1
|
Wang H, Concannon P, Ge Y. Roles of TULA-family proteins in T cells and autoimmune diseases. Genes Immun 2025; 26:54-62. [PMID: 39558087 DOI: 10.1038/s41435-024-00300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024]
Abstract
The T cell Ubiquitin Ligand (TULA) protein family contains two members, UBASH3A and UBASH3B, that display similarities in protein sequence and domain structure. Both TULA proteins act to repress T cell activation via a combination of overlapping and nonredundant functions. UBASH3B acts mainly as a phosphatase that suppresses proximal T cell receptor (TCR) signaling. In contrast, UBASH3A acts primarily as an adaptor protein, interacting with other proteins (including UBASH3B) in T cells upon TCR stimulation and resulting in downregulation of TCR signaling and NF-κB signaling. Human genetic and functional studies have revealed another notable distinction between UBASH3A and UBASH3B: numerous genome-wide association studies have identified statistically significant associations between genetic variants in and around the UBASH3A gene and at least seven different autoimmune diseases, suggesting a key role of UBASH3A in autoimmunity. However, the evidence for an independent role of UBASH3B in autoimmune disease is limited. This review summarizes key findings regarding the roles of TULA proteins in T cell biology and autoimmunity, highlights the commonalities and differences between UBASH3A and UBASH3B, and speculates on the individual and joint effects of TULA proteins on T cell signaling.
Collapse
Affiliation(s)
- Hua Wang
- International Center for Genetic Engineering and Biotechnology, China Regional Research Center, Taizhou, Jiangsu Province, China
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Yan Ge
- International Center for Genetic Engineering and Biotechnology, China Regional Research Center, Taizhou, Jiangsu Province, China.
| |
Collapse
|
2
|
Fogarasi M, Dima S. Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes. Cells 2024; 13:1676. [PMID: 39451194 PMCID: PMC11506310 DOI: 10.3390/cells13201676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF protein superfamily and was initially identified as a protein capable of inducing apoptosis in cancer cells. In addition, TRAIL can promote pro-survival and proliferation signaling in various cell types. Subsequent studies have demonstrated that TRAIL plays several important roles in immunoregulation, immunosuppression, and immune effector functions. Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia due to the loss of insulin-producing β-cells, primarily driven by T-cell-mediated pancreatic islet inflammation. Various genetic, epigenetic, and environmental factors, in conjunction with the immune system, contribute to the initiation, development, and progression of T1D. Recent reports have highlighted TRAIL as an important immunomodulatory molecule with protective effects on pancreatic islets. Experimental data suggest that TRAIL protects against T1D by reducing the proliferation of diabetogenic T cells and pancreatic islet inflammation and restoring normoglycemia in animal models. In this review, we aimed to summarize the consequences of TRAIL action in T1D, focusing on and discussing its signaling mechanisms, role in the immune system, and protective effects in T1D.
Collapse
Affiliation(s)
- Marton Fogarasi
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Wang J, Wang C, Hu A, Yu K, Kuang Y, Gajendran B, Zacksenhaus E, Sample KM, Xiao X, Liu W, Ben-David Y. FLI1 induces erythroleukemia through opposing effects on UBASH3A and UBASH3B expression. BMC Cancer 2024; 24:326. [PMID: 38461240 PMCID: PMC10925000 DOI: 10.1186/s12885-024-12075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND FLI1 is an oncogenic transcription factor that promotes diverse malignancies through mechanisms that are not fully understood. Herein, FLI1 is shown to regulate the expression of Ubiquitin Associated and SH3 Domain Containing A/B (UBASH3A/B) genes. UBASH3B and UBASH3A are found to act as an oncogene and tumor suppressor, respectively, and their combined effect determines erythroleukemia progression downstream of FLI1. METHODS Promoter analysis combined with luciferase assays and chromatin immunoprecipitation (ChIP) analysis were applied on the UBASH3A/B promoters. RNAseq analysis combined with bioinformatic was used to determine the effect of knocking-down UBASH3A and UBASH3B in leukemic cells. Downstream targets of UBASH3A/B were inhibited in leukemic cells either via lentivirus-shRNAs or small molecule inhibitors. Western blotting and RT-qPCR were used to determine transcription levels, MTT assays to assess proliferation rate, and flow cytometry to examine apoptotic index. RESULTS Knockdown of FLI1 in erythroleukemic cells identified the UBASH3A/B genes as potential downstream targets. Herein, we show that FLI1 directly binds to the UBASH3B promoter, leading to its activation and leukemic cell proliferation. In contrast, FLI1 indirectly inhibits UBASH3A transcription via GATA2, thereby antagonizing leukemic growth. These results suggest oncogenic and tumor suppressor roles for UBASH3B and UBASH3A in erythroleukemia, respectively. Mechanistically, we show that UBASH3B indirectly inhibits AP1 (FOS and JUN) expression, and that its loss leads to inhibition of apoptosis and acceleration of proliferation. UBASH3B also positively regulates the SYK gene expression and its inhibition suppresses leukemia progression. High expression of UBASH3B in diverse tumors was associated with worse prognosis. In contrast, UBASH3A knockdown in erythroleukemic cells increased proliferation; and this was associated with a dramatic induction of the HSP70 gene, HSPA1B. Accordingly, knockdown of HSPA1B in erythroleukemia cells significantly accelerated leukemic cell proliferation. Accordingly, overexpression of UBASH3A in different cancers was predominantly associated with good prognosis. These results suggest for the first time that UBASH3A plays a tumor suppressor role in part through activation of HSPA1B. CONCLUSIONS FLI1 promotes erythroleukemia progression in part by modulating expression of the oncogenic UBASH3B and tumor suppressor UBASH3A.
Collapse
MESH Headings
- Humans
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- RNA, Small Interfering/genetics
- Genes, Tumor Suppressor
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Oncogene Proteins, Fusion/genetics
- RNA-Binding Protein EWS/genetics
- Adaptor Proteins, Signal Transducing/metabolism
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China
| | - Kunlin Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China
| | - Yi Kuang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou Province, Guiyang, 550025, People's Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China.
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China.
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang-550014, Guizhou, People's Republic of China.
- Natural Products Research Center of Guizhou Province, High Tech Zone, Province Science City, Baiyun District, Guiyang, 550014, China.
| |
Collapse
|
4
|
Bawatneh A, Darwish A, Eideh H, Darwish HM. Identification of gene mutations associated with type 1 diabetes by next-generation sequencing in affected Palestinian families. Front Genet 2024; 14:1292073. [PMID: 38274107 PMCID: PMC10808782 DOI: 10.3389/fgene.2023.1292073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Diabetes Mellitus is a group of metabolic disorders characterized by hyperglycemia secondary to insulin resistance or deficiency. It is considered a major health problem worldwide. T1DM is a result of a combination of genetics, epigenetics, and environmental factors. Several genes have been associated with T1DM, including HLA, INS, CTLA4, and PTPN22. However, none of these findings have been based on linkage analysis because it is rare to find families with several diabetic individuals. Two Palestinian families with several afflicted members with variations in the mode of inheritance were identified and selected for this study. This study aimed to identify the putative causative gene(s) responsible for T1DM development in these families to improve our understanding of the molecular genetics of the disease. Methods: One afflicted member from each family was selected for Whole-Exome Sequencing. Data were mapped to the reference of the human genome, and the resulting VCF file data were filtered. The variants with the highest phenotype correlation score were checked by Sanger sequencing for all family members. The confirmed variants were analyzed in silico by bioinformatics tools. Results: In one family, the IGF1R p.V579F variant, which follows autosomal dominant inheritance, was confirmed and segregated in the family. In another family, the NEUROD1 p.P197H variant, which follows autosomal recessive inheritance, was positively confirmed and segregated. Conclusion: IGF1R p.V579F and NEUROD1 p.P197H variants were associated with T1DM development in the two inflicted families. Further analysis and functional assays will be performed, including the generation of mutant model cell systems, to unravel their specific molecular mechanism in the disease development.
Collapse
Affiliation(s)
- Abrar Bawatneh
- Molecular Genetics and Genetics Toxicology Program, Faculty of Graduate Studies, Arab American University, Jenin, Palestine
| | - Alaa Darwish
- Faculty of Health Professions, AlQuds University, Jerusalem, Palestine
| | | | - Hisham M. Darwish
- Molecular Genetics and Genetics Toxicology Program, Faculty of Graduate Studies, Arab American University, Jenin, Palestine
- Faculty of Allied Medical Sciences, Arab American University, Jenin, Palestine
| |
Collapse
|
5
|
Xiao Z, Luo S, Zhou Y, Pang H, Yin W, Qin J, Xie Z, Zhou Z. Association of the rs1990760, rs3747517, and rs10930046 polymorphisms in the IFIH1 gene with susceptibility to autoimmune diseases: a meta-analysis. Front Immunol 2023; 14:1051247. [PMID: 37426657 PMCID: PMC10327432 DOI: 10.3389/fimmu.2023.1051247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Objective Interferon induced with helicase C domain 1 (IFIH1) single-nucleotide polymorphisms (SNP) rs1990760, rs3747517, and rs10930046 have been shown to be closely related to the risk of autoimmune diseases. The aim of this study was firstly to examine the association of the rs1990760 with type 1 diabetes (T1D) in a Chinese population. Secondly, to assess the association of SNP rs1990760, rs3747517, and rs10930046 with autoimmune diseases susceptibility. Methods A total of 1,273 T1D patients and 1,010 healthy control subjects in a Chinese population were enrolled in this case-control study. Subsequently, we performed a meta-analysis on the association of the SNP rs1990760, rs3747517, and rs10930046 in the IFIH1 gene with susceptibility to autoimmune diseases. The random and fixed genetic effects models were used to evaluate the association and the effect sizes, including odds ratios (OR) and 95% confidence intervals (CI). Stratification analyses based on ethnicity and the type of autoimmune diseases were performed. Results IFIH1 SNP rs1990760 was not associated with a significant risk of T1D in the Chinese population in the case-control study. A total of 35 studies including 70,966 patients and 124,509 controls were identified and included in the meta-analysis. The results displayed significant associations between IFIH1 rs1990760 A allele and rs3747517 C allele and autoimmune diseases risk (OR=1.09, 95% CI: 1.01~1.17; OR=1.24, 95% CI: 1.15~1.25, respectively). Stratified analysis indicated a significant association rs1990760 and rs3747517 with autoimmune diseases risk in the Caucasian population (OR=1.11, 95% CI: 1.02~1.20, OR=1.29, 95% CI: 1.18~1.41, respectively). Conclusions This study revealed no association between IFIH1 SNP rs1990760 and T1D in Chinese. Furthermore, the meta-analysis indicated that rs1990760 and rs3747517 polymorphisms, confer susceptibility to autoimmune diseases, especially in the Caucasian population.
