1
|
Dekker E, Triñanes J, Muñoz Garcia A, de Graaf N, de Koning E, Carlotti F. Enhanced BMP Signaling Alters Human β-Cell Identity and Function. Adv Biol (Weinh) 2025; 9:e2400470. [PMID: 39499224 PMCID: PMC11760635 DOI: 10.1002/adbi.202400470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 11/07/2024]
Abstract
Inflammation contributes to the pathophysiology of diabetes. Identifying signaling pathways involved in pancreatic β-cell failure and identity loss can give insight into novel potential treatment strategies to prevent the loss of functional β-cell mass in diabetes. It is reported earlier that the immunosuppressive drug tacrolimus has a detrimental effect on human β-cell identity and function by activating bone morphogenetic protein (BMP) signaling. Here it is hypothesized that enhanced BMP signaling plays a role in inflammation-induced β-cell failure. Single-cell transcriptomics analyses of primary human islets reveal that IL-1β+IFNγ and IFNα treatment activated BMP signaling in β-cells. These findings are validated by qPCR. Furthermore, enhanced BMP signaling with recombinant BMP2 or 4 triggers a reduced expression of key β-cell maturity genes, associated with increased ER stress, and impaired β-cell function. Altogether, these results indicate that inflammation-activated BMP signaling is detrimental to pancreatic β-cells and that BMP-signaling can be a target to preserve β-cell identity and function in a pro-inflammatory environment.
Collapse
Affiliation(s)
- Esmée Dekker
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Javier Triñanes
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Amadeo Muñoz Garcia
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Natascha de Graaf
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Eelco de Koning
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Françoise Carlotti
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| |
Collapse
|
2
|
Migliorini A, Ge S, Atkins MH, Oakie A, Sambathkumar R, Kent G, Huang H, Sing A, Chua C, Gehring AJ, Keller GM, Notta F, Nostro MC. Embryonic macrophages support endocrine commitment during human pancreatic differentiation. Cell Stem Cell 2024; 31:1591-1611.e8. [PMID: 39406230 DOI: 10.1016/j.stem.2024.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 11/10/2024]
Abstract
Organogenesis is a complex process that relies on a dynamic interplay between extrinsic factors originating from the microenvironment and tissue-specific intrinsic factors. For pancreatic endocrine cells, the local niche consists of acinar and ductal cells as well as neuronal, immune, endothelial, and stromal cells. Hematopoietic cells have been detected in human pancreas as early as 6 post-conception weeks, but whether they play a role during human endocrinogenesis remains unknown. To investigate this, we performed single-nucleus RNA sequencing (snRNA-seq) of the second-trimester human pancreas and identified a wide range of hematopoietic cells, including two distinct subsets of tissue-resident macrophages. Leveraging this discovery, we developed a co-culture system of human embryonic stem cell-derived endocrine-macrophage organoids to model their interaction in vitro. Here, we show that macrophages support the differentiation and viability of endocrine cells in vitro and enhance tissue engraftment, highlighting their potential role in tissue engineering strategies for diabetes.
Collapse
Affiliation(s)
- Adriana Migliorini
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Sabrina Ge
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael H Atkins
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Amanda Oakie
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Gregory Kent
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Haiyang Huang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Angel Sing
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Conan Chua
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
3
|
Barco VS, Gallego FQ, Miranda CA, Souza MR, Volpato GT, Damasceno DC. Hyperglycemia influences the cell proliferation and death of the rat endocrine pancreas in the neonatal period. Life Sci 2024; 351:122854. [PMID: 38901688 DOI: 10.1016/j.lfs.2024.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
AIMS To evaluate the cell proliferation and death, and structural morphology of the pancreatic islet cells of the rats with hyperglycemia in the first month of life and compare to those of the control rats. MAIN METHODS Female Sprague-Dawley newborn rats received Streptozotocin (a beta-cytotoxic drug) at birth for diabetes induction. Control and hyperglycemic animals were euthanized on different days of life: 5, 10, 15, and 30. The pancreas was collected and processed for immunohistochemical analysis of cleaved Caspase-3 (cell death), Ki-67 (cell proliferation), PDX-1 (transcription factor responsible for insulin synthesis), and endocrine hormones (insulin, glucagon, and somatostatin). KEY FINDINGS Control females showed a higher percentage (%) of Ki-67-positive(+) cells on D10 and D15, a higher % of insulin+ and somatostatin+ cells on D15 and D30, a lower % of PDX-1+ cells on D10, and a higher % of glucagon+ cells on D10 and D30. Hyperglycemic females showed a lower % of Ki-67+ cells on D15, a higher % of cleaved Caspase-3+ cells on D15, and insulin+ cells on D15 and D30. In the comparison among the experimental groups, the hyperglycemic females showed an increased % of cleaved Caspase-3+ and Ki-67+ cells and a lower % of PDX-1+ cells. SIGNIFICANCE This study enabled a better understanding of the abnormal pancreas development regarding cellular proliferation, apoptosis, and hormonal synthesis in the neonatal period. Thus, the pancreatic islets of hyperglycemic rats do not reestablish the normal endocrine cell population, and cellular apoptosis overcame the proliferative activity of these cells.
Collapse
Affiliation(s)
- Vinícius S Barco
- Laboratory of Experimental Research on Gynecology and Obstetrics of UNIPEX, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil.
| | - Franciane Q Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics of UNIPEX, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil.
| | - Carolina A Miranda
- Laboratory of Experimental Research on Gynecology and Obstetrics of UNIPEX, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil
| | - Maysa R Souza
- Laboratory of Experimental Research on Gynecology and Obstetrics of UNIPEX, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil.
| | - Gustavo T Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Débora C Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics of UNIPEX, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil.
| |
Collapse
|
4
|
Iyer S, Enman M, Sahay P, Dudeja V. Novel therapeutics to treat chronic pancreatitis: targeting pancreatic stellate cells and macrophages. Expert Rev Gastroenterol Hepatol 2024; 18:171-183. [PMID: 38761167 DOI: 10.1080/17474124.2024.2355969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION Chronic pancreatitis (CP) is a persistent, recurrent, and progressive disorder that is characterized by chronic inflammation and irreversible fibrosis of the pancreas. It is associated with severe morbidity, resulting in intense abdominal pain, diabetes, exocrine and endocrine dysfunction, and an increased risk of pancreatic cancer. The etiological factors are diverse and the major risk factors include smoking, chronic alcoholism, as well as other environmental and genetic factors. The treatment and management of CP is challenging, and no definitive curative therapy is currently available. AREAS COVERED This review paper aims to provide an overview of the different cell types in the pancreas that is known to mediate disease progression and outline potential novel therapeutic approaches and drug targets that may be effective in treating and managing CP. The information presented in this review was obtained by conducting a NCBI PubMed database search, using relevant keywords. EXPERT OPINION In recent years, there has been an increased interest in the development of novel therapeutics for CP. A collaborative multi-disciplinary approach coupled with a consistent funding for research can expedite progress of translating the findings from bench to bedside.
