1
|
Sahin C, Melanson JR, Le Billan F, Magomedova L, Ferreira TAM, Oliveira AS, Pollock-Tahari E, Saikali MF, Cash SB, Woo M, Romeiro LAS, Cummins CL. A novel fatty acid mimetic with pan-PPAR partial agonist activity inhibits diet-induced obesity and metabolic dysfunction-associated steatotic liver disease. Mol Metab 2024; 85:101958. [PMID: 38763495 PMCID: PMC11170206 DOI: 10.1016/j.molmet.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVE The prevalence of metabolic diseases is increasing globally at an alarming rate; thus, it is essential that effective, accessible, low-cost therapeutics are developed. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that tightly regulate glucose homeostasis and lipid metabolism and are important drug targets for the treatment of type 2 diabetes and dyslipidemia. We previously identified LDT409, a fatty acid-like compound derived from cashew nut shell liquid, as a novel pan-active PPARα/γ/δ compound. Herein, we aimed to assess the efficacy of LDT409 in vivo and investigate the molecular mechanisms governing the actions of the fatty acid mimetic LDT409 in diet-induced obese mice. METHODS C57Bl/6 mice (6-11-month-old) were fed a chow or high fat diet (HFD) for 4 weeks; mice thereafter received once daily intraperitoneal injections of vehicle, 10 mg/kg Rosiglitazone, 40 mg/kg WY14643, or 40 mg/kg LDT409 for 18 days while continuing the HFD. During treatments, body weight, food intake, glucose and insulin tolerance, energy expenditure, and intestinal lipid absorption were measured. On day 18 of treatment, tissues and plasma were collected for histological, molecular, and biochemical analysis. RESULTS We found that treatment with LDT409 was effective at reversing HFD-induced obesity and associated metabolic abnormalities in mice. LDT409 lowered food intake and hyperlipidemia, while improving insulin tolerance. Despite being a substrate of both PPARα and PPARγ, LDT409 was crucial for promoting hepatic fatty acid oxidation and reducing hepatic steatosis in HFD-fed mice. We also highlighted a role for LDT409 in white and brown adipocytes in vitro and in vivo where it decreased fat accumulation, increased lipolysis, induced browning of WAT, and upregulated thermogenic gene Ucp1. Remarkably, LDT409 reversed HFD-induced weight gain back to chow-fed control levels. We determined that the LDT409-induced weight-loss was associated with a combination of increased energy expenditure (detectable before weight loss was apparent), decreased food intake, increased systemic fat utilization, and increased fecal lipid excretion in HFD-fed mice. CONCLUSIONS Collectively, LDT409 represents a fatty acid mimetic that generates a uniquely favorable metabolic response for the treatment of multiple abnormalities including obesity, dyslipidemia, metabolic dysfunction-associated steatotic liver disease, and diabetes. LDT409 is derived from a highly abundant natural product-based starting material and its development could be pursued as a therapeutic solution to the global metabolic health crisis.
Collapse
Affiliation(s)
- Cigdem Sahin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jenna-Rose Melanson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Florian Le Billan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Thais A M Ferreira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Andressa S Oliveira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Evan Pollock-Tahari
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Sarah B Cash
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Banting and Best Diabetes Centre, Toronto, ON, M5G 2C4, Canada
| | - Luiz A S Romeiro
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Banting and Best Diabetes Centre, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
2
|
The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARγ Activation. J Cardiovasc Pharmacol 2021; 76:514-526. [PMID: 33165133 DOI: 10.1097/fjc.0000000000000891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common complications in patients with type-2 diabetes are hyperglycemia and hyperlipidemia that can lead to cardiovascular disease. Alleviation of these complications constitutes the major therapeutic approach for the treatment of diabetes mellitus. Agonists of peroxisome proliferator-activated receptor (PPAR) alpha and PPARγ are used for the treatment of hyperlipidemia and hyperglycemia, respectively. PPARs belong to the nuclear receptors superfamily and regulate fatty acid metabolism. PPARα ligands, such as fibrates, reduce circulating triglyceride levels, and PPARγ agonists, such as thiazolidinediones, improve insulin sensitivity. Dual-PPARα/γ agonists (glitazars) were developed to combine the beneficial effects of PPARα and PPARγ agonism. Although they improved metabolic parameters, they paradoxically aggravated congestive heart failure in patients with type-2 diabetes via mechanisms that remain elusive. Many of the glitazars, such as muraglitazar, tesaglitazar, and aleglitazar, were abandoned in phase-III clinical trials. The objective of this review article pertains to the understanding of how combined PPARα and PPARγ activation, which successfully targets the major complications of diabetes, causes cardiac dysfunction. Furthermore, it aims to suggest interventions that will maintain the beneficial effects of dual PPARα/γ agonism and alleviate adverse cardiac outcomes in diabetes.
Collapse
|
3
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
4
|
Jeong HW, Kim JK, Kim AY, Cho D, Lee JH, Choi JK, Park M, Kim W. Green Tea Encourages Growth of Akkermansia muciniphila. J Med Food 2020; 23:841-851. [PMID: 32598202 DOI: 10.1089/jmf.2019.4662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trillions of microorganisms reside in the hosts' gut. Since diverse activities of gut microbiota affect the hosts' health status, maintenance of gut microbiota is important for maintaining human health. Green tea (GT) has multiple beneficial effects on energy metabolism with antiobesity, antidiabetic, and hypolipidemic properties. As GT contains a large amount of bioactive ingredients (e.g., catechins), which can be metabolized by microorganisms, it would be feasible that consumption of GT may cause compositional changes in gut microbiota, and that the changes in gut microbiota would be associated with the beneficial effects of GT. In this study, we demonstrated that consumption of GT extract relieves high-fat diet-induced metabolic abnormalities. Interestingly, GT administration significantly encouraged the growth of Akkermansia muciniphila (Akkermansia), a beneficial microorganism to relieve obesity and related metabolic disorders. Finally, we found that epigallocatechin gallate is the component of GT that stimulates the growth of Akkermansia. According to these data, we propose that GT could be a prebiotic agent for Akkermansia to treat metabolic syndromes.
