1
|
Xia F, Zhang Z, Qian Z, Fang X, Wang J, Wang Y, Sun G, Yu Y, Wang N, Zhen J, Liu Y, Lu Y. The immune checkpoint molecule B7-H4 regulates β-cell mass and insulin secretion by modulating cholesterol metabolism through Stat5 signalling. Mol Metab 2025; 91:102069. [PMID: 39571901 PMCID: PMC11636127 DOI: 10.1016/j.molmet.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVE B7-H4 (B7S1, B7x, VTCN1) is an important immune checkpoint molecule that maintains immune homeostasis and is also expressed in pancreatic β cells. The polymorphism of B7-H4 influences the prevalence of Type 2 diabetes (T2D), suggesting a potential role of B7-H4 in the physiological function of pancreatic β cells and the pathogenesis of T2D. METHODS β-cell-specific B7-H4 knockout mice (B7-H4 cKO mice) and their wild-type littermates were used to investigate the in vivo effects of B7-H4 on pancreatic β-cell morphology and function. AAV2/8-ins2-B7H4 and a control virus were infused via the pancreatic intraduct into high-fat diet (HFD)-treated mice to elucidate the therapeutic effect of B7-H4. RNA sequencing was conducted on primary islets. A Luminex assay was used to quantify cytokine changes in B7-H4 cKO mice. Electron microscopy imaging was used to observe insulin secretory vesicles in pancreatic β cells. RESULTS Lesion of B7-H4 in β cells results in glucose intolerance due to reduced β-cell mass and deficient insulin secretion, whereas overexpression of B7-H4 in β cells ameliorates glucose intolerance in HFD-fed mice. Mechanistically, B7-H4 deficiency activates signal transducer and activator of transcription 5 (Stat5) signalling, which inhibits the expression of apolipoprotein F (Apof), leading to reduced cholesterol efflux and accumulated cholesterol in β cells, thereby impairing insulin processing and secretion. Overexpression of Apof in β cells or intraperitoneal injection of a Stat5 inhibitor reverses the metabolic phenotype and insulin secretion deficiency in B7-H4 cKO mice. CONCLUSION Our study demonstrated that B7-H4 plays an important role in regulating β-cell mass and insulin secretion, which may shed new light on the development of novel strategies for T2D treatment.
Collapse
Affiliation(s)
- Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.
| | - Ziteng Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Zhen Qian
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Fang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Junxue Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Yan Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Guoting Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Ninjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Junke Zhen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
2
|
Bakery HH, Hussein HAA, Ahmed OM, Abuelsaad ASA, Khalil RG. The potential therapeutic role of IL-35 in pathophysiological processes in type 1 diabetes mellitus. Cytokine 2024; 182:156732. [PMID: 39126765 DOI: 10.1016/j.cyto.2024.156732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
A chronic autoimmune condition known as type 1 diabetes mellitus (T1DM) has characteristics marked by a gradual immune-mediated deterioration of the β-cells that produce insulin and causes overt hyperglycemia. it affects more than 1.2 million kids and teenagers (0-19 years old). In both, the initiation and elimination phases of T1DM, cytokine-mediated immunity is crucial in controlling inflammation. T regulatory (Treg) cells, a crucial anti-inflammatory CD4+ T cell subset, secretes interleukin-35 (IL-35). The IL-35 has immunomodulatory properties by inhibiting pro-inflammatory cells and cytokines, increasing the secretion of interleukin-10 (IL-10) as well as transforming Growth Factor- β (TGF-β), along with stimulating the Treg and B regulatory (Breg) cells. IL-35, it is a possible target for cutting-edge therapies for cancers, inflammatory, infectious, and autoimmune diseases, including TIDM. Unanswered questions surround IL-35's function in T1DM. Increasing data suggests Treg cells play a crucial role in avoiding autoimmune T1DM. Throughout this review, we will explain the biological impacts of IL-35 and highlight the most recently progresses in the roles of IL-35 in treatment of T1DM; the knowledge gathered from these findings might lead to the development of new T1DM treatments. This review demonstrates the potential of IL-35 as an effective autoimmune diabetes inhibitor and points to its potential therapeutic value in T1DM clinical trials.
Collapse
Affiliation(s)
- Heba H Bakery
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Heba A A Hussein
- Faculty of Medicine, Egyptian Fellowship of Radiology, Beni-Suef University, Egypt
| | - Osama M Ahmed
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | | | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt.
| |
Collapse
|
3
|
Ma Y, Shi R, Li F, Chang H. Emerging strategies for treating autoimmune disease with genetically modified dendritic cells. Cell Commun Signal 2024; 22:262. [PMID: 38715122 PMCID: PMC11075321 DOI: 10.1186/s12964-024-01641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
Gene editing of living cells has become a crucial tool in medical research, enabling scientists to address fundamental biological questions and develop novel strategies for disease treatment. This technology has particularly revolutionized adoptive transfer cell therapy products, leading to significant advancements in tumor treatment and offering promising outcomes in managing transplant rejection, autoimmune disorders, and inflammatory diseases. While recent clinical trials have demonstrated the safety of tolerogenic dendritic cell (TolDC) immunotherapy, concerns remain regarding its effectiveness. This review aims to discuss the application of gene editing techniques to enhance the tolerance function of dendritic cells (DCs), with a particular focus on preclinical strategies that are currently being investigated to optimize the tolerogenic phenotype and function of DCs. We explore potential approaches for in vitro generation of TolDCs and provide an overview of emerging strategies for modifying DCs. Additionally, we highlight the primary challenges hindering the clinical adoption of TolDC therapeutics and propose future research directions in this field.