Collapse
Affiliation(s)
- Srikanth Iyer
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Macie Enman
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Preeti Sahay
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
5
|
Urizar AI, Prause M, Ingerslev LR, Wortham M, Sui Y, Sander M, Williams K, Barrès R, Larsen MR, Christensen GL, Billestrup N. Beta cell dysfunction induced by bone morphogenetic protein (BMP)-2 is associated with histone modifications and decreased NeuroD1 chromatin binding. Cell Death Dis 2023; 14:399. [PMID: 37407581 DOI: 10.1038/s41419-023-05906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Insufficient insulin secretion is a hallmark of type 2 diabetes and has been attributed to beta cell identity loss characterized by decreased expression of several key beta cell genes. The pro-inflammatory factor BMP-2 is upregulated in islets of Langerhans from individuals with diabetes and acts as an inhibitor of beta cell function and proliferation. Exposure to BMP-2 induces expression of Id1-4, Hes-1, and Hey-1 which are transcriptional regulators associated with loss of differentiation. The aim of this study was to investigate the mechanism by which BMP-2 induces beta cell dysfunction and loss of cell maturity. Mouse islets exposed to BMP-2 for 10 days showed impaired glucose-stimulated insulin secretion and beta cell proliferation. BMP-2-induced beta cell dysfunction was associated with decreased expression of cell maturity and proliferation markers specific to the beta cell such as Ins1, Ucn3, and Ki67 and increased expression of Id1-4, Hes-1, and Hey-1. The top 30 most regulated proteins significantly correlated with corresponding mRNA expression. BMP-2-induced gene expression changes were associated with a predominant reduction in acetylation of H3K27 and a decrease in NeuroD1 chromatin binding activity. These results show that BMP-2 induces loss of beta cell maturity and suggest that remodeling of H3K27ac and decreased NeuroD1 DNA binding activity participate in the effect of BMP-2 on beta cell dysfunction.
Collapse
Affiliation(s)
| | - Michala Prause
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yinghui Sui
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kristine Williams
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice Côte d'Azur, Valbonne, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Nils Billestrup
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Identification and implication of tissue-enriched ligands in epithelial-endothelial crosstalk during pancreas development. Sci Rep 2022; 12:12498. [PMID: 35864120 PMCID: PMC9304391 DOI: 10.1038/s41598-022-16072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Development of the pancreas is driven by an intrinsic program coordinated with signals from other cell types in the epithelial environment. These intercellular communications have been so far challenging to study because of the low concentration, localized production and diversity of the signals released. Here, we combined scRNAseq data with a computational interactomic approach to identify signals involved in the reciprocal interactions between the various cell types of the developing pancreas. This in silico approach yielded 40,607 potential ligand-target interactions between the different main pancreatic cell types. Among this vast network of interactions, we focused on three ligands potentially involved in communications between epithelial and endothelial cells. BMP7 and WNT7B, expressed by pancreatic epithelial cells and predicted to target endothelial cells, and SEMA6D, involved in the reverse interaction. In situ hybridization confirmed the localized expression of Bmp7 in the pancreatic epithelial tip cells and of Wnt7b in the trunk cells. On the contrary, Sema6d was enriched in endothelial cells. Functional experiments on ex vivo cultured pancreatic explants indicated that tip cell-produced BMP7 limited development of endothelial cells. This work identified ligands with a restricted tissular and cellular distribution and highlighted the role of BMP7 in the intercellular communications contributing to vessel development and organization during pancreas organogenesis.
Collapse
|
7
|
Chmielowiec J, Szlachcic WJ, Yang D, Scavuzzo MA, Wamble K, Sarrion-Perdigones A, Sabek OM, Venken KJT, Borowiak M. Human pancreatic microenvironment promotes β-cell differentiation via non-canonical WNT5A/JNK and BMP signaling. Nat Commun 2022; 13:1952. [PMID: 35414140 PMCID: PMC9005503 DOI: 10.1038/s41467-022-29646-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
In vitro derivation of pancreatic β-cells from human pluripotent stem cells holds promise as diabetes treatment. Despite recent progress, efforts to generate physiologically competent β-cells are still hindered by incomplete understanding of the microenvironment's role in β-cell development and maturation. Here, we analyze the human mesenchymal and endothelial primary cells from weeks 9-20 fetal pancreas and identify a time point-specific microenvironment that permits β-cell differentiation. Further, we uncover unique factors that guide in vitro development of endocrine progenitors, with WNT5A markedly improving human β-cell differentiation. WNT5A initially acts through the non-canonical (JNK/c-JUN) WNT signaling and cooperates with Gremlin1 to inhibit the BMP pathway during β-cell maturation. Interestingly, we also identify the endothelial-derived Endocan as a SST+ cell promoting factor. Overall, our study shows that the pancreatic microenvironment-derived factors can mimic in vivo conditions in an in vitro system to generate bona fide β-cells for translational applications.
Collapse
Affiliation(s)
- Jolanta Chmielowiec
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wojciech J Szlachcic
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katrina Wamble
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alejandro Sarrion-Perdigones
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Omaima M Sabek
- Department of Surgery, The Methodist Hospital, Houston, TX, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Koen J T Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Malgorzata Borowiak
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA. .,Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Li X, He J, Xie K. Molecular signaling in pancreatic ductal metaplasia: emerging biomarkers for detection and intervention of early pancreatic cancer. Cell Oncol (Dordr) 2022; 45:201-225. [PMID: 35290607 DOI: 10.1007/s13402-022-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal metaplasia (PDM) is the transformation of potentially various types of cells in the pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental stimuli and genetic insults. The development of PDM to atypical hyperplasia or dysplasia is an important risk factor for pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDA). Recent studies using genetically engineered mouse models, cell lineage tracing, single-cell sequencing and others have unraveled novel cellular and molecular insights in PDM formation and evolution. Those novel findings help better understand the cellular origins and functional significance of PDM and its regulation at cellular and molecular levels. Given that PDM represents the earliest pathological changes in PDA initiation and development, translational studies are beginning to define PDM-associated cell and molecular biomarkers that can be used to screen and detect early PDA and to enable its effective intervention, thereby truly and significantly reducing the dreadful mortality rate of PDA. This review will describe recent advances in the understanding of PDM biology with a focus on its underlying cellular and molecular mechanisms, and in biomarker discovery with clinical implications for the management of pancreatic regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China.
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Ghezelayagh Z, Zabihi M, Kazemi Ashtiani M, Ghezelayagh Z, Lynn FC, Tahamtani Y. Recapitulating pancreatic cell-cell interactions through bioengineering approaches: the momentous role of non-epithelial cells for diabetes cell therapy. Cell Mol Life Sci 2021; 78:7107-7132. [PMID: 34613423 PMCID: PMC11072828 DOI: 10.1007/s00018-021-03951-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, extensive efforts have been made to generate in-vitro pancreatic micro-tissue, for disease modeling or cell replacement approaches in pancreatic related diseases such as diabetes mellitus. To obtain these goals, a closer look at the diverse cells participating in pancreatic development is necessary. Five major non-epithelial pancreatic (pN-Epi) cell populations namely, pancreatic endothelium, mesothelium, neural crests, pericytes, and stellate cells exist in pancreas throughout its development, and they are hypothesized to be endogenous inducers of the development. In this review, we discuss different pN-Epi cells migrating to and existing within the pancreas and their diverse effects on pancreatic epithelium during organ development mediated via associated signaling pathways, soluble factors or mechanical cell-cell interactions. In-vivo and in-vitro experiments, with a focus on N-Epi cells' impact on pancreas endocrine development, have also been considered. Pluripotent stem cell technology and multicellular three-dimensional organoids as new approaches to generate pancreatic micro-tissues have also been discussed. Main challenges for reaching a detailed understanding of the role of pN-Epi cells in pancreas development in utilizing for in-vitro recapitulation have been summarized. Finally, various novel and innovative large-scale bioengineering approaches which may help to recapitulate cell-cell interactions and are crucial for generation of large-scale in-vitro multicellular pancreatic micro-tissues, are discussed.
