1
|
Li JH, Zhang M, Zhang ZD, Pan XH, Pan LL, Sun J. GPR41 deficiency aggravates type 1 diabetes in streptozotocin-treated mice by promoting dendritic cell maturation. Acta Pharmacol Sin 2024; 45:1466-1476. [PMID: 38514862 PMCID: PMC11192896 DOI: 10.1038/s41401-024-01242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Disturbances in intestinal immune homeostasis predispose susceptible individuals to type 1 diabetes (T1D). G-protein-coupled receptor 41 (GPR41) is a receptor for short-chain fatty acids (SCFAs) mainly produced by gut microbiota, which plays key roles in maintaining intestinal homeostasis. In this study, we investigated the role of GPR41 in the progression of T1D. In non-obese diabetic (NOD) mice, we found that aberrant reduction of GPR41 expression in the pancreas and colons was associated with the development of T1D. GPR41-deficient (Gpr41-/-) mice displayed significantly exacerbated streptozotocin (STZ)-induced T1D compared to wild-type mice. Furthermore, Gpr41-/- mice showed enhanced gut immune dysregulation and increased migration of gut-primed IFN-γ+ T cells to the pancreas. In bone marrow-derived dendritic cells from Gpr41-/- mice, the expression of suppressor of cytokine signaling 3 (SOCS) was significantly inhibited, while the phosphorylation of STAT3 was significantly increased, thus promoting dendritic cell (DC) maturation. Furthermore, adoptive transfer of bone marrow-derived dendritic cells (BMDC) from Gpr41-/- mice accelerated T1D in irradiated NOD mice. We conclude that GPR41 is essential for maintaining intestinal and pancreatic immune homeostasis and acts as a negative regulator of DC maturation in T1D. GPR41 may be a potential therapeutic target for T1D.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mice
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/immunology
- Streptozocin
- Mice, Knockout
- Mice, Inbred NOD
- Mice, Inbred C57BL
- STAT3 Transcription Factor/metabolism
- Suppressor of Cytokine Signaling 3 Protein/metabolism
- Suppressor of Cytokine Signaling 3 Protein/genetics
- Interferon-gamma/metabolism
- Pancreas/metabolism
- Pancreas/pathology
- Pancreas/immunology
- Male
- Female
- Gastrointestinal Microbiome
Collapse
Affiliation(s)
- Jia-Hong Li
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Jiangnan University, Wuxi, 214023, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Ming Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhao-di Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Hua Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li-Long Pan
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Jiangnan University, Wuxi, 214023, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Jia Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Zheng SJ, Luo Y, Xiao JH. The Impact of Intestinal Microorganisms and Their Metabolites on Type 1 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:1123-1139. [PMID: 35431564 PMCID: PMC9012311 DOI: 10.2147/dmso.s355749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disease with a complex etiology comprising numerous genetic and environmental factors; however, many of the mechanisms underlying disease development remain unclear. Nevertheless, a critical role has recently been assigned to intestinal microorganisms in T1DM disease pathogenesis. In particular, a decrease in intestinal microbial diversity, increase in intestinal permeability, and the translocation of intestinal bacteria to the pancreas have been reported in patients and animal models with T1DM. Moreover, intestinal microbial metabolites differ between healthy individuals and patients with T1DM. Specifically, short-chain fatty acid (SCFA) production, which contributes to intestinal barrier integrity and immune response regulation, is significantly reduced in patients with T1DM. Considering this correlation between intestinal microorganisms and T1DM, many studies have investigated the potential of intestinal microbiota in preventive and therapeutic strategies for T1DM. OBJECTIVE The aim of this review is to provide further support for the notion that intestinal microbiota contributes to the regulation of T1DM occurrence and development. In particular, this article reviews the involvement of the intestinal microbiota and the associated metabolites in T1DM pathogenesis, as well as recent studies on the involvement of the intestinal microbiota in T1DM prevention and treatment. CONCLUSION Intestinal microbes and their metabolites contribute to T1DM occurrence and development and may become a potential target for novel therapeutics.
Collapse
Affiliation(s)
- Shu-Juan Zheng
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| |
Collapse
|
3
|
Liang W, Enée E, Andre-Vallee C, Falcone M, Sun J, Diana J. Intestinal Cathelicidin Antimicrobial Peptide Shapes a Protective Neonatal Gut Microbiota Against Pancreatic Autoimmunity. Gastroenterology 2022; 162:1288-1302.e16. [PMID: 34973295 DOI: 10.1053/j.gastro.2021.12.272] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND & AIMS Alteration of the gut microbiota is implicated in the development of autoimmune type 1 diabetes (T1D), as shown in humans and the nonobese diabetic (NOD) mouse model. However, how gut dysbiosis arises and promotes the autoimmune response remains an open question. We investigated whether early events affecting the intestinal homeostasis in newborn NOD mice may explain the development of the autoimmune response in the adult pancreas. METHODS We profiled the transcriptome and the microbiota in the colon between newborn NOD mice and nonautoimmune strains. We identified a seminal defect in the intestinal homeostasis of newborn NOD mice and deciphered the mechanism linking this defect to the diabetogenic response in the adult. RESULTS We determined that the cathelicidin-related antimicrobial peptide (CRAMP) expression was defective in the colon of newborn NOD mice, allowing inducing dysbiosis. Dysbiosis stimulated the colonic epithelial cells to produce type I interferons that pathologically imprinted the local neonatal immune system. This pathological immune imprinting later promoted the pancreatic autoimmune response in the adult and the development of diabetes. Increasing colonic CRAMP expression in newborn NOD mice by means of local CRAMP treatment or CRAMP-expressing probiotic restored colonic homeostasis and halted the diabetogenic response, preventing autoimmune diabetes. CONCLUSIONS We identified whether a defective colonic expression in the CRAMP antimicrobial peptide induces dysbiosis, contributing to autoimmunity in the pancreas. Hence, the manipulation of intestinal antimicrobial peptides may be considered a relevant therapeutic approach to prevent autoimmune diabetes in at-risk children.
Collapse
Affiliation(s)
- Wenjie Liang
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Paris, Paris, France
| | - Emmanuelle Enée
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Paris, Paris, France
| | - Cédric Andre-Vallee
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Paris, Paris, France
| | - Marika Falcone
- Experimental Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Jia Sun
- Nutritional Immunology and Translational Medicine Laboratory, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Julien Diana
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Paris, Paris, France.
| |
Collapse
|
4
|
Rouland M, Beaudoin L, Rouxel O, Bertrand L, Cagninacci L, Saffarian A, Pedron T, Gueddouri D, Guilmeau S, Burnol AF, Rachdi L, Tazi A, Mouriès J, Rescigno M, Vergnolle N, Sansonetti P, Christine Rogner U, Lehuen A. Gut mucosa alterations and loss of segmented filamentous bacteria in type 1 diabetes are associated with inflammation rather than hyperglycaemia. Gut 2022; 71:296-308. [PMID: 33593807 DOI: 10.1136/gutjnl-2020-323664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic β-cells producing insulin. Both T1D patients and animal models exhibit gut microbiota and mucosa alterations, although the exact cause for these remains poorly understood. We investigated the production of key cytokines controlling gut integrity, the abundance of segmented filamentous bacteria (SFB) involved in the production of these cytokines, and the respective role of autoimmune inflammation and hyperglycaemia. DESIGN We used several mouse models of autoimmune T1D as well as mice rendered hyperglycaemic without inflammation to study gut mucosa and microbiota dysbiosis. We analysed cytokine expression in immune cells, epithelial cell function, SFB abundance and microbiota composition by 16S sequencing. We assessed the role of anti-tumour necrosis factor α on gut mucosa inflammation and T1D onset. RESULTS We show in models of autoimmune T1D a conserved loss of interleukin (IL)-17A, IL-22 and IL-23A in gut mucosa. Intestinal epithelial cell function was altered and gut integrity was impaired. These defects were associated with dysbiosis including progressive loss of SFB. Transfer of diabetogenic T-cells recapitulated these gut alterations, whereas induction of hyperglycaemia with no inflammation failed to do so. Moreover, anti-inflammatory treatment restored gut mucosa and immune cell function and dampened diabetes incidence. CONCLUSION Our results demonstrate that gut mucosa alterations and dysbiosis in T1D are primarily linked to inflammation rather than hyperglycaemia. Anti-inflammatory treatment preserves gut homeostasis and protective commensal flora reducing T1D incidence.
Collapse
Affiliation(s)
- Matthieu Rouland
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Lucie Beaudoin
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ophélie Rouxel
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Léo Bertrand
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Lucie Cagninacci
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | | | | | - Dalale Gueddouri
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Sandra Guilmeau
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | | | - Latif Rachdi
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Asmaa Tazi
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Juliette Mouriès
- Department of Biomedical Sciences - IRCCS, Via Rita Levi Montalcini, 20090 Pieve Emanuele, Humanitas University, Milan, Italy.,IRCCS, Via Manzoni 56, 20089 Rozzano, Humanitas Clinical and Research Center, Milan, Italy
| | - Maria Rescigno
- Department of Biomedical Sciences - IRCCS, Via Rita Levi Montalcini, 20090 Pieve Emanuele, Humanitas University, Milan, Italy.,IRCCS, Via Manzoni 56, 20089 Rozzano, Humanitas Clinical and Research Center, Milan, Italy
| | - Nathalie Vergnolle
- Université de Toulouse, Institut de Recherche en Santé Digestive, INSERM U1220, INRAE, ENVT, Toulouse, France
| | | | - Ute Christine Rogner
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Agnès Lehuen
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France .,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
5
|
Magalhães NS, Savino W, Silva PMR, Martins MA, Carvalho VF. Gut Microbiota Dysbiosis Is a Crucial Player for the Poor Outcomes for COVID-19 in Elderly, Diabetic and Hypertensive Patients. Front Med (Lausanne) 2021; 8:644751. [PMID: 34458281 PMCID: PMC8385716 DOI: 10.3389/fmed.2021.644751] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
A new infectious disease, named COVID-19, caused by the coronavirus associated to severe acute respiratory syndrome (SARS-CoV-2) has become pandemic in 2020. The three most common pre-existing comorbidities associated with COVID-19-related death are elderly, diabetic, and hypertensive people. A common factor among these risk groups for the outcome of death in patients infected with SARS-CoV-2 is dysbiosis, with an increase in the proportion of bacteria with a pro-inflammatory profile. Due to this dysbiosis, elderly, diabetic, and hypertensive people present a higher propensity to mount an inflammatory environment in the gut with poor immune editing, culminating in a weakness of the intestinal permeability barrier and high bacterial product translocation to the bloodstream. This scenario culminates in a low-grade, persistent, and systemic inflammation. In this context, we propose here that high circulating levels of bacterial products, like lipopolysaccharide (LPS), can potentiate the SARS-CoV-2-induced cytokines, including IL-6, being crucial for development of the cytokine storm in the severe form of the disease. A better understanding on the possible correlation between gut dysbiosis and poor outcomes observed in elderly, diabetic, and hypertensive people can be useful for the development of new therapeutic strategies based on modulation of the gut microbiota.
