. Moreover, the mutant islets appear to have defective K(ATP) channel-mediated insulin secretion. Unexpectedly, virtually all insulin in the mutant mice is derived from ins2, whereas ins1 expression is almost extinguished. Overall, these results indicate that NeuroD is required for beta cell maturation and demonstrate the importance of NeuroD in the acquisition and maintenance of fully functional glucose-responsive beta cells.
Collapse
Affiliation(s)
- Chunyan Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Gretchen H. Stein
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Ning Pan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Hanna Hörnberg
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Pedro Herrera
- Department of Genetic Medicine & Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Peter White
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Jacqueline E. Lee
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| |
Collapse
|
30
|
Vendrame F, Pileggi A, Laughlin E, Allende G, Martin-Pagola A, Molano RD, Diamantopoulos S, Standifer N, Geubtner K, Falk BA, Ichii H, Takahashi H, Snowhite I, Chen Z, Mendez A, Chen L, Sageshima J, Ruiz P, Ciancio G, Ricordi C, Reijonen H, Nepom GT, Burke GW, Pugliese A. Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, is associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes 2010; 59:947-57. [PMID: 20086230 PMCID: PMC2844842 DOI: 10.2337/db09-0498] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate if recurrent autoimmunity explained hyperglycemia and C-peptide loss in three immunosuppressed simultaneous pancreas-kidney (SPK) transplant recipients. RESEARCH DESIGN AND METHODS We monitored autoantibodies and autoreactive T-cells (using tetramers) and performed biopsy. The function of autoreactive T-cells was studied with in vitro and in vivo assays. RESULTS Autoantibodies were present pretransplant and persisted on follow-up in one patient. They appeared years after transplantation but before the development of hyperglycemia in the remaining patients. Pancreas transplant biopsies were taken within approximately 1 year from hyperglycemia recurrence and revealed beta-cell loss and insulitis. We studied autoreactive T-cells from the time of biopsy and repeatedly demonstrated their presence on further follow-up, together with autoantibodies. Treatment with T-cell-directed therapies (thymoglobulin and daclizumab, all patients), alone or with the addition of B-cell-directed therapy (rituximab, two patients), nonspecifically depleted T-cells and was associated with C-peptide secretion for >1 year. Autoreactive T-cells with the same autoantigen specificity and conserved T-cell receptor later reappeared with further C-peptide loss over the next 2 years. Purified autoreactive CD4 T-cells from two patients were cotransplanted with HLA-mismatched human islets into immunodeficient mice. Grafts showed beta-cell loss in mice receiving autoreactive T-cells but not control T-cells. CONCLUSIONS We demonstrate the cardinal features of recurrent autoimmunity in three such patients, including the reappearance of CD4 T-cells capable of mediating beta-cell destruction. Markers of autoimmunity can help diagnose this underappreciated cause of graft loss. Immune monitoring during therapy showed that autoimmunity was not resolved by the immunosuppressive agents used.
Collapse
Affiliation(s)
- Francesco Vendrame
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Antonello Pileggi
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida
- Department of Surgery, Division of Transplantation, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Gloria Allende
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Ainhoa Martin-Pagola
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - R. Damaris Molano
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Stavros Diamantopoulos
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Nathan Standifer
- Benaroya Research Institute, Seattle, Washington
- Clinical Immunology, Amgen Inc., Seattle, Washington
| | | | - Ben A. Falk
- Benaroya Research Institute, Seattle, Washington
| | - Hirohito Ichii
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida
- Department of Surgery, Division of Transplantation, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Hidenori Takahashi
- Department of Surgery, Division of Transplantation, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Isaac Snowhite
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Zhibin Chen
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Armando Mendez
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida
- Department of Medicine, Division of Endocrinology and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Linda Chen
- Department of Surgery, Division of Transplantation, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Junichiro Sageshima
- Department of Surgery, Division of Transplantation, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Phillip Ruiz
- Department of Surgery, Division of Transplantation, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Gaetano Ciancio
- Department of Surgery, Division of Transplantation, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Camillo Ricordi
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida
- Department of Surgery, Division of Transplantation, Leonard Miller School of Medicine, University of Miami, Miami, Florida
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, Florida
- Department of Medicine, Division of Endocrinology and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | | | | | - George W. Burke
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida
- Department of Surgery, Division of Transplantation, Leonard Miller School of Medicine, University of Miami, Miami, Florida
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, Florida
- Department of Medicine, Division of Endocrinology and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, Florida
- Corresponding author: Alberto Pugliese,
| |
Collapse
|
31
|
Pechhold S, Stouffer M, Walker G, Martel R, Seligmann B, Hang Y, Stein R, Harlan DM, Pechhold K. Transcriptional analysis of intracytoplasmically stained, FACS-purified cells by high-throughput, quantitative nuclease protection. Nat Biotechnol 2009; 27:1038-42. [PMID: 19838197 PMCID: PMC4638177 DOI: 10.1038/nbt.1579] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 09/15/2009] [Indexed: 12/21/2022]
Abstract
Exploring the pathophysiology underlying diabetes mellitus requires characterizing the cellular constituents of pancreatic islets, primarily insulin-producing β-cells. Such efforts have been limited by inadequate techniques for purifying islet cellular subsets for further biochemical and gene-expression studies. Using intracytoplasmic staining and fluorescence-activated cell-sorting (FACS) followed by quantitative nuclease protection assay (qNPA™) technology, we examined 30 relevant genes expressed by islet subpopulations. Purified islet cell subsets expressed all four tested “housekeeping” genes with a surprising variability, dependent on both cell lineage and developmental stage, suggesting caution when interpreting housekeeping gene-normalized mRNA quantifications. Our new approach confirmed expected islet cell lineage-specific gene expression patterns at the transcriptional level, but also detected new phenotypes, including mRNA-profiles (supported by immunohistology) demonstrating that during pregnancy, some β-cells express Mafb, previously found only in immature β-cells during embryonic development. Overall, qNPA™ gene expression analysis using intracellular-stained then FACS-sorted cells has broad applications beyond islet cell biology.
