1
|
Alnek K, Tagoma A, Metsküla K, Talja I, Janson H, Mandel M, Vorobjova T, Oras A, Sepp H, Pruul K, Reimand K, Simonen T, Peet A, Reppo I, Tammiksaar K, Lubi M, Heilman K, Einberg Ü, Kisand K, Lember M, Tillmann V, Uibo R. Comparison of immunological and immunogenetic markers in recent-onset type 1 diabetes among children and adults. Sci Rep 2025; 15:15491. [PMID: 40319149 PMCID: PMC12049419 DOI: 10.1038/s41598-025-99664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
This study aimed to compare the immunological and immunogenetic profiles over a spectrum of childhood- and adulthood-onset T1D at diagnosis. The cross-sectional study involved participants with recently diagnosed T1D (n = 168), aged 2.9-68.2 years. HLA-II alleles, single nucleotide polymorphisms (SNP) (rs2476601, rs3087243, rs1990760, rs13266634), thyroid and coeliac disease-related autoantibodies and anti-enterovirus antibodies (anti-EV) were analysed regarding the diabetes-associated autoantibodies' (DAA) status and the age of participants. In the longitudinal study, 19 immune checkpoint gene expression levels in children (n = 25) aged 3.6-14.5 years were measured at diagnosis and 1 year after diagnosis. The duration of symptoms before diagnosis was age-dependent. Older age increased the odds of being single DAA-positive (OR 1.05; 95% CI 1.02-1.09), while anti-EV IgG positivity increased the odds of being multiple DAA-positive (adjusted OR 4.42; 95% CI 1.62-12.04). The DAA-negative T1D participants were older than the DAA-positive individuals. The checkpoint gene expression levels between the two time points were similar, but exhibited more pronounced variability at the time of diagnosis. These results confirm immunological variability in recent-onset T1D cases between children and adults and stress the importance of further research to define the comprehensive immunological profile of the disease age-related subgroups.
Collapse
Affiliation(s)
- Kristi Alnek
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Aili Tagoma
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Kaja Metsküla
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
- United Laboratories of Tartu University Hospital, 50406, Tartu, Estonia
| | - Ija Talja
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
- United Laboratories of Tartu University Hospital, 50406, Tartu, Estonia
| | - Helis Janson
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Maire Mandel
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Tamara Vorobjova
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Astrid Oras
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Hanna Sepp
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
- Department of Communicable Diseases, The Estonian Health Board, 10614, Tallinn, Estonia
| | - Katrin Pruul
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
- Nortal AS, 51009, Tartu, Estonia
| | - Koit Reimand
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Tiia Simonen
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Aleksandr Peet
- Children's Clinic of Tartu University Hospital, 50406, Tartu, Estonia
- Department of Paediatrics, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
| | - Ingrid Reppo
- Internal Medicine Clinic of Tartu University Hospital, 50406, Tartu, Estonia
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
| | - Kaia Tammiksaar
- Internal Medicine Clinic of Tartu University Hospital, 50406, Tartu, Estonia
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
| | - Maire Lubi
- Internal Medicine Clinic of Tartu University Hospital, 50406, Tartu, Estonia
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
| | - Kaire Heilman
- Tallinn Children's Hospital, 13419, Tallinn, Estonia
| | - Ülle Einberg
- Tallinn Children's Hospital, 13419, Tallinn, Estonia
| | - Kalle Kisand
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
- Department of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
| | - Margus Lember
- Internal Medicine Clinic of Tartu University Hospital, 50406, Tartu, Estonia
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
| | - Vallo Tillmann
- Children's Clinic of Tartu University Hospital, 50406, Tartu, Estonia
- Department of Paediatrics, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
| | - Raivo Uibo
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, 50411, Tartu, Estonia.
- Estonian Academy of Sciences, 10130, Tallinn, Estonia.
| |
Collapse
|
2
|
Evans-Molina C, Oram RA. Type 1 diabetes presenting in adults: Trends, diagnostic challenges and unique features. Diabetes Obes Metab 2025. [PMID: 40230204 DOI: 10.1111/dom.16402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025]
Abstract
Type 1 diabetes (T1D) has been historically regarded as a childhood-onset disease; however, recent epidemiological data indicate that adult-onset T1D accounts for a substantial proportion of cases worldwide. There is evidence that adult-onset T1D is associated with the classic T1D triad of elevated genetic risk, the presence of islet-specific autoantibodies and progression to severe insulin deficiency. In this article, we review our understanding of the commonalities and differences between childhood and adult-onset T1D, and we highlight significant knowledge gaps in our understanding of the diagnosis, incidence, trajectory and treatment of adult-onset T1D. Compared to children, adults presenting with T1D exhibit differences in genetic risk, immunologic profiles and metabolic outcomes, including differences in the type and number of autoantibodies present, genetic associations and total genetic burden, rates of C-peptide decline, the persistence of C-peptide in long-duration disease and glycaemic control. In addition, obesity and metabolic syndrome are increasingly common in adults, which not only blurs the clinical distinction of adult-onset T1D from type 2 diabetes (T2D) but also likely contributes to differences in metabolic outcomes and rates of progression. Because T2D is so prevalent in the adult population, adult-onset T1D is misclassified as T2D in at least one in three cases, leading to delays in appropriate treatment. Current diagnostic tools, including autoantibody testing and C-peptide measurement, are underutilised or lack specificity in distinguishing adult-onset T1D from atypical T2D. Additionally, the impact of different responses to disease-modifying therapy between adults and children is unclear. Addressing these knowledge gaps requires expanded epidemiological studies, diverse patient registries and refined classification criteria to improve early detection and treatment strategies. A deeper understanding of adult-onset T1D will be critical to reduce the burden of misdiagnosis, lead to earlier diagnosis and treatment and optimise population-based screening approaches in this under-recognised population. PLAIN LANGUAGE SUMMARY: Type 1 diabetes (T1D) is an autoimmune disease that causes metabolic and nutritional complications due to the destruction of insulin-producing pancreatic β cells. T1D was formerly known as "juvenile diabetes" because it was assumed that most cases occurred in childhood; however, recent epidemiological data show that nearly half of all T1D cases are diagnosed in adulthood. Despite the high prevalence of adult-onset T1D, there are challenges with correctly diagnosing T1D in adulthood, and significant knowledge gaps remain regarding the incidence, trajectory, and treatment of adult-onset T1D. In this article, we summarize the current understanding of commonalities and differences between childhood and adult-onset T1D. Particularly, we highlight age-related differences in genetic risk, immunologic profiles, and metabolic outcomes and complications. Finally, we highlight key gaps in our understanding of adult-onset T1D that need to be addressed to reduce the burden of misdiagnosis and allow for better screening and treatment of T1D in adulthood.
Collapse
Affiliation(s)
- Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Richard A Oram
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- The Academic Renal Unit, Royal Devon University Hospitals NHS Foundation Trust, Exeter, UK
| |
Collapse
|
3
|
Redondo MJ, Cuthbertson D, Steck AK, Herold KC, Oram R, Atkinson M, Brusko TM, Parikh HM, Krischer JP, Onengut-Gumuscu S, Rich SS, Sosenko JM. Characteristics of autoantibody-positive individuals without high-risk HLA-DR4-DQ8 or HLA-DR3-DQ2 haplotypes. Diabetologia 2025; 68:588-601. [PMID: 39670998 PMCID: PMC11832693 DOI: 10.1007/s00125-024-06338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
AIMS/HYPOTHESIS Many studies of type 1 diabetes pathogenesis focus on individuals with high-risk HLA haplotypes. We tested the hypothesis that, among islet autoantibody-positive individuals, lacking HLA-DRB1*04-DQA1*03-DQB1*0302 (HLA-DR4-DQ8) and/or HLA-DRB1*0301-DQA1*0501-DQB1*0201 (HLA-DR3-DQ2) is associated with phenotypic differences, compared with those who have these high-risk HLA haplotypes. METHODS We classified autoantibody-positive relatives of individuals with type 1 diabetes into four groups based on having both HLA-DR4-DQ8 and HLA-DR3-DQ2 (DR3/DR4; n=1263), HLA-DR4-DQ8 but not HLA-DR3-DQ2 (DR4/non-DR3; n=2340), HLA-DR3-DQ2 but not HLA-DR4-DQ8 (DR3/non-DR4; n=1607) and neither HLA-DR3-DQ2 nor HLA-DR4-DQ8 (DRX/DRX; n=1294). Group comparisons included demographics, metabolic markers and the prevalence of autoantibodies against GAD65 (GADA%), IA-2 (IA-2A%) or insulin (IAA%) at enrolment. A p value <0.01 was considered statistically significant. RESULTS IA-2A% was lower in the DRX/DRX group (20.9%) than in the DR4/non-DR3 (38.5%, p<0.001) and DR3/DR4 (44.8%, p<0.001) groups, but similar to the DR3/non-DR4 group (20.0%). Conversely, IAA% was similar in the DRX/DRX (43.4%), DR4/non-DR3 (41.1%) and DR3/DR4 (41.0%) groups, but lower in the DR3/non-DR4 group (30.1%, p<0.001). Participants in the DRX/DRX group were older, with a lower prevalence of White participants and a higher prevalence of overweight/obesity, and higher preserved C-peptide (as measured by a lower Index60) than those in the DR3/DR4 group (all comparisons, p<0.005), a lower prevalence of White or non-Hispanic participants and a lower Index60 than those in the DR4/non-DR3 group, and younger age, a higher prevalence of Hispanic participants and a lower Index60 than those in the DR3/non-DR4 group (all comparisons, p<0.005). Among the 1292 participants who progressed to clinical type 1 diabetes, those in the DR3/non-DR4 group had higher GADA%, lower IA-2A% and lower IAA% than the other groups (all comparisons, p<0.01), and those in the DR3/DR4 group had the youngest age at diagnosis (all comparisons, p<0.001). CONCLUSIONS/INTERPRETATION Autoantibody-positive individuals who lack both high-risk HLA haplotypes (DRX/DRX) or have HLA-DR3-DQ2 but lack HLA-DR4-DQ8 (DR3/non-DR4) have phenotypic differences compared with DR3/DR4 and DR4/non-DR3 individuals, suggesting that there is aetiological heterogeneity in type 1 diabetes.
Collapse
Affiliation(s)
- Maria J Redondo
- Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - David Cuthbertson
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Andrea K Steck
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kevan C Herold
- Immunobiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Richard Oram
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Mark Atkinson
- Departments of Pathology and Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Todd M Brusko
- Departments of Pathology and Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hemang M Parikh
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | | | - Stephen S Rich
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
| | - Jay M Sosenko
- University of Miami Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
4
|
Tomic D, Harding JL, Jenkins AJ, Shaw JE, Magliano DJ. The epidemiology of type 1 diabetes mellitus in older adults. Nat Rev Endocrinol 2025; 21:92-104. [PMID: 39448829 DOI: 10.1038/s41574-024-01046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Although type 1 diabetes mellitus (T1DM) is traditionally viewed as a youth-onset disorder, the number of older adults being diagnosed with this disease is growing. Improvements in the average life expectancy of people with T1DM have also contributed to the growing number of older people living with this disease. We summarize the evidence regarding the epidemiology (incidence, prevalence and excess mortality) of T1DM in older adults (ages ≥60 years) as well as the genetics, immunology and diagnostic challenges. Several studies report an incidence peak of T1DM in older adults of a similar size to or exceeding that in children, and population prevalence generally increases with increasing age. Glutamic acid decarboxylase antibody positivity is frequently observed in adult-onset T1DM. Guidelines for differentiating T1DM from type 2 diabetes mellitus in older adults recommend measuring levels of C-peptide and autoantibodies, including glutamic acid decarboxylase antibodies. However, there is no gold standard for differentiating T1DM from type 2 diabetes mellitus in people aged 60 years and over. As such, the global variation observed in T1DM epidemiology might be in part explained by misclassification, which increases with increasing age of diabetes mellitus onset. With a growing global population of older adults with T1DM, improved genetic and immunological evidence is needed to differentiate diabetes mellitus type at older ages so that a clear epidemiological picture can emerge.