Collapse
Affiliation(s)
- Nathalia Santos Magalhães
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Patrícia Machado Rodrigues Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Yap YA, Mariño E. Dietary SCFAs Immunotherapy: Reshaping the Gut Microbiota in Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:499-519. [PMID: 32193865 DOI: 10.1007/5584_2020_515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diet-microbiota related inflammatory conditions such as obesity, autoimmune type 1 diabetes (T1D), type 2 diabetes (T2D), cardiovascular disease (CVD) and gut infections have become a stigma in Western societies and developing nations. This book chapter examines the most relevant pre-clinical and clinical studies about diet-gut microbiota approaches as an alternative therapy for diabetes. We also discuss what we and others have extensively investigated- the power of dietary short-chain fatty acids (SCFAs) technology that naturally targets the gut microbiota as an alternative method to prevent and treat diabetes and its related complications.
Collapse
Affiliation(s)
- Yu Anne Yap
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, VIC, Australia
| | - Eliana Mariño
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Microbiota derived factors as drivers of type 1 diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:215-235. [PMID: 32475523 DOI: 10.1016/bs.pmbts.2020.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by complex interactions between host genetics and environmental factors, culminating in the T-cell mediated destruction of the insulin producing cells in the pancreas. The rapid increase in disease frequency over the past 50 years or more has been too rapid to attribute to genetics. Dysbiosis of the gut microbiota is currently being widely investigated as a major contributor to environmental change driving increased T1D onset. In this chapter, we discuss the major changes in gut microbiota composition and function linked to T1D risk as well as the potential origin of these changes including infant diet, antibiotic use and host genetics. We examine the interaction between inflammation and gut barrier function and the dysbiotic gut microbiota that have been linked to T1D.
Collapse
|
8
|
Jayasimhan A, Mariño E. Dietary SCFAs, IL-22, and GFAP: The Three Musketeers in the Gut-Neuro-Immune Network in Type 1 Diabetes. Front Immunol 2019; 10:2429. [PMID: 31736937 PMCID: PMC6828936 DOI: 10.3389/fimmu.2019.02429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/30/2019] [Indexed: 01/13/2023] Open
Abstract
Microbial metabolites have a profound effect on the development of type 1 diabetes (T1D). The cross-talk between the gut microbiota, the nervous system, and immune system is necessary to establish and maintain immune and gut tolerance. As quoted by Hippocrates, "All disease begins in the gut." Although this has been recognized for 2,000 years, the connection between the gut and autoimmune T1D is not yet well-understood. Here, we outline new advances supported by our research and others that have contributed to elucidate the impact of microbial metabolites on the physiology of the pancreas and the gut through their remarkable effect on the immune and nervous system. Among many of the mechanisms involved in the gut-beta-cell-immune cross-talk, glial fibrillary acidic protein (GFAP)-expressing cells are critical players in the development of invasive insulitis. Besides, this review reveals a novel mechanism for microbial metabolites by stimulating IL-22, an essential cytokine for gut homeostasis and beta-cell survival. The close connections between the gut and the pancreas are highlighted through our review as microbial metabolites recirculate through the whole body and intimately react with the nervous system, which controls essential disorders associated with diabetes. As such, we discuss the mechanisms of action of microbial metabolites or short-chain fatty acids (SCFAs), IL-22, and GFAP on beta-cells, gut epithelial cells, neurons, and glial cells via metabolite sensing receptors or through epigenetic effects. The fine-tuned gut-neuro-immune network may be profoundly affected by SCFA deficiency related to dysbiosis and diet alterations at very early stages of the initiation of the disease. Thus, dampening the initial immune response or preventing the perpetuation of the immune response by maintaining the integrity of the gut is among the alternative approaches to prevent T1D.
Collapse
Affiliation(s)
- Abhirup Jayasimhan
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Eliana Mariño
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Douzandeh-Mobarrez B, Kariminik A. Gut Microbiota and IL-17A: Physiological and Pathological Responses. Probiotics Antimicrob Proteins 2019; 11:1-10. [PMID: 28921400 DOI: 10.1007/s12602-017-9329-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-17A is a cytokine which is produced by several immune and non-immune cells. The cytokine plays dual roles from protection from microbes and protection from pro-inflammatory based diseases to induction of the pro-inflammatory based diseases. The main mechanisms which lead to the controversial roles of IL-17A are yet to be clarified. Gut microbiota (GM) are the resident probiotic bacteria in the gastrointestinal tracts which have been introduced as a plausible regulator of IL-17A production and functions. This review article describes the recent information regarding the roles played by GM in determination of IL-17A functions outcome.
Collapse
Affiliation(s)
- Banafsheh Douzandeh-Mobarrez
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran.,Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ashraf Kariminik
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran.
| |
Collapse
|
10
|
Wiede F, Brodnicki TC, Goh PK, Leong YA, Jones GW, Yu D, Baxter AG, Jones SA, Kay TWH, Tiganis T. T-Cell-Specific PTPN2 Deficiency in NOD Mice Accelerates the Development of Type 1 Diabetes and Autoimmune Comorbidities. Diabetes 2019; 68:1251-1266. [PMID: 30936146 DOI: 10.2337/db18-1362] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/17/2019] [Indexed: 11/13/2022]
Abstract
Genome-wide association studies have identified PTPN2 as an important non-MHC gene for autoimmunity. Single nucleotide polymorphisms that reduce PTPN2 expression have been linked with the development of various autoimmune disorders, including type 1 diabetes. The tyrosine phosphatase PTPN2 attenuates T-cell receptor and cytokine signaling in T cells to maintain peripheral tolerance, but the extent to which PTPN2 deficiency in T cells might influence type 1 diabetes onset remains unclear. NOD mice develop spontaneous autoimmune type 1 diabetes similar to that seen in humans. In this study, T-cell PTPN2 deficiency in NOD mice markedly accelerated the onset and increased the incidence of type 1 diabetes as well as that of other disorders, including colitis and Sjögren syndrome. Although PTPN2 deficiency in CD8+ T cells alone was able to drive the destruction of pancreatic β-cells and the onset of diabetes, T-cell-specific PTPN2 deficiency was also accompanied by increased CD4+ T-helper type 1 differentiation and T-follicular-helper cell polarization and increased the abundance of B cells in pancreatic islets as seen in human type 1 diabetes. These findings causally link PTPN2 deficiency in T cells with the development of type 1 diabetes and associated autoimmune comorbidities.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Thomas C Brodnicki
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Pei Kee Goh
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yew A Leong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gareth W Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
- Systems Immunity University Research Institute, Cardiff University, Cardiff, U.K
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, U.K
| | - Di Yu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Alan G Baxter
- Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
- Systems Immunity University Research Institute, Cardiff University, Cardiff, U.K
| | - Thomas W H Kay
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Cosorich I, McGuire HM, Warren J, Danta M, King C. CCR9 Expressing T Helper and T Follicular Helper Cells Exhibit Site-Specific Identities During Inflammatory Disease. Front Immunol 2019; 9:2899. [PMID: 30662436 PMCID: PMC6329311 DOI: 10.3389/fimmu.2018.02899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
CD4+ T helper (Th) cells that express the gut homing chemokine receptor CCR9 are increased in the peripheral blood of patients with inflammatory bowel disease and Sjögren's syndrome and in the inflamed lesions of autoimmune diseases that affect the accessory organs of the digestive system. However, despite the important role of the GIT in both immunity and autoimmunity, the nature of CCR9-expressing cells in GIT lymphoid organs and their role in chronic inflammatory diseases remains unknown. In this study, we analyzed the characteristics of CCR9+ Th and T follicular helper (Tfh) cells in GIT associated lymphoid tissues in health, chronic inflammation and autoimmunity. Our findings reveal an association between the transcriptome and phenotype of CCR9+ Th in the pancreas and CCR9+ Tfh cells from GIT-associated lymphoid tissues. GIT CCR9+ Tfh cells exhibited characteristics, including a Th17-like transcriptome and production of effector cytokines, which indicated a microenvironment-specific signature. Both CCR9+ Tfh cells and CCR9+ Th cells from GIT-associated lymphoid tissues migrated to the pancreas. The expression of CCR9 was important for migration of both subsets to the pancreas, but Tfh cells that accumulated in the pancreas had downmodulated expression of CXCR5. Taken together, the findings provide evidence that CCR9+ Tfh cells and Th cells from the GIT exhibit plasticity and can accumulate in distal accessory organs of the digestive system where they may participate in autoimmunity.
Collapse
Affiliation(s)
- Ilaria Cosorich
- Department of Immunology, The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Helen M McGuire
- Department of Immunology, The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Joanna Warren
- Department of Immunology, The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Mark Danta
- St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| | - Cecile King
- Department of Immunology, The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
12
|
Possible Prevention of Diabetes with a Gluten-Free Diet. Nutrients 2018; 10:nu10111746. [PMID: 30428550 PMCID: PMC6266002 DOI: 10.3390/nu10111746] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Gluten seems a potentially important determinant in type 1 diabetes (T1D) and type 2 diabetes (T2D). Intake of gluten, a major component of wheat, rye, and barley, affects the microbiota and increases the intestinal permeability. Moreover, studies have demonstrated that gluten peptides, after crossing the intestinal barrier, lead to a more inflammatory milieu. Gluten peptides enter the pancreas where they affect the morphology and might induce beta-cell stress by enhancing glucose- and palmitate-stimulated insulin secretion. Interestingly, animal studies and a human study have demonstrated that a gluten-free (GF) diet during pregnancy reduces the risk of T1D. Evidence regarding the role of a GF diet in T2D is less clear. Some studies have linked intake of a GF diet to reduced obesity and T2D and suggested a role in reducing leptin- and insulin-resistance and increasing beta-cell volume. The current knowledge indicates that gluten, among many environmental factors, may be an aetiopathogenic factors for development of T1D and T2D. However, human intervention trials are needed to confirm this and the proposed mechanisms.