Collapse
Affiliation(s)
- Hyun Woo Jeong
- Vital Beautie Research Division, Amorepacific Corporation Research and Development Center, Yongin, Korea
| | - Jeong Kee Kim
- Vital Beautie Research Division, Amorepacific Corporation Research and Development Center, Yongin, Korea
| | - A Young Kim
- Vital Beautie Research Division, Amorepacific Corporation Research and Development Center, Yongin, Korea
| | - Donghyun Cho
- Vital Beautie Research Division, Amorepacific Corporation Research and Development Center, Yongin, Korea
| | - Ji-Hae Lee
- Vital Beautie Research Division, Amorepacific Corporation Research and Development Center, Yongin, Korea
| | | | - Miyoung Park
- Vital Beautie Research Division, Amorepacific Corporation Research and Development Center, Yongin, Korea
| | - Wangi Kim
- Vital Beautie Research Division, Amorepacific Corporation Research and Development Center, Yongin, Korea
| |
Collapse
|
5
|
Balakumar P, Mahadevan N, Sambathkumar R. A Contemporary Overview of PPARα/γ Dual Agonists for the Management of Diabetic Dyslipidemia. Curr Mol Pharmacol 2020; 12:195-201. [PMID: 30636619 PMCID: PMC6875865 DOI: 10.2174/1874467212666190111165015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 01/11/2023]
Abstract
Background: Diabetes mellitus and concomitant dyslipidemia, being referred to as ‘diabetic dyslipidemia’, are the foremost detrimental factors documented to play a pivotal role in cardiovascular illness. Diabetic dyslipidemia is associated with insulin resistance, high plasma triglyceride levels, low HDL-cholesterol concentration and elevated small dense LDL-cholesterol particles. Maintaining an optimal glucose and lipid levels in patients afflicted with diabetic dyslipidemia could be a major task that might require a well-planned diet-management system and regular physical activity, or otherwise an intake of combined antidiabetic and antihyperlipidemic medications. Synchronized treatment which efficiently controls insulin resistance-associated diabetes mellitus and co-existing dyslipidemia could indeed be a fascinating therapeutic option in the management of diabetic dyslipidemia. Peroxisome proliferator-activated receptors α/γ (PPARα/γ) dual agonists are such kind of drugs which possess therapeutic potentials to treat diabetic dyslipidemia. Nevertheless, PPARα/γ dual agonists like muraglitazar, naveglitazar, tesaglitazar, ragaglitazar and aleglitazar have been reported to have undesirable adverse effects, and their developments have been halted at various stages. On the other hand, a recently introduced PPARα/γ dual agonist, saroglitazar is an emerging therapeutic agent of glitazar class approved in India for the management of diabetic dyslipidemia, and its treatment has been reported to be generally safe and well tolerated. Conclusion: Some additional and new compounds, at initial and preclinical stages, have been recently reported to possess PPARα/γ dual agonistic potentials with considerable therapeutic efficacy and reduced adverse profile. This review sheds light on the current status of various PPARα/γ dual agonists for the management of diabetic dyslipidemia.
Collapse
Affiliation(s)
| | - Nanjaian Mahadevan
- College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | | |
Collapse
|
6
|
Kalliora C, Kyriazis ID, Oka SI, Lieu MJ, Yue Y, Area-Gomez E, Pol CJ, Tian Y, Mizushima W, Chin A, Scerbo D, Schulze PC, Civelek M, Sadoshima J, Madesh M, Goldberg IJ, Drosatos K. Dual peroxisome-proliferator-activated-receptor-α/γ activation inhibits SIRT1-PGC1α axis and causes cardiac dysfunction. JCI Insight 2019; 5:129556. [PMID: 31393858 DOI: 10.1172/jci.insight.129556] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dual peroxisome proliferator-activated receptor (PPAR)α/γ agonists that were developed to target hyperlipidemia and hyperglycemia in type 2 diabetes patients, caused cardiac dysfunction or other adverse effects. We studied the mechanisms that underlie the cardiotoxic effects of a dual PPARα/γ agonist, tesaglitazar, in wild type and diabetic (leptin receptor deficient - db/db) mice. Mice treated with tesaglitazar-containing chow or high fat diet developed cardiac dysfunction despite lower plasma triglycerides and glucose levels. Expression of cardiac peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which promotes mitochondrial biogenesis, had the most profound reduction among various fatty acid metabolism genes. Furthermore, we observed increased acetylation of PGC1α, which suggests PGC1α inhibition and lowered sirtuin 1 (SIRT1) expression. This change was associated with lower mitochondrial abundance. Combined pharmacological activation of PPARα and PPARγ in C57BL/6 mice reproduced the reduction of PGC1α expression and mitochondrial abundance. Resveratrol-mediated SIRT1 activation attenuated tesaglitazar-induced cardiac dysfunction and corrected myocardial mitochondrial respiration in C57BL/6 and diabetic mice but not in cardiomyocyte-specific Sirt1-/- mice. Our data shows that drugs, which activate both PPARα and PPARγ lead to cardiac dysfunction associated with PGC1α suppression and lower mitochondrial abundance likely due to competition between these two transcription factors.