Collapse
Affiliation(s)
- Zilin Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuemin Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenfeng Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Goyal S, Rani J, Bhat MA, Vanita V. Genetics of diabetes. World J Diabetes 2023; 14:656-679. [PMID: 37383588 PMCID: PMC10294065 DOI: 10.4239/wjd.v14.i6.656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes mellitus is a complicated disease characterized by a complex interplay of genetic, epigenetic, and environmental variables. It is one of the world's fastest-growing diseases, with 783 million adults expected to be affected by 2045. Devastating macrovascular consequences (cerebrovascular disease, cardiovascular disease, and peripheral vascular disease) and microvascular complications (like retinopathy, nephropathy, and neuropathy) increase mortality, blindness, kidney failure, and overall quality of life in individuals with diabetes. Clinical risk factors and glycemic management alone cannot predict the development of vascular problems; multiple genetic investigations have revealed a clear hereditary component to both diabetes and its related complications. In the twenty-first century, technological advancements (genome-wide association studies, next-generation sequencing, and exome-sequencing) have led to the identification of genetic variants associated with diabetes, however, these variants can only explain a small proportion of the total heritability of the condition. In this review, we address some of the likely explanations for this "missing heritability", for diabetes such as the significance of uncommon variants, gene-environment interactions, and epigenetics. Current discoveries clinical value, management of diabetes, and future research directions are also discussed.
Collapse
Affiliation(s)
- Shiwali Goyal
- Department of Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Rockville, MD 20852, United States
| | - Jyoti Rani
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Mohd Akbar Bhat
- Department of Ophthalmology, Georgetown University Medical Center, Washington DC, DC 20057, United States
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
7
|
Tsygankov AY. TULA Proteins in Men, Mice, Hens, and Lice: Welcome to the Family. Int J Mol Sci 2023; 24:ijms24119126. [PMID: 37298079 DOI: 10.3390/ijms24119126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The two members of the UBASH3/STS/TULA protein family have been shown to critically regulate key biological functions, including immunity and hemostasis, in mammalian biological systems. Negative regulation of signaling through immune receptor tyrosine-based activation motif (ITAM)- and hemITAM-bearing receptors mediated by Syk-family protein tyrosine kinases appears to be a major molecular mechanism of the down-regulatory effect of TULA-family proteins, which possess protein tyrosine phosphatase (PTP) activity. However, these proteins are likely to carry out some PTP-independent functions as well. Whereas the effects of TULA-family proteins overlap, their characteristics and their individual contributions to cellular regulation also demonstrate clearly distinct features. Protein structure, enzymatic activity, molecular mechanisms of regulation, and biological functions of TULA-family proteins are discussed in this review. In particular, the usefulness of the comparative analysis of TULA proteins in various metazoan taxa, for identifying potential roles of TULA-family proteins outside of their functions already established in mammalian systems, is examined.
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
8
|
Newman JRB, Concannon P, Ge Y. UBASH3A Interacts with PTPN22 to Regulate IL2 Expression and Risk for Type 1 Diabetes. Int J Mol Sci 2023; 24:ijms24108671. [PMID: 37240014 DOI: 10.3390/ijms24108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
UBASH3A is a negative regulator of T cell activation and IL-2 production and plays key roles in autoimmunity. Although previous studies revealed the individual effects of UBASH3A on risk for type 1 diabetes (T1D; a common autoimmune disease), the relationship of UBASH3A with other T1D risk factors remains largely unknown. Given that another well-known T1D risk factor, PTPN22, also inhibits T cell activation and IL-2 production, we investigated the relationship between UBASH3A and PTPN22. We found that UBASH3A, via its Src homology 3 (SH3) domain, physically interacts with PTPN22 in T cells, and that this interaction is not altered by the T1D risk coding variant rs2476601 in PTPN22. Furthermore, our analysis of RNA-seq data from T1D cases showed that the amounts of UBASH3A and PTPN22 transcripts exert a cooperative effect on IL2 expression in human primary CD8+ T cells. Finally, our genetic association analyses revealed that two independent T1D risk variants, rs11203203 in UBASH3A and rs2476601 in PTPN22, interact statistically, jointly affecting risk for T1D. In summary, our study reveals novel interactions, both biochemical and statistical, between two independent T1D risk loci, and suggests how these interactions may affect T cell function and increase risk for T1D.
Collapse
Affiliation(s)
- Jeremy R B Newman
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yan Ge
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Howarth S, Sneddon G, Allinson KR, Razvi S, Mitchell AL, Pearce SHS. Replication of association at the LPP and UBASH3A loci in a UK autoimmune Addison's disease cohort. Eur J Endocrinol 2023; 188:lvac010. [PMID: 36651163 DOI: 10.1093/ejendo/lvac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/21/2022] [Accepted: 11/30/2022] [Indexed: 01/13/2023]
Abstract
Autoimmune Addison's disease (AAD) arises from a complex interplay between multiple genetic susceptibility polymorphisms and environmental factors. The first genome wide association study (GWAS) with patients from Scandinavian Addison's registries has identified association signals at four novel loci in the genes LPP, SH2B3, SIGLEC5, and UBASH3A. To verify these novel risk loci, we performed a case-control association study in our independent cohort of 420 patients with AAD from the across the UK. We report significant association of alleles of the LPP and UBASH3A genes [odds ratio (95% confidence intervals), 1.46 (1.21-1.75)and 1.40 (1.16-1.68), respectively] with AAD in our UK cohort. In addition, we report nominal association of AAD with SH2B3 [OR 1.18 (1.02-1.35)]. We confirm that variants at the LPP and UBASH3A loci confer susceptibility to AAD in a UK population. Further studies with larger patient cohorts are required to robustly confirm the association of SH2B3 and SIGLEC5/SPACA6 alleles.
Collapse
Affiliation(s)
- Sophie Howarth
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Georgina Sneddon
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Kathleen R Allinson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Salman Razvi
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Anna L Mitchell
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Simon H S Pearce
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| |
Collapse
|
10
|
Pang H, Lin J, Luo S, Huang G, Li X, Xie Z, Zhou Z. The missing heritability in type 1 diabetes. Diabetes Obes Metab 2022; 24:1901-1911. [PMID: 35603907 PMCID: PMC9545639 DOI: 10.1111/dom.14777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disease characterized by an absolute deficiency of insulin. It affects more than 20 million people worldwide and imposes an enormous financial burden on patients. The underlying pathogenic mechanisms of T1D are still obscure, but it is widely accepted that both genetics and the environment play an important role in its onset and development. Previous studies have identified more than 60 susceptible loci associated with T1D, explaining approximately 80%-85% of the heritability. However, most identified variants confer only small increases in risk, which restricts their potential clinical application. In addition, there is still a so-called 'missing heritability' phenomenon. While the gap between known heritability and true heritability in T1D is small compared with that in other complex traits and disorders, further elucidation of T1D genetics has the potential to bring novel insights into its aetiology and provide new therapeutic targets. Many hypotheses have been proposed to explain the missing heritability, including variants remaining to be found (variants with small effect sizes, rare variants and structural variants) and interactions (gene-gene and gene-environment interactions; e.g. epigenetic effects). In the following review, we introduce the possible sources of missing heritability and discuss the existing related knowledge in the context of T1D.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jian Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
11
|
Liu J, Zhang H, Su Y, Zhang B. Application and prospect of targeting innate immune sensors in the treatment of autoimmune diseases. Cell Biosci 2022; 12:68. [PMID: 35619184 PMCID: PMC9134593 DOI: 10.1186/s13578-022-00810-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of auto-reactive T cells and autoantibody-producing B cells and excessive inflammation are responsible for the occurrence and development of autoimmune diseases. The suppression of autoreactive T cell activation and autoantibody production, as well as inhibition of inflammatory cytokine production have been utilized to ameliorate autoimmune disease symptoms. However, the existing treatment strategies are not sufficient to cure autoimmune diseases since patients can quickly suffer a relapse following the end of treatments. Pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I like receptors (RLRs), C-type lectin receptors (CLRs) and various nucleic acid sensors, are expressed in both innate and adaptive immune cells and are involved in the development of autoimmune diseases. Here, we have summarized advances of PRRs signaling pathways, association between PRRs and autoimmune diseases, application of inhibitors targeting PRRs and the corresponding signaling molecules relevant to strategies targeting autoimmune diseases. This review emphasizes the roles of different PRRs in activating both innate and adaptive immunity, which can coordinate to trigger autoimmune responses. The review may also prompt the formulation of novel ideas for developing therapeutic strategies against autoimmune diseases by targeting PRRs-related signals.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
12
|
Patel SN, Mathews CE, Chandler R, Stabler CL. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne) 2022; 13:881525. [PMID: 35600597 PMCID: PMC9114707 DOI: 10.3389/fendo.2022.881525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Progress in diabetes research is hindered, in part, by deficiencies in current experimental systems to accurately model human pathophysiology and/or predict clinical outcomes. Engineering human-centric platforms that more closely mimic in vivo physiology, however, requires thoughtful and informed design. Summarizing our contemporary understanding of the unique and critical features of the pancreatic islet can inform engineering design criteria. Furthermore, a broad understanding of conventional experimental practices and their current advantages and limitations ensures that new models address key gaps. Improving beyond traditional cell culture, emerging platforms are combining diabetes-relevant cells within three-dimensional niches containing dynamic matrices and controlled fluidic flow. While highly promising, islet-on-a-chip prototypes must evolve their utility, adaptability, and adoptability to ensure broad and reproducible use. Here we propose a roadmap for engineers to craft biorelevant and accessible diabetes models. Concurrently, we seek to inspire biologists to leverage such tools to ask complex and nuanced questions. The progenies of such diabetes models should ultimately enable investigators to translate ambitious research expeditions from benchtop to the clinic.