Collapse
|
13
|
Hänninen A, Toivonen R, Pöysti S, Belzer C, Plovier H, Ouwerkerk JP, Emani R, Cani PD, De Vos WM. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut 2018; 67:1445-1453. [PMID: 29269438 DOI: 10.1136/gutjnl-2017-314508] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Intestinal microbiota is implicated in the pathogenesis of autoimmune type 1 diabetes in humans and in non-obese diabetic (NOD) mice, but evidence on its causality and on the role of individual microbiota members is limited. We investigated if different diabetes incidence in two NOD colonies was due to microbiota differences and aimed to identify individual microbiota members with potential significance. DESIGN We profiled intestinal microbiota between two NOD mouse colonies showing high or low diabetes incidence by 16S ribosomal RNA gene sequencing and colonised the high-incidence colony with the microbiota of the low-incidence colony. Based on unaltered incidence, we identified a few taxa which were not effectively transferred and thereafter, transferred experimentally one of these to test its potential significance. RESULTS Although the high-incidence colony adopted most microbial taxa present in the low-incidence colony, diabetes incidence remained unaltered. Among the few taxa which were not transferred, Akkermansia muciniphila was identified. As A. muciniphila abundancy is inversely correlated to the risk of developing type 1 diabetes-related autoantibodies, we transferred A. muciniphila experimentally to the high-incidence colony. A. muciniphila transfer promoted mucus production and increased expression of antimicrobial peptide Reg3γ, outcompeted Ruminococcus torques from the microbiota, lowered serum endotoxin levels and islet toll-like receptor expression, promoted regulatory immunity and delayed diabetes development. CONCLUSION Transfer of the whole microbiota may not reduce diabetes incidence despite a major change in gut microbiota, but single symbionts such as A. muciniphila with beneficial metabolic and immune signalling effects may reduce diabetes incidence when administered as a probiotic.
Collapse
Affiliation(s)
- Arno Hänninen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.,Turku University Hospital, Hospital District of Southwest Finland, Turku, Finland
| | - Raine Toivonen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Sakari Pöysti
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Clara Belzer
- Laboratory of Microbiology, Wagenigen University, Wageningen, The Netherlands
| | - Hubert Plovier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Universite Catholique de Louvain, Brussels, Belgium
| | - Janneke P Ouwerkerk
- Laboratory of Microbiology, Wagenigen University, Wageningen, The Netherlands
| | - Rohini Emani
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Universite Catholique de Louvain, Brussels, Belgium
| | - Willem M De Vos
- Laboratory of Microbiology, Wagenigen University, Wageningen, The Netherlands.,RPU Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Mullaney JA, Stephens JE, Costello ME, Fong C, Geeling BE, Gavin PG, Wright CM, Spector TD, Brown MA, Hamilton-Williams EE. Type 1 diabetes susceptibility alleles are associated with distinct alterations in the gut microbiota. MICROBIOME 2018; 6:35. [PMID: 29454391 PMCID: PMC5816355 DOI: 10.1186/s40168-018-0417-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/26/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Dysbiosis of the gut microbiota has been implicated in the pathogenesis of many autoimmune conditions including type 1 diabetes (T1D). It is unknown whether changes in the gut microbiota observed in T1D are due to environmental drivers, genetic risk factors, or both. Here, we have performed an analysis of associations between the gut microbiota and T1D genetic risk using the non-obese diabetic (NOD) mouse model of T1D and the TwinsUK cohort. RESULTS Through the analysis of five separate colonies of T1D susceptible NOD mice, we identified similarities in NOD microbiome that were independent of animal facility. Introduction of disease protective alleles at the Idd3 and Idd5 loci (IL2, Ctla4, Slc11a1, and Acadl) resulted in significant alterations in the NOD microbiome. Disease-protected strains exhibited a restoration of immune regulatory pathways within the gut which could also be reestablished using IL-2 therapy. Increased T1D disease risk from IL-2 pathway loci in the TwinsUK cohort of human subjects resulted in some similar microbiota changes to those observed in the NOD mouse. CONCLUSIONS These findings demonstrate for the first time that type 1 diabetes-associated genetic variants that restore immune tolerance to islet antigens also result in functional changes in the gut immune system and resultant changes in the microbiota.
Collapse
Affiliation(s)
- Jane A. Mullaney
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Juliette E. Stephens
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Mary-Ellen Costello
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD Australia
| | - Cai Fong
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Brooke E. Geeling
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Patrick G. Gavin
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Casey M. Wright
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, SE1 7EH UK
| | - Matthew A. Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD Australia
| | - Emma E. Hamilton-Williams
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
- Translational Research Institute, The University of Queensland Diamantina Institute, 37 Kent St, Woolloongabba, QLD 4102 Australia
| |
Collapse
|
15
|
Lerner A, Shoenfeld Y, Matthias T. Adverse effects of gluten ingestion and advantages of gluten withdrawal in nonceliac autoimmune disease. Nutr Rev 2017; 75:1046-1058. [PMID: 29202198 DOI: 10.1093/nutrit/nux054] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
In light of the coincident surge in overall gluten intake and the incidence of autoimmune diseases, the possible biological adverse effects of gluten were explored. PubMed, MEDLINE, and the Cochrane Library databases were screened for reports published between 1964 and 2016 regarding the adverse effects of gluten as well as the effects of a gluten-free diet on autoimmune diseases. In vitro and in vivo studies describing gluten intake in animal models or cell lines and gluten-free diets in human autoimmune diseases were reviewed. Multiple detrimental aspects of gluten affect human health, including gluten-dependent digestive and extradigestive manifestations mediated by potentially immunological or toxic reactions that induce gastrointestinal inadequacy. Gluten affects the microbiome and increases intestinal permeability. It boosts oxidative stress and affects epigenetic behavior. It is also immunogenic, cytotoxic, and proinflammatory. Gluten intake increases apoptosis and decreases cell viability and differentiation. In certain nonceliac autoimmune diseases, gluten-free diets may help curtail the adverse effects of gluten. Additional in vivo studies are needed to unravel the puzzle of gluten effects in humans and to explore the potential beneficial effects of gluten-free diets in autoimmune diseases.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- AESKU.KIPP Institute, Wendelsheim, Germany
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center-Tel Hashomer, Ramat Gan, Israel, and the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
16
|
Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat Immunol 2017; 18:1321-1331. [PMID: 28991267 DOI: 10.1038/ni.3854] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of pancreatic β-cells by the immune system that involves innate and adaptive immune cells. Mucosal-associated invariant T cells (MAIT cells) are innate-like T-cells that recognize derivatives of precursors of bacterial riboflavin presented by the major histocompatibility complex (MHC) class I-related molecule MR1. Since T1D is associated with modification of the gut microbiota, we investigated MAIT cells in this pathology. In patients with T1D and mice of the non-obese diabetic (NOD) strain, we detected alterations in MAIT cells, including increased production of granzyme B, which occurred before the onset of diabetes. Analysis of NOD mice that were deficient in MR1, and therefore lacked MAIT cells, revealed a loss of gut integrity and increased anti-islet responses associated with exacerbated diabetes. Together our data highlight the role of MAIT cells in the maintenance of gut integrity and the control of anti-islet autoimmune responses. Monitoring of MAIT cells might represent a new biomarker of T1D, while manipulation of these cells might open new therapeutic strategies.
Collapse
|
17
|
Scott FW, Pound LD, Patrick C, Eberhard CE, Crookshank JA. Where genes meet environment-integrating the role of gut luminal contents, immunity and pancreas in type 1 diabetes. Transl Res 2017; 179:183-198. [PMID: 27677687 DOI: 10.1016/j.trsl.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
Abstract
The rise in new cases of type 1 diabetes (T1D) in genetically susceptible individuals over the past half century has been attributed to numerous environmental "triggers" or promoters such as enteroviruses, diet, and most recently, gut bacteria. No single cause has been identified in humans, likely because there are several pathways by which one can develop T1D. There is renewed attention to the role of the gut and its immune system in T1D pathogenesis based largely on recent animal studies demonstrating that altering the gut microbiota affects diabetes incidence. Although T1D patients display dysbiosis in the gut microbiome, it is unclear whether this is cause or effect. The heart of this question involves several moving parts including numerous risk genes, diet, viruses, gut microbiota, timing, and loss of immune tolerance to β-cells. Most clinical trials have addressed only one aspect of this puzzle using some form of immune suppression, without much success. The key location where our genes meet and deal with the environment is the gastrointestinal tract. The influence of all of its major contents, including microbes, diet, and immune system, must be understood as part of the integrative biology of T1D before we can develop durable means of preventing, treating, or curing this disease. In the present review, we expand our previous gut-centric model based on recent developments in the field.
Collapse
Affiliation(s)
- Fraser W Scott
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| | - Lynley D Pound
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Christopher Patrick
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Chandra E Eberhard
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
18
|
D'Addio F, Fiorina P. Type 1 Diabetes and Dysfunctional Intestinal Homeostasis. Trends Endocrinol Metab 2016; 27:493-503. [PMID: 27185326 DOI: 10.1016/j.tem.2016.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022]
Abstract
Despite the relatively high frequency of gastrointestinal (GI) disorders in individuals with type 1 diabetes (T1D), termed diabetic enteropathy (DE), the pathogenic mechanisms of these disorders remain to be elucidated. While previous studies have assumed that DE is a manifestation of diabetic autonomic neuropathy, other contributing factors such as enteric hormones, inflammation, and microbiota were later recognized. More recently, the emerging role of intestinal stem cells (ISCs) in several GI diseases has led to a new understanding of DE. Given the absence of diagnostic methods and the lack of broadly efficacious therapeutic remedies in DE, targeting factors and pathways that control ISC homeostasis and are dysfunctional in DE may represent a new path for the detection and cure of DE.
Collapse
Affiliation(s)
- Francesca D'Addio
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Transplant Medicine, IRCCS Ospedale San Raffaele, Milan 20132, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Transplant Medicine, IRCCS Ospedale San Raffaele, Milan 20132, Italy.
| |
Collapse
|
19
|
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic immune-mediated disease with a subclinical prodromal period, characterized by selective loss of insulin-producing-β cells in the pancreatic islets of genetically susceptible individuals. The incidence of T1DM has increased several fold in most developed countries since World War II, in conjunction with other immune-mediated diseases. Rapid environmental changes and modern lifestyles are probably the driving factors that underlie this increase. These effects might be mediated by changes in the human microbiota, particularly the intestinal microbiota. Research on the gut microbiome of individuals at risk of developing T1DM and in patients with established disease is still in its infancy, but initial findings indicate that the intestinal microbiome of individuals with prediabetes or diabetes mellitus is different to that of healthy individuals. The gut microbiota in individuals with preclinical T1DM is characterized by Bacteroidetes dominating at the phylum level, a dearth of butyrate-producing bacteria, reduced bacterial and functional diversity and low community stability. However, these changes seem to emerge after the appearance of autoantibodies that are predictive of T1DM, which suggests that the intestinal microbiota might be involved in the progression from β-cell autoimmunity to clinical disease rather than in the initiation of the disease process.