Collapse
Affiliation(s)
- Charikleia Kalliora
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.,Faculty of Medicine, University of Crete, Voutes, Greece
| | - Ioannis D Kyriazis
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Shin-Ichi Oka
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Melissa J Lieu
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Yujia Yue
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Christine J Pol
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Tian
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Wataru Mizushima
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Adave Chin
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Diego Scerbo
- Division of Preventive Medicine and Nutrition, Columbia University, New York, New York, USA.,NYU Langone School of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York, New York, USA
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Angiology, Intensive Medical Care and Pneumology, University Hospital Jena, Jena, Germany
| | - Mete Civelek
- Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Junichi Sadoshima
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Muniswamy Madesh
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ira J Goldberg
- NYU Langone School of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York, New York, USA
| | - Konstantinos Drosatos
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Hayashi Y, Ito Y, Naito H, Tamada H, Yamagishi N, Kondo T, Ishikawa T, Gonzalez FJ, Nakajima T. In utero exposure to di(2-ethylhexyl)phthalate suppresses blood glucose and leptin levels in the offspring of wild-type mice. Toxicology 2019; 415:49-55. [PMID: 30660623 DOI: 10.1016/j.tox.2019.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/09/2023]
Abstract
Exposure of pregnant mice to di(2-ethylhexyl)phthalate (DEHP) induces maternal lipid malnutrition and decreases the number of live fetuses/pups. In this study, we aimed to clarify the relationship between maternal lipid malnutrition and the nutritional status of the neonatal, lactational, and adult offspring, as well as the role of peroxisome proliferator-activated receptor α (PPARα) in these relationships. Sv/129 wild-type (mPPARA), Ppara-null, and PPARα-humanized (hPPARA) mice were fed diets containing 0, 0.01, 0.05, or 0.1% DEHP in utero and/or during the lactational stage. The male offspring were killed on postnatal day 2 or 21, or after 11 weeks. Exposure to either 0.05% or 0.1% DEHP during both the in utero and lactational periods decreased serum glucose concentrations in 2-day-old mPPARA offspring. These dosages also decreased both serum and plasma leptin levels in both 2- and 21-day-old mPPARA offspring. In contrast, exposure to DEHP only during the lactational period did not decrease leptin levels, suggesting the importance of in utero exposure to DEHP. Exposure to 0.05% DEHP during the in utero and lactational periods also increased food consumption after weaning in both mPPARA and hPPARA mice; this was not observed in Ppara-null offspring. In conclusion, in utero exposure to DEHP induces neonatal serum glucose malnutrition via PPARα. DEHP also decreases serum and plasma leptin concentrations in offspring during the neonatal and weaning periods, in association with PPARα, which presumably results in increased of food consumption after weaning.
Collapse
Affiliation(s)
- Yumi Hayashi
- Pathophysiological Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan; In vivo Real-time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Hisao Naito
- Department of Public Health, Fujita Health University School of Medicine, Dengakugakubo 1-98, Kutsukake-cho, Toyoake, 470-1192, Japan.
| | - Hazuki Tamada
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Nozomi Yamagishi
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takaaki Kondo
- Pathophysiological Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan.
| | - Tetsuya Ishikawa
- Pathophysiological Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan.
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan.
| |
Collapse
|
8
|
Kim JK, Jeong HW, Kim AY, Hong YD, Lee JH, Choi JK, Hwang JS. Green satsuma mandarin orange ( Citrus unshiu) extract reduces adiposity and induces uncoupling protein expression in skeletal muscle of obese mice. Food Sci Biotechnol 2018; 28:873-879. [PMID: 31093446 PMCID: PMC6484071 DOI: 10.1007/s10068-018-0503-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
Increased fat mass, which is induced by the storage of excess nutrients, is considered a causal factor for various metabolic disorders, including insulin resistance, type 2 diabetes, hyperlipidemia, hyperglycemia, hypertension, atherosclerosis, and non-alcoholic fatty liver disease. Therefore, it is necessary to prevent hyperadiposity to sustain a healthy life. Recently, uncoupling proteins (UCPs) were suggested to be molecular targets for curing obesity and its complications. In this study, green satsuma mandarin orange (Citrus unshiu) extract (GME) increased UCP3 expression in cultured myocytes. In a diet-induced obese animal model, administration of GME reduced fat mass and average fat cell size. Similar to in vitro experiments, GME restored expression of UCP3 in skeletal muscle. Moreover, GME also induced UCP2 expression in skeletal muscle. In conclusion, GME is suggested to be a novel functional dietary supplement for adiposity control through induction of UCPs.