Collapse
Affiliation(s)
- Zahra Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Zabihi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeinab Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery and School of Biomedical Engineering , University of British Columbia, Vancouver, BC, Canada
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
10
|
Bittenglova K, Habart D, Saudek F, Koblas T. The Potential of Pancreatic Organoids for Diabetes Research and Therapy. Islets 2021; 13:85-105. [PMID: 34523383 PMCID: PMC8528407 DOI: 10.1080/19382014.2021.1941555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/04/2021] [Indexed: 10/20/2022] Open
Abstract
The success of clinical transplantation of pancreas or isolated pancreatic islets supports the concept of cell-based cure for diabetes. One limitation is the shortage of cadaver human pancreata. The demand-supply gap could potentially be bridged by harnessing the self-renewal capacity of stem cells. Pluripotent stem cells and adult pancreatic stem cells have been explored as possible cell sources. Recently, a system for long-term culture of proposed adult pancreatic stem cells in a form of organoids was developed. Generated organoids partially mimic the architecture and cell-type composition of pancreatic tissue. Here, we review the attempts over the past decade, to utilize the organoid cell culture principles in order to identify, expand, and differentiate the adult pancreatic stem cells from different compartments of mouse and human pancreata. The development of the culture conditions, effects of specific growth factors and small molecules is discussed. The potential utility of the adult pancreatic stem cells is considered in the context of other cell sources.
Collapse
Affiliation(s)
- Katerina Bittenglova
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Habart
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Frantisek Saudek
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomas Koblas
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
11
|
Geusz RJ, Wang A, Chiou J, Lancman JJ, Wetton N, Kefalopoulou S, Wang J, Qiu Y, Yan J, Aylward A, Ren B, Dong PDS, Gaulton KJ, Sander M. Pancreatic progenitor epigenome maps prioritize type 2 diabetes risk genes with roles in development. eLife 2021; 10:e59067. [PMID: 33544077 PMCID: PMC7864636 DOI: 10.7554/elife.59067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variants associated with type 2 diabetes (T2D) risk affect gene regulation in metabolically relevant tissues, such as pancreatic islets. Here, we investigated contributions of regulatory programs active during pancreatic development to T2D risk. Generation of chromatin maps from developmental precursors throughout pancreatic differentiation of human embryonic stem cells (hESCs) identifies enrichment of T2D variants in pancreatic progenitor-specific stretch enhancers that are not active in islets. Genes associated with progenitor-specific stretch enhancers are predicted to regulate developmental processes, most notably tissue morphogenesis. Through gene editing in hESCs, we demonstrate that progenitor-specific enhancers harboring T2D-associated variants regulate cell polarity genes LAMA1 and CRB2. Knockdown of lama1 or crb2 in zebrafish embryos causes a defect in pancreas morphogenesis and impairs islet cell development. Together, our findings reveal that a subset of T2D risk variants specifically affects pancreatic developmental programs, suggesting that dysregulation of developmental processes can predispose to T2D.
Collapse
Affiliation(s)
- Ryan J Geusz
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
- Biomedical Graduate Studies Program, University of California, San DiegoSan DiegoUnited States
| | - Allen Wang
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Joshua Chiou
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Biomedical Graduate Studies Program, University of California, San DiegoSan DiegoUnited States
| | - Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
| | - Nichole Wetton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Samy Kefalopoulou
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Jinzhao Wang
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Yunjiang Qiu
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Jian Yan
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Anthony Aylward
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| | - Bing Ren
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Ludwig Institute for Cancer ResearchSan DiegoUnited States
| | - P Duc Si Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
| | - Kyle J Gaulton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| | - Maike Sander
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| |
Collapse
|
12
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Hammerle CM, Sandovici I, Brierley GV, Smith NM, Zimmer WE, Zvetkova I, Prosser HM, Sekita Y, Lam BYH, Ma M, Cooper WN, Vidal-Puig A, Ozanne SE, Medina-Gómez G, Constância M. Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. PLoS Genet 2020; 16:e1009069. [PMID: 33057429 PMCID: PMC7678979 DOI: 10.1371/journal.pgen.1009069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/20/2020] [Accepted: 08/20/2020] [Indexed: 01/09/2023] Open
Abstract
The genetic mechanisms that determine the size of the adult pancreas are poorly understood. Imprinted genes, which are expressed in a parent-of-origin-specific manner, are known to have important roles in development, growth and metabolism. However, our knowledge regarding their roles in the control of pancreatic growth and function remains limited. Here we show that many imprinted genes are highly expressed in pancreatic mesenchyme-derived cells and explore the role of the paternally-expressed insulin-like growth factor 2 (Igf2) gene in mesenchymal and epithelial pancreatic lineages using a newly developed conditional Igf2 mouse model. Mesenchyme-specific Igf2 deletion results in acinar and beta-cell hypoplasia, postnatal whole-body growth restriction and maternal glucose intolerance during pregnancy, suggesting that the mesenchyme is a developmental reservoir of IGF2 used for paracrine signalling. The unique actions of mesenchymal IGF2 are demonstrated by the absence of any discernible growth or functional phenotypes upon Igf2 deletion in the developing pancreatic epithelium. Additionally, increased IGF2 levels specifically in the mesenchyme, through conditional Igf2 loss-of-imprinting or Igf2r deletion, leads to pancreatic acinar overgrowth. Furthermore, ex-vivo exposure of primary acinar cells to exogenous IGF2 activates AKT, a key signalling node, and increases their number and amylase production. Based on these findings, we propose that mesenchymal Igf2, and perhaps other imprinted genes, are key developmental regulators of adult pancreas size and function.
Collapse
Affiliation(s)
- Constanze M. Hammerle
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gemma V. Brierley
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Nicola M. Smith
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Warren E. Zimmer
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Ilona Zvetkova
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Haydn M. Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, United Kingdom
| | - Yoichi Sekita
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Brian Y. H. Lam
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Marcella Ma
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Wendy N. Cooper
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922-Alcorcón, Madrid, Spain
| | - Miguel Constância
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Villani V, Thornton ME, Zook HN, Crook CJ, Grubbs BH, Orlando G, De Filippo R, Ku HT, Perin L. SOX9+/PTF1A+ Cells Define the Tip Progenitor Cells of the Human Fetal Pancreas of the Second Trimester. Stem Cells Transl Med 2019; 8:1249-1264. [PMID: 31631582 PMCID: PMC6877773 DOI: 10.1002/sctm.19-0231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Significant progress has been made in recent years in characterizing human multipotent progenitor cells (hMPCs) of the early pancreas; however, the identity and persistence of these cells during the second trimester, after the initiation of branching morphogenesis, remain elusive. Additionally, studies on hMPCs have been hindered by few isolation methods that allow for the recovery of live cells. Here, we investigated the tip progenitor domain in the branched epithelium of human fetal pancreas between 13.5 and 17.5 gestational weeks by immunohistological staining. We also used a novel RNA-based technology to isolate live cells followed by gene expression analyses. We identified cells co-expressing SOX9 and PTF1A, two transcription factors known to be important for pancreatic MPCs, within the tips of the epithelium and observed a decrease in their proportions over time. Pancreatic SOX9+/PTF1A+ cells were enriched for MPC markers, including MYC and GATA6. These cells were proliferative and appeared active in branching morphogenesis and matrix remodeling, as evidenced by gene set enrichment analysis. We identified a hub of genes pertaining to the expanding tip progenitor niche, such as FOXF1, GLI3, TBX3, FGFR1, TGFBR2, ITGAV, ITGA2, and ITGB3. YAP1 of the Hippo pathway emerged as a highly enriched component within the SOX9+/PTF1A+ cells. Single-cell RNA-sequencing further corroborated the findings by identifying a cluster of SOX9+/PTF1A+ cells with multipotent characteristics. Based on these results, we propose that the SOX9+/PTF1A+ cells in the human pancreas are uncommitted MPC-like cells that reside at the tips of the expanding pancreatic epithelium, directing self-renewal and inducing pancreatic organogenesis. Stem Cells Translational Medicine 2019;8:1249&1264.