Collapse
Affiliation(s)
- Smit N. Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Chandler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Nigi L, Brusco N, Grieco GE, Fignani D, Licata G, Formichi C, Aiello E, Marselli L, Marchetti P, Krogvold L, Jorgensen KD, Sebastiani G, Dotta F. Increased Expression of Viral Sensor MDA5 in Pancreatic Islets and in Hormone-Negative Endocrine Cells in Recent Onset Type 1 Diabetic Donors. Front Immunol 2022; 13:833141. [PMID: 35359976 PMCID: PMC8963204 DOI: 10.3389/fimmu.2022.833141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
The interaction between genetic and environmental factors determines the development of type 1 diabetes (T1D). Some viruses are capable of infecting and damaging pancreatic β-cells, whose antiviral response could be modulated by specific viral RNA receptors and sensors such as melanoma differentiation associated gene 5 (MDA5), encoded by the IFIH1 gene. MDA5 has been shown to be involved in pro-inflammatory and immunoregulatory outcomes, thus determining the response of pancreatic islets to viral infections. Although the function of MDA5 has been previously well explored, a detailed immunohistochemical characterization of MDA5 in pancreatic tissues of nondiabetic and T1D donors is still missing. In the present study, we used multiplex immunofluorescence imaging analysis to characterize MDA5 expression and distribution in pancreatic tissues obtained from 22 organ donors (10 nondiabetic autoantibody-negative, 2 nondiabetic autoantibody-positive, 8 recent-onset, and 2 long-standing T1D). In nondiabetic control donors, MDA5 was expressed both in α- and β-cells. The colocalization rate imaging analysis showed that MDA5 was preferentially expressed in α-cells. In T1D donors, we observed an increased colocalization rate of MDA5-glucagon with respect to MDA5-insulin in comparison to nondiabetic controls; such increase was more pronounced in recent-onset with respect to long-standing T1D donors. Of note, an increased colocalization rate of MDA5-glucagon was found in insulin-deficient-islets (IDIs) with respect to insulin-containing-islets (ICIs). Strikingly, we detected the presence of MDA5-positive/hormone-negative endocrine islet-like clusters in T1D donors, presumably due to dedifferentiation or neogenesis phenomena. These clusters were identified exclusively in donors with recent disease onset and not in autoantibody-positive nondiabetic donors or donors with long-standing T1D. In conclusion, we showed that MDA5 is preferentially expressed in α-cells, and its expression is increased in recent-onset T1D donors. Finally, we observed that MDA5 may also characterize the phenotype of dedifferentiated or newly forming islet cells, thus opening to novel roles for MDA5 in pancreatic endocrine cells.
Collapse
Affiliation(s)
- Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
- *Correspondence: Laura Nigi,
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giuseppina E. Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lars Krogvold
- Paediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl Jorgensen
- Paediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| |
Collapse
|
14
|
Ghosh S, Mahalanobish S, Sil PC. Diabetes: discovery of insulin, genetic, epigenetic and viral infection mediated regulation. THE NUCLEUS : AN INTERNATIONAL JOURNAL OF CYTOLOGY AND ALLIED TOPICS 2021; 65:283-297. [PMID: 34629548 PMCID: PMC8491600 DOI: 10.1007/s13237-021-00376-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus, commonly referred to as diabetes, is a combination of many metabolic diseases. Insulin deficiency in our body is the main cause of diabetes. Insulin is one of the most well studied proteins, yet the genesis of its discovery was not getting much attention so far. Nevertheless, the history of the discovery of insulin is an exemplary of solving observational and scientific riddles, drudgery, patience and even professional turmoil. It is an inspiration for all medical personnel and scientists who are practising in the field of molecular medicine. Additionally, the genetic and epigenetic regulation of different types of diabetes needs to be addressed because of the widespread nature of the disease. Diabetes not only involves genetic predisposition but environmental factors, lifestyle etc. can be the major contributor for its inception. Nonetheless, viral infections at an early age are also found to trigger the onset of type I diabetes. In this review article, the history of the discovery of insulin is detailed along with the justification for the genetic and epigenetic regulatory mechanisms of diabetes and explained how viral infections can also trigger the onset of diabetes.
Collapse
Affiliation(s)
- Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054 India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054 India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054 India
| |
Collapse
|
15
|
T Cell Receptor Genotype and Ubash3a Determine Susceptibility to Rat Autoimmune Diabetes. Genes (Basel) 2021; 12:genes12060852. [PMID: 34205929 PMCID: PMC8227067 DOI: 10.3390/genes12060852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic analyses of human type 1 diabetes (T1D) have yet to reveal a complete pathophysiologic mechanism. Inbred rats with a high-risk class II major histocompatibility complex (MHC) haplotype (RT1B/Du) can illuminate such mechanisms. Using T1D-susceptible LEW.1WR1 rats that express RT1B/Du and a susceptible allele of the Ubd promoter, we demonstrate that germline knockout of Tcrb-V13S1A1, which encodes the Vβ13a T cell receptor β chain, completely prevents diabetes. Using the RT1B/Du-identical LEW.1W rat, which does not develop T1D despite also having the same Tcrb-V13S1A1 β chain gene but a different allele at the Ubd locus, we show that knockout of the Ubash3a regulatory gene renders these resistant rats relatively susceptible to diabetes. In silico structural modeling of the susceptible allele of the Vβ13a TCR and its class II RT1u ligand suggests a mechanism by which a germline TCR β chain gene could promote susceptibility to T1D in the absence of downstream immunoregulation like that provided by UBASH3A. Together these data demonstrate the critical contribution of the Vβ13a TCR to the autoimmune synapse in T1D and the regulation of the response by UBASH3A. These experiments dissect the mechanisms by which MHC class II heterodimers, TCR and regulatory element interact to induce autoimmunity.
Collapse
|
16
|
Smyth LJ, Kilner J, Nair V, Liu H, Brennan E, Kerr K, Sandholm N, Cole J, Dahlström E, Syreeni A, Salem RM, Nelson RG, Looker HC, Wooster C, Anderson K, McKay GJ, Kee F, Young I, Andrews D, Forsblom C, Hirschhorn JN, Godson C, Groop PH, Maxwell AP, Susztak K, Kretzler M, Florez JC, McKnight AJ. Assessment of differentially methylated loci in individuals with end-stage kidney disease attributed to diabetic kidney disease: an exploratory study. Clin Epigenetics 2021; 13:99. [PMID: 33933144 PMCID: PMC8088646 DOI: 10.1186/s13148-021-01081-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A subset of individuals with type 1 diabetes mellitus (T1DM) are predisposed to developing diabetic kidney disease (DKD), the most common cause globally of end-stage kidney disease (ESKD). Emerging evidence suggests epigenetic changes in DNA methylation may have a causal role in both T1DM and DKD. The aim of this exploratory investigation was to assess differences in blood-derived DNA methylation patterns between individuals with T1DM-ESKD and individuals with long-duration T1DM but no evidence of kidney disease upon repeated testing to identify potential blood-based biomarkers. Blood-derived DNA from individuals (107 cases, 253 controls and 14 experimental controls) were bisulphite treated before DNA methylation patterns from both groups were generated and analysed using Illumina's Infinium MethylationEPIC BeadChip arrays (n = 862,927 sites). Differentially methylated CpG sites (dmCpGs) were identified (false discovery rate adjusted p ≤ × 10-8 and fold change ± 2) by comparing methylation levels between ESKD cases and T1DM controls at single site resolution. Gene annotation and functionality was investigated to enrich and rank methylated regions associated with ESKD in T1DM. RESULTS Top-ranked genes within which several dmCpGs were located and supported by functional data with methylation look-ups in other cohorts include: AFF3, ARID5B, CUX1, ELMO1, FKBP5, HDAC4, ITGAL, LY9, PIM1, RUNX3, SEPTIN9 and UPF3A. Top-ranked enrichment pathways included pathways in cancer, TGF-β signalling and Th17 cell differentiation. CONCLUSIONS Epigenetic alterations provide a dynamic link between an individual's genetic background and their environmental exposures. This robust evaluation of DNA methylation in carefully phenotyped individuals has identified biomarkers associated with ESKD, revealing several genes and implicated key pathways associated with ESKD in individuals with T1DM.
Collapse
Affiliation(s)
- L J Smyth
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK.
| | - J Kilner
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - V Nair
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - H Liu
- Department of Department of Medicine/ Nephrology, Department of Genetics, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E Brennan
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - K Kerr
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - N Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Cole
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - E Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - A Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R M Salem
- Department of Family Medicine and Public Health, UC San Diego, San Diego, CA, USA
| | - R G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - H C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - C Wooster
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - K Anderson
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - G J McKay
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - F Kee
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - I Young
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - D Andrews
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - C Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J N Hirschhorn
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - C Godson
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - P H Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - A P Maxwell
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - K Susztak
- Department of Department of Medicine/ Nephrology, Department of Genetics, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - M Kretzler
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - J C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - A J McKnight
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
17
|
Ramos-Rodríguez M, Pérez-González B, Pasquali L. The β-Cell Genomic Landscape in T1D: Implications for Disease Pathogenesis. Curr Diab Rep 2021; 21:1. [PMID: 33387073 PMCID: PMC7778620 DOI: 10.1007/s11892-020-01370-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) develops as a consequence of a combination of genetic predisposition and environmental factors. Combined, these events trigger an autoimmune disease that results in progressive loss of pancreatic β cells, leading to insulin deficiency. This article reviews the current knowledge on the genetics of T1D with a specific focus on genetic variation in pancreatic islet regulatory networks and its implication to T1D risk and disease development. RECENT FINDINGS Accumulating evidence suggest an active role of β cells in T1D pathogenesis. Based on such observation several studies aimed in mapping T1D risk variants acting at the β cell level. Such studies unravel T1D risk loci shared with type 2 diabetes (T2D) and T1D risk variants potentially interfering with β-cell responses to external stimuli. The characterization of regulatory genomics maps of disease-relevant states and cell types can be used to elucidate the mechanistic role of β cells in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Mireia Ramos-Rodríguez
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Beatriz Pérez-González
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Lorenzo Pasquali
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
18
|
Sayed S, Nabi AHMN. Diabetes and Genetics: A Relationship Between Genetic Risk Alleles, Clinical Phenotypes and Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:457-498. [PMID: 32314317 DOI: 10.1007/5584_2020_518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unveiling human genome through successful completion of Human Genome Project and International HapMap Projects with the advent of state of art technologies has shed light on diseases associated genetic determinants. Identification of mutational landscapes such as copy number variation, single nucleotide polymorphisms or variants in different genes and loci have revealed not only genetic risk factors responsible for diseases but also region(s) playing protective roles. Diabetes is a global health concern with two major types - type 1 diabetes (T1D) and type 2 diabetes (T2D). Great progress in understanding the underlying genetic predisposition to T1D and T2D have been made by candidate gene studies, genetic linkage studies, genome wide association studies with substantial number of samples. Genetic information has importance in predicting clinical outcomes. In this review, we focus on recent advancement regarding candidate gene(s) associated with these two traits along with their clinical parameters as well as therapeutic approaches perceived. Understanding genetic architecture of these disease traits relating clinical phenotypes would certainly facilitate population stratification in diagnosing and treating T1D/T2D considering the doses and toxicity of specific drugs.