Collapse
Affiliation(s)
- Dunya Tomic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Jessica L Harding
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alicia J Jenkins
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan E Shaw
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Dianna J Magliano
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
McGrail C, Chiou J, Elgamal R, Luckett AM, Oram RA, Benaglio P, Gaulton KJ. Genetic Discovery and Risk Prediction for Type 1 Diabetes in Individuals Without High-Risk HLA-DR3/DR4 Haplotypes. Diabetes Care 2025; 48:202-211. [PMID: 39626097 PMCID: PMC11770152 DOI: 10.2337/dc24-1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/27/2024] [Indexed: 12/11/2024]
Abstract
OBJECTIVE More than 10% of patients with type 1 diabetes (T1D) do not have high-risk HLA-DR3 or -DR4 haplotypes with distinct clinical features, such as later onset and reduced insulin dependence. We aimed to identify genetic drivers of T1D in the absence of DR3/DR4 and improve prediction of T1D risk in these individuals. RESEARCH DESIGN AND METHODS We performed T1D association and fine-mapping analyses in 12,316 non-DR3/DR4 samples. Next, we performed heterogeneity tests to examine differences in T1D risk variants in individuals without versus those with DR3/DR4 haplotypes. We further assessed genome-wide differences in gene regulatory element and biological pathway enrichments between the non-DR3/DR4 and DR3/DR4 cohorts. Finally, we developed a genetic risk score (GRS) to predict T1D in individuals without DR3/DR4 and compared with an existing T1D GRS. RESULTS A total of 18 T1D risk variants in non-DR3/DR4 samples were identified. Risk variants at the MHC and multiple other loci genome wide had heterogeneity in effects on T1D dependent on DR3/DR4 status, and non-DR3/DR4 T1D had evidence for a greater polygenic burden. T1D-associated variants in non-DR3/DR4 were more enriched for regulatory elements and pathways involved in antigen presentation, innate immunity, and β-cells and depleted in T cells compared with DR3/DR4. A non-DR3/DR4 GRS outperformed an existing risk score GRS2 in discriminating non-DR3/DR4 T1D from no diabetes (area under the curve 0.867; P = 7.48 × 10-32) and type 2 diabetes (0.907; P = 4.94 × 10-44). CONCLUSIONS In total, we identified heterogeneity in T1D genetic risk dependent on high-risk HLA-DR3/DR4 haplotype, which uncovers disease mechanisms and enables more accurate prediction of T1D across the HLA background.
Collapse
Affiliation(s)
- Carolyn McGrail
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Joshua Chiou
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Ruth Elgamal
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Amber M. Luckett
- University of Exeter College of Medicine and Health, Exeter, U.K
| | - Richard A. Oram
- University of Exeter College of Medicine and Health, Exeter, U.K
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, U.K
| | - Paola Benaglio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| |
Collapse
|
6
|
Liu SQ, Wang D, Tang CC. Association between age at diagnosis of diabetes and ocular disease: Insights from a recent article. World J Diabetes 2025; 16:94846. [PMID: 39817215 PMCID: PMC11718463 DOI: 10.4239/wjd.v16.i1.94846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/19/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
In this article, we discuss Ye et al's recent article on the association between age at diabetes diagnosis and subsequent risk of age-related ocular diseases. The study, which utilized United Kingdom Biobank data, highlighted a strong link between early diabetes onset and major eye conditions, such as cataracts, glaucoma, age-related macular degeneration, and vision loss, independent of glycemic control and disease duration. This finding challenges the previous belief that diabetic eye disease primarily correlates with hyperglycemia. As lifestyles evolve and the age of diabetes diagnosis decreases, understanding this relationship may reveal the complex pathogenesis underlying diabetes-related complications. This editorial summarizes potential mechanisms connecting the age of diabetes onset with four types of ocular diseases, emphasizing the significance of early diagnosis.
Collapse
Affiliation(s)
- Shi-Qi Liu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Cheng-Chun Tang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
7
|
Alexander M, Cho E, Gliozheni E, Salem Y, Cheung J, Ichii H. Pathology of Diabetes-Induced Immune Dysfunction. Int J Mol Sci 2024; 25:7105. [PMID: 39000211 PMCID: PMC11241249 DOI: 10.3390/ijms25137105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Diabetes is associated with numerous comorbidities, one of which is increased vulnerability to infections. This review will focus on how diabetes mellitus (DM) affects the immune system and its various components, leading to the impaired proliferation of immune cells and the induction of senescence. We will explore how the pathology of diabetes-induced immune dysfunction may have similarities to the pathways of "inflammaging", a persistent low-grade inflammation common in the elderly. Inflammaging may increase the likelihood of conditions such as rheumatoid arthritis (RA) and periodontitis at a younger age. Diabetes affects bone marrow composition and cellular senescence, and in combination with advanced age also affects lymphopoiesis by increasing myeloid differentiation and reducing lymphoid differentiation. Consequently, this leads to a reduced immune system response in both the innate and adaptive phases, resulting in higher infection rates, reduced vaccine response, and increased immune cells' senescence in diabetics. We will also explore how some diabetes drugs induce immune senescence despite their benefits on glycemic control.
Collapse
Affiliation(s)
- Michael Alexander
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Eric Cho
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Eiger Gliozheni
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Yusuf Salem
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Joshua Cheung
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Hirohito Ichii
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| |
Collapse
|
8
|
Boullerne AI, Goudey B, Paganini J, Erlichster M, Gaitonde S, Feinstein DL. Validation of tag SNPs for multiple sclerosis HLA risk alleles across the 1000 genomes panel. Hum Immunol 2024; 85:110790. [PMID: 38575482 DOI: 10.1016/j.humimm.2024.110790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/10/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Currently, the genetic variants strongly associated with risk for Multiple Sclerosis (MS) are located in the Major Histocompatibility Complex. This includes DRB1*15:01 and DRB1*15:03 alleles at the HLA-DRB1 locus, the latter restricted to African populations; the DQB1*06:02 allele at the HLA-DQB1 locus which is in high linkage disequilibrium (LD) with DRB1*15:01; and protective allele A*02:01 at the HLA-A locus. HLA allele identification is facilitated by co-inherited ('tag') single nucleotide polymorphisms (SNPs); however, SNP validation is not typically done outside of the discovery population. We examined 19 SNPs reported to be in high LD with these alleles in 2,502 healthy subjects included in the 1000 Genomes panel having typed HLA data. Examination of 3 indices (LD R2 values, sensitivity and specificity, minor allele frequency) revealed few SNPs with high tagging performance. All SNPs examined that tag DRB1*15:01 were in perfect LD in the British population; three showed high tagging performance in 4 of the 5 European, and 2 of the 4 American populations. For DQB1*06:02, with no previously validated tag SNPs, we show that rs3135388 has high tagging performance in one South Asian, one American, and one European population. We identify for the first time that rs2844821 has high tagging performance for A*02:01 in 5 of 7 African populations including African Americans, and 4 of the 5 European populations. These results provide a basis for selecting SNPs with high tagging performance to assess HLA alleles across diverse populations, for MS risk as well as for other diseases and conditions.
Collapse
Affiliation(s)
- Anne I Boullerne
- Department of Anesthesiology, University Illinois, Chicago, IL, USA.
| | - Benjamin Goudey
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Michael Erlichster
- MX3 Diagnostics, Melbourne, Victoria, Australia; Centre for Neural Engineering, University of Melbourne, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Sujata Gaitonde
- Department of Pathology, University Illinois, Chicago, IL, USA
| | - Douglas L Feinstein
- Department of Anesthesiology, University Illinois, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
9
|
Honardoost MA, Adinatha A, Schmidt F, Ranjan B, Ghaeidamini M, Arul Rayan N, Gek Liang Lim M, Joanito I, Xiao Xuan Lin Q, Rajagopalan D, Qi Mok S, Hwang YY, Larbi A, Khor CC, Foo R, Boehm BO, Prabhakar S. Systematic immune cell dysregulation and molecular subtypes revealed by single-cell RNA-seq of subjects with type 1 diabetes. Genome Med 2024; 16:45. [PMID: 38539228 PMCID: PMC10976681 DOI: 10.1186/s13073-024-01300-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/30/2024] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is a prototypic endocrine autoimmune disease resulting from an immune-mediated destruction of pancreatic insulin-secreting β cells. A comprehensive immune cell phenotype evaluation in T1DM has not been performed thus far at the single-cell level. METHODS In this cross-sectional analysis, we generated a single-cell transcriptomic dataset of peripheral blood mononuclear cells (PBMCs) from 46 manifest T1DM (stage 3) cases and 31 matched controls. RESULTS We surprisingly detected profound alterations in circulatory immune cells (1784 dysregulated genes in 13 immune cell types), far exceeding the count in the comparator systemic autoimmune disease SLE. Genes upregulated in T1DM were involved in WNT signaling, interferon signaling and migration of T/NK cells, antigen presentation by B cells, and monocyte activation. A significant fraction of these differentially expressed genes were also altered in T1DM pancreatic islets. We used the single-cell data to construct a T1DM metagene z-score (TMZ score) that distinguished cases and controls and classified patients into molecular subtypes. This score correlated with known prognostic immune markers of T1DM, as well as with drug response in clinical trials. CONCLUSIONS Our study reveals a surprisingly strong systemic dimension at the level of immune cell network in T1DM, defines disease-relevant molecular subtypes, and has the potential to guide non-invasive test development and patient stratification.
Collapse
Affiliation(s)
- Mohammad Amin Honardoost
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
- Cardiovascular Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Andreas Adinatha
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Florian Schmidt
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Bobby Ranjan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Maryam Ghaeidamini
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Nirmala Arul Rayan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Michelle Gek Liang Lim
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Ignasius Joanito
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Quy Xiao Xuan Lin
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Deepa Rajagopalan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Shi Qi Mok
- Integrated genomics platform, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, 138648, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, 138648, Singapore
| | - Chiea Chuen Khor
- Integrated genomics platform, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore
| | - Roger Foo
- Cardiovascular Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Bernhard Otto Boehm
- Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK.
| | - Shyam Prabhakar
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore (GIS), A*STAR (Agency for Science, Technology and Research), Singapore, 138672, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
10
|
Caramalho I, Matoso P, Ligeiro D, Paixão T, Sobral D, Fitas AL, Limbert C, Demengeot J, Penha-Gonçalves C. The rare DRB1*04:08-DQ8 haplotype is the main HLA class II genetic driver and discriminative factor of Early-onset Type 1 diabetes in the Portuguese population. Front Immunol 2024; 14:1299609. [PMID: 38318503 PMCID: PMC10839680 DOI: 10.3389/fimmu.2023.1299609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Early-onset Type 1 diabetes (EOT1D) is considered a disease subtype with distinctive immunological and clinical features. While both Human Leukocyte Antigen (HLA) and non-HLA variants contribute to age at T1D diagnosis, detailed analyses of EOT1D-specific genetic determinants are still lacking. This study scrutinized the involvement of the HLA class II locus in EOT1D genetic control. Methods We conducted genetic association and regularized logistic regression analyses to evaluate genotypic, haplotypic and allelic variants in DRB1, DQA1 and DQB1 genes in children with EOT1D (diagnosed at ≤5 years of age; n=97), individuals with later-onset disease (LaOT1D; diagnosed 8-30 years of age; n=96) and nondiabetic control subjects (n=169), in the Portuguese population. Results Allelic association analysis of EOT1D and LaOT1D unrelated patients in comparison with controls, revealed that the rare DRB1*04:08 allele is a distinctive EOT1D susceptibility factor (corrected p-value=7.0x10-7). Conversely, the classical T1D risk allele DRB1*04:05 was absent in EOT1D children while was associated with LaOT1D (corrected p-value=1.4x10-2). In corroboration, HLA class II haplotype analysis showed that the rare DRB1*04:08-DQ8 haplotype is specifically associated with EOT1D (corrected p-value=1.4x10-5) and represents the major HLA class II genetic driver and discriminative factor in the development of early onset disease. Discussion This study uncovered that EOT1D holds a distinctive spectrum of HLA class II susceptibility loci, which includes risk factors overlapping with LaOT1D and discriminative genetic configurations. These findings warrant replication studies in larger multicentric settings encompassing other ethnicities and may impact target screening strategies and follow-up of young children with high T1D genetic risk as well as personalized therapeutic approaches.