Collapse
Affiliation(s)
- Yunhan Ma
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Ruobing Shi
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Fujun Li
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
4
|
Vaishnav J, Khan F, Yadav M, Parmar N, Buch H, Jadeja SD, Dwivedi M, Begum R. V-set domain containing T-cell activation inhibitor-1 (VTCN1): A potential target for the treatment of autoimmune diseases. Immunobiology 2022; 227:152274. [PMID: 36095871 DOI: 10.1016/j.imbio.2022.152274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
Abstract
Autoimmunity eventuates when the immune system attacks self-molecules as a result of the breakdown in immune tolerance. Targeting autoimmune diseases via immunomodulation has become an essential strategy in today's era. A B7 superfamily member immune checkpoint, the V-set domain containing T-cell activation inhibitor-1 (VTCN1), also known as B7-H4, B7S1, and B7x, is involved in negatively regulating T-cell activation. VTCN1 transcript has been reported in various lymphoid and non-lymphoid tissues, but its protein expression is restricted, indicating its translational regulation. Dysregulation of VTCN1 has resulted in the exacerbation of various autoimmune diseases. Moreover, increased soluble form of VTCN1 in the patient's sera positively correlates with the disease progression and severity. The current review summarizes all the reports till date, unfolding the role of VTCN1 in various autoimmune diseases and its therapeutic potential.
Collapse
Affiliation(s)
- Jayvadan Vaishnav
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Farheen Khan
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Madhu Yadav
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Nishant Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Hiteshree Buch
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Shahnawaz D Jadeja
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India; C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat 394350, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
5
|
Vaishnav J, Jadeja SD, Singh M, Khan F, Yadav M, Begum R. Altered Levels of Negative Costimulatory Molecule V-Set Domain-Containing T-Cell Activation Inhibitor-1 (VTCN1) and Metalloprotease Nardilysin (NRD1) are Associated with Generalized Active Vitiligo. Immunol Invest 2022; 51:2035-2052. [PMID: 35815687 DOI: 10.1080/08820139.2022.2097091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Vitiligo is characterized by depigmented macules on the skin caused due to autoimmune destruction of melanocytes. V-set domain-containing T-cell activation inhibitor-1 (VTCN1) is a negative costimulatory molecule that plays a vital role in suppressing autoimmunity and tuning immune response. Nardilysin (NRD1), a metalloproteinase, cleaves membrane-tethered VTCN1 resulting in the shedding of soluble-VTCN1 (sVTCN1). However, the role of VTCN1 and NRD1 in vitiligo pathogenesis is unexplored. OBJECTIVES AND METHODS This study was aimed to (i) Investigate the association of VTCN1 intronic polymorphisms (rs10923223 T/C and rs12046117 C/T) with vitiligo susceptibility in Gujarat population by using Polymerase Chain Reaction- Restriction Fragment Length Polymorphism (PCR-RFLP) (ii) Estimate VTCN1 & NRD1 transcript levels from peripheral blood mononuclear cells (PBMCs) and skin samples of vitiligo patients by real-time PCR, (iii) Estimate sVTCN1 and NRD1 protein levels from plasma by ELISA and (iv) Estimate VTCN1 protein levels in the skin samples of vitiligo patients by immunofluorescence. RESULTS The analysis revealed increased VTCN1 and NRD1 transcript levels in the skin (p = .039, p = .021 respectively), increased sVTCN1 and NRD1 levels (p = .026, p = .015 respectively) in the plasma, and decreased VTCN1 protein levels (p = .0002) in the skin of vitiligo patients as compared to healthy controls. The genetic analysis revealed no significant association of VTCN1 intronic polymorphisms rs10923223 T/C and rs12046117 C/T with vitiligo susceptibility in Gujarat population (p = .359, p = .937, respectively). CONCLUSIONS The present study revealed altered VTCN1 and NRD1 expressions in the blood and skin of vitiligo patients, suggesting their potential role in the development and progression of Vitiligo.