Collapse
Affiliation(s)
- Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, PO Box 22, FI-00014 Helsinki, Finland
| | - Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, PO Box 22, FI-00014 Helsinki, Finland
| |
Collapse
|
20
|
Daft JG, Lorenz RG. Role of the gastrointestinal ecosystem in the development of type 1 diabetes. Pediatr Diabetes 2015; 16:407-18. [PMID: 25952017 PMCID: PMC4534320 DOI: 10.1111/pedi.12282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
A new emphasis has been put on the role of the gastrointestinal (GI) ecosystem in autoimmune diseases; however, there is limited knowledge about its role in type 1 diabetes (T1D). Distinct differences have been observed in intestinal permeability, epithelial barrier function, commensal microbiota, and mucosal innate and adaptive immunity of patients and animals with T1D, when compared with healthy controls. The non-obese diabetic (NOD) mouse and the BioBreeding diabetes prone (BBdp) rat are the most commonly used models to study T1D pathogenesis. With the increasing awareness of the importance of the GI ecosystem in systemic disease, it is critical to understand the basics, as well as the similarities and differences between rat and mouse models and human patients. This review examines the current knowledge of the role of the GI ecosystem in T1D and indicates the extensive opportunities for further investigation that could lead to biomarkers and therapeutic interventions for disease prevention and/or modulation.
Collapse
Affiliation(s)
| | - Robin G. Lorenz
- Corresponding Author: Dr. Robin G. Lorenz, Department of Pathology, University of Alabama at Birmingham, 1825 University Blvd., SHEL 602, Birmingham, AL 35294-2182. Phone: 205-934-0676. Fax. 205-996-9113.
| |
Collapse
|
21
|
Wang HP, He ZG. Treatment with incomplete Freund's adjuvant and Listeria monocytogenes delays diabetes via an interleukin-17-secretion-independent pathway. Exp Ther Med 2015; 9:1934-1938. [PMID: 26136917 DOI: 10.3892/etm.2015.2328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/12/2014] [Indexed: 11/06/2022] Open
Abstract
Non-obese diabetes (NOD) mice are widely used as an animal model in studies of type I diabetes (TID). Treatment with complete Freund's adjuvant (CFA) in pro-diabetic NOD mice is known to inhibit disease progression by activating CD1d-specific natural killer (NK) T cells and inducing interleukin (IL)-17 secretion in innate immune cells. The aim of the present study was to examine the effect of incomplete Freund's adjuvant (IFA) and L. monocytogenes treatment on the development of TID in NOD mice. This combined treatment of IFA and L. monocytogenes, a microbe that infects the liver and is primarily combatted by NK and cytotoxic T lymphocytes, was applied to mimic CFA treatment in pro-diabetic NOD mice. The combined IFA + L. monocytogenes treatment effectively delayed TID development in the NOD mice. In contrast to CFA, the IFA + L. monocytogenes treatment did not induce T cells or innate immune cells to secrete IL-17. However, increased levels of regulatory T cells were detected. Furthermore, IFA + L. monocytogenes mice exhibited higher levels of IgG2a, although no notable T helper 1 cell response was observed when compared with the CFA or IFA control treated mice. Therefore, combined IFA + L. monocytogenes treatment was shown to delay TID development in NOD mice via a novel mechanism, which was independent from the secretion of IL-17 by CFA-activated NKT cells.
Collapse
Affiliation(s)
- Hai-Ping Wang
- Department of Pharmacy, East Hospital of Tongji University, Shanghai 200120, P.R. China
| | - Zhi-Gao He
- Department of Pharmacy, East Hospital of Tongji University, Shanghai 200120, P.R. China
| |
Collapse
|
22
|
The amount of keratins matters for stress protection of the colonic epithelium. PLoS One 2015; 10:e0127436. [PMID: 26000979 PMCID: PMC4441500 DOI: 10.1371/journal.pone.0127436] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/15/2015] [Indexed: 11/19/2022] Open
Abstract
Keratins (K) are important for epithelial stress protection as evidenced by keratin mutations predisposing to human liver diseases and possibly inflammatory bowel diseases. A role for K8 in the colon is supported by the ulcerative colitis-phenotype with epithelial hyperproliferation and abnormal ion transport in K8-knockout (K8-/-) mice. The heterozygote knockout (K8+/-) colon appears normal but displays a partial ion transport-defect. Characterizing the colonic phenotype we show that K8+/- colon expresses ~50% less keratins compared to K8 wild type (K8+/+) but de novo K7 expression is observed in the top-most cells of the K8+/- and K8-/- crypts. The K8+/- colonic crypts are significantly longer due to increased epithelial hyperproliferation, but display no defects in apoptosis or inflammation in contrast to K8-/-. When exposed to colitis using the dextran sulphate sodium-model, K8+/- mice showed higher disease sensitivity and delayed recovery compared to K8+/+ littermates. Therefore, the K8+/- mild colonic phenotype correlates with decreased keratin levels and increased sensitivity to experimental colitis, suggesting that a sufficient amount of keratin is needed for efficient stress protection in the colonic epithelia.
Collapse
|
23
|
Emani R, Alam C, Pekkala S, Zafar S, Emani MR, Hänninen A. Peritoneal cavity is a route for gut-derived microbial signals to promote autoimmunity in non-obese diabetic mice. Scand J Immunol 2015; 81:102-9. [PMID: 25410403 DOI: 10.1111/sji.12253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/10/2014] [Indexed: 01/28/2023]
Abstract
Macrophages play a crucial role in innate immune reactions, and peritoneal macrophages (PMs) guard the sterility of this compartment mainly against microbial threat from the gut. Type 1 diabetes (T1D) is an autoimmune disease in which gut microbiota and gut immune system appear to contribute to disease pathogenesis. We have recently reported elevated free radical production and increased permeability of gut epithelium in non-obese diabetic (NOD) mice. Impaired barrier function could lead to bacterial leakage to the peritoneal cavity. To explore the consequences of impaired gut barrier function on extra-intestinal immune regulation, we characterized peritoneal lavage cells from young newly weaned NOD mice. We detected a rapid increase in the number of macrophages 1-2 weeks after weaning in NOD mice compared to C57BL/6 and BALB/c mice. Interestingly, this increase in macrophages was abrogated in NOD mice that were fed an antidiabetogenic diet (ProSobee), which improves gut barrier function. Macrophages in young (5-week-old) NOD mice displayed a poor TNF-α cytokine response to LPS stimulation and high expression of interleukin-1receptor-associated kinase-M (IRAK-M), indicating prior in vivo exposure to TLR-4 ligand(s). Furthermore, injection of LPS intraperitoneally increased T cell CD69 expression in pancreatic lymph node (PaLN), suggestive of T cell activation. Leakage of bacterial components such as endotoxins into the peritoneal cavity may contribute to auto-reactive T cell activation in the PaLN.
Collapse
Affiliation(s)
- R Emani
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
24
|
Wang Y, Xing F, Ye S, Xiao J, Di J, Zeng S, Liu J. Jagged-1 signaling suppresses the IL-6 and TGF-β treatment-induced Th17 cell differentiation via the reduction of RORγt/IL-17A/IL-17F/IL-23a/IL-12rb1. Sci Rep 2015; 5:8234. [PMID: 25648768 PMCID: PMC4316398 DOI: 10.1038/srep08234] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/13/2015] [Indexed: 11/09/2022] Open
Abstract
Jagged-1 signaling has recently been reported to be involved in the Th17 cell differentiation. However, little is known about its mechanisms. Soluble Jagged-1 was used to activate the Jagged-1–Notch signaling to interfere with the IL-6 and TGF-β-induced Th17 cell skewing. Genes relevant to the autoimmunity or inflammation were screened for the first time in this system by qPCR array for the differential expressions. The 18 genes out of 84, including Clec7a, Il12b, Il12rb1, Il12rb2, Csf3, Il15, Il17a, Il17f, Il17rc, Il17rd, Il17re, Il23a, Myd88, Socs1, Stat4, Stat5a, Sykb and Tbx21, were downregulated, but only Cxcl2, Cxcl12 and Mmp3 were upregulated. The expressions of the genes, Rorγt, Il17a, Il17f, Il12rb1 and Il23a, induced by simultaneous IL-6 and TGF-β treatment were significantly suppressed by Jagged-1, followed by the reduction of RORγt, IL-17A, and IL-17F. Consistent with the attenuation of RORγt, and the reduced production and secretion of IL-17A and IL-17F in the cell supernatant and the in situ stained cells, the number of CD4+IL-17+ cells was also diminished. It is concluded that the Jagged-1–Notch signaling can suppress the IL-6 and TGF-β treatment-induced Th17 cell skewing through the attenuation of RORγt and, hence by, the down-regulation of IL-17A, IL-17F, IL-23a, and IL-12rb1.