Collapse
Affiliation(s)
- Iris Caramalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Paula Matoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Dário Ligeiro
- Centro de Sangue e Transplantação de Lisboa, Instituto Português do Sangue e Transplantação, Unidade de Imunocirurgia e Imunoterapia, Fundação Champalimaud, Lisboa, Portugal
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Ana Laura Fitas
- Pediatric Endocrinology Unit, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central (CHULC)/Nova Medical School, Lisbon, Portugal
| | - Catarina Limbert
- Pediatric Endocrinology Unit, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central (CHULC)/Nova Medical School, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
11
|
Sharma N, Sistla R, Andugulapati SB. Yohimbine ameliorates liver inflammation and fibrosis by regulating oxidative stress and Wnt/β-catenin pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155182. [PMID: 37952411 DOI: 10.1016/j.phymed.2023.155182] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND AND PURPOSE Chronic liver injury, caused by various aetiologies, causes recurrent tissue damage, culminating in decreased liver regenerative ability and resulting in fibrosis followed by cirrhosis. In this study, the anti-fibrotic activity of Yohimbine hydrochloride (YHC) was investigated using various in vitro models and in vivo models. METHODS To assess the anti-inflammatory, antioxidant, and anti-fibrotic effects of YHC, lipopolysaccharide or TGF-β induced differentiation or lipid-induced oxidative-stress models were employed using HLECs, HSC-LX2, and HepG2 cells. Further, thioacetamide (TAA) induced hepatic inflammation/fibrosis models were utilized to validate the YHC's anti-fibrotic activity in rats. RESULTS Inflammation/differentiation experiments in HLECs and HSC-LX2 revealed that YHC treatment significantly (p < 0.001) mitigated the lipopolysaccharide or TGF-β induced upregulation of inflammatory and fibrotic markers expression respectively. In addition, YHC dose-dependently reduced the TGF-β induced migration and palmitic acid-induced oxidative stress in HepG2 cells. Further, TAA administration (5 weeks) in vivo rat model showed increased inflammatory marker levels/expression, oxidative stress, and pathological abnormalities. Additionally, TAA administration (9 weeks) elevated the fibrotic marker expression, collagen deposition in liver tissues, and shortened longevity in rats. Treatment with YHC dose-dependently mitigated the TAA-induced abnormalities in both inflammation and fibrosis models and improved the survival of the rats. Further mechanistic approaches revealed that TAA administration elevated the JNK, Wnt components and β-catenin expression in hepatic stellate cells and animal tissues. Further treatment with YHC significantly modulated the JNK/Wnt/β-catenin signaling. Moreover, the β-catenin nuclear translocation results showed that β-catenin levels were significantly elevated in the nuclear fraction of TAA control samples and reduced in YHC-treated samples. CONCLUSION Yohimbine treatment significantly improved inflammation and fibrosis by inhibiting differentiation, oxidative stress, and collagen deposition by partly modulating the JNK/Wnt/β-catenin pathway. These results might serve as a foundation for proposing yohimbine as a potential lead compound for liver fibrosis.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India.
| |
Collapse
|
12
|
McGrail C, Chiou J, Elgamal R, Luckett AM, Oram RA, Benaglio P, Gaulton KJ. Genetic discovery and risk prediction for type 1 diabetes in individuals without high-risk HLA-DR3/DR4 haplotypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.11.23298405. [PMID: 37986756 PMCID: PMC10659516 DOI: 10.1101/2023.11.11.23298405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Over 10% of type 1 diabetes (T1D) cases do not have high-risk HLA-DR3 or DR4 haplotypes with distinct clinical features such as later onset and reduced insulin dependence. To identify genetic drivers of T1D in the absence of DR3/DR4, we performed association and fine-mapping analyses in 12,316 non-DR3/DR4 samples. Risk variants at the MHC and other loci genome-wide had heterogeneity in effects on T1D dependent on DR3/DR4, and non-DR3/DR4 T1D had evidence for a greater polygenic burden. T1D-assocated variants in non-DR3/DR4 were more enriched for loci, regulatory elements, and pathways for antigen presentation, innate immunity, and beta cells, and depleted in T cells, compared to DR3/DR4. Non-DR3/DR4 T1D cases were poorly classified based on an existing genetic risk score GRS2, and we created a new GRS which highly discriminated non-DR3/DR4 T1D from both non-diabetes and T2D. In total we identified heterogeneity in T1D genetic risk and disease mechanisms dependent on high-risk HLA haplotype and which enabled accurate classification of T1D across HLA background.
Collapse
Affiliation(s)
- Carolyn McGrail
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA
| | - Joshua Chiou
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA
| | - Ruth Elgamal
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA
| | - Amber M Luckett
- University of Exeter College of Medicine and Health, Exeter, UK
| | - Richard A Oram
- University of Exeter College of Medicine and Health, Exeter, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | | | | |
Collapse
|
13
|
Thomas NJ, Jones AG. The challenges of identifying and studying type 1 diabetes in adults. Diabetologia 2023; 66:2200-2212. [PMID: 37728732 PMCID: PMC10628058 DOI: 10.1007/s00125-023-06004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/14/2023] [Indexed: 09/21/2023]
Abstract
Diagnosing type 1 diabetes in adults is difficult since type 2 diabetes is the predominant diabetes type, particularly with an older age of onset (approximately >30 years). Misclassification of type 1 diabetes in adults is therefore common and will impact both individual patient management and the reported features of clinically classified cohorts. In this article, we discuss the challenges associated with correctly identifying adult-onset type 1 diabetes and the implications of these challenges for clinical practice and research. We discuss how many of the reported differences in the characteristics of autoimmune/type 1 diabetes with increasing age of diagnosis are likely explained by the inadvertent study of mixed populations with and without autoimmune aetiology diabetes. We show that when type 1 diabetes is defined by high-specificity methods, clinical presentation, islet-autoantibody positivity, genetic predisposition and progression of C-peptide loss remain broadly similar and severe at all ages and are unaffected by onset age within adults. Recent clinical guidance recommends routine islet-autoantibody testing when type 1 diabetes is clinically suspected or in the context of rapid progression to insulin therapy after a diagnosis of type 2 diabetes. In this moderate or high prior-probability setting, a positive islet-autoantibody test will usually confirm autoimmune aetiology (type 1 diabetes). We argue that islet-autoantibody testing of those with apparent type 2 diabetes should not be routinely undertaken as, in this low prior-prevalence setting, the positive predictive value of a single-positive islet antibody for autoimmune aetiology diabetes will be modest. When studying diabetes, extremely high-specificity approaches are needed to identify autoimmune diabetes in adults, with the optimal approach depending on the research question. We believe that until these recommendations are widely adopted by researchers, the true phenotype of late-onset type 1 diabetes will remain largely misunderstood.
Collapse
Affiliation(s)
- Nicholas J Thomas
- Department of Clinical and Biological Sciences, University of Exeter, Exeter, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Angus G Jones
- Department of Clinical and Biological Sciences, University of Exeter, Exeter, UK.
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK.
| |
Collapse
|
14
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
15
|
Urrutia I, Martínez R, Calvo B, Saso-Jiménez L, González P, Fernández-Rubio E, Martín-Nieto A, Aguayo A, Rica I, Gaztambide S, Castano L. Autoimmune Diabetes From Childhood to Adulthood: The Role of Pancreatic Autoantibodies and HLA-DRB1 Genotype. J Clin Endocrinol Metab 2023; 108:e1341-e1346. [PMID: 37207452 DOI: 10.1210/clinem/dgad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
CONTEXT Autoimmune diabetes can develop at any age, but unlike early-onset diabetes, adult onset is less well documented. We aimed to compare, over a wide age range, the most reliable predictive biomarkers for this pathology: pancreatic-autoantibodies and HLA-DRB1 genotype. METHODS A retrospective study of 802 patients with diabetes (aged 11 months to 66 years) was conducted. Pancreatic autoantibodies at diagnosis: insulin autoantibodies (IAA), glutamate decarboxylase autoantibodies (GADA), islet tyrosine phosphatase 2 autoantibodies (IA2A), and zinc transporter-8 autoantibodies (ZnT8A) and HLA-DRB1 genotype were analyzed. RESULTS Compared with early-onset patients, adults had a lower frequency of multiple autoantibodies, with GADA being the most common. At early onset, IAA was the most frequent in those younger than 6 years and correlated inversely with age; GADA and ZnT8A correlated directly and IA2A remained stable.The absence of HLA-DRB1 risk genotype was associated with higher age at diabetes onset (27.5 years; interquartile range [IQR], 14.3-35.7), whereas the high-risk HLA-DR3/DR4 was significantly more common at lower age (11.9 years; IQR, 7.1-21.6). ZnT8A was associated with DR4/non-DR3 (odds ratio [OR], 1.91; 95% CI, 1.15-3.17), GADA with DR3/non-DR4 (OR, 2.97; 95% CI, 1.55-5.71), and IA2A with DR4/non-DR3 and DR3/DR4 (OR, 3.89; 95% CI, 2.28-6.64, and OR, 3.08; 95% CI, 1.83-5.18, respectively). No association of IAA with HLA-DRB1 was found. CONCLUSION Autoimmunity and HLA-DRB1 genotype are age-dependent biomarkers. Adult-onset autoimmune diabetes is associated with lower genetic risk and lower immune response to pancreatic islet cells compared with early-onset diabetes.
Collapse
Affiliation(s)
- Inés Urrutia
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| | - Rosa Martínez
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| | - Begona Calvo
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Medical Oncology, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Laura Saso-Jiménez
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| | - Pedro González
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Elsa Fernández-Rubio
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Alicia Martín-Nieto
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Anibal Aguayo
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| | - Itxaso Rica
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
- Department of Pediatric Endocrinology, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Sonia Gaztambide
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Luis Castano
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| |
Collapse
|
16
|
Abstract
Despite major advances over the past decade, prevention and treatment of type 1 diabetes mellitus (T1DM) remain suboptimal, with large and unexplained variations in individual responses to interventions. The current classification schema for diabetes mellitus does not capture the complexity of this disease or guide clinical management effectively. One of the approaches to achieve the goal of applying precision medicine in diabetes mellitus is to identify endotypes (that is, well-defined subtypes) of the disease each of which has a distinct aetiopathogenesis that might be amenable to specific interventions. Here, we describe epidemiological, clinical, genetic, immunological, histological and metabolic differences within T1DM that, together, suggest heterogeneity in its aetiology and pathogenesis. We then present the emerging endotypes and their impact on T1DM prediction, prevention and treatment.
Collapse
Affiliation(s)
- Maria J Redondo
- Paediatric Diabetes & Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Noel G Morgan
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical and Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
17
|
Oh SJ, Park K, Sonn SK, Oh GT, Lee MS. Pancreatic β-cell mitophagy as an adaptive response to metabolic stress and the underlying mechanism that involves lysosomal Ca 2+ release. Exp Mol Med 2023; 55:1922-1932. [PMID: 37653033 PMCID: PMC10545665 DOI: 10.1038/s12276-023-01055-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023] Open
Abstract
Mitophagy is an excellent example of selective autophagy that eliminates damaged or dysfunctional mitochondria, and it is crucial for the maintenance of mitochondrial integrity and function. The critical roles of autophagy in pancreatic β-cell structure and function have been clearly shown. Furthermore, morphological abnormalities and decreased function of mitochondria have been observed in autophagy-deficient β-cells, suggesting the importance of β-cell mitophagy. However, the role of authentic mitophagy in β-cell function has not been clearly demonstrated, as mice with pancreatic β-cell-specific disruption of Parkin, one of the most important players in mitophagy, did not exhibit apparent abnormalities in β-cell function or glucose homeostasis. Instead, the role of mitophagy in pancreatic β-cells has been investigated using β-cell-specific Tfeb-knockout mice (TfebΔβ-cell mice); Tfeb is a master regulator of lysosomal biogenesis or autophagy gene expression and participates in mitophagy. TfebΔβ-cell mice were unable to adaptively increase mitophagy or mitochondrial complex activity in response to high-fat diet (HFD)-induced metabolic stress. Consequently, TfebΔβ-cell mice exhibited impaired β-cell responses and further exacerbated metabolic deterioration after HFD feeding. TFEB was activated by mitochondrial or metabolic stress-induced lysosomal Ca2+ release, which led to calcineurin activation and mitophagy. After lysosomal Ca2+ release, depleted lysosomal Ca2+ stores were replenished by ER Ca2+ through ER→lysosomal Ca2+ refilling, which supplemented the low lysosomal Ca2+ capacity. The importance of mitophagy in β-cell function was also demonstrated in mice that developed β-cell dysfunction and glucose intolerance after treatment with a calcineurin inhibitor that hampered TFEB activation and mitophagy.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea
| | - Kihyoun Park
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea
| | - Seong Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03767, Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03767, Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea.