Collapse
Affiliation(s)
- Shomoita Sayed
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
19
|
Mortimer GL, Gillespie KM. Early Onset of Autoimmune Diabetes in Children with Down Syndrome-Two Separate Aetiologies or an Immune System Pre-Programmed for Autoimmunity? Curr Diab Rep 2020; 20:47. [PMID: 32839884 PMCID: PMC7445156 DOI: 10.1007/s11892-020-01318-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW An increased frequency of autoimmunity in children with Down syndrome (DS) is well described but few studies have investigated the underlying mechanisms. Recent immune system investigation of individuals with DS may shed light on the increased risk of autoimmune conditions including type 1 diabetes. RECENT FINDINGS Diagnosis of type 1 diabetes is accelerated in children with DS with 17% diagnosed at, or under, the age of 2 years compared with only 4% in the same age group in the general population. Counterintuitively, children with DS and diabetes have less human leukocyte antigen (HLA)-mediated susceptibility than age-matched children with autoimmune diabetes from the general population. Early onset of diabetes in DS is further highlighted by the recent description of neonatal cases of diabetes which is autoimmune but not HLA associated. There are two potential explanations for this accelerated onset: (1) an additional chromosome 21 increases the genetic and immunological risk of autoimmune diabetes or (2) there are two separate aetiologies in children with DS and diabetes. Autoimmunity in DS is an under-investigated area. In this review, we will draw on recent mechanistic studies in individuals with DS which shed some light on the increased risk of autoimmunity in children with DS and consider the current support for and against two aetiologies underlying diabetes in children with DS.
Collapse
Affiliation(s)
- Georgina L Mortimer
- Diabetes and Metabolism, Bristol Medical School, Level 2, Learning and Research, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK
| | - Kathleen M Gillespie
- Diabetes and Metabolism, Bristol Medical School, Level 2, Learning and Research, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To provide an updated summary of discoveries made to date resulting from genome-wide association study (GWAS) and sequencing studies, and to discuss the latest loci added to the growing repertoire of genetic signals predisposing to type 1 diabetes (T1D). RECENT FINDINGS Genetic studies have identified over 60 loci associated with T1D susceptibility. GWAS alone does not specifically inform on underlying mechanisms, but in combination with other sequencing and omics-data, advances are being made in our understanding of T1D genetic etiology and pathogenesis. Current knowledge indicates that genetic variation operating in both pancreatic β cells and in immune cells is central in mediating T1D risk. One of the main challenges is to determine how these recently discovered GWAS-implicated variants affect the expression and function of gene products. Once we understand the mechanism of action for disease-causing variants, we will be well placed to apply targeted genomic approaches to impede the premature activation of the immune system in an effort to ultimately prevent the onset of T1D.
Collapse
Affiliation(s)
- Marina Bakay
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA
| | - Rahul Pandey
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA
| | - Struan F A Grant
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Ge Y, Paisie TK, Chen S, Concannon P. UBASH3A Regulates the Synthesis and Dynamics of TCR-CD3 Complexes. THE JOURNAL OF IMMUNOLOGY 2019; 203:2827-2836. [PMID: 31659016 DOI: 10.4049/jimmunol.1801338] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 09/27/2019] [Indexed: 01/14/2023]
Abstract
The TCR-CD3 complex is a multicomponent membrane receptor, the expression of which is tightly regulated in thymocytes, as well as in mature T cells both at steady state and upon stimulation. In this study, we report novel roles for UBASH3A in TCR-CD3 synthesis and turnover. UBASH3A is a negative regulator of T cell function and plays a broad role in autoimmunity. We show that modulation of UBASH3A levels in unstimulated Jurkat cells leads to altered amounts of total cellular CD3 chains and of cell-surface TCR-CD3 complexes; in contrast, UBASH3A does not affect the level of cell-surface CD28, an important T cell costimulatory receptor. Upon TCR engagement, UBASH3A enhances the downmodulation of cell-surface TCR-CD3. Mass spectrometry and protein-protein interaction studies uncover novel associations between UBASH3A and components of several cellular pathways involved in the regulation of TCR-CD3 turnover and dynamics, including endoplasmic reticulum-associated protein degradation, cell motility, endocytosis, and endocytic recycling of membrane receptors. Finally, we demonstrate that the SH3 domain of UBASH3A mediates its binding to CBL-B, an E3 ubiquitin ligase that negatively regulates CD28-mediated signaling and, hence, T cell activation. In summary, this study provides new mechanistic insights into how UBASH3A regulates T cell activation and contributes to autoimmunity. The interaction between UBASH3A and CBL-B may synergistically inhibit T cell function and affect risk for type 1 diabetes, as both genes have been shown to be associated with this autoimmune disease.
Collapse
Affiliation(s)
- Yan Ge
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610; .,Genetics Institute, University of Florida, Gainesville, FL 32610
| | - Taylor K Paisie
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610.,Genetics Institute, University of Florida, Gainesville, FL 32610.,Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL 32610
| | - Sixue Chen
- Genetics Institute, University of Florida, Gainesville, FL 32610.,Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL 32610.,Department of Biology, University of Florida, Gainesville, FL 32611.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611; and.,Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610; .,Genetics Institute, University of Florida, Gainesville, FL 32610
| |
Collapse
|
22
|
Castro-Sánchez P, Aguilar-Sopeña O, Alegre-Gómez S, Ramirez-Munoz R, Roda-Navarro P. Regulation of CD4 + T Cell Signaling and Immunological Synapse by Protein Tyrosine Phosphatases: Molecular Mechanisms in Autoimmunity. Front Immunol 2019; 10:1447. [PMID: 31297117 PMCID: PMC6607956 DOI: 10.3389/fimmu.2019.01447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
T cell activation and effector function is mediated by the formation of a long-lasting interaction established between T cells and antigen-presenting cells (APCs) called immunological synapse (IS). During T cell activation, different signaling molecules as well as the cytoskeleton and the endosomal compartment are polarized to the IS. This molecular dynamics is tightly regulated by phosphorylation networks, which are controlled by protein tyrosine phosphatases (PTPs). While some PTPs are known to be important regulators of adhesion, ligand discrimination or the stimulation threshold, there is still little information about the regulatory role of PTPs in cytoskeleton rearrangements and endosomal compartment dynamics. Besides, spatial and temporal regulation of PTPs and substrates at the IS is only barely known. Consistent with an important role of PTPs in T cell activation, multiple mutations as well as altered expression levels or dynamic behaviors have been associated with autoimmune diseases. However, the precise mechanism for the regulation of T cell activation and effector function by PTPs in health and autoimmunity is not fully understood. Herein, we review the current knowledge about the regulatory role of PTPs in CD4+ T cell activation, IS assembly and effector function. The potential molecular mechanisms mediating the action of these enzymes in autoimmune disorders are discussed.
Collapse
Affiliation(s)
- Patricia Castro-Sánchez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Oscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Sergio Alegre-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Rocio Ramirez-Munoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| |
Collapse
|
23
|
Kong MS, Hashimoto-Tane A, Kawashima Y, Sakuma M, Yokosuka T, Kometani K, Onishi R, Carpino N, Ohara O, Kurosaki T, Phua KK, Saito T. Inhibition of T cell activation and function by the adaptor protein CIN85. Sci Signal 2019; 12:12/567/eaav4373. [PMID: 30723173 DOI: 10.1126/scisignal.aav4373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cell activation is initiated by signaling molecules downstream of the T cell receptor (TCR) that are organized by adaptor proteins. CIN85 (Cbl-interacting protein of 85 kDa) is one such adaptor protein. Here, we showed that CIN85 limited T cell responses to TCR stimulation. Compared to activated wild-type (WT) T cells, those that lacked CIN85 produced more IL-2 and exhibited greater proliferation. After stimulation of WT T cells with their cognate antigen, CIN85 was recruited to the TCR signaling complex. Early TCR signaling events, such as phosphorylation of ζ-chain-associated protein kinase 70 (Zap70), Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP76), and extracellular signal-regulated kinase (Erk), were enhanced in CIN85-deficient T cells. The inhibitory function of CIN85 required the SH3 and PR regions of the adaptor, which associated with the phosphatase suppressor of TCR signaling-2 (Sts-2) after TCR stimulation. Together, our data suggest that CIN85 is recruited to the TCR signaling complex and mediates inhibition of T cell activation through its association with Sts-2.
Collapse
Affiliation(s)
- Mei Suen Kong
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Institute for Research in Molecular Medicine, Main Campus, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Akiko Hashimoto-Tane
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Kawashima
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Machie Sakuma
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tadashi Yokosuka
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Reiko Onishi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Nick Carpino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-8434, USA
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kia Kien Phua
- Institute for Research in Molecular Medicine, Main Campus, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan. .,Cell Signaling, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Redondo MJ, Steck AK, Pugliese A. Genetics of type 1 diabetes. Pediatr Diabetes 2018; 19:346-353. [PMID: 29094512 PMCID: PMC5918237 DOI: 10.1111/pedi.12597] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/23/2022] Open
Abstract
Type 1 diabetes (T1D) results from immune-mediated loss of pancreatic beta cells leading to insulin deficiency. It is the most common form of diabetes in children, and its incidence is on the rise. This article reviews the current knowledge on the genetics of T1D. In particular, we discuss the influence of HLA and non-HLA genes on T1D risk and disease progression through the preclinical stages of the disease, and the development of genetic scores that can be applied to disease prediction. Racial/ethnic differences, challenges and future directions in the genetics of T1D are also discussed.