Collapse
Affiliation(s)
- Yuan Wang
- 1] Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China [2] Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Feiyue Xing
- 1] Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China [2] Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Siqi Ye
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jia Xiao
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jingfang Di
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Shan Zeng
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jing Liu
- Department of Stomatology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
25
|
Toivonen RK, Emani R, Munukka E, Rintala A, Laiho A, Pietilä S, Pursiheimo JP, Soidinsalo P, Linhala M, Eerola E, Huovinen P, Hänninen A. Fermentable fibres condition colon microbiota and promote diabetogenesis in NOD mice. Diabetologia 2014; 57:2183-92. [PMID: 25031069 DOI: 10.1007/s00125-014-3325-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Gut microbiota (GM) and diet both appear to be important in the pathogenesis of type 1 diabetes. Fermentable fibres (FFs), of which there is an ample supply in natural, diabetes-promoting diets, are used by GM as a source of energy. Our aim was to determine whether FFs modify GM and diabetes incidence in the NOD mouse. METHODS Female NOD mice were weaned to a semisynthetic diet and the effects of FF supplementation on diabetes incidence and insulitis were evaluated. Real-time quantitative PCR was employed to determine the effects imposed to gene transcripts in the colon and lymph nodes. Changes to GM were analysed by next-generation sequencing. RESULTS NOD mice fed semisynthetic diets free from FFs were largely protected from diabetes while semisynthetic diets supplemented with the FFs pectin and xylan (PX) resulted in higher diabetes incidence. Semisynthetic diet free from FFs altered GM composition significantly; addition of PX changed the composition of the GM towards that found in natural-diet-fed mice and increased production of FF-derived short-chain fatty acid metabolites in the colon. The highly diabetogenic natural diet was associated with expression of proinflammatory and stress-related genes in the colon, while the semisynthetic diet free from FFs promoted Il4, Il22, Tgfβ and Foxp3 transcripts in the colon and/or pancreatic lymph node. PX in the same diet counteracted these effects and promoted stress-related IL-18 activation in gut epithelial cells. 16S RNA sequencing revealed each diet to give rise to its particular GM composition, with different Firmicutes to Bacteroidetes ratios, and enrichment of mucin-degrading Ruminococcaceae following diabetes-protective FF-free diet. CONCLUSIONS/INTERPRETATION FFs condition microbiota, affect colon homeostasis and are important components of natural, diabetes-promoting diets in NOD mice.
Collapse
Affiliation(s)
- Raine K Toivonen
- Department of Medical Microbiology and Immunology, University of Turku, Kiinamyllynkatu 13, 20520, Turku, Finland,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Antvorskov JC, Josefsen K, Engkilde K, Funda DP, Buschard K. Dietary gluten and the development of type 1 diabetes. Diabetologia 2014; 57:1770-80. [PMID: 24871322 PMCID: PMC4119241 DOI: 10.1007/s00125-014-3265-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/09/2014] [Indexed: 01/10/2023]
Abstract
Gluten proteins differ from other cereal proteins as they are partly resistant to enzymatic processing in the intestine, resulting in a continuous exposure of the proteins to the intestinal immune system. In addition to being a disease-initiating factor in coeliac disease (CD), gluten intake might affect type 1 diabetes development. Studies in animal models of type 1 diabetes have documented that the pathogenesis is influenced by diet. Thus, a gluten-free diet largely prevents diabetes in NOD mice while a cereal-based diet promotes diabetes development. In infants, amount, timing and mode of introduction have been shown to affect the diabetogenic potential of gluten, and some studies now suggest that a gluten-free diet may preserve beta cell function. Other studies have not found this effect. There is evidence that the intestinal immune system plays a primary role in the pathogenesis of type 1 diabetes, as diabetogenic T cells are initially primed in the gut, islet-infiltrating T cells express gut-associated homing receptors, and mesenteric lymphocytes transfer diabetes from NOD mice to NOD/severe combined immunodeficiency (SCID) mice. Thus, gluten may affect diabetes development by influencing proportional changes in immune cell populations or by modifying the cytokine/chemokine pattern towards an inflammatory profile. This supports an important role for gluten intake in the pathogenesis of type 1 diabetes and further studies should be initiated to clarify whether a gluten-free diet could prevent disease in susceptible individuals or be used with newly diagnosed patients to stop disease progression.
Collapse
Affiliation(s)
- Julie C Antvorskov
- The Bartholin Institute, Rigshospitalet, Ole Maaløes Vej 5, section 3733, Copenhagen, Denmark,
| | | | | | | | | |
Collapse
|
27
|
Abstract
BACKGROUND Traditional techniques analyzing mouse colitis are invasive, laborious, or indirect. Development of in vivo imaging techniques for specific colitis processes would be useful for monitoring disease progression and/or treatment effectiveness. The aim was to evaluate the applicability of the chemiluminescent probe L-012, which detects reactive oxygen and nitrogen species, for in vivo colitis imaging. METHODS Two genetic colitis mouse models were used; K8 knockout (K8(-/-)) mice, which develop early colitis and the nonobese diabetic mice, which develop a transient subclinical colitis. Dextran sulphate sodium was used as a chemical colitis model. Mice were anesthetized, injected intraperitoneally with L-012, imaged, and quantified for chemiluminescent signal in the abdominal region using an IVIS camera system. RESULTS K8(-/-) and nonobese diabetic mice showed increased L-012-mediated chemiluminescence from the abdominal region compared with control mice. L-012 signals correlated with the colitis phenotype assessed by histology and myeloperoxidase staining. Although L-012 chemiluminescence enabled detection of dextran sulphate sodium-induced colitis at an earlier time point compared with traditional methods, large mouse-to-mouse variations were noted. In situ and ex vivo L-012 imaging as well as [18F]FDG-PET imaging of K8(-/-) mice confirmed that the in vivo signals originated from the distal colon. L-012 in vivo imaging showed a wide variation in reactive oxygen and nitrogen species in young mice, irrespective of K8 genotype. In aging mice L-012 signals were consistently higher in K8(-/-) as compared to K8(+/+) mice. CONCLUSIONS In vivo imaging using L-012 is a useful, simple, and cost-effective tool to study the level and longitudinal progression of genetic and possibly chemical murine colitis.
Collapse
|
28
|
Hansen CHF, Krych L, Buschard K, Metzdorff SB, Nellemann C, Hansen LH, Nielsen DS, Frøkiær H, Skov S, Hansen AK. A maternal gluten-free diet reduces inflammation and diabetes incidence in the offspring of NOD mice. Diabetes 2014; 63:2821-32. [PMID: 24696449 DOI: 10.2337/db13-1612] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Early-life interventions in the intestinal environment have previously been shown to influence diabetes incidence. We therefore hypothesized that a gluten-free (GF) diet, known to decrease the incidence of type 1 diabetes, would protect against the development of diabetes when fed only during the pregnancy and lactation period. Pregnant nonobese diabetic (NOD) mice were fed a GF or standard diet until all pups were weaned to a standard diet. The early-life GF environment dramatically decreased the incidence of diabetes and insulitis. Gut microbiota analysis by 16S rRNA gene sequencing revealed a pronounced difference between both mothers and their offspring on different diets, characterized by increased numbers of Akkermansia, Proteobacteria, and TM7 in the GF diet group. In addition, pancreatic forkhead box P3 regulatory T cells were increased in GF-fed offspring, as were M2 macrophage gene markers and tight junction-related genes in the gut, while intestinal gene expression of proinflammatory cytokines was reduced. An increased proportion of T cells in the pancreas expressing the mucosal integrin α4β7 suggests that the mechanism involves increased trafficking of gut-primed immune cells to the pancreas. In conclusion, a GF diet during fetal and early postnatal life reduces the incidence of diabetes. The mechanism may involve changes in gut microbiota and shifts to a less proinflammatory immunological milieu in the gut and pancreas.
Collapse
Affiliation(s)
- Camilla Hartmann Friis Hansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Stine B Metzdorff
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christine Nellemann
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Lars H Hansen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dennis S Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Frøkiær
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Søren Skov
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Axel K Hansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
29
|
Sofi MH, Gudi R, Karumuthil-Melethil S, Perez N, Johnson BM, Vasu C. pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence. Diabetes 2014; 63:632-44. [PMID: 24194504 PMCID: PMC3900548 DOI: 10.2337/db13-0981] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA-targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice.
Collapse
Affiliation(s)
- M. Hanief Sofi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Radhika Gudi
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Nicolas Perez
- Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Benjamin M. Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Corresponding author: Chenthamarakshan Vasu,
| |
Collapse
|
30
|
He Q, Morillon YM, Spidale NA, Kroger CJ, Liu B, Sartor RB, Wang B, Tisch R. Thymic development of autoreactive T cells in NOD mice is regulated in an age-dependent manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5858-66. [PMID: 24198282 PMCID: PMC3858497 DOI: 10.4049/jimmunol.1302273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inefficient thymic negative selection of self-specific T cells is associated with several autoimmune diseases, including type 1 diabetes. The factors that influence the efficacy of thymic negative selection, as well as the kinetics of thymic output of autoreactive T cells remain ill-defined. We investigated thymic production of β cell-specific T cells using a thymus-transplantation model. Thymi from different aged NOD mice, representing distinct stages of type 1 diabetes, were implanted into NOD.scid recipients, and the diabetogenicity of the resulting T cell pool was examined. Strikingly, the development of diabetes-inducing β cell-specific CD4(+) and CD8(+) T cells was regulated in an age-dependent manner. NOD.scid recipients of newborn NOD thymi developed diabetes. However, recipients of thymi from 7- and 10-d-old NOD donor mice remained diabetes-free and exhibited a progressive decline in islet infiltration and β cell-specific CD4(+) and CD8(+) T cells. A similar temporal decrease in autoimmune infiltration was detected in some, but not all, tissues of recipient mice implanted with thymi from NOD mice lacking expression of the autoimmune regulator transcription factor, which develop multiorgan T cell-mediated autoimmunity. In contrast, recipients of 10 d or older thymi lacked diabetogenic T cells but developed severe colitis marked by increased effector T cells reactive to intestinal microbiota. These results demonstrate that thymic development of autoreactive T cells is limited to a narrow time window and occurs in a reciprocal manner compared with colonic microbiota-responsive T cells in NOD mice.