Collapse
Affiliation(s)
- Jeong Kee Kim
- 1Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Hyun Woo Jeong
- Vital Beautie Research Division, Amorepacific R&D Center, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074 Republic of Korea
| | - A Young Kim
- Vital Beautie Research Division, Amorepacific R&D Center, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074 Republic of Korea
| | - Yong Deog Hong
- Vital Beautie Research Division, Amorepacific R&D Center, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074 Republic of Korea
| | - Ji Hae Lee
- Vital Beautie Research Division, Amorepacific R&D Center, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074 Republic of Korea
| | - Jin Kyu Choi
- QA Team, Aestura Corporation, Gongdan1-ro 36, Ansung-si, Gyeonggi-do 17575 Republic of Korea
| | - Jae Sung Hwang
- 1Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| |
Collapse
|
9
|
Laghezza A, Piemontese L, Cerchia C, Montanari R, Capelli D, Giudici M, Crestani M, Tortorella P, Peiretti F, Pochetti G, Lavecchia A, Loiodice F. Identification of the First PPARα/γ Dual Agonist Able To Bind to Canonical and Alternative Sites of PPARγ and To Inhibit Its Cdk5-Mediated Phosphorylation. J Med Chem 2018; 61:8282-8298. [DOI: 10.1021/acs.jmedchem.8b00835] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Carmen Cerchia
- Dipartimento di Farmacia, “Drug Discovery” Laboratory, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Marco Giudici
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Franck Peiretti
- Aix Marseille Université, INSERM 1263, INRA 1260, C2VN, 13005 Marseille, France
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Antonio Lavecchia
- Dipartimento di Farmacia, “Drug Discovery” Laboratory, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
10
|
Jung HY, Kim B, Ryu HG, Ji Y, Park S, Choi SH, Lee D, Lee IK, Kim M, Lee YJ, Song W, Lee YH, Choi HJ, Hyun CK, Holzapfel WH, Kim KT. Amodiaquine improves insulin resistance and lipid metabolism in diabetic model mice. Diabetes Obes Metab 2018. [PMID: 29516607 DOI: 10.1111/dom.13284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Although peroxisome proliferator-activated receptors (PPARs)α/γ dual agonists can be beneficial for treatment of dyslipidemia in patients with type 2 diabetes, their use is limited owing to various side effects, including body weight gain, edema, and heart failure. We aimed to demonstrate that amodiaquine, an antimalarial agent, has potential as a PPARα/γ dual agonist with low risk of adverse effects. METHODS We screened a Prestwick library (Prestwick Chemical; Illkirch, France) to identify novel PPARα/γ dual agonists and selected amodiaquine (4-[(7-chloroquinolin-4-yl)amino]-2-[(diethylamino)methyl]phenol), which activated both PPAR-α & -γ, for further investigation. We performed both in vitro, including glucose uptake assay and fatty acid oxidation assay, and in vivo studies to elucidate the anti-diabetic and anti-obesity effects of amodiaquine. RESULTS Amodiaquine selectively activated the transcriptional activities of PPARα/γ and enhanced both fatty acid oxidation and glucose uptake without altering insulin secretion in vitro. In high-fat diet-induced obese and genetically modified obese/diabetic mice, amodiaquine not only remarkably ameliorated insulin resistance, hyperlipidemia, and fatty liver but also decreased body weight gain. CONCLUSION Our findings suggest that amodiaquine exerts beneficial effects on glucose and lipid metabolism by concurrent activation of PPARα/γ. Furthermore, amodiaquine acts as an alternative insulin-sensitizing agent with a positive influence on lipid metabolism and has potential to prevent and treat type 2 diabetes while reducing the risk of lipid abnormalities.
Collapse
Affiliation(s)
- Hoe-Yune Jung
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- R&D Center, NovMetaPharma Co., Ltd., Pohang, Republic of Korea
| | - Bobae Kim
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Republic of Korea
- School of Life Science, Handong Global University, Pohang, Republic of Korea
| | - Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Yosep Ji
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Republic of Korea
| | - Soyoung Park
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Republic of Korea
| | - Seung Hee Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Dohyun Lee
- R&D Center, NovMetaPharma Co., Ltd., Pohang, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Munki Kim
- Bio Convergence Team, Advanced Bio Convergence Center, Pohang, Republic of Korea
| | - You Jeong Lee
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Woojin Song
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Division of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Hee Lee
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Division of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyung Jin Choi
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Division of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang, Republic of Korea
| | - Wilhelm H Holzapfel
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Republic of Korea
| | - Kyong-Tai Kim
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
11
|
A novel PPARα/γ agonist, propane-2-sulfonic acid octadec-9-enyl-amide, ameliorates insulin resistance and gluconeogenesis in vivo and vitro. Eur J Pharmacol 2018; 826:1-8. [PMID: 29476879 DOI: 10.1016/j.ejphar.2018.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022]
Abstract
Peroxisome proliferator-activated receptor alpha/gamma (PPARα/γ) agonists have emerged as important pharmacological agents for improving insulin action. Propane-2-sulfonic acid octadec-9-enyl-amide (N15) is a novel PPARα/γ dual agonist synthesized in our laboratory. The present study investigates the efficacy and safety of N15 on insulin resistance regulation in high fat diet (HFD)-and streptozotocin (STZ)-induced diabetic mice and in palmitic acid (PA)-induced HepG2 cells. Our results showed that N15 remarkably ameliorated insulin resistance and dyslipidemia in vivo, as well as rectified the glucose consumption and gluconeogenesis in vitro. Moreover, the glucose-lowering effect of N15 was associated with PPARγ mediated up-regulation of hepatic glucose consumption and down-regulation of gluconeogenesis. Meanwhile, N15 exerted advantageous effects on glucose and lipid metabolism without triggering weight gain and hepatotoxicity in mice. In conclusion, our data demonstrated that by alleviating glucose and lipid abnormalities, N15 could be used as a potential prophylactic and therapeutic agent against type 2 diabetes and related metabolic disorders.