| |
Collapse
|
18
|
Pandey R, Bakay M, Hakonarson H. CLEC16A-An Emerging Master Regulator of Autoimmunity and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24098224. [PMID: 37175930 PMCID: PMC10179542 DOI: 10.3390/ijms24098224] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
CLEC16A is emerging as an important genetic risk factor for several autoimmune disorders and for Parkinson disease (PD), opening new avenues for translational research and therapeutic development. While the exact role of CLEC16A in health and disease is still being elucidated, the gene plays a critical role in the regulation of autophagy, mitophagy, endocytosis, intracellular trafficking, immune function, and in biological processes such as insulin secretion and others that are important to cellular homeostasis. As shown in both human and animal modeling studies, CLEC16A hypofunction predisposes to both autoinflammatory phenotype and neurodegeneration. While the two are clearly related, further functional studies are needed to fully understand the mechanisms involved for optimized therapeutic interventions. Based on recent data, mitophagy-inducing drugs may be warranted, and such therapy should be tested in clinical trials as these drugs would tackle the underlying pathogenic mechanism (s) and could treat or prevent symptoms of autoimmunity and neurodegeneration in individuals with CLEC16A risk variants. Accordingly, interventions directed at reversing the dysregulated mitophagy and the consequences of loss of function of CLEC16A without activating other detrimental cellular pathways could present an effective therapy. This review presents the emerging role of CLEC16A in health and disease and provides an update on the disease processes that are attributed to variants located in the CLEC16A gene, which are responsible for autoimmune disorders and neurodegeneration with emphasis on how this information is being translated into practical and effective applications in the clinic.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104-4318, USA
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104-4318, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104-4318, USA
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA
| |
Collapse
|
19
|
Thomas NJ, Walkey HC, Kaur A, Misra S, Oliver NS, Colclough K, Weedon MN, Johnston DG, Hattersley AT, Patel KA. The relationship between islet autoantibody status and the genetic risk of type 1 diabetes in adult-onset type 1 diabetes. Diabetologia 2023; 66:310-320. [PMID: 36355183 PMCID: PMC9807542 DOI: 10.1007/s00125-022-05823-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
AIMS/HYPOTHESIS The reason for the observed lower rate of islet autoantibody positivity in clinician-diagnosed adult-onset vs childhood-onset type 1 diabetes is not known. We aimed to explore this by assessing the genetic risk of type 1 diabetes in autoantibody-negative and -positive children and adults. METHODS We analysed GAD autoantibodies, insulinoma-2 antigen autoantibodies and zinc transporter-8 autoantibodies (ZnT8A) and measured type 1 diabetes genetic risk by genotyping 30 type 1 diabetes-associated variants at diagnosis in 1814 individuals with clinician-diagnosed type 1 diabetes (1112 adult-onset, 702 childhood-onset). We compared the overall type 1 diabetes genetic risk score (T1DGRS) and non-HLA and HLA (DR3-DQ2, DR4-DQ8 and DR15-DQ6) components with autoantibody status in those with adult-onset and childhood-onset diabetes. We also measured the T1DGRS in 1924 individuals with type 2 diabetes from the Wellcome Trust Case Control Consortium to represent non-autoimmune diabetes control participants. RESULTS The T1DGRS was similar in autoantibody-negative and autoantibody-positive clinician-diagnosed childhood-onset type 1 diabetes (mean [SD] 0.274 [0.034] vs 0.277 [0.026], p=0.4). In contrast, the T1DGRS in autoantibody-negative adult-onset type 1 diabetes was lower than that in autoantibody-positive adult-onset type 1 diabetes (mean [SD] 0.243 [0.036] vs 0.271 [0.026], p<0.0001) but higher than that in type 2 diabetes (mean [SD] 0.229 [0.034], p<0.0001). Autoantibody-negative adults were more likely to have the more protective HLA DR15-DQ6 genotype (15% vs 3%, p<0.0001), were less likely to have the high-risk HLA DR3-DQ2/DR4-DQ8 genotype (6% vs 19%, p<0.0001) and had a lower non-HLA T1DGRS (p<0.0001) than autoantibody-positive adults. In contrast to children, autoantibody-negative adults were more likely to be male (75% vs 59%), had a higher BMI (27 vs 24 kg/m2) and were less likely to have other autoimmune conditions (2% vs 10%) than autoantibody-positive adults (all p<0.0001). In both adults and children, type 1 diabetes genetic risk was unaffected by the number of autoantibodies (p>0.3). These findings, along with the identification of seven misclassified adults with monogenic diabetes among autoantibody-negative adults and the results of a sensitivity analysis with and without measurement of ZnT8A, suggest that the intermediate type 1 diabetes genetic risk in autoantibody-negative adults is more likely to be explained by the inclusion of misclassified non-autoimmune diabetes (estimated to represent 67% of all antibody-negative adults, 95% CI 61%, 73%) than by the presence of unmeasured autoantibodies or by a discrete form of diabetes. When these estimated individuals with non-autoimmune diabetes were adjusted for, the prevalence of autoantibody positivity in adult-onset type 1 diabetes was similar to that in children (93% vs 91%, p=0.4). CONCLUSIONS/INTERPRETATION The inclusion of non-autoimmune diabetes is the most likely explanation for the observed lower rate of autoantibody positivity in clinician-diagnosed adult-onset type 1 diabetes. Our data support the utility of islet autoantibody measurement in clinician-suspected adult-onset type 1 diabetes in routine clinical practice.
Collapse
Affiliation(s)
- Nicholas J Thomas
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Helen C Walkey
- Faculty of Medicine, Imperial College London, London, UK
| | - Akaal Kaur
- Faculty of Medicine, Imperial College London, London, UK
| | - Shivani Misra
- Faculty of Medicine, Imperial College London, London, UK
| | - Nick S Oliver
- Faculty of Medicine, Imperial College London, London, UK
| | - Kevin Colclough
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.
| |
Collapse
|
20
|
Thomas NJ, McGovern A, Young KG, Sharp SA, Weedon MN, Hattersley AT, Dennis J, Jones AG. Identifying type 1 and 2 diabetes in research datasets where classification biomarkers are unavailable: assessing the accuracy of published approaches. J Clin Epidemiol 2023; 153:34-44. [PMID: 36368478 DOI: 10.1016/j.jclinepi.2022.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES We aimed to compare the performance of approaches for classifying insulin-treated diabetes within research datasets without measured classification biomarkers, evaluated against two independent biological definitions of diabetes type. STUDY DESIGN AND SETTING We compared accuracy of ten reported approaches for classifying insulin-treated diabetes into type 1 (T1D) and type 2 (T2D) diabetes in two cohorts: UK Biobank (UKBB) n = 26,399 and Diabetes Alliance for Research in England (DARE) n = 1,296. The overall performance for classifying T1D and T2D was assessed using: a T1D genetic risk score and genetic stratification method (UKBB); C-peptide measured at >3 years diabetes duration (DARE). RESULTS Approaches' accuracy ranged from 71% to 88% (UKBB) and 68% to 88% (DARE). When classifying all participants, combining early insulin requirement with a T1D probability model (incorporating diagnosis age and body image issue [BMI]), and interview-reported diabetes type (UKBB available in only 15%) consistently achieved high accuracy (UKBB 87% and 87% and DARE 85% and 88%, respectively). For identifying T1D with minimal misclassification, models with high thresholds or young diagnosis age (<20 years) had highest performance. Findings were incorporated into an online tool identifying optimum approaches based on variable availability. CONCLUSION Models combining continuous features with early insulin requirement are the most accurate methods for classifying insulin-treated diabetes in research datasets without measured classification biomarkers.
Collapse
Affiliation(s)
- Nicholas J Thomas
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK; Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Andrew McGovern
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK; Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Katherine G Young
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Seth A Sharp
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK; Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - John Dennis
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Angus G Jones
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK; Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.
| |
Collapse
|
21
|
Ergür E, Ergür E, Alnek K, Metsküla K, Peet A, Lubi M, Heilman K, Uibo R. Clinical signs of type 1 diabetes are associated with type 2 diabetes marker transcription factor 7-like 2 polymorphism. J Diabetes Investig 2022; 14:221-229. [PMID: 36300877 PMCID: PMC9889689 DOI: 10.1111/jdi.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023] Open
Abstract
AIMS/INTRODUCTION We aimed to assess the distribution of transcription factor 7-like 2 gene TCF7L2 (rs7903146) polymorphism and to find possible associations between TCF7L2 and the characteristics of type 1 diabetes. MATERIALS AND METHODS We studied 190 newly diagnosed type 1 diabetes patients (median age 12.7 years, range 2.0-72.5) and 246 controls (median age 23.8 years, range 1.4-81.5) for TCF7L2 single nucleotide polymorphism. We determined anti-islet autoantibodies, random C-peptide levels, diabetes associated HLA DR/DQ haplotypes and genotypes in all patients. RESULTS There were no differences in the distribution of TCF7L2 single nucleotide polymorphism between patients and controls. However, patients with in type 1 diabetes, after adjusting for age and sex, subjects carrying C allele were at risk for a C-peptide level lower than 0.5 nmol/L (OR 5.65 [95% CI: 1.14-27.92]) and for zinc transporter 8 autoantibody positivity (5.22 [1.34-20.24]). Participants without T allele were associated with a higher level of islet antigen-2 autoantibodies (3.51 [1.49-8.27]) and zinc transporter 8 autoantibodies (2.39 [1.14-4.99]). CONCLUSIONS The connection of TCF7L2 polymorphism with zinc transporter 8 and islet antigen-2 autoantibodies and C-peptide levels in patients supports the viewpoint that TCF7L2 is associated with the clinical signs and autoimmune characteristics of type 1 diabetes. The mechanisms of the interaction between the TCF7L2 risk genotype and anti-islet autoantibodies need to be studied further.
Collapse
Affiliation(s)
- Efe Ergür
- Department of Immunology, Institute of Bio‐ and Translational MedicineUniversity of TartuTartuEstonia
| | - Ege Ergür
- Department of Immunology, Institute of Bio‐ and Translational MedicineUniversity of TartuTartuEstonia
| | - Kristi Alnek
- Department of Immunology, Institute of Bio‐ and Translational MedicineUniversity of TartuTartuEstonia
| | - Kaja Metsküla
- Department of Immunology, Institute of Bio‐ and Translational MedicineUniversity of TartuTartuEstonia
| | - Aleksandr Peet
- Department of Pediatrics, Institute of Clinical MedicineUniversity of TartuTartuEstonia,Children's Clinic of Tartu University HospitalTartuEstonia
| | - Maire Lubi
- Department of Internal Medicine, Institute of Clinical MedicineUniversity of TartuTartuEstonia,Internal Medicine Clinic of Tartu University HospitalTartuEstonia
| | | | - Raivo Uibo
- Department of Immunology, Institute of Bio‐ and Translational MedicineUniversity of TartuTartuEstonia
| |
Collapse
|
22
|
Abstract
Adult-onset autoimmune (AOA) diabetes pathophysiology starts with immune changes, followed by dysglycaemia and overt disease. AOA diabetes can occur as classic type 1 diabetes when associated with severe loss of insulin secretion. More frequently, it is diagnosed as latent autoimmune diabetes in adults, a slowly progressing form with late onset, a long period not requiring insulin, and it is often misdiagnosed as type 2 diabetes. As its clinical presentation varies remarkably and immune markers often lack specificity, it is challenging to classify each case ad hoc, especially when insulin treatment is not required at diagnosis. Proper care of AOA diabetes aims to prevent complications and to improve quality of life and life expectancy. To achieve these goals, attention should be paid to lifestyle factors, with the aid of pharmacological therapies properly tailored to each individual clinical setting. Given the heterogeneity of the disease, choosing the right therapy for AOA diabetes is challenging. Most of the trials testing disease-modifying therapies for autoimmune diabetes are conducted in people with childhood onset, whereas non-insulin diabetes therapies have mostly been studied in the larger population with type 2 diabetes. More randomized controlled trials of therapeutic agents in AOA diabetes are needed.
Collapse
|
23
|
Çiçekli İ, Durusoy R. Breastfeeding, nutrition and type 1 diabetes: a case-control study in Izmir, Turkey. Int Breastfeed J 2022; 17:42. [PMID: 35624486 PMCID: PMC9145075 DOI: 10.1186/s13006-022-00470-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/27/2022] [Indexed: 01/11/2023] Open
Abstract
Background The relationship between infant breastfeeding and type 1 diabetes mellitus (DM) is unclear but it has been suggested that there may be a link between many environmental factors, including dietary antigens affecting diabetes epidemiology. The main objective of this study is to investigate nutritional risk factors, especially breastfeeding early in life that may be associated with the development of type 1 DM and to determine the relationship these factors have with the disease. Methods This research is a case-control study and was carried out in Ege University Children’s Hospital in İzmir, Turkey between 13 January 2020 and 5 March 2020. A total of 246 children aged between 4 and 14 years were included in the study. The case group consisted of patients diagnosed with type 1 DM followed-up by Ege University Children’s Hospital’s Endocrinology Unit and the control group included non-diabetic children attending the same hospital’s General Pediatric Outpatient Clinic. A structured questionnaire was created by the researchers after reviewing the literature related to nutritional and other risk factors for type 1 DM. The questionnaire was administered by interviewing the parents and it was related to the child, mother and family of the child. In this study, breastfeeding duration was defined as the total duration of breastfeeding and exclusive breastfeeding meant that the child received only breast milk from the mother. Results The mean age at diagnosis was 6.30 ± 4.03 years for cases and 7.48 ± 2.56 years for controls. We found that each monthly increase in exclusive breastfeeding duration provided a 0.83-fold (95% CI 0.72, 0.96) decrease in the risk of type 1 DM. Introduction of cereals in the diet at the sixth month or earlier was associated with a 2.58-fold (95% CI 1.29, 5.16) increased risk. Conclusions Determining the contribution of exclusive breastfeeding to the disease is important in establishing preventive policies. A longer duration of exclusive breastfeeding may be an important role in preventing the disease. This free intervention that truly works will be cost-effective. Future studies are needed to clarify the role of both exclusive and non-exclusive breastfeeding on the development of type 1 DM. Supplementary Information The online version contains supplementary material available at 10.1186/s13006-022-00470-z.