Collapse
Affiliation(s)
- Valentina Villani
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Matthew E. Thornton
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Heather N. Zook
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Christiana J. Crook
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Brendan H. Grubbs
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Giuseppe Orlando
- Department of SurgeryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Roger De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
15
|
Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nat Commun 2019; 10:4647. [PMID: 31604927 PMCID: PMC6789033 DOI: 10.1038/s41467-019-12624-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cell-derived beta cells offer a promising cell-based therapy for diabetes. However, efficient stem cell to beta cell differentiation has proven difficult, possibly due to the lack of cross-talk with the appropriate mesenchymal niche. To define organ-specific niche signals, we isolated pancreatic and gastrointestinal stromal cells, and analyzed their gene expression during development. Our genetic studies reveal the importance of tightly regulated Hedgehog signaling in the pancreatic mesenchyme: inactivation of mesenchymal signaling leads to annular pancreas, whereas stroma-specific activation of signaling via loss of Hedgehog regulators, Sufu and Spop, impairs pancreatic growth and beta cell genesis. Genetic rescue and transcriptome analyses show that these Sufu and Spop knockout defects occur through Gli2-mediated activation of gastrointestinal stromal signals such as Wnt ligands. Importantly, inhibition of Wnt signaling in organoid and human stem cell cultures significantly promotes insulin-producing cell generation, altogether revealing the requirement for organ-specific regulation of stromal niche signals.
Collapse
|
16
|
Sakhneny L, Khalifa-Malka L, Landsman L. Pancreas organogenesis: Approaches to elucidate the role of epithelial-mesenchymal interactions. Semin Cell Dev Biol 2019; 92:89-96. [DOI: 10.1016/j.semcdb.2018.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
|
17
|
Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. Curr Top Dev Biol 2019; 132:221-256. [DOI: 10.1016/bs.ctdb.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Mesodermal induction of pancreatic fate commitment. Semin Cell Dev Biol 2018; 92:77-88. [PMID: 30142440 DOI: 10.1016/j.semcdb.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022]
Abstract
The pancreas is a compound gland comprised of both exocrine acinar and duct cells as well as endocrine islet cells. Most notable amongst the latter are the insulin-synthesizing β-cells, loss or dysfunction of which manifests in diabetes mellitus. All exocrine and endocrine cells derive from multipotent pancreatic progenitor cells arising from the primitive gut epithelium via inductive interactions with adjacent mesodermal tissues. Research in the last two decades has revealed the identity of many of these extrinsic cues and they include signaling molecules used in many other developmental contexts such as retinoic acid, fibroblast growth factors, and members of the TGF-β superfamily. As important as these inductive cues is the absence of other signaling molecules such as hedgehog family members. Much has been learned about the interactions of extrinsic factors with fate regulators intrinsic to the pancreatic endoderm. This new knowledge has had tremendous impact on the development of directed differentiation protocols for converting pluripotent stem cells to β-cells in vitro.
Collapse
|
19
|
Li Q, Jiao J, Li H, Wan H, Zheng C, Cai J, Bao S. Histone arginine methylation by Prmt5 is required for lung branching morphogenesis through repression of BMP signaling. J Cell Sci 2018; 131:jcs.217406. [PMID: 29950483 DOI: 10.1242/jcs.217406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
Branching morphogenesis is essential for the successful development of a functional lung to accomplish its gas exchange function. Although many studies have highlighted requirements for the bone morphogenetic protein (BMP) signaling pathway during branching morphogenesis, little is known about how BMP signaling is regulated. Here, we report that the protein arginine methyltransferase 5 (Prmt5) and symmetric dimethylation at histone H4 arginine 3 (H4R3sme2) directly associate with chromatin of Bmp4 to suppress its transcription. Inactivation of Prmt5 in the lung epithelium results in halted branching morphogenesis, altered epithelial cell differentiation and neonatal lethality. These defects are accompanied by increased apoptosis and reduced proliferation of lung epithelium, as a consequence of elevated canonical BMP-Smad1/5/9 signaling. Inhibition of BMP signaling by Noggin rescues the lung branching defects of Prmt5 mutant in vitro Taken together, our results identify a novel mechanism through which Prmt5-mediated histone arginine methylation represses canonical BMP signaling to regulate lung branching morphogenesis.
Collapse
Affiliation(s)
- Qiuling Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jie Jiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huijun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huajing Wan
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Institute of Women and Children's Health, and Department of Pediatrics, Huaxi Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jun Cai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China .,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
20
|
da Silva ABS, Fonseca CMB, Cavalcante MMADS, de Oliveira IM, Ferraz MS, Viana FJC, Fontenele RD, Conde Júnior AM. Histomorphometry of pancreas development in hybrid chicken (Galus galus) embryo and fetus. Microsc Res Tech 2018. [PMID: 29527773 DOI: 10.1002/jemt.23016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pancreas comprises an important metabolic organ of endocrine and exocrine character that has embryonic origin of rudimentary buds that fuse to form the organ. The present work aims to describe the pancreatic histogenesis of hybrid chick embryos (Gallus gallus). The research was performed in the UFPI, previously approved by the CEUA with protocol no. 040/15. We used 120 fertilized eggs of hybrid chickens kept in an incubator with controlled temperature and humidity. Daily collections of embryos and fetuses were performed from 4 to 21 days of incubation through the anatomical dissection consecutive the euthanasia. The tissues, previously fixed in 10% buffered formaldehyde, were submitted to histological processing and stained with hematoxylin-eosin. Finally, the mounted slides were analyzed in image software to obtain histomorphometric data, which were submitted to statistical analysis. The pancreas of hybrid chicken embryos originates around the fourth day of incubation with the dorsal and ventral pancreatic bud formation, which are composed by epithelial and mesenchymal cells. These cells differ in exocrine and endocrine cells. Around twelve embryonic days occurs the buds fusion and the immature organ formation that will give continue with the ductal system development, vascularization and compartmentalization of the endocrine and exocrine parts. Until 21st day of incubation it is possible to identify undifferentiated tissue forms which suggesting postnatal histogenesis. The description of pancreas histogenesis using histometric data on hybrid chicken embryos contributes to the clarification of embryonic development and reaffirms the premise that chickens serve as an experimental model for embryonic study of mammals.
Collapse
|
21
|
TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031997. [PMID: 28289061 DOI: 10.1101/cshperspect.a031997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-β (TGF-β) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-β family members in the control of the ductal tissues in the vertebrate body.
Collapse
|
22
|
Ndlovu R, Deng LC, Wu J, Li XK, Zhang JS. Fibroblast Growth Factor 10 in Pancreas Development and Pancreatic Cancer. Front Genet 2018; 9:482. [PMID: 30425728 PMCID: PMC6219204 DOI: 10.3389/fgene.2018.00482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
The tenacious prevalence of human pancreatic diseases such as diabetes mellitus and adenocarcinoma has prompted huge research interest in better understanding of pancreatic organogenesis. The plethora of signaling pathways involved in pancreas development is activated in a highly coordinated manner to assure unmitigated development and morphogenesis in vertebrates. Therefore, a complex mesenchymal-epithelial signaling network has been implicated to play a pivotal role in organogenesis through its interactions with other germ layers, specifically the endoderm. The Fibroblast Growth Factor Receptor FGFR2-IIIb splicing isoform (FGFR2b) and its high affinity ligand Fibroblast Growth Factor 10 (FGF10) are expressed in the epithelium and mesenchyme, respectively, and therefore are well positioned to transmit mesenchymal to epithelial signaling. FGF10 is a typical paracrine FGF and chiefly mediates biological responses by activating FGFR2b with heparin/heparan sulfate (HS) as cofactor. A substantial number of studies using genetically engineered mouse models have demonstrated an essential role of FGF10 in the development of many organs and tissues including the pancreas. During mouse embryonic development, FGF10 signaling is crucial for epithelial cell proliferation, maintenance of progenitor cell fate and branching morphogenesis in the pancreas. FGF10 is also implicated in pancreatic cancer, and that overexpression of FGFR2b is associated with metastatic invasion. A thorough understanding of FGF10 signaling machinery and its crosstalk with other pathways in development and pathological states may provide novel opportunities for pancreatic cancer targeted therapy and regenerative medicine.