Collapse
Affiliation(s)
- Maria J. Redondo
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Andrea K. Steck
- University of Colorado School of Medicine, Barbara Davis Center for Childhood Diabetes, Aurora, CO, 80045
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Endocrinology and Metabolism, Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
25
|
Ge Y, Concannon P. Molecular-genetic characterization of common, noncoding UBASH3A variants associated with type 1 diabetes. Eur J Hum Genet 2018; 26:1060-1064. [PMID: 29491471 DOI: 10.1038/s41431-018-0123-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 11/09/2022] Open
Abstract
Genome-wide association and fine-mapping studies have identified over 40 susceptibility regions for type 1 diabetes (T1D), a common autoimmune disease; however, most of the disease-associated variants are noncoding, and it remains a challenge to understand their biological contributions to T1D pathogenesis. One identified T1D risk locus is located at chromosome 21q22.3 where the most likely candidate gene is UBASH3A, a negative regulator of NF-κB signaling. Various noncoding variants in UBASH3A have been shown to be associated with T1D or other autoimmune diseases. Here we investigated four such SNPs-rs11203202, rs80054410, rs11203203, and rs1893592. We discovered a novel role for rs1893592 in T1D and showed that its minor allele protects against T1D. Our haplotype analysis identified three T1D-associated UBASH3A haplotypes, and revealed that risk for T1D is affected by additive effects of these four UBASH3A variants. In human primary CD4+ T cells, upon T-cell receptor stimulation, the minor allele of rs1893592 was associated with both a significant reduction in the overall mRNA levels of UBASH3A, and an increase in the proportion of a normally occurring, but low-abundant, UBASH3A transcript that retains intron-9 sequences and cannot produce full-length UBASH3A protein. This reduction in UBASH3A, as a consequence of the minor allele at rs1893592, resulted in increased secretion of IL-2, a key cytokine that is required for T-cell activation and function but is deficient in some T1D subjects. Our study provides new mechanistic insights into how rs1893592 affects T1D and autoimmunity, and how interactions between multiple T1D-associated, noncoding variants influence the disease risk.
Collapse
Affiliation(s)
- Yan Ge
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA.,Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA. .,Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
26
|
Pociot F. Type 1 diabetes genome-wide association studies: not to be lost in translation. Clin Transl Immunology 2017; 6:e162. [PMID: 29333267 PMCID: PMC5750451 DOI: 10.1038/cti.2017.51] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Genetic studies have identified >60 loci associated with the risk of developing type 1 diabetes (T1D). The vast majority of these are identified by genome-wide association studies (GWAS) using large case-control cohorts of European ancestry. More than 80% of the heritability of T1D can be explained by GWAS data in this population group. However, with few exceptions, their individual contribution to T1D risk is low and understanding their function in disease biology remains a huge challenge. GWAS on its own does not inform us in detail on disease mechanisms, but the combination of GWAS data with other omics-data is beginning to advance our understanding of T1D etiology and pathogenesis. Current knowledge supports the notion that genetic variation in both pancreatic β cells and in immune cells is central in mediating T1D risk. Advances, perspectives and limitations of GWAS are discussed in this review.
Collapse
Affiliation(s)
- Flemming Pociot
- Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
27
|
Newman JRB, Conesa A, Mika M, New FN, Onengut-Gumuscu S, Atkinson MA, Rich SS, McIntyre LM, Concannon P. Disease-specific biases in alternative splicing and tissue-specific dysregulation revealed by multitissue profiling of lymphocyte gene expression in type 1 diabetes. Genome Res 2017; 27:1807-1815. [PMID: 29025893 PMCID: PMC5668939 DOI: 10.1101/gr.217984.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
Abstract
Genome-wide association studies (GWAS) have identified multiple, shared allelic associations with many autoimmune diseases. However, the pathogenic contributions of variants residing in risk loci remain unresolved. The location of the majority of shared disease-associated variants in noncoding regions suggests they contribute to risk of autoimmunity through effects on gene expression in the immune system. In the current study, we test this hypothesis by applying RNA sequencing to CD4+, CD8+, and CD19+ lymphocyte populations isolated from 81 subjects with type 1 diabetes (T1D). We characterize and compare the expression patterns across these cell types for three gene sets: all genes, the set of genes implicated in autoimmune disease risk by GWAS, and the subset of these genes specifically implicated in T1D. We performed RNA sequencing and aligned the reads to both the human reference genome and a catalog of all possible splicing events developed from the genome, thereby providing a comprehensive evaluation of the roles of gene expression and alternative splicing (AS) in autoimmunity. Autoimmune candidate genes displayed greater expression specificity in the three lymphocyte populations relative to other genes, with significantly increased levels of splicing events, particularly those predicted to have substantial effects on protein isoform structure and function (e.g., intron retention, exon skipping). The majority of single-nucleotide polymorphisms within T1D-associated loci were also associated with one or more cis-expression quantitative trait loci (cis-eQTLs) and/or splicing eQTLs. Our findings highlight a substantial, and previously underrecognized, role for AS in the pathogenesis of autoimmune disorders and particularly for T1D.
Collapse
Affiliation(s)
- Jeremy R B Newman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, USA
| | - Ana Conesa
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Matthew Mika
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Felicia N New
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Mark A Atkinson
- Diabetes Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Stephen S Rich
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
28
|
Okabe N, Ohmura K, Katayama M, Akizuki S, Carpino N, Murakami K, Nakashima R, Hashimoto M, Imura Y, Yoshifuji H, Tanaka M, Mimori T. Suppressor of TCR signaling-2 (STS-2) suppresses arthritis development in mice. Mod Rheumatol 2017; 28:626-636. [PMID: 28972439 DOI: 10.1080/14397595.2017.1380249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Suppressor of TCR signaling-2 (STS-2) is one of the RA susceptibility genes identified in genome-wide association studies (GWAS). We tried to verify the involvement of STS-2 on the development of autoimmune arthritis in a mouse model. METHODS STS-2 knock-out (KO) and wild type (WT) mice were immunized with chicken type II collagen (CII). For CD4+ helper T cell (Th) subset analysis, intracellular cytokines in splenocytes and lymph node cells were stained and analyzed by flow cytometry. Regulatory T cell (Treg) function was analyzed by co-culturing effector CD4+T cells and Tregs collected from non-immunized mice. RESULTS CII-immunized STS-2 KO mice developed arthritis more frequently than WT mice. Although the T cell activation profile and Th subset in spleen and LNs were similar between STS-2 KO and WT mice, STS-2 KO mice showed increased IL-2-producing CD4+T cells in spleen when compared with WT mice. Accordingly, STS-2 KO CD4+T cells promoted IL-2 production by TCR stimulation. However, STS-2 KO Tregs normally suppressed T cell proliferation. CONCLUSION We proved that STS-2 is involved in the arthritis development by collagen-induced arthritis. Higher IL-2 production from STS-2 KO T cells is suggested to have a main pathogenic role in arthritis development.
Collapse
Affiliation(s)
- Namiko Okabe
- a Department of Rheumatology and Clinical Immunology , Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Koichiro Ohmura
- a Department of Rheumatology and Clinical Immunology , Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Masaki Katayama
- b Department of Rheumatology and Clinical Immunology , Osaka Red Cross Hospital , Osaka , Japan
| | - Shuji Akizuki
- a Department of Rheumatology and Clinical Immunology , Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Nick Carpino
- c Department of Molecular Genetics and Microbiology Life Sciences , Stony Brook University , New York , NY , USA
| | - Kosaku Murakami
- a Department of Rheumatology and Clinical Immunology , Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Ran Nakashima
- a Department of Rheumatology and Clinical Immunology , Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Motomu Hashimoto
- d Department of the Control for Rheumatic Diseases , Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Yoshitaka Imura
- a Department of Rheumatology and Clinical Immunology , Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Hajime Yoshifuji
- a Department of Rheumatology and Clinical Immunology , Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Masao Tanaka
- d Department of the Control for Rheumatic Diseases , Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Tsuneyo Mimori
- a Department of Rheumatology and Clinical Immunology , Graduate School of Medicine, Kyoto University , Kyoto , Japan
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The genetic basis of type 1 diabetes (T1D) is being characterized through DNA sequence variation and cell type specificity. This review discusses the current understanding of the genes and variants implicated in risk of T1D and how genetic information can be used in prediction, intervention and components of clinical care. RECENT FINDINGS Fine mapping and functional studies has provided resolution of the heritable basis of T1D risk, incorporating novel insights on the dominant role of human leukocyte antigen (HLA) genes as well as the lesser impact of non-HLA genes. Evaluation of T1D-associated single nucleotide polymorphisms (SNPs), there is enrichment of genetic effects restricted to specific immune cell types (CD4 and CD8 T cells, CD19 B cells and CD34 stem cells), suggesting pathways to improved prediction. In addition, T1D-associated SNPs have been used to generate genetic risk scores (GRS) as a tool to distinguish T1D from type 2 diabetes (T2D) and to provide prediagnostic data to target those for autoimmunity screening (e.g. islet autoantibodies) as a prelude for continuous monitoring and entry into intervention trials. SUMMARY Genetic susceptibility accounts for nearly one-half of the risk for T1D. Although the T1D-associated SNPs in white populations account for nearly 90% of the genetic risk, with high sensitivity and specificity, the low prevalence of T1D makes the T1D GRS of limited utility. However, identifying those with highest genetic risk may permit early and targeted immune monitoring to diagnose T1D months prior to clinical onset.
Collapse
Affiliation(s)
- Stephen S Rich
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
30
|
Ge Y, Paisie TK, Newman JRB, McIntyre LM, Concannon P. UBASH3A Mediates Risk for Type 1 Diabetes Through Inhibition of T-Cell Receptor-Induced NF-κB Signaling. Diabetes 2017; 66:2033-2043. [PMID: 28607106 PMCID: PMC5482087 DOI: 10.2337/db16-1023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/20/2017] [Indexed: 01/19/2023]
Abstract
Although over 40 type 1 diabetes (T1D) risk loci have been mapped in humans, the causative genes and variants for T1D are largely unknown. Here, we investigated a candidate gene in the 21q22.3 risk locus-UBASH3A, which is primarily expressed in T cells where it is thought to play a largely redundant role. Genetic variants in UBASH3A have been shown to be associated with several autoimmune diseases in addition to T1D. However, the molecular mechanism underlying these genetic associations is unresolved. Our study reveals a previously unrecognized role of UBASH3A in human T cells: UBASH3A attenuates the NF-κB signal transduction upon T-cell receptor (TCR) stimulation by specifically suppressing the activation of the IκB kinase complex. We identify novel interactions of UBASH3A with nondegradative polyubiquitin chains, TAK1 and NEMO, suggesting that UBASH3A regulates the NF-κB signaling pathway by an ubiquitin-dependent mechanism. Finally, we show that risk alleles at rs11203203 and rs80054410, two T1D-associated variants in UBASH3A, increase UBASH3A expression in human primary CD4+ T cells upon TCR stimulation, inhibiting NF-κB signaling via its effects on the IκB kinase complex and resulting in reduced IL2 gene expression.