Collapse
Affiliation(s)
- İpek Çiçekli
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem University, İstanbul, Turkey.
| | - Raika Durusoy
- Department of Public Health, Faculty of Medicine, Ege University, İzmir, Turkey
| |
Collapse
|
24
|
Li CW, Osman R, Menconi F, Faustino LC, Kim K, Clarke OB, Hou H, Tomer Y. Cepharanthine Blocks Presentation of Thyroid and Islet Peptides in a Novel Humanized Autoimmune Diabetes and Thyroiditis Mouse Model. Front Immunol 2021; 12:796552. [PMID: 34987519 PMCID: PMC8721038 DOI: 10.3389/fimmu.2021.796552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Autoimmune polyglandular syndrome type 3 variant (APS3v) refers to an autoimmune condition in which both type 1 diabetes (T1D) and autoimmune thyroiditis (AITD) develop in the same individual. HLA-DR3 confers the strongest susceptibility to APS3v. Previously we reported a unique amino acid signature pocket that predisposes to APS3v. We found that this pocket is flexible and can trigger APS3v by presenting both thyroid (Tg.1571, TPO.758) and islet (GAD.492) peptides to induce autoimmune response. We hypothesized that blocking the specific APS3v-HLA-DR3 pocket from presenting thyroid/islet antigens can block the autoimmune response in APS3v. To test this hypothesis we performed a virtual screen of small molecules blocking APS3v-HLA-DR3, and identified 11 small molecules hits that were predicted to block APS3v-HLA-DR3. Using the baculovirus-produced recombinant APS3v-HLA-DR3 protein we tested the 11 small molecules in an in vitro binding assay. We validated 4 small molecule hits, S9, S5, S53 and S15, that could block the APS3v-HLA-DR3 pocket in vitro. We then developed a novel humanized APS3v mouse model induced by co-immunizing a peptide mix of Tg.1571, TPO.758 and GAD.492. The immunized mice developed strong T-cell and antibody responses to the thyroid/islet peptides, as well as mouse thyroglobulin. In addition, the mice showed significantly lower free T4 levels compared to controls. Using the APS3v mouse model, we showed that one of the 4 small molecules, Cepharanthine (S53), blocked T-cell activation by thyroid/islet peptides ex vivo and in vivo. These findings suggested Cepharanthine may have a therapeutic potential in APS3v patients carrying the specific APS3v-HLA-DR3 pocket.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antigen Presentation
- Autoantigens/immunology
- Benzylisoquinolines/therapeutic use
- Binding Sites/genetics
- Cells, Cultured
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Disease Models, Animal
- Genetic Predisposition to Disease
- Glutamate Decarboxylase/immunology
- HLA-DR3 Antigen/genetics
- HLA-DR3 Antigen/metabolism
- Humans
- Immunity, Humoral
- Immunization
- Iodide Peroxidase/immunology
- Iron-Binding Proteins/immunology
- Islets of Langerhans/immunology
- Lymphocyte Activation
- Mice
- Mice, SCID
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Polyendocrinopathies, Autoimmune/drug therapy
- Polyendocrinopathies, Autoimmune/immunology
- T-Lymphocytes/immunology
- Thyroglobulin/genetics
- Thyroglobulin/immunology
- Thyroiditis, Autoimmune/drug therapy
- Thyroiditis, Autoimmune/immunology
Collapse
Affiliation(s)
- Cheuk Wun Li
- The Fleischer Institute for Diabetes and Metabolism, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | - Roman Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Larissa C. Faustino
- The Fleischer Institute for Diabetes and Metabolism, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | - Kookjoo Kim
- Department of Anesthesiology, Columbia University, New York, NY, United States
- Department of Physiology, Columbia University, New York, NY, United States
| | - Oliver B. Clarke
- Department of Anesthesiology, Columbia University, New York, NY, United States
- Department of Physiology, Columbia University, New York, NY, United States
| | - Hanxi Hou
- The Fleischer Institute for Diabetes and Metabolism, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | - Yaron Tomer
- The Fleischer Institute for Diabetes and Metabolism, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- *Correspondence: Yaron Tomer,
| |
Collapse
|
25
|
Winiarska-Mieczan A, Tomaszewska E, Jachimowicz K. Antioxidant, Anti-Inflammatory, and Immunomodulatory Properties of Tea-The Positive Impact of Tea Consumption on Patients with Autoimmune Diabetes. Nutrients 2021; 13:nu13113972. [PMID: 34836227 PMCID: PMC8625657 DOI: 10.3390/nu13113972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
The physiological markers of autoimmune diabetes include functional disorders of the antioxidative system as well as progressing inflammation and the presence of autoantibodies. Even though people with type 1 diabetes show genetic predispositions facilitating the onset of the disease, it is believed that dietary factors can stimulate the initiation and progression of the disease. This paper analyses the possibility of using tea as an element of diet therapy in the treatment of type 1 diabetes. Based on information available in literature covering the last 10 years, the impact of regular tea consumption or diet supplements containing tea polyphenols on the oxidative status as well as inflammatory and autoimmune response of the organism was analyzed. Studies conducted on laboratory animals, human patients, and in vitro revealed positive effects of the consumption of tea or polyphenols isolated therefrom on the diabetic body. Few reports available in the literature pertain to the impact of tea on organisms affected by type 1 diabetes as most (over 85%) have focused on cases of type 2 diabetes. It has been concluded that by introducing tea into the diet, it is possible to alleviate some of the consequences of oxidative stress and inflammation, thus limiting their destructive impact on the patients' organisms, consequently improving their quality of life, regardless of the type of diabetes. Furthermore, elimination of inflammation should reduce the incidence of immune response. One should consider more widespread promotion of tea consumption by individuals genetically predisposed to diabetes, especially considering the drink's low price, easy availability, overall benefits to human health, and above all, the fact that it can be safely used over extended periods of time, regardless of the patient's age.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
26
|
Liu C, Yuan YC, Guo MN, Xin Z, Chen GJ, Bentley AR, Hua L, Zheng JP, Ekoru K, Yang JK. Incidence of Type 1 Diabetes May Be Underestimated in the Chinese Population: Evidence From 21.7 Million People Between 2007 and 2017. Diabetes Care 2021; 44:2503-2509. [PMID: 34413068 PMCID: PMC8546282 DOI: 10.2337/dc21-0342] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/25/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Previous reports of the annual incidence of type 1 diabetes (T1D) in China were conducted using retrospective hospital cases, which may not reflect the reality. This longitudinal study estimated T1D incidence in a Chinese population of 21.7 million from 2007 to 2017. RESEARCH DESIGN AND METHODS A population-based registry of T1D was performed by the Beijing Municipal Health Commission Information Center. Annual incidence and 95% CIs were calculated by age group and sex. The association of sex with T1D incidence and predicted new cases of T1D were assessed using Poisson regression models. Annual percentage change and average annual percentage of change were assessed using Joinpoint regression. RESULTS Overall, there were 6,875 individuals who developed T1D from 2007 to 2017 in this population. T1D incidence (/100,000 persons) (95% CI) significantly increased from 2.72 (2.51, 2.93) in 2007 to 3.60 (3.38, 3.78) in 2017 (P < 0.001). The T1D onset peak was in the 10-14-year-old age group. While no significant trend was found in the 0-14- and 15-29-year-old age groups, T1D incidence markedly increased from 1.87 to 3.52 in the ≥30-year-old age group (P < 0.05). The prevalence of diabetic ketoacidosis at diagnosis was highest in the 0-4-year-old age group. We predicted new cases of T1D will increase 1.57-fold over the next decade. CONCLUSIONS T1D incidence in this large Chinese population is higher than has been reported previously. From 2007 to 2017, although the incidence peak was in the 10-14-year age group, the T1D incidence increased sharply in adults but not in youth.
Collapse
Affiliation(s)
- Chang Liu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Diabetes Institute, Beijing, China
| | - Ying-Chao Yuan
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Diabetes Institute, Beijing, China
| | - Mo-Ning Guo
- Beijing Municipal Health Commission Information Center, Beijing, China
| | - Zhong Xin
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Diabetes Institute, Beijing, China
| | - Guan-Jie Chen
- The Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Amy R Bentley
- The Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Lin Hua
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jian-Peng Zheng
- Beijing Municipal Health Commission Information Center, Beijing, China
| | - Kenneth Ekoru
- The Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China .,Beijing Diabetes Institute, Beijing, China
| |
Collapse
|
27
|
Leslie RD, Evans-Molina C, Freund-Brown J, Buzzetti R, Dabelea D, Gillespie KM, Goland R, Jones AG, Kacher M, Phillips LS, Rolandsson O, Wardian JL, Dunne JL. Adult-Onset Type 1 Diabetes: Current Understanding and Challenges. Diabetes Care 2021; 44:2449-2456. [PMID: 34670785 PMCID: PMC8546280 DOI: 10.2337/dc21-0770] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Recent epidemiological data have shown that more than half of all new cases of type 1 diabetes occur in adults. Key genetic, immune, and metabolic differences exist between adult- and childhood-onset type 1 diabetes, many of which are not well understood. A substantial risk of misclassification of diabetes type can result. Notably, some adults with type 1 diabetes may not require insulin at diagnosis, their clinical disease can masquerade as type 2 diabetes, and the consequent misclassification may result in inappropriate treatment. In response to this important issue, JDRF convened a workshop of international experts in November 2019. Here, we summarize the current understanding and unanswered questions in the field based on those discussions, highlighting epidemiology and immunogenetic and metabolic characteristics of adult-onset type 1 diabetes as well as disease-associated comorbidities and psychosocial challenges. In adult-onset, as compared with childhood-onset, type 1 diabetes, HLA-associated risk is lower, with more protective genotypes and lower genetic risk scores; multiple diabetes-associated autoantibodies are decreased, though GADA remains dominant. Before diagnosis, those with autoantibodies progress more slowly, and at diagnosis, serum C-peptide is higher in adults than children, with ketoacidosis being less frequent. Tools to distinguish types of diabetes are discussed, including body phenotype, clinical course, family history, autoantibodies, comorbidities, and C-peptide. By providing this perspective, we aim to improve the management of adults presenting with type 1 diabetes.
Collapse
Affiliation(s)
- R David Leslie
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, U.K.
| | - Carmella Evans-Molina
- Departments of Pediatrics and Medicine and Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | | | - Raffaella Buzzetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity & Diabetes Center, Colorado School of Public Health, and Departments of Epidemiology and Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kathleen M Gillespie
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Robin Goland
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
| | - Angus G Jones
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, U.K
| | | | - Lawrence S Phillips
- Atlanta VA Medical Center and Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jana L Wardian
- College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | | |
Collapse
|
28
|
Mutations and variants of ONECUT1 in diabetes. Nat Med 2021; 27:1928-1940. [PMID: 34663987 DOI: 10.1038/s41591-021-01502-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Genes involved in distinct diabetes types suggest shared disease mechanisms. Here we show that One Cut Homeobox 1 (ONECUT1) mutations cause monogenic recessive syndromic diabetes in two unrelated patients, characterized by intrauterine growth retardation, pancreas hypoplasia and gallbladder agenesis/hypoplasia, and early-onset diabetes in heterozygous relatives. Heterozygous carriers of rare coding variants of ONECUT1 define a distinctive subgroup of diabetic patients with early-onset, nonautoimmune diabetes, who respond well to diabetes treatment. In addition, common regulatory ONECUT1 variants are associated with multifactorial type 2 diabetes. Directed differentiation of human pluripotent stem cells revealed that loss of ONECUT1 impairs pancreatic progenitor formation and a subsequent endocrine program. Loss of ONECUT1 altered transcription factor binding and enhancer activity and NKX2.2/NKX6.1 expression in pancreatic progenitor cells. Collectively, we demonstrate that ONECUT1 controls a transcriptional and epigenetic machinery regulating endocrine development, involved in a spectrum of diabetes, encompassing monogenic (recessive and dominant) as well as multifactorial inheritance. Our findings highlight the broad contribution of ONECUT1 in diabetes pathogenesis, marking an important step toward precision diabetes medicine.