Collapse
Affiliation(s)
- Rodrick Ndlovu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Lian-Cheng Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jin Wu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiao-Kun Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Kun Li, Jin-San Zhang, ;
| | - Jin-San Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Centre for Precision Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Kun Li, Jin-San Zhang, ;
| |
Collapse
|
23
|
Lempereur A, Canto PY, Richard C, Martin S, Thalgott J, Raymond K, Lebrin F, Drevon C, Jaffredo T. The TGFβ pathway is a key player for the endothelial-to-hematopoietic transition in the embryonic aorta. Dev Biol 2017; 434:292-303. [PMID: 29253505 DOI: 10.1016/j.ydbio.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022]
Abstract
The embryonic aorta produces hematopoietic stem and progenitor cells from a hemogenic endothelium localized in the aortic floor through an endothelial to hematopoietic transition. It has been long proposed that the Bone Morphogenetic Protein (BMP)/Transforming Growth Factor ß (TGFß) signaling pathway was implicated in aortic hematopoiesis but the very nature of the signal was unknown. Here, using thorough expression analysis of the BMP/TGFß signaling pathway members in the endothelial and hematopoietic compartments of the aorta at pre-hematopoietic and hematopoietic stages, we show that the TGFß pathway is preferentially balanced with a prominent role of Alk1/TgfßR2/Smad1 and 5 on both chicken and mouse species. Functional analysis using embryonic stem cells mutated for Acvrl1 revealed an enhanced propensity to produce hematopoietic cells. Collectively, we reveal that TGFß through the Alk1/TgfßR2 receptor axis is acting on endothelial cells to produce hematopoiesis.
Collapse
Affiliation(s)
- A Lempereur
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - P Y Canto
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - C Richard
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - S Martin
- CNRS UMR 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris CEDEX 05, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres Research University, France
| | - J Thalgott
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - K Raymond
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - F Lebrin
- CNRS UMR 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris CEDEX 05, France; Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres Research University, France
| | - C Drevon
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - T Jaffredo
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
24
|
Gnatenko DA, Kopantzev EP, Sverdlov ED. [Fibroblast growth factors and their effects in pancreas organogenesis]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:211-218. [PMID: 28781254 DOI: 10.18097/pbmc20176303211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fibroblast growth factors (FGF) - growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we will summarize current information about the involvement of FGFs in the pancreas organogenesis. Pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue. This orchestrates the activation of various regulator genes at specific stages, determining the specification of progenitor cells. Alterations in FGF/FGFR signaling pathway during this process lead to incorrect activation of the master genes, which leads to different pathologies during pancreas development. Understanding the full picture about role of FGF factors in pancreas development will make it possible to more accurately understand their role in other pathologies of this organ, including carcinogenesis.
Collapse
Affiliation(s)
- D A Gnatenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - E P Kopantzev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - E D Sverdlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| |
Collapse
|
25
|
Pancreatic Mesenchyme Regulates Islet Cellular Composition in a Patched/Hedgehog-Dependent Manner. Sci Rep 2016; 6:38008. [PMID: 27892540 PMCID: PMC5125096 DOI: 10.1038/srep38008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/04/2016] [Indexed: 01/23/2023] Open
Abstract
Pancreas development requires restrained Hedgehog (Hh) signaling activation. While deregulated Hh signaling in the pancreatic mesenchyme has been long suggested to be detrimental for proper organogenesis, this association was not directly shown. Here, we analyzed the contribution of mesenchymal Hh signaling to pancreas development. To increase Hh signaling in the pancreatic mesenchyme of mouse embryos, we deleted Patched1 (Ptch1) in these cells. Our findings indicate that deregulated Hh signaling in mesenchymal cells was sufficient to impair pancreas development, affecting both endocrine and exocrine cells. Notably, transgenic embryos displayed disrupted islet cellular composition and morphology, with a reduced β-cell portion. Our results indicate that the cell-specific growth rates of α- and β-cell populations, found during normal development, require regulated mesenchymal Hh signaling. In addition, we detected hyperplasia of mesenchymal cells upon elevated Hh signaling, accompanied by them acquiring smooth-muscle like phenotype. By specifically manipulating mesenchymal cells, our findings provide direct evidence for the non-autonomous roles of the Hh pathway in pancreatic epithelium development. To conclude, we directly show that regulated mesenchymal Hh signaling is required for pancreas organogenesis and establishment of its proper cellular composition.
Collapse
|
26
|
Liu X, Pitarresi JR, Cuitiño MC, Kladney RD, Woelke SA, Sizemore GM, Nayak SG, Egriboz O, Schweickert PG, Yu L, Trela S, Schilling DJ, Halloran SK, Li M, Dutta S, Fernandez SA, Rosol TJ, Lesinski GB, Shakya R, Ludwig T, Konieczny SF, Leone G, Wu J, Ostrowski MC. Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia. Genes Dev 2016; 30:1943-55. [PMID: 27633013 PMCID: PMC5066238 DOI: 10.1101/gad.283499.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
Liu et al. show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a KrasG12D mouse model increased acinar-to-ductal metaplasia (ADM). Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfα) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a KrasG12D mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo. Additionally, Smo-deleted fibroblasts stimulated the growth of KrasG12D/Tp53R172H pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating KrasG12D-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts.
Collapse
Affiliation(s)
- Xin Liu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jason R Pitarresi
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Maria C Cuitiño
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Raleigh D Kladney
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sarah A Woelke
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gina M Sizemore
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sunayana G Nayak
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Onur Egriboz
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Patrick G Schweickert
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA; the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA; the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lianbo Yu
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Stefan Trela
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Daniel J Schilling
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shannon K Halloran
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Maokun Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shourik Dutta
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Soledad A Fernandez
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas J Rosol
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gregory B Lesinski
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Reena Shakya
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas Ludwig
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Stephen F Konieczny
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA; the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA; the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Gustavo Leone
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jinghai Wu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael C Ostrowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
27
|
Ibarra Urizar A, Friberg J, Christensen DP, Lund Christensen G, Billestrup N. Inflammatory Cytokines Stimulate Bone Morphogenetic Protein-2 Expression and Release from Pancreatic Beta Cells. J Interferon Cytokine Res 2016; 36:20-9. [DOI: 10.1089/jir.2014.0199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Adriana Ibarra Urizar
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Josefine Friberg
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Dan Ploug Christensen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Gitte Lund Christensen
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
28
|
Grgurevic L, Christensen GL, Schulz TJ, Vukicevic S. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine Growth Factor Rev 2015; 27:105-18. [PMID: 26762842 DOI: 10.1016/j.cytogfr.2015.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/10/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
Abstract
Bore morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)-β superfamily, a group of secreted proteins that regulate embryonic development. This review summarizes the effects of BMPs on physiological processes not exclusively linked to the musculoskeletal system. Specifically, we focus on the involvement of BMPs in inflammatory disorders, e.g. fibrosis, inflammatory bowel disease, anchylosing spondylitis, rheumatoid arthritis. Moreover, we discuss the role of BMPs in the context of vascular disorders, and explore the role of these signalling proteins in iron homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role in skeletal homeostasis. However, increased understanding of these pleiotropic functions also highlights the necessity of tissue-specific strategies when harnessing BMP action as a therapeutic target.
Collapse
Affiliation(s)
- Lovorka Grgurevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Zagreb, Croatia
| | | | - Tim J Schulz
- German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Slobodan Vukicevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Zagreb, Croatia.
| |
Collapse
|
29
|
Abstract
Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell-cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages.