Collapse
MESH Headings
- Adoptive Transfer
- Aging/immunology
- Animals
- Animals, Newborn
- Animals, Suckling
- Autoantigens/immunology
- Autoimmune Diseases/etiology
- Autoimmune Diseases/immunology
- Autoimmunity/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Clonal Selection, Antigen-Mediated
- Colitis/etiology
- Colitis/immunology
- Colon/immunology
- Colon/microbiology
- Colon/pathology
- Cytotoxicity, Immunologic
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Female
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Lymphoid Tissue/pathology
- Mice
- Mice, Inbred NOD/immunology
- Mice, Knockout
- Mice, SCID
- Organ Specificity
- Pancreas/immunology
- Pancreas/pathology
- Polyendocrinopathies, Autoimmune/immunology
- Polyendocrinopathies, Autoimmune/pathology
- Salivary Glands/immunology
- Salivary Glands/pathology
- Specific Pathogen-Free Organisms
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Thymus Gland/growth & development
- Thymus Gland/immunology
- Thymus Gland/pathology
- Thymus Gland/transplantation
- Transcription Factors/deficiency
- Transcription Factors/physiology
- AIRE Protein
Collapse
Affiliation(s)
- Qiuming He
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Y. Maurice Morillon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Nicholas A. Spidale
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Charles J. Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Bo Liu
- Department of Medicine (Gastroenterology and Hepatology), University of North Carolina at Chapel Hill, North Carolina, USA
| | - R. Balfour Sartor
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Medicine (Gastroenterology and Hepatology), University of North Carolina at Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
31
|
Wang N, Rajasekaran N, Hou T, Mellins ED. Transgene expression in various organs post BM-HSC transplantation. Stem Cell Res 2013; 12:209-21. [PMID: 24270160 DOI: 10.1016/j.scr.2013.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/17/2013] [Accepted: 10/26/2013] [Indexed: 11/29/2022] Open
Abstract
Gene therapy mediated by bone marrow-derived hematopoietic stem cells (BM-HSC) has been widely used in treating genetic deficiencies in both pre-clinical and clinical settings. Using mitotically inactive cell-targeting lentivirus with separate promoters for our gene of interest (the murine MHC class II (MHCII) chaperone, invariant chain (Ii)) and a GFP reporter, we monitored the expression and function of introduced Ii in various types of professional antigen presenting cells (B cells, macrophages and DC) from different organs (spleen, pancreatic lymph nodes (PLN), BM and blood). Ii and GFP were detected. Ii levels correlated with GFP levels only in macrophages and monocytes from spleen, monocytes from PLN and macrophage precursors from blood. By cell type, Ii levels in PLN cells were more similar to those in spleen cells than to those in blood or BM cells. Functionally, Ii expressed in PLN or spleen had more effect on MHCII abundance than Ii expressed in BM or blood. The results have implications for analysis of the outcomes of gene therapy when both therapeutic and reporter genes are introduced. The findings also have implications for understanding the development of immune molecule function.
Collapse
Affiliation(s)
- Nan Wang
- Department of Pediatrics, Program in Immunology, Program in Human Gene Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| | - Narendiran Rajasekaran
- Department of Pediatrics, Program in Immunology, Program in Human Gene Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| | - Tieying Hou
- Department of Pediatrics, Program in Immunology, Program in Human Gene Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Program in Human Gene Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
32
|
Chen XL, Bobbala D, Rodriguez GM, Mayhue M, Chen YG, Ilangumaran S, Ramanathan S. Induction of autoimmune diabetes in non-obese diabetic mice requires interleukin-21-dependent activation of autoreactive CD8⁺ T cells. Clin Exp Immunol 2013; 173:184-94. [PMID: 23607664 DOI: 10.1111/cei.12108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2013] [Indexed: 12/28/2022] Open
Abstract
Non-obese diabetic (NOD) mice lacking interleukin (IL)-21 or IL-21 receptor do not develop autoimmune type 1 diabetes (T1D). We have shown recently that IL-21 may promote activation of autoreactive CD8(+) T cells by increasing their antigen responsiveness. To investigate the role of IL-21 in activating diabetogenic CD8(+) T cells in the NOD mouse, we generated IL-21-deficient NOD mice expressing the highly pathogenic major histocompatibility complex (MHC) class-I-restricted 8.3 transgenic T cell receptor (TCR). IL-21 deficiency protected 8.3-NOD mice completely from T1D. CD8(+) T cells from the 8.3-NOD.Il21(-/-) mice showed decreased antigen-induced proliferation but displayed robust antigen-specific cytolytic activity and production of effector cytokines. IL-21-deficient 8.3 T cells underwent efficient homeostatic proliferation, and previous antigen stimulation enabled these cells to cause diabetes in NOD.Scid recipients. The 8.3 T cells that developed in an IL-21-deficient environment showed impaired antigen-specific proliferation in vivo even in IL-21-sufficient mice. These cells also showed impaired IL-2 production and Il2 gene transcription following antigen stimulation. However, IL-2 addition failed to reverse their impaired proliferation completely. These findings indicate that IL-21 is required for efficient initial activation of autoreactive CD8(+) T cells but is dispensable for the activated cells to develop effector functions and cause disease. Hence, therapeutic targeting of IL-21 in T1D may inhibit activation of naive autoreactive CD8(+) T cells, but may have to be combined with other strategies to inhibit already activated cells.
Collapse
Affiliation(s)
- X-L Chen
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Emani R, Asghar MN, Toivonen R, Lauren L, Söderström M, Toivola DM, van Tol EAF, Hänninen A. Casein hydrolysate diet controls intestinal T cell activation, free radical production and microbial colonisation in NOD mice. Diabetologia 2013; 56:1781-91. [PMID: 23748859 DOI: 10.1007/s00125-013-2941-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/30/2013] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Dietary and microbial factors and the gut immune system are important in autoimmune diabetes. We evaluated inflammatory activity in the whole gut in prediabetic NOD mice using ex vivo imaging of reactive oxygen and nitrogen species (RONS), and correlated this with the above-mentioned factors. METHODS NOD mice were fed a normal diet or an anti-diabetogenic casein hydrolysate (CH) diet. RONS activity was detected by chemiluminescence imaging of the whole gut. Proinflammatory and T cell cytokines were studied in the gut and islets, and dietary effects on gut microbiota and short-chain fatty acids were determined. RESULTS Prediabetic NOD mice displayed high RONS activity in the epithelial cells of the distal small intestine, in conjunction with a proinflammatory cytokine profile. RONS production was effectively reduced by the CH diet, which also controlled (1) the expression of proinflammatory cytokines and colonisation-dependent RegIIIγ (also known as Reg3g) in ileum; (2) intestinal T cell activation; and (3) islet cytokines. The CH diet diminished microbial colonisation, increased the Bacteroidetes:Firmicutes ratio, and reduced lactic acid and butyric acid production in the gut. CONCLUSIONS/INTERPRETATION Epithelial RONS production and proinflammatory T cell activation appears in the ileum of NOD mice after weaning to normal laboratory chow, but not after weaning to an anti-diabetogenic CH diet. Our data suggest a link between dietary factors, microbial colonisation and mucosal immune activation in NOD mice.
Collapse
Affiliation(s)
- R Emani
- Department of Medical Microbiology and Immunology, Kiinamyllynkatu 13, Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Costa V, Santos A, Fukui R, Mattana T, Matioli S, Silva M. Protective effect of interleukin-23A (IL23A) haplotype variants on type 1A diabetes mellitus in a Brazilian population. Cytokine 2013; 62:327-33. [DOI: 10.1016/j.cyto.2013.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/07/2013] [Accepted: 03/10/2013] [Indexed: 12/12/2022]
|
35
|
Abstract
The gut immune system has a key role in the development of autoimmune diabetes, and factors that control the gut immune system are also regulators of beta-cell autoimmunity. Gut microbiota modulate the function of the gut immune system by their effect on the innate immune system, such as the intestinal epithelial cells and dendritic cells, and on the adaptive immune system, in particular intestinal T cells. Due to the immunological link between gut and pancreas, e.g. the shared lymphocyte homing receptors, the immunological changes in the gut are reflected in the pancreas. According to animal studies, changes in gut microbiota alter the development of autoimmune diabetes. This has been demonstrated by antibiotics that induce changes in the gut microbiota. Furthermore, gut-colonizing microbes may modify the incidence of autoimmune diabetes in animal models. Deficient toll-like receptor (TLR) signaling, mediating microbial stimulus in immune cells, prevents autoimmune diabetes, which appears to be dependent on alterations in the intestinal microbiota. Although few studies have been conducted in humans, recent studies suggest that the abundance of Bacteroides and lack of butyrate-producing bacteria in fecal microbiota are associated with beta-cell autoimmunity and type 1 diabetes. It is possible that altered gut microbiota are associated with immunological aberrancies in type 1 diabetes. The changes in gut microbiota could lead to alterations in the gut immune system, such as increased gut permeability, small intestinal inflammation, and impaired tolerance to food antigens, all of which are observed in type 1 diabetes. Poor fitness of gut microbiota could explain why children who develop type 1 diabetes are prone to enterovirus infections, and do not develop tolerance to cow milk antigens. These candidate risk factors of type 1 diabetes may imply an increased risk of type 1 diabetes due to the presence of gut microbiota that do not support health. Despite the complex interaction of microbiota, host, environment, and disease mechanisms, gut microbiota are promising novel targets in the prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Outi Vaarala
- Immune Response Unit, Department of Vaccination and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland.
| |
Collapse
|
36
|
Baker J, Brown K, Rajendiran E, Yip A, DeCoffe D, Dai C, Molcan E, Chittick SA, Ghosh S, Mahmoud S, Gibson DL. Medicinal lavender modulates the enteric microbiota to protect against Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol 2012; 303:G825-36. [PMID: 22821949 DOI: 10.1152/ajpgi.00327.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease, inclusive of Crohn's disease and ulcerative colitis, consists of immunologically mediated disorders involving the microbiota in the gastrointestinal tract. Lavender oil is a traditional medicine used to relieve many gastrointestinal disorders. The goal of this study was to examine the therapeutic effects of the essential oil obtained from a novel lavender cultivar, Lavandula×intermedia cultivar Okanagan lavender (OLEO), in a mouse model of acute colitis caused by Citrobacter rodentium. In colitic mice, oral gavage with OLEO resulted in less severe disease, including decreased morbidity and mortality, reduced intestinal tissue damage, and decreased infiltration of neutrophils and macrophages, with reduced levels of TNF-α, IFN-γ, IL-22, macrophage inflammatory protein-2α, and inducible nitric oxide synthase expression. This was associated with increased levels of regulatory T cell populations compared with untreated colitic mice. Recently, we demonstrated that the composition of the enteric microbiota affects susceptibility to C. rodentium-induced colitis. Here, we found that oral administration of OLEO induced microbiota enriched with members of the phylum Firmicutes, including segmented filamentous bacteria, which are known to protect against the damaging effects of C. rodentium. Additionally, during infection, OLEO treatment promoted the maintenance of microbiota loads, with specific increases in Firmicutes bacteria and decreases in γ-Proteobacteria. We observed that Firmicutes bacteria were intimately associated with the apical region of the intestinal epithelial cells during infection, suggesting that their protective effect was through contact with the gut wall. Finally, we show that OLEO inhibited C. rodentium growth and adherence to Caco-2 cells, primarily through the activities of 1,8-cineole and borneol. These results indicate that while OLEO promoted Firmicutes populations, it also controlled pathogen load through antimicrobial activity. Overall, our results reveal that OLEO can protect against colitis through the microbial-immunity nexus and that a pharmacological agent, in this case OLEO, alters the normal enteric microbiota.