Collapse
|
29
|
Thomas NJ, Dennis JM, Sharp SA, Kaur A, Misra S, Walkey HC, Johnston DG, Oliver NS, Hagopian WA, Weedon MN, Patel KA, Oram RA. DR15-DQ6 remains dominantly protective against type 1 diabetes throughout the first five decades of life. Diabetologia 2021; 64:2258-2265. [PMID: 34272580 PMCID: PMC8423681 DOI: 10.1007/s00125-021-05513-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 12/05/2022]
Abstract
AIMS/HYPOTHESIS Among white European children developing type 1 diabetes, the otherwise common HLA haplotype DR15-DQ6 is rare, and highly protective. Adult-onset type 1 diabetes is now known to represent more overall cases than childhood onset, but it is not known whether DR15-DQ6 is protective in older-adult-onset type 1 diabetes. We sought to quantify DR15-DQ6 protection against type 1 diabetes as age of onset increased. METHODS In two independent cohorts we assessed the proportion of type 1 diabetes cases presenting through the first 50 years of life with DR15-DQ6, compared with population controls. In the After Diabetes Diagnosis Research Support System-2 (ADDRESS-2) cohort (n = 1458) clinician-diagnosed type 1 diabetes was confirmed by positivity for one or more islet-specific autoantibodies. In UK Biobank (n = 2502), we estimated type 1 diabetes incidence rates relative to baseline HLA risk for each HLA group using Poisson regression. Analyses were restricted to white Europeans and were performed in three groups according to age at type 1 diabetes onset: 0-18 years, 19-30 years and 31-50 years. RESULTS DR15-DQ6 was protective against type 1 diabetes through to age 50 years (OR < 1 for each age group, all p < 0.001). The following ORs for type 1 diabetes, relative to a neutral HLA genotype, were observed in ADDRESS-2: age 5-18 years OR 0.16 (95% CI 0.08, 0.31); age 19-30 years OR 0.10 (0.04, 0.23); and age 31-50 years OR 0.37 (0.21, 0.68). DR15-DQ6 also remained highly protective at all ages in UK Biobank. Without DR15-DQ6, the presence of major type 1 diabetes high-risk haplotype (either DR3-DQ2 or DR4-DQ8) was associated with increased risk of type 1 diabetes. CONCLUSIONS/INTERPRETATION HLA DR15-DQ6 confers dominant protection from type 1 diabetes across the first five decades of life.
Collapse
Affiliation(s)
- Nicholas J Thomas
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.
| | - John M Dennis
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Seth A Sharp
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Akaal Kaur
- Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
- Renal Department, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.
| |
Collapse
|
30
|
Ho D, Nyaga DM, Schierding W, Saffery R, Perry JK, Taylor JA, Vickers MH, Kempa-Liehr AW, O'Sullivan JM. Identifying the lungs as a susceptible site for allele-specific regulatory changes associated with type 1 diabetes risk. Commun Biol 2021; 4:1072. [PMID: 34521982 PMCID: PMC8440780 DOI: 10.1038/s42003-021-02594-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Type 1 diabetes (T1D) etiology is complex. We developed a machine learning approach that ranked the tissue-specific transcription regulatory effects for T1D SNPs and estimated their relative contributions to conversion to T1D by integrating case and control genotypes (Wellcome Trust Case Control Consortium and UK Biobank) with tissue-specific expression quantitative trait loci (eQTL) data. Here we show an eQTL (rs6679677) associated with changes to AP4B1-AS1 transcript levels in lung tissue makes the largest gene regulatory contribution to the risk of T1D development. Luciferase reporter assays confirmed allele-specific enhancer activity for the rs6679677 tagged locus in lung epithelial cells (i.e. A549 cells; C > A reduces expression, p = 0.005). Our results identify tissue-specific eQTLs for SNPs associated with T1D. The strongest tissue-specific eQTL effects were in the lung and may help explain associations between respiratory infections and risk of islet autoantibody seroconversion in young children.
Collapse
Affiliation(s)
- Daniel Ho
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Denis M Nyaga
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Richard Saffery
- Murdoch Children Research Institute, The University of Melbourne, Melbourne, Australia
| | - Jo K Perry
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - John A Taylor
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Andreas W Kempa-Liehr
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
| |
Collapse
|
31
|
Untangling the genetic link between type 1 and type 2 diabetes using functional genomics. Sci Rep 2021; 11:13871. [PMID: 34230558 PMCID: PMC8260770 DOI: 10.1038/s41598-021-93346-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
There is evidence pointing towards shared etiological features between type 1 diabetes (T1D) and type 2 diabetes (T2D) despite both phenotypes being considered genetically distinct. However, the existence of shared genetic features for T1D and T2D remains complex and poorly defined. To better understand the link between T1D and T2D, we employed an integrated functional genomics approach involving extensive chromatin interaction data (Hi-C) and expression quantitative trait loci (eQTL) data to characterize the tissue-specific impacts of single nucleotide polymorphisms associated with T1D and T2D. We identified 195 pleiotropic genes that are modulated by tissue-specific spatial eQTLs associated with both T1D and T2D. The pleiotropic genes are enriched in inflammatory and metabolic pathways that include mitogen-activated protein kinase activity, pertussis toxin signaling, and the Parkinson's disease pathway. We identified 8 regulatory elements within the TCF7L2 locus that modulate transcript levels of genes involved in immune regulation as well as genes important in the etiology of T2D. Despite the observed gene and pathway overlaps, there was no significant genetic correlation between variant effects on T1D and T2D risk using European ancestral summary data. Collectively, our findings support the hypothesis that T1D and T2D specific genetic variants act through genetic regulatory mechanisms to alter the regulation of common genes, and genes that co-locate in biological pathways, to mediate pleiotropic effects on disease development. Crucially, a high risk genetic profile for T1D alters biological pathways that increase the risk of developing both T1D and T2D. The same is not true for genetic profiles that increase the risk of developing T2D. The conversion of information on genetic susceptibility to the protein pathways that are altered provides an important resource for repurposing or designing novel therapies for the management of diabetes.
Collapse
|
32
|
Syreeni A, Sandholm N, Sidore C, Cucca F, Haukka J, Harjutsalo V, Groop PH. Genome-wide search for genes affecting the age at diagnosis of type 1 diabetes. J Intern Med 2021; 289:662-674. [PMID: 33179336 PMCID: PMC8247053 DOI: 10.1111/joim.13187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease affecting individuals in the early years of life. Although previous studies have identified genetic loci influencing T1D diagnosis age, these studies did not investigate the genome with high resolution. OBJECTIVE AND METHODS We performed a genome-wide meta-analysis for age at diagnosis with cohorts from Finland (Finnish Diabetic Nephropathy Study), the United Kingdom (UK Genetic Resource Investigating Diabetes) and Sardinia. Through SNP associations, transcriptome-wide association analysis linked T1D diagnosis age and gene expression. RESULTS We identified two chromosomal regions associated with T1D diagnosis age: multiple independent variants in the HLA region on chromosome 6 and a locus on chromosome 17q12. We performed gene-level association tests with transcriptome prediction models from two whole blood datasets, lymphocyte cell line, spleen, pancreas and small intestine tissues. Of the non-HLA genes, lower PNMT expression in whole blood, and higher IKZF3 and ZPBP2, and lower ORMDL3 and GSDMB transcription levels in multiple tissues were associated with lower T1D diagnosis age (FDR = 0.05). These genes lie on chr17q12 which is associated with T1D, other autoimmune diseases, and childhood asthma. Additionally, higher expression of PHF20L1, a gene not previously implicated in T1D, was associated with lower diagnosis age in lymphocytes, pancreas, and spleen. Altogether, the non-HLA associations were enriched in open chromatin in various blood cells, blood vessel tissues and foetal thymus tissue. CONCLUSION Multiple genes on chr17q12 and PHF20L1 on chr8 were associated with T1D diagnosis age and only further studies may elucidate the role of these genes for immunity and T1D onset.
Collapse
Affiliation(s)
- A Syreeni
- From the, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - N Sandholm
- From the, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - C Sidore
- Instituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Italy
| | - F Cucca
- Instituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - J Haukka
- From the, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - V Harjutsalo
- From the, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.,National Institute for Health and Welfare, Helsinki, Finland
| | - P-H Groop
- From the, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
33
|
Baek JH, Lee WJ, Lee BW, Kim SK, Kim G, Jin SM, Kim JH. Age at Diagnosis and the Risk of Diabetic Nephropathy in Young Patients with Type 1 Diabetes Mellitus. Diabetes Metab J 2021; 45:46-54. [PMID: 32662254 PMCID: PMC7850868 DOI: 10.4093/dmj.2019.0134] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate characteristics and risk of diabetic complications according to age at diagnosis among young adults with type 1 diabetes mellitus (T1DM). METHODS A total of 255 T1DM patients aged less than 40 years were included. Patients were categorized into three groups (<20, 20 to 29, and 30 to 40 years) according to age at diagnosis. Diabetic nephropathy (DN) was defined when spot urine-albumin creatinine ratio was 300 mg/g or more and/or estimated glomerular filtration ratio (eGFR) level was 60 mL/min/1.73 m2 or less. RESULTS Median age at diagnosis was 25 years and disease duration was 14 years. Individuals diagnosed with T1DM at childhood/adolescent (age <20 years) had lower stimulated C-peptide levels. They received more intensive insulin treatment with higher total daily insulin doses compared to older onset groups. The prevalence of DN was higher in the childhood/adolescent-onset group than in older onset groups (25.3% vs. 15.3% vs. 9.6%, P=0.022). The eGFR was inversely associated with disease duration whilst the degree of decrease was more prominent in the childhood/adolescent-onset group than in the later onset group (aged 30 to 40 years; P<0.001). Childhood/adolescent-onset group was independently associated with the risk of DN compared to the older onset group (aged 30 to 40 years; odds ratio, 3.47; 95% confidence interval, 1.45 to 8.33; P=0.005). CONCLUSION In individuals with childhood/adolescent-onset T1DM, the reduction in renal function is more prominent with disease duration. Early age-onset T1DM is an independent risk of DN.
Collapse
Affiliation(s)
- Jong Ha Baek
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
| | - Woo Je Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byung-Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Kyoung Kim
- Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Gyuri Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang-Man Jin
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hyeon Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Guimarães M, Pereira SS, Nora M, Monteiro MP. Bariatric Surgery Outcomes in Patients with Latent Autoimmune Diabetes of the Adult. Obes Facts 2021; 14:425-430. [PMID: 34320499 PMCID: PMC8406337 DOI: 10.1159/000517588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022] Open
Abstract
Bariatric surgery is a very effective treatment for obesity-associated type 2 diabetes. However, the benefits of bariatric surgery in patients with obesity and autoimmune diabetes, such as type 1 diabetes and latent autoimmune diabetes in adults (LADA), are controversial. We report 3 female patients with obesity and LADA who underwent laparoscopic Roux-en-Y gastric bypass >10 years ago. The patients were diagnosed with LADA both 1 and 9 years before (n = 2) or 11 years after the surgery (n = 1). Patients preoperative body mass index ranged from 36 to 47 kg/m2 and improved to 23-37 kg/m2 in the last follow-up visit, 10-15 years after surgery. Daily insulin dose also decreased from an average of 0.68 to 0.45 IU/kg in those patients treated with insulin before bariatric surgery. Only one patient developed diabetes-related target organ damage. This study shows that patients with LADA depict remarkable reduction of body weight and insulin requirements over long-term after bariatric surgery. So, LADA should not be considered a contraindication for bariatric surgery yet should only be recommended for patients with concomitant obesity with the primary aim of achieving sustained weight loss.