Collapse
|
12
|
Baek HK, Shim H, Lim H, Shim M, Kim CK, Park SK, Lee YS, Song KD, Kim SJ, Yi SS. Anti-adipogenic effect of Artemisia annua in diet-induced-obesity mice model. J Vet Sci 2016; 16:389-96. [PMID: 26243598 PMCID: PMC4701730 DOI: 10.4142/jvs.2015.16.4.389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/26/2015] [Accepted: 07/03/2015] [Indexed: 01/17/2023] Open
Abstract
Obesity has increased continuously in western countries during the last several decades and recently become a problem in developing countries. Currently, anti-obesity drugs originating from natural products are being investigated for their potential to overcome adverse effects associated with chemical drugs. Artemisinic acid, which was isolated from the well-known anti-malaria herb Artemisia annua (AA) L., was recently shown to possess anti-adipogenic effects in vitro. However, the anti-adipogenic effects of AA in animal models have not yet been investigated. Therefore, we conducted daily oral administration with AA water extract in a diet-induced obesity animal model and treated 3T3-L1 cells with AA to confirm the anti-adipogenic effects in the related protein expressions. We then evaluated the physiology, adipose tissue histology and mRNA expressions of many related genes. Inhibition of adipogenesis by the AA water extract was observed in vitro. In the animal model, weight gain was significantly lower in the AA treated group, but there were no changes in food intake volume or calories. Reductions in lipid droplet size and mRNA expression associated with adipogenesis were also observed in animal epididymal fat. This study is the first to report that AA has an anti-obese effects in vivo.
Collapse
Affiliation(s)
- Hye Kyung Baek
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Hyeji Shim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Hyunmook Lim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Minju Shim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Chul-Kyu Kim
- Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Sang-Kyu Park
- Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Ki-Duk Song
- Genomic Informatic Center, Han-kyong National University, Anseong 17579, Korea
| | - Sung-Jo Kim
- Department of Biotechnology, Hoseo University, Asan 31499, Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
13
|
Cha JH, Kim SR, Kang HJ, Kim MH, Ha AW, Kim WK. Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets. Nutr Res Pract 2016; 10:501-506. [PMID: 27698957 PMCID: PMC5037067 DOI: 10.4162/nrp.2016.10.5.501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/19/2016] [Accepted: 06/14/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND/OBJECTIVES Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. MATERIALS/METHODS Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. RESULTS Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CONCLUSIONS CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.
Collapse
Affiliation(s)
- Jae Hoon Cha
- Department of Food Science and Nutrition, Dankook University, 152, Juljeon-ro, Suji-gu, Yonin-si, Gyeonggi 16890, Korea
| | - Sun Rim Kim
- Agriculture Science Technology, 300 Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeonbuk 54875, Korea
| | - Hyun Joong Kang
- Agriculture Science Technology, 300 Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeonbuk 54875, Korea
| | - Myung Hwan Kim
- Department of Food Engineering, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea
| | - Ae Wha Ha
- Department of Food Science and Nutrition, Dankook University, 152, Juljeon-ro, Suji-gu, Yonin-si, Gyeonggi 16890, Korea
| | - Woo Kyoung Kim
- Department of Food Science and Nutrition, Dankook University, 152, Juljeon-ro, Suji-gu, Yonin-si, Gyeonggi 16890, Korea
| |
Collapse
|
14
|
Li Z, Xu J, Zheng P, Xing L, Shen H, Yang L, Zhang L, Ji G. Hawthorn leaf flavonoids alleviate nonalcoholic fatty liver disease by enhancing the adiponectin/AMPK pathway. Int J Clin Exp Med 2015; 8:17295-17307. [PMID: 26770322 PMCID: PMC4694222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
Hawthorn (Crataeguspinnatifida) belongs to the genus Rosaceae family of plants. The hawthorn leaf, Crataeguspinnatifida Bunge, is used for both condiment and medicinal purposes to prevent and treat metabolic dysfunctions, such as hyperlipidemia, hypertension, and cardiovascular disease in traditional Chinese medicine. However, its effects on nonalcoholic fatty liver disease (NAFLD) remain obscure. The purpose of the present study was to investigate the protective effect of hawthorn leaf flavonoids (HLF), the dominant bioactive extracts of hawthorn leaves, on high fat diet (HFD)-induced hepatic steatosis and to elucidate its underlying mechanisms. HLF supplementation significantly lowered body weight, liver weight, liver/body weight ratio, improved serum parameters and liver dysfunction and markedly decreased hepatic lipid accumulation in HFD-fed rats. In addition, HLF intervention dramatically increased circulating adiponectin levels and up-regulated the expression of adiponectin receptors, particularly adiponectin receptor 2 (AdipoR2) in the liver. Moreover, adenosine monophosphate (AMP)-activated protein kinase (AMPK) was also activated, as well as AMPK-mediated alteration of sterol regulatory element binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor α (PPARα) and their downstream targets. Taken together, our data suggest that HLF ameliorates hepatic steatosis by enhancing the adiponectin/AMPK pathway in the liver of HFD-induced NAFLD rats.