Collapse
Affiliation(s)
- Susanne Pechhold
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Current literature in diabetes. Diabetes Metab Res Rev 2009; 25:i-x. [PMID: 19790194 DOI: 10.1002/dmrr.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Li DS, Warnock GL, Tu HJ, Ao Z, He Z, Lu H, Dai LJ. Do immunotherapy and beta cell replacement play a synergistic role in the treatment of type 1 diabetes? Life Sci 2009; 85:549-56. [PMID: 19747492 DOI: 10.1016/j.lfs.2009.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/15/2009] [Accepted: 08/28/2009] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes (T1D) is the result of the autoimmune response against pancreatic insulin-producing ss-cells. Its ultimate consequence is beta-cell insufficiency-mediated dysregulation of blood glucose control. In terms of T1D treatment, immunotherapy addresses the cause of T1D, mainly through re-setting the balance between autoimmunity and regulatory mechanisms. Regulatory T cells play an important role in this immune intervention. An alternative T1D treatment is beta-cell replacement, which can reverse the consequence of the disease by replacing destroyed beta-cells in the diabetic pancreas. The applicable insulin-producing cells can be directly obtained from islet transplantation or generated from other cell sources such as autologous adult stem cells, embryonic stem cells, and induced pluripotent stem cells. In this review, we summarize the recent research progress and analyze the possible advantages and disadvantages of these two therapeutic options especially focusing on the potential synergistic effect on T1D treatment. Exploring the optimal combination of immunotherapy and beta-cell replacement will pave the way to the most effective cure for this devastating disease.
Collapse
Affiliation(s)
- Dong-Sheng Li
- Tai-He Hospital, Yunyang Medical College, Shiyan, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Craig AT, Gavrilova O, Dwyer NK, Jou W, Pack S, Liu E, Pechhold K, Schmidt M, McAlister VJ, Chiorini JA, Blanchette-Mackie EJ, Harlan DM, Owens RA. Transduction of rat pancreatic islets with pseudotyped adeno-associated virus vectors. Virol J 2009; 6:61. [PMID: 19450275 PMCID: PMC2687429 DOI: 10.1186/1743-422x-6-61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 05/18/2009] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic islet transplantation is a promising treatment for type I diabetes mellitus, but current immunosuppressive strategies do not consistently provide long-term survival of transplanted islets. We are therefore investigating the use of adeno-associated viruses (AAVs) as gene therapy vectors to transduce rat islets with immunosuppressive genes prior to transplantation into diabetic mice. Results We compared the transduction efficiency of AAV2 vectors with an AAV2 capsid (AAV2/2) to AAV2 vectors pseudotyped with AAV5 (AAV2/5), AAV8 (AAV2/8) or bovine adeno-associated virus (BAAV) capsids, or an AAV2 capsid with an insertion of the low density lipoprotein receptor ligand from apolipoprotein E (AAV2apoE), on cultured islets, in the presence of helper adenovirus infection to speed expression of a GFP transgene. Confocal microscopy and flow cytometry were used. The AAV2/5 vector was superior to AAV2/2 and AAV2/8 in rat islets. Flow cytometry indicated AAV2/5-mediated gene expression in approximately 9% of rat islet cells and almost 12% of insulin-positive cells. The AAV2/8 vector had a higher dependence on the helper virus multiplicity of infection than the AAV 2/5 vector. In addition, the BAAV and AAV2apoE vectors were superior to AAV2/2 for transducing rat islets. Rat islets (300 per mouse) transduced with an AAV2/5 vector harboring the immunosuppressive transgene, tgfβ1, retain the ability to correct hyperglycemia when transplanted into immune-deficient diabetic mice. Conclusion AAV2/5 vectors may therefore be useful for pre-treating donor islets prior to transplantation.
Collapse
Affiliation(s)
- Anthony T Craig
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|