Collapse
Affiliation(s)
- Marta Guimarães
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Sofia S. Pereira
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Mário Nora
- Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Mariana P. Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- *Correspondence to: Mariana P. Monteiro,
| |
Collapse
|
35
|
Al-Zubairi T, AL-Habori M, Saif-Ali R. Latent Autoimmune Diabetes in Adults (LADA) and its Metabolic Characteristics among Yemeni Type 2 Diabetes Mellitus Patients. Diabetes Metab Syndr Obes 2021; 14:4223-4232. [PMID: 34675573 PMCID: PMC8520843 DOI: 10.2147/dmso.s332416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Although there is ample data about the prevalence of diabetes in the Middle East, little is known about the prevalence and features of autoimmune diabetes in this region. The aim of this study was to investigate the prevalence and metabolic characteristics of latent autoimmune diabetes in adults (LADA) amongst Yemeni Type 2 DM patients. PATIENTS AND METHODS In this cross-section study, 270 Type 2 DM patients aged 30-70 years were recruited from the National Diabetes Center, Al-Thowra Hospital, Sana'a city, during the period November 2015 to August 2016. All Type 2 DM patients were diagnosed within 5 years and who did not require insulin for a minimum of 6 months following diagnosis. Levels of glutamic acid decarboxylase autoantibodies (GADA) were measured in all patients, and LADA was diagnosed in patients testing positive for anti-GAD antibodies. Further, biochemical analysis was carried out including fasting blood glucose (FBG), glycated haemoglobin (HbA1c), insulin, and lipid profile. Insulin resistance (HOMA-IR) and β-cell function (HOMA-β) were calculated. RESULTS The prevalence of LADA, as defined by GADA-positive, amongst patient with Type 2 DM was 4.4%; with no significant difference in the prevalence between male (5.8%) and female (3.4%). LADA patients were younger than GADA-negative Type 2 DM. Body mass index, waist circumference, insulin and HOMA-β were significantly lower in LADA patients, whereas triglyceride, cholesterol, HDL-c and HOMA-IR were non-significantly lower with respect to Type 2 DM. In contrast, FBG and HbA1c were significantly higher in LADA patients. Moreover, the prevalence of metabolic syndrome was significantly lower in LADA as compared with Type 2 DM. Only 2 out of the 12 GADA-positive (16.7%) were on insulin treatment at the time of the study. CONCLUSION The prevalence of LADA in Yemeni Type 2 DM is lower than many of those reported in the literature, with no gender preference. Metabolic syndrome was significantly lower in LADA patients. Patients with LADA share insulin resistance with Type 2 DM but display a more severe defect in β-cell function, thus highlighting the importance of an early diagnosis of LADA, to correctly treat LADA patients, allowing safe and effective therapies.
Collapse
Affiliation(s)
- Thekra Al-Zubairi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana`a, Sana`a, Yemen
| | - Molham AL-Habori
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana`a, Sana`a, Yemen
- Correspondence: Molham AL-Habori Email
| | - Riyadh Saif-Ali
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana`a, Sana`a, Yemen
| |
Collapse
|
36
|
Ren W, Yang D, Jiang Z, Xian Y, Huang Q, Luo S, Zheng X, Yan J, Xu W, Yao B, Wang CY, Bei JX, Groop L, Noble JA, Weng J. Adult-onset type 1 diabetic patients with less severe clinical manifestation have less risk DR-DQ genotypes than childhood-onset patients. Diabetes Metab Res Rev 2021; 37:e3357. [PMID: 32463555 DOI: 10.1002/dmrr.3357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The aim of this study was to investigate differences in clinical features and HLA genotypes between adult-onset and childhood-onset patients with type 1 diabetes in a Chinese population. MATERIALS AND METHODS This study enrolled 716 Han Chinese patients with type 1 diabetes from Guangdong (258 childhood-onset and 458 adult-onset) to compare their clinical features. Of them 214 patients with classical type 1 diabetes (100 childhood-onset and 114 adult-onset) were selected for HLA DR and DQ genotyping by next-generation sequencing. RESULTS Adult-onset patients were characterized by longer duration of symptoms before diagnosis, lower frequency of DKA at disease onset, less frequent autoantibody positivity, higher serum C-peptide concentrations, and better glycemic control. These findings were replicated in the restricted cohort of 214 patients with classical type 1 diabetes. Compared with childhood-onset patients, adult-onset patients had a lower frequency of the DR9 haplotype, as well as lower frequency of high-risk DR3/DR4 and DR3/DR9 genotypes, but higher frequency of DR3/DR3 genotype and DR3/X, DR4/X or DR9/X (X, non-risk) genotypes. CONCLUSIONS Adult-onset type 1 diabetic patients with susceptible haplotypes (DR3, DR4 or DR9) were more likely to carry protective DR-DQ haplotypes than childhood-onset patients, which suggested the association between less risk DR-DQ genotypes and the less severe clinical manifestation in adult-onset patients.
Collapse
Affiliation(s)
- Wenqian Ren
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Daizhi Yang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziyu Jiang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingxin Xian
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qianwen Huang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sihui Luo
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Endocrinology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Endocrinology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinhua Yan
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Yao
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Leif Groop
- Department of Endocrinology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Janelle A Noble
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Jianping Weng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Endocrinology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
37
|
Maddaloni E, Moretti C, Mignogna C, Buzzetti R. Adult-onset autoimmune diabetes in 2020: An update. Maturitas 2020; 137:37-44. [DOI: 10.1016/j.maturitas.2020.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
|
38
|
Gehrke LJ, Capitan A, Scheper C, König S, Upadhyay M, Heidrich K, Russ I, Seichter D, Tetens J, Medugorac I, Thaller G. Are scurs in heterozygous polled (Pp) cattle a complex quantitative trait? Genet Sel Evol 2020; 52:6. [PMID: 32033534 PMCID: PMC7006098 DOI: 10.1186/s12711-020-0525-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
Background Breeding genetically hornless, i.e. polled, cattle provides an animal welfare-friendly and non-invasive alternative to the dehorning of calves. However, the molecular regulation of the development of horns in cattle is still poorly understood. Studying genetic characters such as polledness and scurs, can provide valuable insights into this process. Scurs are hornlike formations that occur occasionally in a wide variety of sizes and forms as an unexpected phenotype when breeding polled cattle. Methods We present a unique dataset of 885 Holstein–Friesian cattle with polled parentage. The horn phenotype was carefully examined, and the phenotypic heterogeneity of the trait is described. Using a direct gene test for polledness, the polled genotype of the animals was determined. Subsequently, the existence of a putative scurs locus was investigated using high-density genotype data of a selected subset of 232 animals and two mapping approaches: mixed linear model-based association analyses and combined linkage disequilibrium and linkage analysis. Results The results of an exploratory data analysis indicated that the expression of scurs depends on age at phenotyping, sex and polled genotype. Scurs were more prevalent in males than in females. Moreover, homozygous polled animals did not express any pronounced scurs and we found that the Friesian polled allele suppresses the development of scurs more efficiently than the Celtic polled allele. Combined linkage and linkage disequilibrium mapping revealed four genome-wide significant loci that affect the development of scurs, one on BTA5 and three on BTA12. Moreover, suggestive associations were detected on BTA16, 18 and 23. The mixed linear model-based association analysis supports the results of the combined linkage and linkage disequilibrium analysis. None of the mapping approaches provided convincing evidence for a monogenic inheritance of scurs. Conclusions Our results contradict the initial and still broadly accepted model for the inheritance of horns and scurs. We hypothesise an oligogenetic model to explain the development of scurs and polledness.
Collapse
Affiliation(s)
- Lilian Johanna Gehrke
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany. .,Vereinigte Informationssysteme Tierhaltung w.V. (Vit) Verden, 27283, Verden, Germany.
| | - Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
| | - Kristin Heidrich
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany.,Tierzuchtforschung e.V. München, Grub, Germany
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Grub, Germany
| | | | - Jens Tetens
- Department of Animal Sciences, Georg-August University, 37077, Göttingen, Germany.,Center for Integrated Breeding Research, Georg-August-University, 37077, Göttingen, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany
| |
Collapse
|
39
|
Abstract
Physiological plasticity enables homeostasis to be maintained in biological systems, but when such allostasis fails, then disease can develop. In a new population-based study by Rolandsson et al (https://doi.org/10.1007/s00125-019-05016-3), autoimmunity, defined by an immunogenotype, predicted adult-onset non-insulin requiring diabetes. Type 1 diabetes is no longer viewed as a disease confined to children, with a significant proportion, maybe the majority, presenting in adulthood. Such cases masquerade as type 2 diabetes and their identification has clinical utility. Nevertheless, in this study, autoimmunity had a limited effect on the overall risk of adults developing diabetes.
Collapse
Affiliation(s)
- R David Leslie
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| | - Tanwi Vartak
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| |
Collapse
|
40
|
Affiliation(s)
- Maria J Redondo
- Section of Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Patrick Concannon
- Genetics Institute and Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
41
|
Feng Y, Zhang Y, Chen Y, Chen S, Shen M, Fu Q, He Y, Liu Y, Hsu HT, Xu X, Chen H, Yang T, Xu K. The associations between three genome-wide risk variants for serum C-peptide of T1D and autoantibody-positive T1D risk, and clinical characteristics in Chinese population. J Hum Genet 2019; 65:297-303. [PMID: 31827251 DOI: 10.1038/s10038-019-0705-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 01/12/2023]
Abstract
AIMS Recent meta-genome-wide association studies identified several genetic variants associated with beta-cell function in type 1 diabetes (T1D). The aim of this study was to investigate the associations between these variants and T1D risk, C-peptide levels, islet-specific autoantibodies, and lipid levels in Chinese Han population. METHODS A total of 1005 unrelated autoantibody-positive T1D cases and 1417 healthy controls were included, which were genotyped for rs559047, rs9260151, and rs3135002. T1D individuals were measured for both C-peptide and lipid levels. Logistic regression models were used to examine these associations. RESULTS We found that rs3135002 A allele showed a genome-wide significant association with T1D risk (OR = 0.22, 95% CI = 0.17-0.30; P = 7.49 × 10-27), and significant heterogeneity of effect size was observed between early-onset and later-onset T1D subgroups (I2 = 80% and P = 0.026). Rs559047 had a nominal association with fasting C-peptide levels in newly diagnosed T1D individuals (P = 0.036). Moreover, rs3135002 A allele was significantly associated with GADA positivity (OR = 0.52, 95% CI = 0.30-0.91, P = 0.02). In addition, nominal correlations were observed with HDL levels for rs559047 (P = 0.042), while LDL levels for rs9260151 (P = 0.032) in T1D individuals. CONCLUSIONS Our results indicate that there are both similarities and differences for the associations of genetic variants among T1D development, progression, and related autoimmunity, metabolic traits.
Collapse
Affiliation(s)
- Yingjie Feng
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yuyue Zhang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yang Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Shu Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.,Department of Endocrinology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226001, China
| | - Min Shen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Qi Fu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yunqiang He
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yuwei Liu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Hsiang-Ting Hsu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xinyu Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Heng Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Tao Yang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Kuanfeng Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW To provide an updated summary of discoveries made to date resulting from genome-wide association study (GWAS) and sequencing studies, and to discuss the latest loci added to the growing repertoire of genetic signals predisposing to type 1 diabetes (T1D). RECENT FINDINGS Genetic studies have identified over 60 loci associated with T1D susceptibility. GWAS alone does not specifically inform on underlying mechanisms, but in combination with other sequencing and omics-data, advances are being made in our understanding of T1D genetic etiology and pathogenesis. Current knowledge indicates that genetic variation operating in both pancreatic β cells and in immune cells is central in mediating T1D risk. One of the main challenges is to determine how these recently discovered GWAS-implicated variants affect the expression and function of gene products. Once we understand the mechanism of action for disease-causing variants, we will be well placed to apply targeted genomic approaches to impede the premature activation of the immune system in an effort to ultimately prevent the onset of T1D.
Collapse
Affiliation(s)
- Marina Bakay
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA
| | - Rahul Pandey
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA
| | - Struan F A Grant
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The genetic risk for type 1 diabetes has been studied for over half a century, with the strong genetic associations of type 1 diabetes forming critical evidence for the role of the immune system in pathogenesis. In this review, we discuss some of the original research leading to recent developments in type 1 diabetes genetics. RECENT FINDINGS We examine the translation of polygenic scores for type 1 diabetes into tools for prediction and diagnosis of type 1 diabetes, in particular, when used in combination with other biomarkers and clinical features, such as age and islet-specific autoantibodies. Furthermore, we review the description of age associations with type 1 diabetes genetic risk, and the investigation of loci linked to type 2 diabetes in progression of type 1 diabetes. Finally, we consider current limitations, including the scarcity of data from racial and ethnic minorities, and future directions. SUMMARY The development of polygenic risk scores has allowed the integration of type 1 diabetes genetics into diagnosis and prediction. Emerging information on the role of specific genes in subgroups of individuals with the disease, for example, early-onset, mild autoimmunity, and so forth, is facilitating our understanding of the heterogeneity of type 1 diabetes, with the ultimate goal of using genetic information in research and clinical practice.