Collapse
Affiliation(s)
- Leilani Marty-Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| |
Collapse
|
30
|
Christensen GL, Jacobsen MLB, Wendt A, Mollet IG, Friberg J, Frederiksen KS, Meyer M, Bruun C, Eliasson L, Billestrup N. Bone morphogenetic protein 4 inhibits insulin secretion from rodent beta cells through regulation of calbindin1 expression and reduced voltage-dependent calcium currents. Diabetologia 2015; 58:1282-90. [PMID: 25828920 DOI: 10.1007/s00125-015-3568-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/04/2015] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is characterised by progressive loss of pancreatic beta cell mass and function. Therefore, it is of therapeutic interest to identify factors with the potential to improve beta cell proliferation and insulin secretion. Bone morphogenetic protein 4 (BMP4) expression is increased in diabetic animals and BMP4 reduces glucose-stimulated insulin secretion (GSIS). Here, we investigate the molecular mechanism behind this inhibition. METHODS BMP4-mediated inhibition of GSIS was investigated in detail using single cell electrophysiological measurements and live cell Ca(2+) imaging. BMP4-mediated gene expression changes were investigated by microarray profiling, quantitative PCR and western blotting. RESULTS Prolonged exposure to BMP4 reduced GSIS from rodent pancreatic islets. This inhibition was associated with decreased exocytosis due to a reduced Ca(2+) current through voltage-dependent Ca(2+) channels. To identify proteins involved in the inhibition of GSIS, we investigated global gene expression changes induced by BMP4 in neonatal rat pancreatic islets. Expression of the Ca(2+)-binding protein calbindin1 was significantly induced by BMP4. Overexpression of calbindin1 in primary islet cells reduced GSIS, and the effect of BMP4 on GSIS was lost in islets from calbindin1 (Calb1) knockout mice. CONCLUSIONS/INTERPRETATION We found BMP4 treatment to markedly inhibit GSIS from rodent pancreatic islets in a calbindin1-dependent manner. Calbindin1 is suggested to mediate the effect of BMP4 by buffering Ca(2+) and decreasing Ca(2+) channel activity, resulting in diminished insulin exocytosis. Both BMP4 and calbindin1 are potential pharmacological targets for the treatment of beta cell dysfunction.
Collapse
Affiliation(s)
- Gitte L Christensen
- Department of Biomedical Sciences, University of Copenhagen, Nørre Alle 20, 2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Talavera-Adame D, Dafoe DC. Endothelium-derived essential signals involved in pancreas organogenesis. World J Exp Med 2015; 5:40-49. [PMID: 25992319 PMCID: PMC4436939 DOI: 10.5493/wjem.v5.i2.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/18/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are essential for pancreas differentiation, endocrine specification, and endocrine function. They are also involved in the physiopathology of type 1 and type 2 diabetes. During embryogenesis, aortic ECs provide specific factors that maintain the expression of key genes for pancreas development such as pancreatic and duodenal homeobox-1. Other unknown factors are also important for pancreatic endocrine specification and formation of insulin-producing beta cells. Endocrine precursors proliferate interspersed with ductal cells and exocrine precursors and, at some point of development, these endocrine precursors migrate to pancreatic mesenchyme and start forming the islets of Langerhans. By the end of the gestation and close to birth, these islets contain immature beta cells with the capacity to express vascular endothelial growth factor and therefore to recruit ECs from the surrounding microenvironment. ECs in turn produce factors that are essential to maintain insulin secretion in pancreatic beta cells. Once assembled, a cross talk between endocrine cells and ECs maintain the integrity of islets toward an adequate function during the whole life of the adult individual. This review will focus in the EC role in the differentiation and maturation of pancreatic beta cells during embryogenesis as well as the current knowledge about the involvement of endothelium to derive pancreatic beta cells in vitro from mouse or human pluripotent stem cells.
Collapse
|
32
|
Toyoda T, Mae SI, Tanaka H, Kondo Y, Funato M, Hosokawa Y, Sudo T, Kawaguchi Y, Osafune K. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res 2015; 14:185-97. [DOI: 10.1016/j.scr.2015.01.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/28/2014] [Accepted: 01/19/2015] [Indexed: 01/22/2023] Open
|
33
|
Kumar SS, Alarfaj AA, Munusamy MA, Singh AJAR, Peng IC, Priya SP, Hamat RA, Higuchi A. Recent developments in β-cell differentiation of pluripotent stem cells induced by small and large molecules. Int J Mol Sci 2014; 15:23418-47. [PMID: 25526563 PMCID: PMC4284775 DOI: 10.3390/ijms151223418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.
Collapse
Affiliation(s)
- S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - A J A Ranjith Singh
- Department of Bioscience, Jacintha Peter College of Arts and Sciences, Ayakudi, Tenkasi, Tamilnadu 627852, India.
| | - I-Chia Peng
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan 32001, Taiwan.
| | - Sivan Padma Priya
- Department of Basic Science and Department of Surgical Sciences, Ajman University of Science and Technology-Fujairah Campus, P.O. Box 9520, Al Fujairah, United Arab Emirates.
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Akon Higuchi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
34
|
Abstract
Over the last decade, it has been discovered that the transcription factor Sox9 plays several critical roles in governing the development of the embryonic pancreas and the homeostasis of the mature organ. While analysis of pancreata from patients affected by the Sox9 haploinsufficiency syndrome campomelic dysplasia initially alluded to a functional role of Sox9 in pancreatic morphogenesis, transgenic mouse models have been instrumental in mechanistically dissecting such roles. Although initially defined as a marker and maintenance factor for pancreatic progenitors, Sox9 is now considered to fulfill additional indispensable functions during pancreogenesis and in the postnatal organ through its interactions with other transcription factors and signaling pathways such as Fgf and Notch. In addition to maintaining both multipotent and bipotent pancreatic progenitors, Sox9 is also required for initiating endocrine differentiation and maintaining pancreatic ductal identity, and it has recently been unveiled as a key player in the initiation of pancreatic cancer. These functions of Sox9 are discussed in this article, with special emphasis on the knowledge gained from various loss-of-function and lineage tracing mouse models. Also, current controversies regarding Sox9 function in healthy and injured adult pancreas and unanswered questions and avenues of future study are discussed.
Collapse
Affiliation(s)
- Philip A Seymour
- The Danish Stem Cell Center (DanStem), University of Copenhagen, Panum Institute, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
35
|
Role of BMP signaling in pancreatic progenitor differentiation from human embryonic stem cells. Stem Cell Rev Rep 2014; 9:569-77. [PMID: 23468018 DOI: 10.1007/s12015-013-9435-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transplantation of pancreatic progenitors derived from human embryonic stem cells (hESCs) is a promising way to treat diabetes. Strategies to obtain the required cell mass would rely on the up scaling of current differentiation protocols, or the proliferation of committed progenitors. We aimed at finding conditions that maintain a proliferating pancreatic progenitor pool and we assessed the role of BMP4 signaling in this process. hESCs were differentiated into PDX1 positive pancreatic progenitor stage following our established protocol with few modifications, and then the progenitor cells were passaged in a defined proliferation medium (PM). During passage, the effect of BMP4 signaling on the differentiation and proliferation of pancreatic progenitors was examined by RT-PCR and immunofluorescence analysis. We found that PDX1 positive pancreatic progenitors proliferated and gained NKX6.1 expression in the PM, whereas they failed to express NKX6.1 if BMP signaling was inhibited with Noggin. In this latter condition, part of the progenitors rather generated pro-endocrine cells denoted by NGN3 and synaptophysin expression. On the contrary, addition of BMP4 to the PM promoted the early derivation of PDX1 and NKX6.1 coexpressing pancreatic progenitors. Our findings are in line with mouse pancreas development, and indicate that BMP4 signaling is required for the derivation and maintenance of hESC-derived PDX1+NKX6.1+ pancreatic progenitors. These results are instructive for guiding the development of an efficient pancreas differentiation protocol in view of diabetes cell replacement therapy.