Collapse
Affiliation(s)
- Yan Ge
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
- Genetics Institute, University of Florida, Gainesville, FL
| | - Taylor K Paisie
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
- Genetics Institute, University of Florida, Gainesville, FL
- Genetics & Genomics Graduate Program, University of Florida, Gainesville, FL
| | - Jeremy R B Newman
- Genetics Institute, University of Florida, Gainesville, FL
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL
| | - Lauren M McIntyre
- Genetics Institute, University of Florida, Gainesville, FL
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
- Genetics Institute, University of Florida, Gainesville, FL
| |
Collapse
|
31
|
Marwaha AK, Panagiotopoulos C, Biggs CM, Staiger S, Del Bel KL, Hirschfeld AF, Priatel JJ, Turvey SE, Tan R. Pre-diagnostic genotyping identifies T1D subjects with impaired Treg IL-2 signaling and an elevated proportion of FOXP3 +IL-17 + cells. Genes Immun 2017; 18:15-21. [PMID: 28053319 PMCID: PMC5843473 DOI: 10.1038/gene.2016.44] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023]
Abstract
T-regulatory cells (Tregs) are essential for immune tolerance, and animal studies implicate their dysfunction in type 1 diabetes (T1D) pathogenesis. Tregs require interleukin-2 (IL-2) for their suppressive function, and variants in IL-2/IL-2R pathway genes have been associated with T1D. We previously reported that recent-onset T1D subjects have an increased population of FOXP3lo Tregs that secrete the pro-inflammatory cytokine, interleukin-17 (IL-17). We hypothesize that IL-2 signaling defects may drive T1D development by skewing protective Tregs towards an inflammatory Th17 phenotype. Overall, we found that the proportion of FOXP3+IL-17+ cells in T1D subjects pre-diagnosis was unchanged compared with healthy controls. However, stratification by IL2RA single-nucleotide polymorphisms revealed that T1D subjects with the rs3118470 CC risk variant have Tregs with IL-2 signaling defects and an increased proportion of FOXP3+IL-17+ cells before diagnosis. These data suggest a potential mechanism for genetically controlled loss of Treg function via dysfunctional IL-2 signaling in T1D.
Collapse
Affiliation(s)
- AK Marwaha
- Department of Pathology and Laboratory Medicine, University of British Columbia and Child and Family Research Institute, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - C Panagiotopoulos
- Department of Pediatrics, University of British Columbia and Endocrine and Diabetes Unit, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - CM Biggs
- Department of Pathology and Laboratory Medicine, University of British Columbia and Child and Family Research Institute, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - S Staiger
- Department of Pathology and Laboratory Medicine, University of British Columbia and Child and Family Research Institute, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - KL Del Bel
- Department of Pediatrics, University of British Columbia Division of Allergy and Immunology, Vancouver, BC, Canada
| | - AF Hirschfeld
- Department of Pediatrics, University of British Columbia Division of Allergy and Immunology, Vancouver, BC, Canada
| | - JJ Priatel
- Department of Pathology and Laboratory Medicine, University of British Columbia and Child and Family Research Institute, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - SE Turvey
- Department of Pediatrics, University of British Columbia Division of Allergy and Immunology, Vancouver, BC, Canada
| | - R Tan
- Department of Pathology and Laboratory Medicine, University of British Columbia and Child and Family Research Institute, British Columbia Children’s Hospital, Vancouver, BC, Canada
- Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Doha, Qatar
| |
Collapse
|
32
|
Shen C, Gao J, Sheng Y, Dou J, Zhou F, Zheng X, Ko R, Tang X, Zhu C, Yin X, Sun L, Cui Y, Zhang X. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci. Front Genet 2016; 7:3. [PMID: 26870082 PMCID: PMC4740779 DOI: 10.3389/fgene.2016.00003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/11/2016] [Indexed: 01/15/2023] Open
Abstract
Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo.
Collapse
Affiliation(s)
- Changbing Shen
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University Hefei, China
| | - Yujun Sheng
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Jinfa Dou
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Fusheng Zhou
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Xiaodong Zheng
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Randy Ko
- Department of Biochemistry, University of New Mexico Albuquerque, NM, USA
| | - Xianfa Tang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Caihong Zhu
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Xianyong Yin
- Department of Genetics and Renaissance Computing Institute, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Liangdan Sun
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital Beijing, China
| | - Xuejun Zhang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical UniversityHefei, China; Department of Dermatology, The Second Affiliated Hospital, Anhui Medical UniversityHefei, China
| |
Collapse
|
33
|
Looney BM, Xia CQ, Concannon P, Ostrov DA, Clare-Salzler MJ. Effects of type 1 diabetes-associated IFIH1 polymorphisms on MDA5 function and expression. Curr Diab Rep 2015; 15:96. [PMID: 26385483 DOI: 10.1007/s11892-015-0656-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent evidence has highlighted the role of the innate immune system in type 1 diabetes (T1D) pathogenesis. Specifically, aberrant activation of the interferon response prior to seroconversion of T1D-associated autoantibodies supports a role for the interferon response as a precipitating event toward activation of autoimmunity. Melanoma differentiation-associated protein 5 (MDA5), encoded by IFIH1, mediates the innate immune system's interferon response to certain viral species that form double-stranded RNA (dsRNA), the MDA5 ligand, during their life cycle. Extensive research has associated single nucleotide polymorphisms (SNPs) within the coding region of IFIH1 with T1D. This review discusses the different risk and protective IFIH1 alleles in the context of recent structural and functional analysis that relate to MDA5 regulation of interferon responses. These studies have provided a functional hypothesis for IFIH1 T1D-associated SNPs' effects on MDA5-mediated interferon responses as well as supporting the genome-wide association (GWA) studies that first associated IFIH1 with T1D.
Collapse
Affiliation(s)
- Benjamin M Looney
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine Interdisciplinary Program in Biomedical Sciences, University of Florida, 1600 SW Archer Rd., Gainesville, FL, 32610, USA.
| | - Chang-Qing Xia
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd., Gainesville, FL, 32610, USA.
| | - Patrick Concannon
- University of Florida Genetics Institute, 2033 Mowry Rd., P.O. Box 103610, Gainesville, FL, 32611, USA.
| | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 2033 Mowry Rd., P.O. Box 103633, Gainesville, FL, 32611, USA.
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 2033 Mowry Rd., P.O. Box 103633, Gainesville, FL, 32611, USA.
- Center for Immunology and Transplantation, University of Florida, 1600 SW Archer Rd., P.O. Box 100275, Gainesville, FL, 32610, USA.
| |
Collapse
|
34
|
Roizen JD, Bradfield JP, Hakonarson H. Progress in understanding type 1 diabetes through its genetic overlap with other autoimmune diseases. Curr Diab Rep 2015; 15:102. [PMID: 26454449 PMCID: PMC5585867 DOI: 10.1007/s11892-015-0668-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is the most common autoimmune disease in pediatrics with a prevalence of roughly 1 in 500 children in the USA. Genome-wide association studies have identified more than 50 variants associated with increased risk for type 1 diabetes. Comparison of these variants with those identified in other autoimmune diseases reveals three important findings: (1) there is a high degree of overlap in implicated variants in diseases with similar pathophysiology, (2) in diseases with differing pathophysiology the same variants are often implicated in opposite roles, (3) in diseases with differing pathophysiology that have many non-overlapping or oppositely implicated variants there are still several variants which are overlapping or shared. Thus, the genetic overlap between T1DM and other autoimmune diseases forms the basis for our understanding of druggable targets in type 1 diabetes.
Collapse
Affiliation(s)
- Jeffrey D Roizen
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, 34th and Civic Center Blvd. 11NW, Philadelphia, PA, 19103, USA.
- Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Jonathan P Bradfield
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Suite 1014H, Philadelphia, PA, 19104, USA.
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Suite 1014H, Philadelphia, PA, 19104, USA.
- Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
New approaches for predicting T cell-mediated drug reactions: A role for inducible and potentially preventable autoimmunity. J Allergy Clin Immunol 2015; 136:252-7. [PMID: 26254052 DOI: 10.1016/j.jaci.2015.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Adverse drug reactions (ADRs) are commonplace and occur when a drug binds to its intended pharmacologic target (type A ADR) or an unintended target (type B ADR). Immunologically mediated type B ADRs, such as drug hypersensitivity syndrome, drug reaction with eosinophilia and systemic symptoms syndrome, and Stevens-Johnson syndrome/toxic epidermal necrolysis, can be severe and result in a diverse set of clinical manifestations that include fever and rash, as well as multiple organ failure (liver, kidney, lungs, and/or heart) in the case of drug hypersensitivity syndrome. There is increasing evidence that specific HLA alleles influence the risk of drug reactions. Several features of T cell-mediated ADRs are strikingly similar to those displayed by patients with autoimmune diseases like type I diabetes, such as strong HLA association, organ-specific adaptive immune responses, viral involvement, and activation of innate immunity. There is a need to better predict patient populations at risk for immunologically mediated type B ADRs. Because methods to predict type 1 diabetes by using genetic and immunologic biomarkers have been developed to a high level of accuracy (predicting 100% of subjects likely to progress), new research strategies based on these methods might also improve the ability to predict drug hypersensitivity.
Collapse
|
36
|
Association of UBASH3A gene polymorphisms and systemic lupus erythematosus in a Chinese population. Gene 2015; 565:116-21. [DOI: 10.1016/j.gene.2015.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/18/2015] [Accepted: 04/01/2015] [Indexed: 01/01/2023]
|
37
|
Regulatory vs. inflammatory cytokine T-cell responses to mutated insulin peptides in healthy and type 1 diabetic subjects. Proc Natl Acad Sci U S A 2015; 112:4429-34. [PMID: 25831495 DOI: 10.1073/pnas.1502967112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Certain class II MHC (MHCII) alleles in mice and humans confer risk for or protection from type 1 diabetes (T1D). Insulin is a major autoantigen in T1D, but how its peptides are presented to CD4 T cells by MHCII risk alleles has been controversial. In the mouse model of T1D, CD4 T cells respond to insulin B-chain peptide (B:9-23) mimotopes engineered to bind the mouse MHCII molecule, IA(g7), in an unfavorable position or register. Because of the similarities between IA(g7) and human HLA-DQ T1D risk alleles, we examined control and T1D subjects with these risk alleles for CD4 T-cell responses to the same natural B:9-23 peptide and mimotopes. A high proportion of new-onset T1D subjects mounted an inflammatory IFN-γ response much more frequently to one of the mimotope peptides than to the natural peptide. Surprisingly, the control subjects bearing an HLA-DQ risk allele also did. However, these control subjects, especially those with only one HLA-DQ risk allele, very frequently made an IL-10 response, a cytokine associated with regulatory T cells. T1D subjects with established disease also responded to the mimotope rather than the natural B:9-23 peptide in proliferation assays and the proliferating cells were highly enriched in certain T-cell receptor sequences. Our results suggest that the risk of T1D may be related to how an HLA-DQ genotype determines the balance of T-cell inflammatory vs. regulatory responses to insulin, having important implications for the use and monitoring of insulin-specific therapies to prevent diabetes onset.