Collapse
Affiliation(s)
- Zhongping Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine725 South Wanping Road, Shanghai 200032, China
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine1200 Cailun Road, Shanghai 201203, China
| | - Jiaoya Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine725 South Wanping Road, Shanghai 200032, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine725 South Wanping Road, Shanghai 200032, China
| | - Lianjun Xing
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine725 South Wanping Road, Shanghai 200032, China
| | - Hongyi Shen
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine1200 Cailun Road, Shanghai 201203, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine725 South Wanping Road, Shanghai 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine725 South Wanping Road, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine725 South Wanping Road, Shanghai 200032, China
- E-Institute of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| |
Collapse
|
15
|
Liu Z, Lin Y, Zhang S, Wang D, Liang Q, Luo G. Comparative proteomic analysis using 2DE-LC-MS/MS reveals the mechanism of Fuzhuan brick tea extract against hepatic fat accumulation in rats with nonalcoholic fatty liver disease. Electrophoresis 2015; 36:2002-16. [DOI: 10.1002/elps.201500076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 04/14/2015] [Accepted: 05/11/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Zhonghua Liu
- Department of Chemistry of Tsinghua University and Key Laboratory of Biological Organic Phosphorus and Chemical Biology of Ministry of Education; Beijing P. R. China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha P. R. China
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture and Landscape; Hunan Agricultural University; Changsha P. R. China
| | - Yong Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha P. R. China
| | - Sheng Zhang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha P. R. China
| | - Die Wang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture and Landscape; Hunan Agricultural University; Changsha P. R. China
| | - Qionglin Liang
- Department of Chemistry of Tsinghua University and Key Laboratory of Biological Organic Phosphorus and Chemical Biology of Ministry of Education; Beijing P. R. China
| | - Guoan Luo
- Department of Chemistry of Tsinghua University and Key Laboratory of Biological Organic Phosphorus and Chemical Biology of Ministry of Education; Beijing P. R. China
| |
Collapse
|
16
|
Xue M, Zhang L, Yang MX, Zhang W, Li XM, Ou ZM, Li ZP, Liu SH, Li XJ, Yang SY. Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice. Int J Nanomedicine 2015; 10:5049-57. [PMID: 26346310 PMCID: PMC4531046 DOI: 10.2147/ijn.s84565] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Berberine (BBR) shows very low plasma levels after oral administration due to its poor absorption by the gastrointestinal tract. We have previously demonstrated that BBR showed increased gastrointestinal absorption and enhanced antidiabetic effects in db/db mice after being entrapped into solid lipid nanoparticles (SLNs). However, whether BBR-loaded SLNs (BBR-SLNs) also have beneficial effects on hepatosteatosis is not clear. We investigated the effects of BBR-SLNs on lipid metabolism in the liver using histological staining and reverse transcription polymerase chain reaction analysis. The results showed that oral administration of BBR-SLNs inhibited the increase of body weight and decreased liver weight in parallel with the reduction of serum alanine transaminase and liver triglyceride levels in db/db mice. The maximum drug concentration in the liver was 20-fold higher than that in the blood. BBR-SLNs reduced fat accumulation and lipid droplet sizes significantly in the liver, as indicated by hematoxylin and eosin and Oil Red O staining. The expression of lipogenic genes, including fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD1), and sterol regulatory element-binding protein 1c (SREBP1c) were downregulated, while lipolytic gene carnitine palmitoyltransferase-1 (CPT1) was upregulated in BBR-SLN-treated livers. In summary, we have uncovered an unexpected effect of BBR-SLNs on hepatosteatosis treatment through the inhibition of lipogenesis and the induction of lipolysis in the liver of db/db mice.
Collapse
Affiliation(s)
- Mei Xue
- Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China ; Department of Pharmacology, Beijing University of Chinese Medicine, Chao Yang District, Beijing, People's Republic of China
| | - Liang Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Ming-xing Yang
- Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Wei Zhang
- Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Xiu-min Li
- Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China ; Department of Pharmacology, Beijing University of Chinese Medicine, Chao Yang District, Beijing, People's Republic of China
| | - Zhi-min Ou
- Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Zhi-peng Li
- Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China ; Department of Pharmacology, Beijing University of Chinese Medicine, Chao Yang District, Beijing, People's Republic of China
| | - Su-huan Liu
- Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Xue-jun Li
- Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Shu-yu Yang
- Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
17
|
The prevention and treatment of hypoadiponectinemia-associated human diseases by up-regulation of plasma adiponectin. Life Sci 2015; 135:55-67. [DOI: 10.1016/j.lfs.2015.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 12/30/2022]
|
18
|
Seo DB, Jeong HW, Cho D, Lee BJ, Lee JH, Choi JY, Bae IH, Lee SJ. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. J Med Food 2015; 18:549-56. [PMID: 25764354 DOI: 10.1089/jmf.2014.3265] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Obesity is caused by an imbalance between caloric intake and energy expenditure and accumulation of excess lipids in adipose tissues. Recent studies have demonstrated that green tea and its processed products (e.g., oolong and black tea) are introduced to exert beneficial effects on lipid metabolism. Here, we propose that fermented green tea (FGT) extract, as a novel processed green tea, exhibits antiobesity effects. FGT reduced body weight gain and fat mass without modifying food intake. mRNA expression levels of lipogenic and inflammatory genes were downregulated in white adipose tissue of FGT-administered mice. FGT treatment alleviated glucose intolerance and fatty liver symptoms, common complications of obesity. Notably, FGT restored the changes in gut microbiota composition (e.g., the Firmicutes/Bacteroidetes and Bacteroides/Prevotella ratios), which is reported to be closely related with the development of obesity and insulin resistance, induced by high-fat diets. Collectively, FGT improves obesity and its associated symptoms and modulates composition of gut microbiota; thus, it could be used as a novel dietary component to control obesity and related symptoms.
Collapse
Affiliation(s)
- Dae-Bang Seo
- 1 Department of Food Bioscience & Technology, College of Life Sciences & Biotechnology, Korea University , Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Design, synthesis and biological evaluation of a class of bioisosteric oximes of the novel dual peroxisome proliferator-activated receptor α/γ ligand LT175. Eur J Med Chem 2014; 90:583-94. [PMID: 25497132 DOI: 10.1016/j.ejmech.2014.11.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/09/2014] [Accepted: 11/22/2014] [Indexed: 12/25/2022]
Abstract
The effects resulting from the introduction of an oxime group in place of the distal aromatic ring of the diphenyl moiety of LT175, previously reported as a PPARα/γ dual agonist, have been investigated. This modification allowed the identification of new bioisosteric ligands with fairly good activity on PPARα and fine-tuned moderate activity on PPARγ. For the most interesting compound (S)-3, docking studies in PPARα and PPARγ provided a molecular explanation for its different behavior as full and partial agonist of the two receptor isotypes, respectively. A further investigation of this compound was carried out performing gene expression studies on HepaRG cells. The results obtained allowed to hypothesize a possible mechanism through which this ligand could be useful in the treatment of metabolic disorders. The higher induction of the expression of some genes, compared to selective agonists, seems to confirm the importance of a dual PPARα/γ activity which probably involves a synergistic effect on both receptor subtypes.