Collapse
|
36
|
Gao X, Cao Y, Staloch DA, Gonzales MA, Aronson JF, Chao C, Hellmich MR, Ko TC. Bone morphogenetic protein signaling protects against cerulein-induced pancreatic fibrosis. PLoS One 2014; 9:e89114. [PMID: 24586530 PMCID: PMC3931685 DOI: 10.1371/journal.pone.0089114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/15/2014] [Indexed: 01/27/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) have an anti-fibrogenic function in the kidney, lung, and liver. However, their role in chronic pancreatitis (CP) is unknown. The aim of this study was to define the anti-fibrogenic role of BMP signaling in the pancreas in vivo under CP induction. Mice with a deletion of BMP type II receptor (BMPR2+/−) were used in this study in comparison with wild-type mice. CP was induced by repetitive cerulein injection intraperitoneally for 4 weeks, and the severity of CP was evaluated. Pancreatic stellate cells (PSCs) were isolated from the mice and treated with BMP2 and TGF-β in vitro, and extracellular matrix protein (ECM) production was measured. Smad and mitogen-activated protein kinase (MAPK) signaling was also evaluated. BMPR2+/− mice revealed a greater pancreatic fibrosis, PSC activation and leukocyte infiltration after CP induction compared to wild-type mice (P<0.05). Under CP induction, phospho (p)Smad1/5/8 was elevated in wild-type mice and this effect was abolished in BMPR2+/− mice; pSmad2 and pp38MAPK were further enhanced in BMPR2+/− mice compared to wild-type mice (P<0.05). In vitro, BMP2 inhibited TGF-β-induced ECM protein fibronectin production in wild-type PSCs; this effect was abolished in BMPR2+/− PSCs (P<0.05). In BMPR2+/− PSCs, pSmad1/5/8 level was barely detectable upon BMP2 stimulation, while pSmad2 level was further enhanced by TGF-β stimulation, compared to wild-type PSCs (P<0.05). BMPR2/Smad1/5/8 signaling plays a protective role against cerulein-induced pancreatic fibrosis by inhibiting Smad2 and p38MAPK signaling pathways.
Collapse
Affiliation(s)
- Xuxia Gao
- Department of Surgery, The University of Texas Health Science Center-Houston, Houston, Texas, United States of America
| | - Yanna Cao
- Department of Surgery, The University of Texas Health Science Center-Houston, Houston, Texas, United States of America
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Dustin A. Staloch
- Department of Surgery, The University of Texas Health Science Center-Houston, Houston, Texas, United States of America
| | - Michael A. Gonzales
- Department of Surgery, The University of Texas Health Science Center-Houston, Houston, Texas, United States of America
| | - Judith F. Aronson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mark R. Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tien C. Ko
- Department of Surgery, The University of Texas Health Science Center-Houston, Houston, Texas, United States of America
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|
38
|
Yasunaga M, Masui E, Oji A, Soma A, Osaki M, Nakanishi T, Sato K. Identification of the control region of pancreatic expression of Bmp4 in vitro and in vivo. PLoS One 2013; 8:e61821. [PMID: 23626735 PMCID: PMC3633997 DOI: 10.1371/journal.pone.0061821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/13/2013] [Indexed: 12/28/2022] Open
Abstract
Bone morphogenetic protein 4 (Bmp4) was recently shown to be related to glucose homeostasis in mouse adult pancreas through the regulation of insulin production. We previously revealed the predominant expression of Bmp4 in adult pancreas by in vivo imaging of transgenic mice. However, the control regions for predominant Bmp4 expression in the adult pancreas are unclear. In this study, we established transgenic (Tg) mice that allow real time in vivo bioluminescence imaging of the enhancer/promoter activity of the Bmp4 gene. Tg mice expressing firefly luciferase with a 7 kb upstream region and 5′-non-coding sequence (three exons and two introns) of the Bmp4 gene showed pancreatic expression of bioluminescence, while the Tg mice bearing luciferase with the 7 kb upstream region alone did not show pancreatic expression of the reporter gene. Interestingly, pancreatic expression of bioluminescence was also present in Tg mice harboring the truncated promoter without exon IA and IB, indicating the presence of a cryptic promoter in front of exon II. Furthermore, the bioluminescence signal was not detected in embryonic pancreas, but increasing signals were observed in neonatal and infantile Tg mice depending on the genotypes observed. These results suggested that a novel mechanism of transcription is involved in pancreatic expression of the Bmp4 gene.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Embryo, Mammalian
- Exons
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Introns
- Luciferases
- Luminescent Measurements
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- NIH 3T3 Cells
- Pancreas/growth & development
- Pancreas/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Mayu Yasunaga
- Division of Molecular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
| | - Eiji Masui
- Division of Molecular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
| | - Asami Oji
- Division of Molecular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
| | - Atsumi Soma
- Division of Molecular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University Faculty of Medicine, Yonago, Japan
| | - Tomoko Nakanishi
- Division of Molecular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kenzo Sato
- Division of Molecular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University Faculty of Medicine, Yonago, Japan
- * E-mail:
| |
Collapse
|
39
|
Wiater E, Vale W. Roles of activin family in pancreatic development and homeostasis. Mol Cell Endocrinol 2012; 359:23-9. [PMID: 22406274 DOI: 10.1016/j.mce.2012.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 01/15/2023]
Abstract
The transforming growth factor-beta (TGF-β) superfamily of ligands have been recognized as important signals in vertebrate embryonic development from the blastula stage to adulthood. In addition to roles in early development, TGF-β superfamily ligands, and particularly activin family ligands, are involved in specification, differentiation, and proliferation of multiple organ systems, including the pancreas. More recently, research has suggested that activin family ligands, binding proteins, receptors, and Smad signal transducers and modulators are involved in regulating adult pancreatic function and maintaining pancreatic islet homeostasis in the adult. This article will focus on outlining common themes in activin family regulation of embryonic pancreatic development and adult pancreatic homeostasis, particularly in activin family involvement in setting and maintaining populations of islet cells such as β-cells.
Collapse
Affiliation(s)
- Ezra Wiater
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute of Biological Studies, La Jolla, CA 92037, USA.
| | | |
Collapse
|
40
|
Seymour PA, Shih HP, Patel NA, Freude KK, Xie R, Lim CJ, Sander M. A Sox9/Fgf feed-forward loop maintains pancreatic organ identity. Development 2012; 139:3363-72. [PMID: 22874919 DOI: 10.1242/dev.078733] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All mature pancreatic cell types arise from organ-specific multipotent progenitor cells. Although previous studies have identified cell-intrinsic and -extrinsic cues for progenitor cell expansion, it is unclear how these cues are integrated within the niche of the developing organ. Here, we present genetic evidence in mice that the transcription factor Sox9 forms the centerpiece of a gene regulatory network that is crucial for proper organ growth and maintenance of organ identity. We show that pancreatic progenitor-specific ablation of Sox9 during early pancreas development causes pancreas-to-liver cell fate conversion. Sox9 deficiency results in cell-autonomous loss of the fibroblast growth factor receptor (Fgfr) 2b, which is required for transducing mesenchymal Fgf10 signals. Likewise, Fgf10 is required to maintain expression of Sox9 and Fgfr2 in epithelial progenitors, showing that Sox9, Fgfr2 and Fgf10 form a feed-forward expression loop in the early pancreatic organ niche. Mirroring Sox9 deficiency, perturbation of Fgfr signaling in pancreatic explants or genetic inactivation of Fgf10 also result in hepatic cell fate conversion. Combined with previous findings that Fgfr2b or Fgf10 are necessary for pancreatic progenitor cell proliferation, our results demonstrate that organ fate commitment and progenitor cell expansion are coordinately controlled by the activity of a Sox9/Fgf10/Fgfr2b feed-forward loop in the pancreatic niche. This self-promoting Sox9/Fgf10/Fgfr2b loop may regulate cell identity and organ size in a broad spectrum of developmental and regenerative contexts.