Collapse
|
38
|
Moons T, De Hert M, Kenis G, Viechtbauer W, van Os J, Gohlke H, Claes S, van Winkel R. No association between genetic or epigenetic variation in insulin growth factors and antipsychotic-induced metabolic disturbances in a cross-sectional sample. Pharmacogenomics 2015; 15:951-62. [PMID: 24956249 DOI: 10.2217/pgs.14.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM Second-generation antipsychotics (SGA) are known to induce metabolic disturbances. Genetic pathways, such as the IGF pathway could be associated with increased metabolic syndrome (MetS). Additionally, IGF2 methylation varies as a function of environmental influences and is associated with schizophrenia and MetS. The current study aims to evaluate whether genetic and epigenetic variation in genes of the IGF pathway are associated with metabolic disturbances in patients under treatment with SGAs. METHODS Cross-sectional metabolic data from 438 patients with schizophrenia spectrum disorder was analyzed. Using the Sequenom MassARRAY iPLEX(TM) platform, 27 SNPs of the IGF1 and IGF2 genes and the IGF receptors IGF1R and IGF2R were genotyped. Methylation status of seven IGF2 CpG dinucleotides was evaluated using a Sequenom MALDI-TOF spectrometer. RESULTS & CONCLUSION There was a significant association between IGF2 methylation and genotype, but no significant association between genetic or epigenetic variability and metabolic parameters in the present study.
Collapse
Affiliation(s)
- Tim Moons
- GRASP Research Unit, University Psychiatric Centre Catholic University Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
39
|
A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am J Hum Genet 2015; 96:275-82. [PMID: 25620204 DOI: 10.1016/j.ajhg.2014.12.014] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/11/2014] [Indexed: 02/02/2023] Open
Abstract
Singleton-Merten syndrome (SMS) is an infrequently described autosomal-dominant disorder characterized by early and extreme aortic and valvular calcification, dental anomalies (early-onset periodontitis and root resorption), osteopenia, and acro-osteolysis. To determine the molecular etiology of this disease, we performed whole-exome sequencing and targeted Sanger sequencing. We identified a common missense mutation, c.2465G>A (p.Arg822Gln), in interferon induced with helicase C domain 1 (IFIH1, encoding melanoma differentiation-associated protein 5 [MDA5]) in four SMS subjects from two families and a simplex case. IFIH1 has been linked to a number of autoimmune disorders, including Aicardi-Goutières syndrome. Immunohistochemistry demonstrated the localization of MDA5 in all affected target tissues. In vitro functional analysis revealed that the IFIH1 c.2465G>A mutation enhanced MDA5 function in interferon beta induction. Interferon signature genes were upregulated in SMS individuals' blood and dental cells. Our data identify a gain-of-function IFIH1 mutation as causing SMS and leading to early arterial calcification and dental inflammation and resorption.
Collapse
|
40
|
Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev 2015; 67:462-504. [PMID: 25829385 PMCID: PMC4394686 DOI: 10.1124/pr.114.009928] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.
Collapse
Affiliation(s)
- Clare E Bryant
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Selinda Orr
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Brian Ferguson
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Martyn F Symmons
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Joseph P Boyle
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Tom P Monie
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| |
Collapse
|
41
|
Cooper NJ, Shtir CJ, Smyth DJ, Guo H, Swafford AD, Zanda M, Hurles ME, Walker NM, Plagnol V, Cooper JD, Howson JMM, Burren OS, Onengut-Gumuscu S, Rich SS, Todd JA. Detection and correction of artefacts in estimation of rare copy number variants and analysis of rare deletions in type 1 diabetes. Hum Mol Genet 2014; 24:1774-90. [PMID: 25424174 PMCID: PMC4381751 DOI: 10.1093/hmg/ddu581] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Copy number variants (CNVs) have been proposed as a possible source of ‘missing heritability’ in complex human diseases. Two studies of type 1 diabetes (T1D) found null associations with common copy number polymorphisms, but CNVs of low frequency and high penetrance could still play a role. We used the Log-R-ratio intensity data from a dense single nucleotide polymorphism (SNP) array, ImmunoChip, to detect rare CNV deletions (rDELs) and duplications (rDUPs) in 6808 T1D cases, 9954 controls and 2206 families with T1D-affected offspring. Initial analyses detected CNV associations. However, these were shown to be false-positive findings, failing replication with polymerase chain reaction. We developed a pipeline of quality control (QC) tests that were calibrated using systematic testing of sensitivity and specificity. The case–control odds ratios (OR) of CNV burden on T1D risk resulting from this QC pipeline converged on unity, suggesting no global frequency difference in rDELs or rDUPs. There was evidence that deletions could impact T1D risk for a small minority of cases, with enrichment for rDELs longer than 400 kb (OR = 1.57, P = 0.005). There were also 18 de novo rDELs detected in affected offspring but none for unaffected siblings (P = 0.03). No specific CNV regions showed robust evidence for association with T1D, although frequencies were lower than expected (most less than 0.1%), substantially reducing statistical power, which was examined in detail. We present an R-package, plumbCNV, which provides an automated approach for QC and detection of rare CNVs that can facilitate equivalent analyses of large-scale SNP array datasets.
Collapse
Affiliation(s)
- Nicholas J Cooper
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Corina J Shtir
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Deborah J Smyth
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Hui Guo
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Austin D Swafford
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Manuela Zanda
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK, University College London, Darwin Building, London WC1E 6BT, UK
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Neil M Walker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Vincent Plagnol
- University College London, Darwin Building, London WC1E 6BT, UK
| | - Jason D Cooper
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Joanna M M Howson
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK, Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Oliver S Burren
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, West Complex, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephen S Rich
- Center for Public Health Genomics, West Complex, University of Virginia, Charlottesville, VA 22908, USA
| | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK,
| |
Collapse
|
42
|
Current aspects of vitiligo genetics. Postepy Dermatol Alergol 2014; 31:247-55. [PMID: 25254010 PMCID: PMC4171675 DOI: 10.5114/pdia.2014.43497] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/17/2014] [Accepted: 05/27/2014] [Indexed: 12/24/2022] Open
Abstract
Vitiligo is a common acquired depigmentation disorder of the skin manifested by the presence of white macules. The disease occurs at a frequency of approximately 1–4% of the world population. Currently, the most popular theory of vitiligo development is a multifactorial hypothesis according to which genetic conditions predispose vitiligo macules to occur as a result of specific environmental factors. According to the genetic hypothesis, vitiligo inheritance is multigenic. Genetic studies conducted so far concern patients with non-segmental vitiligo. There are three basic techniques of genetic studies: candidate gene association studies, genomewide linkage studies and genome-wide association studies (GWAS). The GWAS are the “gold standard” for detecting susceptibility genes. Up to now, approximately 36 convincing non-segmental vitiligo susceptibility loci have been identified. Approximately 90% of them encode immunoregulatory proteins, while approximately 10% encode melanocyte proteins. The existence of various associations between vitiligo and other autoimmune diseases may provide new knowledge on the causes of many disorders. Examples include the inverse relationship between vitiligo and melanoma and association of vitiligo with other autoimmune diseases. The main goal of all researches is to find new, optimal therapeutic strategies for vitiligo and other autoimmune diseases.
Collapse
|
43
|
Cai T, Wang X, Muhali FS, Song R, Shi X, Jiang W, Xiao L, Li D, Zhang J. Lack of association between polymorphisms in the UBASH3A gene and autoimmune thyroid disease: a case control study. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2014; 58:640-645. [PMID: 25211447 DOI: 10.1590/0004-2730000003209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/10/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to investigate UBASH3A gene variation association with autoimmune thyroid disease and clinical features in a Chinese Han population. SUBJECTS AND METHODS A total of 667 AITD patients (417 GD and 250 HT) and 301 healthy controls were genotyped for two single nucleotide polymorphisms (SNPs) rs11203203, rs3788013 of UBASH3A gene, utilizing the Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometer (MALDI-TOF-MS) Platform. RESULTS Between the control group and AITD, GD and HT group, no statistically significant difference was observed in the genotypic and allelic frequencies of the two SNPs. There was no significant difference in allelic frequencies of the two SNPs between GD with and without ophthalmopathy. There was no significant difference in haplotype distributions between the control group and AITD, GD or HT group. CONCLUSION Rs11203203 and rs3788013 in UBASH3A gene may not be associated with AITD patients in Chinese Han population.
Collapse
Affiliation(s)
- TianTian Cai
- Clinical Research Center, The First Affiliated Hospital of Medical School, Xi?an Jiaotong University, Xi?an, China
| | - Xuan Wang
- Clinical Research Center, The First Affiliated Hospital of Medical School, Xi?an Jiaotong University, Xi?an, China
| | - Fatuma-Said Muhali
- Clinical Research Center, The First Affiliated Hospital of Medical School, Xi?an Jiaotong University, Xi?an, China
| | - RongHua Song
- Clinical Research Center, The First Affiliated Hospital of Medical School, Xi?an Jiaotong University, Xi?an, China
| | - XiaoHong Shi
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - WenJuan Jiang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Ling Xiao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - DanFeng Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - JinAn Zhang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
44
|
Members of the novel UBASH3/STS/TULA family of cellular regulators suppress T-cell-driven inflammatory responses in vivo. Immunol Cell Biol 2014; 92:837-50. [PMID: 25047644 DOI: 10.1038/icb.2014.60] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 01/03/2023]
Abstract
The UBASH3/STS/TULA family consists of two members sharing substantial homology and a similar multi-domain architecture, which includes a C-terminal histidine phosphatase domain capable of dephosphorylating phosphotyrosine-containing substrates. TULA-family proteins act as downregulators of receptor-induced activation in several cell types, including T cells and platelets. Deletion of both family members in mice has been shown to result in hyperresponsiveness of T cells to T-cell receptor (TCR)/CD3 complex engagement, but little is known about the biological consequences of double knockout (dKO) and especially of either single KO (sKO). We elucidated the biological consequences of the lack of TULA-family proteins in dKO and TULA and TULA-2 sKO animals. In order to do so, we examined immune responses in Trinitrobenzene sulfonic acid (TNBS)-induced colitis, a mouse model of human inflammatory bowel disease, which is characterized by the involvement of multiple cell types, of which T cells have a crucial role, in the development of a pathological inflammatory condition. Our data indicate that TNBS treatment upregulates T-cell responses in all KO mice studied to a significantly higher degree than in wild-type mice. Although the lack of either TULA-family member exacerbates inflammation and T-cell responses in a specific fashion, the lack of both TULA and TULA-2 in dKO exerts a higher effect than the lack of a single family member in TULA and TULA-2 sKO. Analysis of T-cell responses and TCR-mediated signaling argues that the proteins investigated affect T-cell signaling by regulating phosphorylation of Zap-70, a key protein tyrosine kinase.