Collapse
Affiliation(s)
- Richard A Oram
- RILD Level 3, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School
- The Academic Renal Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Maria J Redondo
- Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
44
|
Ramu D, Perumal V, Paul SFD. Association of common type 1 and type 2 diabetes gene variants with latent autoimmune diabetes in adults: A meta-analysis. J Diabetes 2019; 11:484-496. [PMID: 30456822 DOI: 10.1111/1753-0407.12879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The aim of this meta-analysis was to determine the association of common type 1 diabetes (T1D) and type 2 diabetes (T2D) gene variants (protein tyrosine phosphatase non-receptor 22 [PTPN22] rs2476601C/T, insulin [INS] rs689A/T and transcription factor 7-like 2 [TCF7L2] rs7903146C/T) with latent autoimmune diabetes in adults (LADA). METHODS A systematic search of electronic databases was conducted up to 2017 and data from 16 independent case-control studies for three gene variants were pooled. The pooled allele and genotype frequencies for each T1D and T2D gene variant were used to calculate odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association. Heterogeneity tests and evaluation of publication bias were performed for all studies. RESULTS In all, 8869 cases and 20 829 controls pooled from 16 case-control studies were included in the analysis. For rs2476601, a significant association was found for homozygote TT (OR 2.67; 95% CI 1.92-3.70; P < 0.0001), heterozygote CT (OR 1.61; 95% CI 1.44-1.79; P < 0.0001), and the T allele (OR 1.62; 95% CI 1.48-1.78; P < 0.0001). Overall, a significant inverse association was observed for rs689 in the TT genotype (OR 0.43; 95% CI 0.30-0.64; P < 0.0001), AT genotype (OR 0.53; 95% CI 0.45-0.62; P < 0.0001), and T allele (OR 0.61; 95% CI 0.52-0.71; P < 0.0001). For the rs7903146 polymorphism, the T allele (OR 1.19; 95% CI 1.00-1.40; P = 0.04) may be associated with the risk of LADA. CONCLUSION The rs2476601C/T, rs689A/T, and rs7903146C/T polymorphisms were found to be associated with the risk of LADA, thereby indicating that, genetically, LADA could be an admixture of both T1D and T2D.
Collapse
Affiliation(s)
- Deepika Ramu
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Solomon F D Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
45
|
Dufort MJ, Greenbaum CJ, Speake C, Linsley PS. Cell type-specific immune phenotypes predict loss of insulin secretion in new-onset type 1 diabetes. JCI Insight 2019; 4:125556. [PMID: 30830868 DOI: 10.1172/jci.insight.125556] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
The rate of decline in insulin secretion after diagnosis with type 1 diabetes (T1D) varies substantially among individuals and with age at diagnosis, but the mechanism(s) behind this heterogeneity are not well understood. We investigated the loss of pancreatic β cell function in new-onset T1D subjects using unbiased whole blood RNA-seq and verified key findings by targeted cell count measurements. We found that patients who lost insulin secretion more rapidly had immune phenotypes ("immunotypes") characterized by higher levels of B cells and lower levels of neutrophils, especially neutrophils expressing primary granule genes. The B cell and neutrophil immunotypes showed strong age dependence, with B cell levels in particular predicting rate of progression in young subjects only. This age relationship suggested that therapy targeting B cells in T1D would be most effective in young subjects with high pretreatment B cell levels, a prediction which was supported by data from a clinical trial of rituximab in new-onset subjects. These findings demonstrate a link between age-related immunotypes and disease outcome in new-onset T1D. Furthermore, our data suggest that greater success could be achieved by targeted use of immunomodulatory therapy in specific T1D populations defined by age and immune characteristics.
Collapse
Affiliation(s)
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | |
Collapse
|
46
|
Sharp SA, Rich SS, Wood AR, Jones SE, Beaumont RN, Harrison JW, Schneider DA, Locke JM, Tyrrell J, Weedon MN, Hagopian WA, Oram RA. Development and Standardization of an Improved Type 1 Diabetes Genetic Risk Score for Use in Newborn Screening and Incident Diagnosis. Diabetes Care 2019; 42:200-207. [PMID: 30655379 PMCID: PMC6341291 DOI: 10.2337/dc18-1785] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/12/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Previously generated genetic risk scores (GRSs) for type 1 diabetes (T1D) have not captured all known information at non-HLA loci or, particularly, at HLA risk loci. We aimed to more completely incorporate HLA alleles, their interactions, and recently discovered non-HLA loci into an improved T1D GRS (termed the "T1D GRS2") to better discriminate diabetes subtypes and to predict T1D in newborn screening studies. RESEARCH DESIGN AND METHODS In 6,481 case and 9,247 control subjects from the Type 1 Diabetes Genetics Consortium, we analyzed variants associated with T1D both in the HLA region and across the genome. We modeled interactions between variants marking strongly associated HLA haplotypes and generated odds ratios to create the improved GRS, the T1D GRS2. We validated our findings in UK Biobank. We assessed the impact of the T1D GRS2 in newborn screening and diabetes classification and sought to provide a framework for comparison with previous scores. RESULTS The T1D GRS2 used 67 single nucleotide polymorphisms (SNPs) and accounted for interactions between 18 HLA DR-DQ haplotype combinations. The T1D GRS2 was highly discriminative for all T1D (area under the curve [AUC] 0.92; P < 0.0001 vs. older scores) and even more discriminative for early-onset T1D (AUC 0.96). In simulated newborn screening, the T1D GRS2 was nearly twice as efficient as HLA genotyping alone and 50% better than current genetic scores in general population T1D prediction. CONCLUSIONS An improved T1D GRS, the T1D GRS2, is highly useful for classifying adult incident diabetes type and improving newborn screening. Given the cost-effectiveness of SNP genotyping, this approach has great clinical and research potential in T1D.
Collapse
Affiliation(s)
- Seth A Sharp
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Andrew R Wood
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Samuel E Jones
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Robin N Beaumont
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - James W Harrison
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Darius A Schneider
- Pacific Northwest Diabetes Research Institute, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Jonathan M Locke
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Jess Tyrrell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | | | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.
- Academic Renal Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| |
Collapse
|
47
|
Nishimura A, Matsumura K, Kikuno S, Nagasawa K, Okubo M, Mori Y, Kobayashi T. Slowly Progressive Type 1 Diabetes Mellitus: Current Knowledge And Future Perspectives. Diabetes Metab Syndr Obes 2019; 12:2461-2477. [PMID: 31819572 PMCID: PMC6886592 DOI: 10.2147/dmso.s191007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
Slowly progressive type 1 insulin-dependent diabetes mellitus (SPIDDM), sometimes referred to as latent autoimmune diabetes in adults (LADA), is a heterogeneous disease that is often confused with type 1 and type 2 diabetes. As a result, there were few diagnostic criteria for this disorder until 2012, when the Japan Diabetes Society established criteria that could be used in clinical practice. A primary question is whether pathologic markers for type 1 or type 2 diabetes are present in the pancreas of patients with SPIDDM, because the phenotype of SPIDDM is similar to both type 1 and type 2 diabetes. Recent studies clarified pathologic findings in the pancreas of patients with SPIDDM, which included T-cell-mediated insulitis, a marker of type 1 diabetes; pseudoatrophic islets (islets specifically devoid of beta cells), another hallmark of type 1 diabetes; and a lack of amylin (ie, islet amyloid polypeptide) deposition to the islet cells, a pathologic marker of type 2 diabetes. In terms of preventing the loss of beta-cell function in patients with SPIDDM, several studies have shown that some drugs, including dipeptidyl peptidase-4 inhibitors, are effective. There is an increased need for early diagnosis of SPIDDM to preserve beta-cell function. This review presents updated findings on the pathogenesis and immunologic findings of the affected pancreas, diagnostic markers, risk factors for progression of beta-cell dysfunction, epidemiology, clinical features, diagnostic strategies, prevention strategies, and clinical options for patients with SPIDDM.
Collapse
Affiliation(s)
- Akihiro Nishimura
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Kimio Matsumura
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Shota Kikuno
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Kaoru Nagasawa
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Minoru Okubo
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Yasumichi Mori
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Tetsuro Kobayashi
- Division of Immunology and Molecular Medicine, Okinaka Memorial Institute for Medical Research, Tokyo, Japan
- Correspondence: Tetsuro Kobayashi Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-Ku, Tokyo, JapanTel +81-3-3588-1111Fax +81-3-3582-7068 Email
| |
Collapse
|
48
|
Andersen MK, Hansen T. Genetic Aspects of Latent Autoimmune Diabetes in Adults: A Mini-Review. Curr Diabetes Rev 2019; 15:194-198. [PMID: 30058494 DOI: 10.2174/1573399814666180730123226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
Diabetes is a multifactorial disease, caused by a complex interplay between environmental and genetic risk factors. Genetic determinants of particularly Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D) have been studied extensively, whereas well-powered studies of Latent Autoimmune Diabetes in Adults (LADA) are lacking. So far available studies support a clear genetic overlap between LADA and T1D, however, with smaller effect sizes of the T1D-risk variants in LADA as compared to T1D. A genetic overlap between LADA and T2D is less clear. However, recent studies, including large numbers of LADA patients, provide different lines of evidence to support a genetic overlap between T2D and LADA. The genetic predisposition to LADA is yet to be explored in a study design, like a genome- wide association study, which allows for analyses of the genetic predisposition independently of prior hypothesis about potential candidate genes. This type of study may facilitate the discovery of risk variants associated with LADA independently of T1D and T2D, and is central in order to determine if LADA should be considered as an independent diabetic subtype. Extended knowledge about the genetic predisposition to LADA may also facilitate stratification of the heterogeneous group of LADA patients, which may assist the choice of treatment. This mini-review summarizes current knowledge of the genetics of LADA, and discusses the perspectives for future studies.
Collapse
Affiliation(s)
- Mette Korre Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Niu X, Luo S, Li X, Xie Z, Xiang Y, Huang G, Lin J, Yang L, Liu Z, Wang X, Leslie RD, Zhou Z. Identification of a distinct phenotype of elderly latent autoimmune diabetes in adults: LADA China Study 8. Diabetes Metab Res Rev 2019; 35:e3068. [PMID: 30160000 DOI: 10.1002/dmrr.3068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Latent autoimmune diabetes in adults (LADA) exhibits significant clinical heterogeneity, but the underlying causes remain unclear. The aim of this study was to investigate whether age of onset of LADA contributes to the observed clinical heterogeneity by comparing the clinical, metabolic, and immunogenetic characteristics between elderly and young LADA patients. METHODS The cross-sectional study included a total of 579 patients with LADA which was further divided into elderly LADA (E-LADA) group (n = 135, age of onset ≥60 years) and young LADA (Y-LADA) group (n = 444, age of onset <60 years). Age-matched subjects with type 2 diabetes were served as control (E-T2D group, n = 622). Clinical characteristics, serum autoantibodies, and HLA-DQ haplotypes were compared among these groups. RESULTS Compared with patients with Y-LADA, patients with E-LADA have better residual beta-cell function and higher level of insulin resistance (both P < .01), more metabolic syndrome characteristics, similar proportion of islet autoantibody positivity, and strikingly different HLA-DQ genetic background. In comparison with E-T2D patients, E-LADA patients tend to have similar metabolic syndrome prevalence, comparable C-peptide levels, and insulin resistance levels and share similar HLA-DQ genetic characteristics. CONCLUSIONS Elderly LADA differs phenotypically and genetically from Y-LADA but has a clinical and genetic profile more similar to that of E-T2D. These distinct phenotypes could potentially help physicians better manage patients with E-LADA.
Collapse
Affiliation(s)
- Xiaohong Niu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, China
- Department of Endocrinology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Shuoming Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, China
| | - Yufei Xiang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, China
| | - Jian Lin
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, China
| | - Lin Yang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, China
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Xiangbing Wang
- Division of Endocrinology, Metabolism, and Nutrition, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - R David Leslie
- Department of Diabetes and Metabolic Medicine, Blizard Institute, London, UK
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, China
| |
Collapse
|
50
|
Akbar T, McGurnaghan S, Palmer CNA, Livingstone SJ, Petrie J, Chalmers J, Lindsay RS, McKnight JA, Pearson DWM, Patrick AW, Walker J, Looker HC, Colhoun HM. Cohort Profile: Scottish Diabetes Research Network Type 1 Bioresource Study (SDRNT1BIO). Int J Epidemiol 2018; 46:796-796i. [PMID: 28338705 DOI: 10.1093/ije/dyw152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tahira Akbar
- Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Edinburgh, UK
| | - Stuart McGurnaghan
- Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Edinburgh, UK
| | - Colin N A Palmer
- Cardiovascular and Diabetes Medicine, University of Dundee, Dundee, UK
| | | | - John Petrie
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - John Chalmers
- Cameron Hospital, National Health Service (NHS) Fife, Kirkcaldy, UK
| | - Robert S Lindsay
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | | | - Donald W M Pearson
- JJR Macleod Centre for Diabetes, Endocrinology and Metabolism, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Alan W Patrick
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | | | - Helen C Looker
- Diabetes Epidemiology Unit, University of Dundee, Dundee, UK
| | - Helen M Colhoun
- Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Edinburgh, UK.,Department of Public Health, NHS Fife, Kirkcaldy, UK
| |
Collapse
|