Collapse
|
20
|
Wu C, Luan H, Zhang X, Wang S, Zhang X, Sun X, Guo P. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages. PLoS One 2014; 9:e95452. [PMID: 25187964 PMCID: PMC4154672 DOI: 10.1371/journal.pone.0095452] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 05/26/2014] [Indexed: 11/18/2022] Open
Abstract
Chlorogenic acid (CGA) is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE(-/-) mice and its potential mechanism. ApoE(-/-) mice were fed a cholesterol-rich diet without (control) or with CGA (200 and 400 mg/kg) or atorvastatin (4 mg/kg) for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg) reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg) also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL)-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE(-/-) mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/blood
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP-Binding Cassette Transporters/blood
- ATP-Binding Cassette Transporters/genetics
- Animals
- Anticholesteremic Agents/pharmacology
- Aorta/drug effects
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/blood
- Atherosclerosis/drug therapy
- Atherosclerosis/etiology
- Atherosclerosis/pathology
- Atorvastatin/pharmacology
- Biological Transport/drug effects
- Caffeic Acids/isolation & purification
- Cell Line
- Chlorogenic Acid/chemistry
- Chlorogenic Acid/pharmacology
- Cholesterol/adverse effects
- Cholesterol/blood
- Cholesterol, LDL/blood
- Coumaric Acids/isolation & purification
- Diet, High-Fat/adverse effects
- Gallic Acid/isolation & purification
- Gene Expression
- Lipoproteins/blood
- Lipoproteins/genetics
- Lipoproteins, LDL/antagonists & inhibitors
- Lipoproteins, LDL/blood
- Liver X Receptors
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Knockout
- Orphan Nuclear Receptors/blood
- Orphan Nuclear Receptors/genetics
- PPAR gamma/blood
- PPAR gamma/genetics
- Plaque, Atherosclerotic/blood
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/pathology
- Triglycerides/blood
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Chongming Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Luan
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Wang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaopo Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobo Sun
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peng Guo
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Usuda D, Kanda T. Peroxisome proliferator-activated receptors for hypertension. World J Cardiol 2014; 6:744-754. [PMID: 25228953 PMCID: PMC4163703 DOI: 10.4330/wjc.v6.i8.744] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/21/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes (α, β, γ, and δ). The genes undergo transactivation or transrepression under specific mechanisms that lead to the induction or repression of target gene expression. As is the case with other nuclear receptors, all four PPAR isoforms contain five or six structural regions in four functional domains; namely, A/B, C, D, and E/F. PPARs have many functions, particularly functions involving control of vascular tone, inflammation, and energy homeostasis, and are, therefore, important targets for hypertension, obesity, obesity-induced inflammation, and metabolic syndrome in general. Hence, PPARs also represent drug targets, and PPARα and PPARγ agonists are used clinically in the treatment of dyslipidemia and type 2 diabetes mellitus, respectively. Because of their pleiotropic effects, they have been identified as active in a number of diseases and are targets for the development of a broad range of therapies for a variety of diseases. It is likely that the range of PPARγ agonist therapeutic actions will result in novel approaches to lifestyle and other diseases. The combination of PPARs with reagents or with other cardiovascular drugs, such as diuretics and angiotensin II receptor blockers, should be studied. This article provides a review of PPAR isoform characteristics, a discussion of progress in our understanding of the biological actions of PPARs, and a summary of PPAR agonist development for patient management. We also include a summary of the experimental and clinical evidence obtained from animal studies and clinical trials conducted to evaluate the usefulness and effectiveness of PPAR agonists in the treatment of lifestyle-related diseases.
Collapse
|
22
|
Yin J, Luo Y, Deng H, Qin S, Tang W, Zeng L, Zhou B. Hugan Qingzhi medication ameliorates hepatic steatosis by activating AMPK and PPARα pathways in L02 cells and HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:229-239. [PMID: 24735863 DOI: 10.1016/j.jep.2014.04.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/15/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hugan Qingzhi tablet (HQT), a lipid- lowering traditional Chinese medicine formula, has been used for the prevention and treatment of nonalcoholic fatty liver (NAFLD). AIM OF THE STUDY This study was realized to evaluate the effects of HQT-medicated serum on hepatic steatosis using in vitro experiments with cells and explore the relevant mechanisms with method of serum pharmacology. MATERIALS AND METHODS A model of hepatic steatosis in the L02 and HepG2 cells was induced by free fatty acid (FFA). The components in the HQT-medicated serum were assayed by high-performance liquid chromatography. Intracellular lipid droplets were detected by Oil Red O staining, and their ultrastructure was examined by transmission electron microscope. The biochemical parameters, including triglyceride (TG), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), total antioxidant capacity (T-AOC), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH), were measured with commercial kits. Furthermore, the expression of adiponectin, AMP-activated protein kinase (AMPK) phosphorylation, sterol regulatory element-binding protein 1 (SREBP-1), peroxisome proliferator activated receptor-α (PPARα), carnitine palmitoyltransferase 1 (CPT-1), and acetyl-CoA oxidase 1 (ACOX1) was analyzed by Western blot and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS Moderate- and high-dose HQT-medicated serum reduced (P<0.05 or P<0.01) the accumulation of lipid droplets and the cellular TG content in L02 and HepG2 cells. They caused significant reductions (P<0.01) in LDH, AST, ALT and MDA and significant increase (P<0.05 or P<0.01) in T-AOC in the culture medium. They also caused increase (P<0.05 or P<0.01) in GSH level and SOD activity in FFA-induced steatotic L02 and HepG2 cells. Furthermore, moderate- and high-dose HQT-medicated serum enhanced (P<0.01) adiponectin expression in a concentration-dependent manner and increased (P<0.05 or P<0.01) the phosphorylation of AMPK and the expression of PPARα, CPT-1, and ACOX1, and reduced (P<0.05 or P<0.01) the expression of SREBP-1. CONCLUSION The results suggested that HQT-medicated serum exerts a preventive effect against hepatic steatosis, and the potential mechanism might be activation of AMPK and PPARα pathways.