Collapse
|
45
|
Xie Z, Chang C, Zhou Z. Molecular Mechanisms in Autoimmune Type 1 Diabetes: a Critical Review. Clin Rev Allergy Immunol 2014; 47:174-92. [DOI: 10.1007/s12016-014-8422-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Zouk H, D'Hennezel E, Du X, Ounissi-Benkalha H, Piccirillo CA, Polychronakos C. Functional evaluation of the role of C-type lectin domain family 16A at the chromosome 16p13 locus. Clin Exp Immunol 2014; 175:485-97. [PMID: 24237155 DOI: 10.1111/cei.12240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2013] [Indexed: 01/17/2023] Open
Abstract
The type 1 diabetes-associated 16p13 locus contains the CLEC16A gene. Its preferential immune cell expression suggests involvement in autoimmunity. Given its elevated expression in dendritic and B cells - known professional antigen-presenting cells (APCs) - we hypothesize that C-type lectin domain family 16 member A (CLEC16A) may be involved in T cell co-stimulation and consequent activation and proliferation. We also sought to identify CLEC16A's subcellular localization. The effect of the CLEC16A knock-down (KD) on B cell co-stimulation and activation of T cells was tested in human lymphoblastoid cell lines (LCLs) by co-culture with CD4(+) T cells. T cell activation and proliferation were determined by flow-cytometric analysis of CD69 and CD25 expression and carboxyfluorescein succinimidyl ester (CFSE) dilution, respectively. CLEC16A subcellular localization in K562 cells was examined by immunofluorescence. We show that the CLEC16A KD did not affect the tested indices of lymphoblastoid cell line (LCL) APC capacity. Additionally, the percentage of activated T cells following LCL co-culture was not affected significantly by the CLEC16A KD. T cells co-cultured with KD or control LCLs also exhibited similar cell division profiles. CLEC16A co-localized with an endoplasmic reticulum (ER) marker, suggesting that it may be an ER protein. In conclusion, CLEC16A may not be involved in T cell co-stimulation. Additional studies on CLEC16A, accounting for its ER localization, are needed to uncover its biological role.
Collapse
Affiliation(s)
- H Zouk
- Endocrine Genetics Laboratory, McGill University Health Center, Montreal Children's Hospital Research Institute, McGill University, QC, Montreal, Canada; Department of Human Genetics, McGill University, QC, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Basile KJ, Guy VC, Schwartz S, Grant SFA. Overlap of genetic susceptibility to type 1 diabetes, type 2 diabetes, and latent autoimmune diabetes in adults. Curr Diab Rep 2014; 14:550. [PMID: 25189437 DOI: 10.1007/s11892-014-0550-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite the notion that there is a degree of commonality to the biological etiology of type 1 diabetes (T1D) and type 2 diabetes (T2D), the lack of overlap in the genetic factors underpinning each of them suggests very distinct mechanisms. A disorder considered to be at the "intersection" of these two diseases is "latent autoimmune diabetes in adults" (LADA). Interestingly, genetic signals from both T1D and T2D are also seen in LADA, including the key HLA and transcription factor 7-like 2 (TCF7L2) loci, but the magnitudes of these effects are more complex than just pointing to LADA as being a simple admixture of T1D and T2D. We review the current status of the understanding of the genetics of LADA and place it in the context of what is known about the genetics of its better-studied "cousins," T1D and T2D, especially with respect to the myriad of discoveries made over the last decade through genome-wide association studies.
Collapse
Affiliation(s)
- Kevin J Basile
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | | | | |
Collapse
|
48
|
Hisanaga-Oishi Y, Nishiwaki-Ueda Y, Nojima K, Ueda H. Analysis of the expression of candidate genes for type 1 diabetes susceptibility in T cells. Endocr J 2014; 61:577-88. [PMID: 24705559 DOI: 10.1507/endocrj.ej14-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Type 1 diabetes is characterized by T-cell-mediated autoimmune destruction of pancreatic β-cells. Currently, approximately 50 type 1 diabetes susceptibility genes or chromosomal regions have been identified. However, the functions of type 1 diabetes susceptibility genes in T cells are elusive. In this study, we evaluated the correlation between type 1 diabetes susceptibility genes and T-cell signaling. The expression levels of 22 candidate type 1 diabetes susceptibility genes in T cells from nonobese diabetic (NOD), control C57BL/6 (B6), and NOD-control F1 hybrid mice were analyzed in response to 2 key immunoregulatory cytokines: interleukin-2 (IL-2) and transforming growth factor β (TGF-β). Exogenous gene expression studies were also performed in EL4 and Jurkat E6.1 T-cell lines. Significant differences in the expression of Clec16a, Dlk1, Il2, Ptpn22, Rnls, and Zac1 (also known as Plagl1) were observed in T cells derived from the 3 strains of mice, and TGF-β differentially influenced the expression of Ctla4, Foxp3, Il2, Ptpn22, Sh2b3, and Zac1. We found that TGF-β induced Zac1 expression in both primary T cells and EL4 cells and that exogenous expression of Zac1 and ZAC1 in T-cell lines altered the expression of Il2 and DLK1, respectively. The results of our study indicate the possibility that additional genetic pathways underlying type 1 diabetes susceptibility, including those involving Clec16a, Dlk1, Rnls, Sh2b3, and Zac1 under IL-2 and TGF-β signaling in T cells, may be shared between human and NOD mice.
Collapse
Affiliation(s)
- Yuko Hisanaga-Oishi
- Department of Molecular Endocrinology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | | | | | | |
Collapse
|
49
|
The A allele of the rs1990760 polymorphism in the IFIH1 gene is associated with protection for arterial hypertension in type 1 diabetic patients and with expression of this gene in human mononuclear cells. PLoS One 2013; 8:e83451. [PMID: 24386202 PMCID: PMC3873949 DOI: 10.1371/journal.pone.0083451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The rs1990760 polymorphism of interferon induced with helicase C domain 1 (IFIH1) has been associated with type 1 diabetes mellitus (T1DM). Here, we investigated whether this polymorphism is associated with T1DM or its clinical characteristics in a Brazilian population, and if IFIH1 gene expression in mononuclear cells from T1DM patients differs according to the genotypes of this polymorphism. A meta-analysis was also conducted to evaluate if the rs1990760 polymorphism is associated with T1DM. METHODS Frequencies of the rs1990760 polymorphism were analyzed in 527 T1DM patients and in 517 healthy subjects. IFIH1 gene expressions according to genotypes were measured in a sub-sample of 26 T1DM patients by quantitative real-time PCR. RESULTS Our data show the association of the A allele with risk to T1DM under a dominant model of inheritance [odds ratio (OR) = 1.421, P = 0.037], adjusting for ethnicity. The meta-analysis revealed significant association between the rs199760A allele and risk for T1DM for all analyzed inheritance models. Surprisingly, T1DM patients carrying the A allele showed lower levels of systolic (P = 0.001) and diastolic (P = 1 × 10(-10)) blood pressures as compared to G/G carriers. Furthermore, the A/A genotype seems to be associated with protection to arterial hypertension (AH) after adjustment for covariates (OR = 0.339, P = 0.019). IFIH1 gene expression in mononuclear cells from 26 T1DM patients did not differ among genotypes (P = 0.274). Nevertheless, IFIH1 gene expression was increased in mononuclear cells from T1DM patients with AH as compared with T1DM patients without AH [6.7 (1.7-2.0) vs. 1.8 (1.3-7.1) arbitrary units; P = 0.036]. The association with blood pressures and AH was not observed in patients with type 2 diabetes mellitus. CONCLUSIONS Our results indicate that the rs1990760 polymorphism is associated with T1DM. Interestingly, the rs1990760 A allele seems to be associated with protection for AH in T1DM patients. Further studies are needed to confirm the association with AH.
Collapse
|
50
|
Evidence of stage- and age-related heterogeneity of non-HLA SNPs and risk of islet autoimmunity and type 1 diabetes: the diabetes autoimmunity study in the young. Clin Dev Immunol 2013; 2013:417657. [PMID: 24367383 PMCID: PMC3866813 DOI: 10.1155/2013/417657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 11/24/2022]
Abstract
Previously, we examined 20 non-HLA SNPs for association with islet autoimmunity (IA) and/or progression to type 1 diabetes (T1D). Our objective was to investigate fourteen additional non-HLA T1D candidate SNPs for stage- and age-related heterogeneity in the etiology of T1D. Of 1634 non-Hispanic white DAISY children genotyped, 132 developed IA (positive for GAD, insulin, or IA-2 autoantibodies at two or more consecutive visits); 50 IA positive children progressed to T1D. Cox regression was used to analyze risk of IA and progression to T1D in IA positive children. Restricted cubic splines were used to model SNPs when there was evidence that risk was not constant with age. C1QTNF6 (rs229541) predicted increased IA risk (HR: 1.57, CI: 1.20–2.05) but not progression to T1D (HR: 1.13, CI: 0.75–1.71). SNP (rs10517086) appears to exhibit an age-related effect on risk of IA, with increased risk before age 2 years (age 2 HR: 1.67, CI: 1.08–2.56) but not older ages (age 4 HR: 0.84, CI: 0.43–1.62). C1QTNF6 (rs229541), SNP (rs10517086), and UBASH3A (rs3788013) were associated with development of T1D. This prospective investigation of non-HLA T1D candidate loci shows that some SNPs may exhibit stage- and age-related heterogeneity in the etiology of T1D.
Collapse
|