Collapse
Affiliation(s)
- Philip A Seymour
- Departments of Pediatrics and Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Signaling pathways regulating murine pancreatic development. Semin Cell Dev Biol 2012; 23:663-72. [DOI: 10.1016/j.semcdb.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/13/2012] [Indexed: 12/24/2022]
|
42
|
Cleveland MH, Sawyer JM, Afelik S, Jensen J, Leach SD. Exocrine ontogenies: on the development of pancreatic acinar, ductal and centroacinar cells. Semin Cell Dev Biol 2012; 23:711-9. [PMID: 22743232 DOI: 10.1016/j.semcdb.2012.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
This review summarizes our current understanding of exocrine pancreas development, including the formation of acinar, ductal and centroacinar cells. We discuss the transcription factors associated with various stages of exocrine differentiation, from multipotent progenitor cells to fully differentiated acinar and ductal cells. Within the branching epithelial tree of the embryonic pancreas, this involves the progressive restriction of multipotent pancreatic progenitor cells to either a central "trunk" domain giving rise to the islet and ductal lineages, or a peripheral "tip" domain giving rise to acinar cells. This review also discusses the soluble morphogens and other signaling pathways that influence these events. Finally, we examine centroacinar cells as an enigmatic pancreatic cell type whose lineage remains uncertain, and whose possible progenitor capacities continue to be explored.
Collapse
Affiliation(s)
- Megan H Cleveland
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | | | | | | | | |
Collapse
|
43
|
Abstract
The pancreas is characterized by a major component, an exocrine and ductal system involved in digestion, and a minor component, the endocrine islets represented by islet micro-organs that tightly regulate glucose homoeostasis. Pancreatic organogenesis is strictly co-ordinated by transcription factors that are expressed sequentially to yield functional islets capable of maintaining glucose homoeostasis. Angiogenesis and innervation complete islet development, equipping islets to respond to metabolic demands. Proper regulation of this triad of processes during development is critical for establishing functional islets.
Collapse
|
44
|
Landsman L, Nijagal A, Whitchurch TJ, VanderLaan RL, Zimmer WE, MacKenzie TC, Hebrok M. Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLoS Biol 2011; 9:e1001143. [PMID: 21909240 PMCID: PMC3167782 DOI: 10.1371/journal.pbio.1001143] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 07/28/2011] [Indexed: 01/10/2023] Open
Abstract
Genetic disruption of the pancreatic mesenchyme reveals that it is critical for the expansion of epithelial progenitors and for the proliferation of insulin-producing beta cells. The developing pancreatic epithelium gives rise to all endocrine and exocrine cells of the mature organ. During organogenesis, the epithelial cells receive essential signals from the overlying mesenchyme. Previous studies, focusing on ex vivo tissue explants or complete knockout mice, have identified an important role for the mesenchyme in regulating the expansion of progenitor cells in the early pancreas epithelium. However, due to the lack of genetic tools directing expression specifically to the mesenchyme, the potential roles of this supporting tissue in vivo, especially in guiding later stages of pancreas organogenesis, have not been elucidated. We employed transgenic tools and fetal surgical techniques to ablate mesenchyme via Cre-mediated mesenchymal expression of Diphtheria Toxin (DT) at the onset of pancreas formation, and at later developmental stages via in utero injection of DT into transgenic mice expressing the Diphtheria Toxin receptor (DTR) in this tissue. Our results demonstrate that mesenchymal cells regulate pancreatic growth and branching at both early and late developmental stages by supporting proliferation of precursors and differentiated cells, respectively. Interestingly, while cell differentiation was not affected, the expansion of both the endocrine and exocrine compartments was equally impaired. To further elucidate signals required for mesenchymal cell function, we eliminated β-catenin signaling and determined that it is a critical pathway in regulating mesenchyme survival and growth. Our study presents the first in vivo evidence that the embryonic mesenchyme provides critical signals to the epithelium throughout pancreas organogenesis. The findings are novel and relevant as they indicate a critical role for the mesenchyme during late expansion of endocrine and exocrine compartments. In addition, our results provide a molecular mechanism for mesenchymal expansion and survival by identifying β-catenin signaling as an essential mediator of this process. These results have implications for developing strategies to expand pancreas progenitors and β-cells for clinical transplantation. Embryonic development is a highly complex process that requires tight orchestration of cellular proliferation, differentiation, and migration as cells grow within loosely aggregated mesenchyme and more organized epithelial sheets to form organs and tissues. In addition to intrinsic cell-autonomous signals, these events are further regulated by environmental cues provided by neighboring cells. Prior work demonstrated a critical role for the surrounding mesenchyme in guiding epithelial growth during the early stages of pancreas development. However, it remained unclear whether the mesenchyme also guided the later stages of pancreas organogenesis when the functional exocrine and endocrine cells are formed. Here, we show that specific genetic ablation of the mesenchyme at distinct developmental stages in vivo results in the formation of a smaller, misshapen pancreas. Loss of the mesenchyme profoundly impairs the expansion of both endocrine and exocrine pancreatic progenitors, as well as the proliferative capacity of maturing cells, including insulin-producing beta-cells. Thus, our studies reveal unappreciated roles for the mesenchyme in guiding the formation of the epithelial pancreas throughout development. The results suggest that identifying the specific mesenchymal signals might help to optimize cell culture protocols that aim to achieve the differentiation of stem cells into insulin-producing beta cells.
Collapse
Affiliation(s)
- Limor Landsman
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Amar Nijagal
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Theresa J. Whitchurch
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Renee L. VanderLaan
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Warren E. Zimmer
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Tippi C. MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
Pancreas oganogenesis comprises a coordinated and highly complex interplay of signaling events and transcriptional networks that guide a step-wise process of organ development from early bud specification all the way to the final mature organ state. Extensive research on pancreas development over the last few years, largely driven by a translational potential for pancreatic diseases (diabetes, pancreatic cancer, and so on), is markedly advancing our knowledge of these processes. It is a tenable goal that we will one day have a clear, complete picture of the transcriptional and signaling codes that control the entire organogenetic process, allowing us to apply this knowledge in a therapeutic context, by generating replacement cells in vitro, or perhaps one day to the whole organ in vivo. This review summarizes findings in the past 5 years that we feel are amongst the most significant in contributing to the deeper understanding of pancreas development. Rather than try to cover all aspects comprehensively, we have chosen to highlight interesting new concepts, and to discuss provocatively some of the more controversial findings or proposals. At the end of the review, we include a perspective section on how the whole pancreas differentiation process might be able to be unwound in a regulated fashion, or redirected, and suggest linkages to the possible reprogramming of other pancreatic cell-types in vivo, and to the optimization of the forward-directed-differentiation of human embryonic stem cells (hESC), or induced pluripotential cells (iPSC), towards mature β-cells.
Collapse
|
46
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2011; 18:231-3. [PMID: 21522003 DOI: 10.1097/med.0b013e3283457c7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Affiliation(s)
- Philip A Seymour
- Department of Pediatrics, The University of California San Diego Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
48
|
Rhim AD, Stanger BZ. Molecular biology of pancreatic ductal adenocarcinoma progression: aberrant activation of developmental pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 97:41-78. [PMID: 21074729 PMCID: PMC3117430 DOI: 10.1016/b978-0-12-385233-5.00002-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Embryonic development marks a period of peak tissue growth and morphogenesis in the mammalian lifecycle. Many of the pathways that underlie cell proliferation and movement are relatively quiescent in adult animals but become reactivated during carcinogenesis. This phenomenon has been particularly well documented in pancreatic cancer, where detailed genetic studies and a robust mouse model have permitted investigators to test the role of various developmental signals in cancer progression. In this chapter, we review current knowledge regarding the signaling pathways that act during pancreatic development and the evidence that the reactivation of developmentally important signals is critical for the pathogenesis of this treatment-refractory malignancy.
Collapse
Affiliation(s)
- Andrew D Rhim
- Gastroenterology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|