Collapse
Affiliation(s)
- J Baker
- Department of Biology, University of British Columbia Okanagan, ASC 368, 3333 Univ. Way, The Irving K. Barber School of Arts and Sciences, Kelowna, BC, Canada V1V 1V7
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Brown K, DeCoffe D, Molcan E, Gibson DL. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 2012; 4:1095-119. [PMID: 23016134 PMCID: PMC3448089 DOI: 10.3390/nu4081095] [Citation(s) in RCA: 458] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/09/2012] [Accepted: 08/15/2012] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal (GI) microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn’s disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed.
Collapse
Affiliation(s)
- Kirsty Brown
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada.
| | | | | | | |
Collapse
|
38
|
Hansen CHF, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sørensen SJ, Buschard K, Hansen AK. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 2012; 55:2285-94. [PMID: 22572803 DOI: 10.1007/s00125-012-2564-7] [Citation(s) in RCA: 376] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS Increasing evidence suggests that environmental factors changing the normal colonisation pattern in the gut strongly influence the risk of developing autoimmune diabetes. The aim of this study was to investigate, both during infancy and adulthood, whether treatment with vancomycin, a glycopeptide antibiotic specifically directed against Gram-positive bacteria, could influence immune homeostasis and the development of diabetic symptoms in the NOD mouse model for diabetes. METHODS Accordingly, one group of mice received vancomycin from birth until weaning (day 28), while another group received vancomycin from 8 weeks of age until onset of diabetes. Pyrosequencing of the gut microbiota and flow cytometry of intestinal immune cells was used to investigate the effect of vancomycin treatment. RESULTS At the end of the study, the cumulative diabetes incidence was found to be significantly lower for the neonatally treated group compared with the untreated group, whereas the insulitis score and blood glucose levels were significantly lower for the mice treated as adults compared with the other groups. Mucosal inflammation was investigated by intracellular cytokine staining of the small intestinal lymphocytes, which displayed an increase in cluster of differentiation (CD)4(+) T cells producing pro-inflammatory cytokines in the neonatally treated mice. Furthermore, bacteriological examination of the gut microbiota composition by pyrosequencing revealed that vancomycin depleted many major genera of Gram-positive and Gram-negative microbes while, interestingly, one single species, Akkermansia muciniphila, became dominant. CONCLUSIONS/INTERPRETATION The early postnatal period is a critical time for microbial protection from type 1 diabetes and it is suggested that the mucolytic bacterium A. muciniphila plays a protective role in autoimmune diabetes development, particularly during infancy.
Collapse
Affiliation(s)
- C H F Hansen
- Section of Biomedicine, Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 57, 1870, Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Côrte-Real J, Duarte N, Tavares L, Penha-Gonçalves C. Innate stimulation of B1a cells enhances the autoreactive IgM repertoire in the NOD mouse: implications for type 1 diabetes. Diabetologia 2012; 55:1761-72. [PMID: 22382518 DOI: 10.1007/s00125-012-2498-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/17/2012] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS We sought to determine whether the presence of natural autoreactive antibodies of B1a cell origin would play a role in the initiation of type 1 diabetes. METHODS We compared IgM repertoires and B1a cell compartments in NOD and C57BL/6 mice. Serum IgM autoreactivity profiles were determined by ELISA and the secretory properties and activation status of B1a cells were characterised by enzyme-linked immunosorbent spot (ELISPOT) assay and flow cytometry. B1a cell response to innate activation was analysed by gene expression assays, ELISA and [(3)H]thymidine incorporation. The effect of NOD IgM produced by B1a cells on NOD.severe combined immunodeficient (SCID) beta cells was examined in co-cultures: IgM binding was measured by flow cytometry and real-time PCR was used to study oxidative stress responses. RESULTS NOD mice displayed increased levels of serum anti-insulin IgM that were independent of the H2 locus, that were maintained up to prediabetic stages and that correlated with the NOD B1a cell secretion profile. NOD B1a cells had a naturally increased pattern of activation, expressed higher levels of toll-like-receptors (Tlrs) and responded to TLR stimulation in vitro with higher proliferation and increased capacity to secrete anti-type-1-diabetes-related IgM, but produced lower amounts of IL10. IgM of NOD B1a cell origin was able to bind to pancreatic beta cells in vitro and induce expression of inducible nitric oxide synthase (Nos2). CONCLUSIONS/INTERPRETATION NOD B1a cells had a lower innate activation threshold for secretion of autoreactive IgM capable of triggering oxidative stress responses on binding to pancreatic beta cells; this provides an early mechanism that contributes to diabetes in a mouse model of type 1 diabetes.
Collapse
Affiliation(s)
- J Côrte-Real
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
40
|
Macia L, Thorburn AN, Binge LC, Marino E, Rogers KE, Maslowski KM, Vieira AT, Kranich J, Mackay CR. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol Rev 2012; 245:164-76. [PMID: 22168419 DOI: 10.1111/j.1600-065x.2011.01080.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Certain autoimmune diseases as well as asthma have increased in recent decades, particularly in developed countries. The hygiene hypothesis has been the prevailing model to account for this increase; however, epidemiology studies also support the contribution of diet and obesity to inflammatory diseases. Diet affects the composition of the gut microbiota, and recent studies have identified various molecules and mechanisms that connect diet, the gut microbiota, and immune responses. Herein, we discuss the effects of microbial metabolites, such as short chain fatty acids, on epithelial integrity as well as immune cell function. We propose that dysbiosis contributes to compromised epithelial integrity and disrupted immune tolerance. In addition, dietary molecules affect the function of immune cells directly, particularly through lipid G-protein coupled receptors such as GPR43.
Collapse
Affiliation(s)
- Laurence Macia
- Department of Immunology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lahdenperä AI, Hölttä V, Ruohtula T, Salo HM, Orivuori L, Westerholm-Ormio M, Savilahti E, Fälth-Magnusson K, Högberg L, Ludvigsson J, Vaarala O. Up-regulation of small intestinal interleukin-17 immunity in untreated coeliac disease but not in potential coeliac disease or in type 1 diabetes. Clin Exp Immunol 2012; 167:226-34. [PMID: 22235998 DOI: 10.1111/j.1365-2249.2011.04510.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Up-regulation of interleukin (IL)-17 in small intestinal mucosa has been reported in coeliac disease (CD) and in peripheral blood in type 1 diabetes (T1D). We explored mucosal IL-17 immunity in different stages of CD, including transglutaminase antibody (TGA)-positive children with potential CD, children with untreated and gluten-free diet-treated CD and in children with T1D. Immunohistochemistry was used for identification of IL-17 and forkhead box protein 3 (FoxP3)-positive cells and quantitative polymerase chain reaction (qPCR) for IL-17, FoxP3, retinoic acid-related orphan receptor (ROR)c and interferon (IFN)-γ transcripts. IL-1β, IL-6 and IL-17 were studied in supernatants from biopsy cultures. Expression of the apoptotic markers BAX and bcl-2 was evaluated in IL-17-stimulated CaCo-2 cells. The mucosal expression of IL-17 and FoxP3 transcripts were elevated in individuals with untreated CD when compared with the TGA-negative reference children, children with potential CD or gluten-free diet-treated children with CD (P < 0·005 for all IL-17 comparisons and P < 0·01 for all FoxP3 comparisons). The numbers of IL-17-positive cells were higher in lamina propria in children with CD than in children with T1D (P < 0·05). In biopsy specimens from patients with untreated CD, enhanced spontaneous secretion of IL-1β, IL-6 and IL-17 was seen. Activation of anti-apoptotic bcl-2 in IL-17-treated CaCo-2 epithelial cells suggests that IL-17 might be involved in mucosal protection. Up-regulation of IL-17 could, however, serve as a biomarker for the development of villous atrophy and active CD.
Collapse
Affiliation(s)
- A I Lahdenperä
- Division of Paediatrics, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
In type 1 diabetes, insulin-producing beta-cells in the pancreas are destroyed by immune-mediated mechanisms. The manifestation of the disease is preceded by the so-called pre-diabetic period that may last several years and is characterized by the appearance of circulating autoantibodies against beta-cell antigens. The role of the gut as a regulator of type 1 diabetes was suggested in animal studies, in which changes affecting the gut immune system modulated the incidence of diabetes. Dietary interventions, alterations in the intestinal microbiota and exposure to enteric pathogens, regulate the development of autoimmune diabetes in animal models. It has been demonstrated that these modulations affect the gut barrier mechanisms and intestinal immunity. Because the pancreas and the gut belong to the same intestinal immune system, the link between autoimmune diabetes and the gut is not unexpected. The gut hypothesis in the development of type 1 diabetes is also supported by the observations made in human type 1 diabetes. Early diet could modulate the development of beta-cell autoimmunity; weaning to hydrolysed casein formula decreased the risk of beta-cell autoimmunity by age 10 in the infants at genetic risk. Increased gut permeability, intestinal inflammation with impaired regulatory mechanisms and dysregulated oral tolerance have been observed in children with type 1 diabetes. The factors that contribute to these intestinal alterations are not known, but interest is focused on the microbial stimuli and function of innate immunity. It is likely that our microbial environment does not support the healthy maturation of the gut and tolerance in the gut, and this leads to the increasing type 1 diabetes as well as other immune-mediated diseases regulated by intestinal immune system. Thus, the interventions, aiming to prevent or treat type 1 diabetes in humans, should be targeting the gut immune system.
Collapse
Affiliation(s)
- Outi Vaarala
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland.
| |
Collapse
|
43
|
Abstract
Over the last decades the rising occurrence of metabolic diseases throughout the world points to the failure of preventive and therapeutic strategies and of the corresponding molecular and physiological concepts. Therefore, a new paradigm needs to be elucidated. Very recently the intimate cross talk of the intestinal microbiota with the host immune system has opened new avenues. The large diversity of the intestinal microbes' genome, i.e. the metagenome, and the extreme plasticity of the immune system provide a unique balance which, when finely tuned, maintains a steady homeostasis. The discovery that a new microbiota repertoire is one of the causes responsible for the onset of metabolic disease suggests that the relationship with the immune system is impaired. Therefore, we here review the recent arguments that support the view that an alteration in the microbiota to host immune system balance leads to an increased translocation of bacterial antigens towards metabolically active tissues, and could result in a chronic inflammatory state and consequently impaired metabolic functions such as insulin resistance, hepatic fat deposition, insulin unresponsiveness, and excessive adipose tissue development. This imbalance could be at the onset of metabolic disease, and therefore the early treatment of the microbiota dysbiosis or immunomodulatory strategies should prevent and slow down the epidemic of metabolic diseases and hence the corresponding lethal cardiovascular consequences.