Collapse
Affiliation(s)
- JinJin Yin
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangdong, Guangzhou 510282, PR China
| | - YanQin Luo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - HouLiang Deng
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangdong, Guangzhou 510282, PR China
| | - ShuMin Qin
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - WaiJiao Tang
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangdong, Guangzhou 510282, PR China
| | - Lu Zeng
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangdong, Guangzhou 510282, PR China
| | - BenJie Zhou
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangdong, Guangzhou 510282, PR China.
| |
Collapse
|
23
|
Li X, Li Z, Xue M, Ou Z, Liu M, Yang M, Liu S, Yang S, Li X. Fructus Xanthii attenuates hepatic steatosis in rats fed on high-fat diet. PLoS One 2013; 8:e61499. [PMID: 23585904 PMCID: PMC3621865 DOI: 10.1371/journal.pone.0061499] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/08/2013] [Indexed: 01/08/2023] Open
Abstract
Fructus Xanthii (FX) has been widely used as a traditional herbal medicine for rhinitis, headache, cold, etc. Modern pharmacological studies revealed that FX possesses anti-inflammatory, anti-oxidative, and anti-hyperglycemic properties. The present study was designed to investigate the effects of FX on glucose and insulin tolerance, and hepatic lipid metabolism in rats fed on high-fat diet (HFD). Hepatic steatosis was induced by HFD feeding. Aqueous extraction fractions of FX or vehicle were orally administered by gavage for 6 weeks. Body weight and blood glucose were monitored. Glucose and insulin tolerance test were performed. Liver morphology was visualized by hematoxylin and eosin, and oil red O staining. Expression of liver lipogenic and lipolytic genes was measured by real-time PCR. We showed here that FX improved glucose tolerance and insulin sensitivity in HFD rats. FX significantly decreased the expression of lipogenic genes and increased the expression of lipolytic genes, ameliorated lipid accumulation and decreased the total liver triglyceride (TG) content, and thus attenuated HFD-induced hepatic steatosis. In conclusion, FX improves glucose tolerance and insulin sensitivity, decreases lipogenesis and increases lipid oxidation in the liver of HFD rats, implying a potential application in the treatment of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Xiumin Li
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhipeng Li
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Mei Xue
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhimin Ou
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ming Liu
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Mingxing Yang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Suhuan Liu
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Central Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Shuyu Yang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Division of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, Xiamen, China
- * E-mail: (XL); (SY)
| | - Xuejun Li
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Division of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, Xiamen, China
- * E-mail: (XL); (SY)
| |
Collapse
|
24
|
Wahli W, Michalik L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab 2012; 23:351-63. [PMID: 22704720 DOI: 10.1016/j.tem.2012.05.001] [Citation(s) in RCA: 520] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors whose activation affects genes controlling vital processes. Among them, the peroxisome proliferator-activated receptors (PPARs) have emerged as links between lipids, metabolic diseases, and innate immunity. PPARs are activated by fatty acids and their derivatives, many of which also signal through membrane receptors, thereby creating a lipid signaling network between the cell surface and the nucleus. Tissues that play a role in whole-body metabolic homeostasis, such as adipose tissue, liver, skeletal muscle, intestines, and blood vessel walls, are prone to inflammation when metabolism is disturbed, a complication that promotes type 2 diabetes and cardiovascular disease. This review discusses the protective roles of PPARs in inflammatory conditions and the therapeutic anti-inflammatory potential of PPAR ligands.
Collapse
Affiliation(s)
- Walter Wahli
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
25
|
Pirat C, Farce A, Lebègue N, Renault N, Furman C, Millet R, Yous S, Speca S, Berthelot P, Desreumaux P, Chavatte P. Targeting Peroxisome Proliferator-Activated Receptors (PPARs): Development of Modulators. J Med Chem 2012; 55:4027-61. [DOI: 10.1021/jm101360s] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Céline Pirat
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Amaury Farce
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Nicolas Lebègue
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Nicolas Renault
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Christophe Furman
- Institut de Chimie Pharmaceutique
Albert Lespagnol, Université Lille-Nord de France, EA 4481, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex,
France
| | - Régis Millet
- Institut de Chimie Pharmaceutique
Albert Lespagnol, Université Lille-Nord de France, EA 4481, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex,
France
| | - Saı̈d Yous
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Silvia Speca
- Faculté de
Médecine, Amphis J et K, Université Lille-Nord de France, INSERM U995, Boulevard du Professeur Jules
Leclerc, 59045 Lille Cedex, France
| | - Pascal Berthelot
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Pierre Desreumaux
- Faculté de
Médecine, Amphis J et K, Université Lille-Nord de France, INSERM U995, Boulevard du Professeur Jules
Leclerc, 59045 Lille Cedex, France
| | - Philippe Chavatte
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
- Institut de Chimie Pharmaceutique
Albert Lespagnol, Université Lille-Nord de France, EA 4481, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex,
France
| |
Collapse
|
26
|
|