Collapse
Affiliation(s)
- Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale, U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), BP 84225, 31432 Toulouse, France.
| | | | | |
Collapse
|
44
|
Abstract
Keeping a delicate balance in the immune system by eliminating invading pathogens, while still maintaining self-tolerance to avoid autoimmunity, is critical for the body's health. The gut microbiota that resides in the gastrointestinal tract provides essential health benefits to its host, particularly by regulating immune homeostasis. Moreover, it has recently become obvious that alterations of these gut microbial communities can cause immune dysregulation, leading to autoimmune disorders. Here we review the advances in our understanding of how the gut microbiota regulates innate and adaptive immune homeostasis, which in turn can affect the development of not only intestinal but also systemic autoimmune diseases. Exploring the interaction of gut microbes and the host immune system will not only allow us to understand the pathogenesis of autoimmune diseases but will also provide us new foundations for the design of novel immuno- or microbe-based therapies.
Collapse
Affiliation(s)
- Hsin-Jung Wu
- Department of Immunobiology; College of Medicine; University of Arizona; Tucson, AZ USA,Arizona Arthritis Center; College of Medicine; University of Arizona; Tucson, AZ USA,Correspondence to: Hsin-Jung Wu;
| | - Eric Wu
- Department of Immunobiology; College of Medicine; University of Arizona; Tucson, AZ USA
| |
Collapse
|
45
|
Van Belle TL, Esplugues E, Liao J, Juntti T, Flavell RA, von Herrath MG. Development of autoimmune diabetes in the absence of detectable IL-17A in a CD8-driven virally induced model. THE JOURNAL OF IMMUNOLOGY 2011; 187:2915-22. [PMID: 21832162 DOI: 10.4049/jimmunol.1000180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent studies have shown that IL-17 can contribute beneficially to pathogen defense but also that excessive IL-17 levels are associated with chronic inflammation and autoimmune disorders. To date, the role of IL-17 in viral infections and type 1 diabetes is ambiguous. In this study, we used IL-17A enhanced green fluorescent protein bicistronic reporter mouse strains to analyze in situ production of IL-17A. Upon Klebsiella pneumoniae bacterial infection, CD4(+) and γδ T cells produce IL-17A. In contrast, CD4(+) or CD8(+) T cells do not produce IL-17A in response to acute or protracted viral infection with lymphocytic choriomeningitis virus or during autoimmune diabetes development in the CD8-driven lymphocytic choriomeningitis virus-induced model of type 1 diabetes. We conclude that viral elimination and type 1 diabetes can occur in the absence of detectable IL-17A production, suggesting IL-17A is not essential in these settings.
Collapse
Affiliation(s)
- Tom L Van Belle
- Diabetes Center of San Diego, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Several studies indicate that factors affecting the gut are capable of modulating the development of autoimmune diabetes. This review discusses the recent research on these mechanisms, which may reveal novel pathogenic pathways and new possibilities for prevention of type 1 diabetes (T1D). RECENT FINDINGS The role of the gut as a regulator of T1D is mainly based on animal studies in which changes affecting the gut immune system have been shown to modulate the immune-mediated destruction of insulin-producing beta-cells. Dietary interventions, alterations in the intestinal microbiota and exposure to enteral pathogens regulate the development of autoimmune diabetes in animal models. In several studies, it has been demonstrated that these modulations affect the gut barrier mechanisms and intestinal immunity. Also, in humans, increased gut permeability and intestinal inflammation are associated with T1D. A recent report of dietary intervention study in infants at genetic risk of T1D showed that early diet could modulate the development of beta-cell autoimmunity in humans; weaning to hydrolyzed casein formula decreased the risk of beta-cell autoimmunity by age 10. SUMMARY The gut modulation affecting permeability, inflammation and microbiota is evidently associated with the regulation of the inflammation leading to beta-cell destruction. Although the mechanisms of action are not fully understood, the recent research points out the lines of approach for the prevention of T1D.
Collapse
Affiliation(s)
- Outi Vaarala
- Immune Response Unit, Department of Vaccination and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland.
| |
Collapse
|
47
|
Alam C, Bittoun E, Bhagwat D, Valkonen S, Saari A, Jaakkola U, Eerola E, Huovinen P, Hänninen A. Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice. Diabetologia 2011; 54:1398-406. [PMID: 21380595 DOI: 10.1007/s00125-011-2097-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/01/2011] [Indexed: 01/24/2023]
Abstract
AIMS/HYPOTHESIS Microbial factors influence the development of diabetes in NOD mice. Studies in germ-free animals have revealed important roles of microbiota in the regulation of Th17 and forkhead box P3 (FOXP3)(+) T regulatory (Treg) activation in the intestine. However, the effects of intestinal microbiota in immune regulation and diabetes development in NOD mice are still poorly understood. METHODS A colony of germ-free NOD mice was established to evaluate the effects of intestinal microbiota on regulatory immunity in the gut, and on the development of insulitis and diabetes in NOD mice. RESULTS Diabetes developed in roughly equal numbers in germ-free and specific pathogen-free NOD mice. Insulitis was accentuated in germ-free NOD mice; yet insulin preservation was unaltered. Germ-free NOD mice showed increased levels of Il17 (also known as Il17a) mRNA in the colon, and of Th17 and Th1 cells in the mesenteric and pancreatic lymph nodes, while Foxp3 mRNA and FOXP3(+) Tregs were reduced. In the islet infiltrates, FOXP3(+)CD4(+) T cells were slightly increased in germ-free mice. B cells appeared less activated in the peritoneum and were less abundant in islet infiltrates. CONCLUSIONS/INTERPRETATION These results indicate that lack of intestinal microbiota promotes an imbalance between Th1, Th17 and Treg differentiation in the intestine. This imbalance is associated with accelerated insulitis, but intact recruitment of FOXP3(+) Tregs into islets, suggesting: (1) a microbial dependence of local induction of Treg in the gut and draining lymph nodes; but (2) a potentially compensatory function of naturally occurring Tregs in the islets, which may help control diabetogenic T cells.
Collapse
Affiliation(s)
- C Alam
- Department of Medical Microbiology and Immunology, Kiinamyllynkatu 13, University of Turku, 20520 Turku, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chamberlain JL, Attridge K, Wang CJ, Ryan GA, Walker LSK. B cell depletion in autoimmune diabetes: insights from murine models. Expert Opin Ther Targets 2011; 15:703-14. [PMID: 21366498 PMCID: PMC3997824 DOI: 10.1517/14728222.2011.561320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The incidence of type 1 diabetes (T1D) is rising for reasons that largely elude us. New strategies aimed at halting the disease process are needed. One type of immune cell thought to contribute to T1D is the B lymphocyte. The first Phase II trial of B cell depletion in new onset T1D patients indicated that this slowed the destruction of insulin-producing pancreatic beta cells. The mechanistic basis of the beneficial effects remains unclear. AREAS COVERED Studies of B cell depletion and deficiency in animal models of T1D. How B cells can influence T cell-dependent autoimmune diabetes in animal models. The heterogeneity of B cell populations and current evidence for the potential contribution of specific B cell subsets to diabetes, with emphasis on marginal zone B cells and B1 B cells. EXPERT OPINION B cells can influence the T cell response to islet antigens and B cell depletion or genetic deficiency is associated with decreased insulitis in animal models. New evidence suggests that B1 cells may contribute to diabetes pathogenesis. A better understanding of the roles of individual B cell subsets in disease will permit fine-tuning of therapeutic strategies to modify these populations.
Collapse
Affiliation(s)
- Jayne L Chamberlain
- University of Birmingham Medical School, School of Immunity & Infection, IBR Building, Birmingham B15 2TT, UK
| | - Kesley Attridge
- University of Birmingham Medical School, School of Immunity & Infection, IBR Building, Birmingham B15 2TT, UK
| | - Chun Jing Wang
- University of Birmingham Medical School, School of Immunity & Infection, IBR Building, Birmingham B15 2TT, UK
| | - Gemma A Ryan
- University of Birmingham Medical School, School of Immunity & Infection, IBR Building, Birmingham B15 2TT, UK
| | - Lucy SK Walker
- University of Birmingham Medical School, Medical Research Council Center for Immune Regulation, Birmingham B15 2TT, UK
| |
Collapse
|
49
|
King C, Sarvetnick N. The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions. PLoS One 2011; 6:e17049. [PMID: 21364875 PMCID: PMC3045412 DOI: 10.1371/journal.pone.0017049] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/14/2011] [Indexed: 01/23/2023] Open
Abstract
In the NOD mouse, the incidence of type-1 diabetes is thought to be influenced by the degree of cleanliness of the mouse colony. Studies collectively demonstrate that exposure to bacterial antigen or infection in the neonatal period prevents diabetes [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], supporting the notion that immunostimulation can benefit the maturation of the postnatal immune system [11]. A widely accepted extrapolation from this data has been the notion that NOD mice maintained under germ-free conditions have an increased incidence of diabetes. However, evidence supporting this influential concept is surprisingly limited [12]. In this study, we demonstrate that the incidence of diabetes in female NOD mice remained unchanged under germ-free conditions. By contrast, a spontaneous monoculture with a gram-positive aerobic spore-forming rod delayed the onset and reduced the incidence of diabetes. These findings challenge the view that germ-free NOD mice have increased diabetes incidence and demonstrate that modulation of intestinal microbiota can prevent the development of type-1 diabetes.
Collapse
Affiliation(s)
- Cecile King
- Department of Immunology, The Scripps Research Institute, La Jolla, California, United States of America.
| | | |
Collapse
|
50
|
Kranich J, Maslowski KM, Mackay CR. Commensal flora and the regulation of inflammatory and autoimmune responses. Semin Immunol 2011; 23:139-45. [PMID: 21292499 DOI: 10.1016/j.smim.2011.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/10/2011] [Indexed: 12/13/2022]
Abstract
The gut microbiota has recently been recognized for its role in immune regulation, and changes in gut microbiota may be the basis for an increased incidence of autoimmune diseases and asthma in developed countries. Beneficial microbes produce factors that are distributed systemically, and therefore can influence peripheral inflammatory responses. Such symbiosis factors are important for the control and resolution of inflammation and autoimmune diseases. Here we discuss immune regulation by recently identified symbiosis factors and how certain environmental factors favor their production and influence the composition of the gut microflora.
Collapse
Affiliation(s)
- Jan Kranich
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | | |
Collapse
|