Collapse
Affiliation(s)
- Jayvadan Vaishnav
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Shahnawaz D Jadeja
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Mala Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Farheen Khan
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Madhu Yadav
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
6
|
Zhou X, Yang M, Lv Y, Li H, Wu S, Min J, Shen G, He Y, Lei P. Adoptive transfer of GRP78-treated dendritic cells alleviates insulitis in NOD mice. J Leukoc Biol 2021; 110:1023-1031. [PMID: 34643294 DOI: 10.1002/jlb.3ma0921-219rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
The 78-kDa glucose-regulated protein (GRP78) has extracellular, anti-inflammatory properties that can aid resolving inflammation. It has been established previously that GRP78 induced myeloid CD11c+ cell differentiation into distinct tolerogenic cells. This tolerance induction makes GRP78 a potential therapeutic agent for transplanted allogeneic grafts and autoimmune diseases, such as type 1 diabetes. In this research, it is revealed that rmGRP78-treated NOD mice bone marrow-derived CD11c+ cells (GRP78-DCs) highly expressed B7-H4 but down-regulated CD86 and CD40, and retained a tolerogenic signature even after stimulation by LPS. In the assessment of in vivo therapeutic efficacy after the adoptive transfer of GRP78-DCs into NOD mice, fluorescent imaging analyses revealed that the transfer specifically homed in inflamed pancreases, promoting β-cell survival and alleviating insulitis in NOD mice. The adoptive transfer of GRP78-DCs also helped reduce Th1, Th17, and CTL, suppressing inflammatory cytokine production in vivo. The findings suggest that adoptive GRP78-DC transfer is critical to resolving inflammation in NOD mice and may have relevance in a clinical setting.
Collapse
Affiliation(s)
- Xiaoqi Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Muyang Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yibing Lv
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heli Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomics, Guangzhou, China
| | - Jie Min
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong He
- Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Qin X, Sun W, Wang C, Li M, Zhao X, Li C, Zhang H. Mifepristone inhibited the expression of B7-H2, B7-H3, B7-H4 and PD-L2 in adenomyosis. Reprod Biol Endocrinol 2021; 19:114. [PMID: 34289871 PMCID: PMC8293536 DOI: 10.1186/s12958-021-00800-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/11/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The immune mechanism was shown to be involved in the development of adenomyosis. The aim of the current study was to evaluate the expression of the immune checkpoints B7-H2, B7-H3, B7-H4 and PD-L2 in adenomyosis and to explore the effect of mifepristone on the expression of these immune checkpoints. METHODS The expression of B7-H2, B7-H3, B7-H4 and PD-L2 in normal endometria and adenomyosis patient samples treated with or without mifepristone was determined by immunohistochemistry analysis. RESULTS In adenomyosis patient samples, the expression of B7-H2, B7-H3 and B7-H4 was increased in the eutopic and ectopic endometria compared with normal endometria, both in the proliferative and secretory phases. Moreover, the expression of B7-H2 and B7-H3 was higher in adenomyotic lesions than in the corresponding eutopic endometria, both in the proliferative and secretory phases. The expression of PD-L2 was higher in adenomyotic lesions than in normal endometria in both the proliferative and secretory phases. In the secretory phase but not the proliferative phase, the expression of B7-H4 and PD-L2 in adenomyotic lesions was significantly higher than that in the corresponding eutopic endometria. In normal endometria and eutopic endometria, the expression of B7-H4 was elevated in the proliferative phase compared with that in the secretory phase, while in the ectopic endometria, B7-H4 expression was decreased in the proliferative phase compared with the secretory phase. In addition, the expression of B7-H2, B7-H3, B7-H4 and PD-L2 was significantly decreased in adenomyosis tissues after treatment with mifepristone. CONCLUSIONS The expression of the immune checkpoint proteins B7-H2, B7-H3, B7-H4 and PD-L2 is upregulated in adenomyosis tissues and is downregulated with mifepristone treatment. The data suggest that B7 immunomodulatory molecules are involved in the pathophysiology of adenomyosis.
Collapse
Affiliation(s)
- Xiaoyan Qin
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Wenjing Sun
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Chong Wang
- Department of Surgery, Shandong Rongjun General Hospital, Jinan, Shandong, 250013, People's Republic of China
| | - Mingjiang Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xingbo Zhao
- Department of Obstetrics and Gynaecology, Shandong University, Jinan, Shandong, 250000, People's Republic of China
| | - Changzhong Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Hui Zhang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
8
|
Ding S, Zhou H, Gu Y, Shen Y, Zhang L, Zhao H, Wu J, Zhang X, Chang X, Liu C. Establishment of a novel double-monoclonal antibody sandwich enzyme-linked immunosorbent assay (ELISA): tool for human B7-H4 detection in autoimmune diseases. Clin Exp Immunol 2021; 205:150-159. [PMID: 33961296 DOI: 10.1111/cei.13610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
B7-H4, one of the immunoregulatory proteins, plays an inhibitory role by inhibiting T cell proliferation and cytokine production. Nevertheless, the significance of soluble B7-H4 (sB7-H4) in autoimmune diseases is unclear. In our study, we developed two novel mouse anti-human B7-H4 monoclonal antibodies (mAbs) (clones 8D4 and 7E1) with utilities for flow cytometry, immunoblotting and immunofluorescence. We characterized 7E1 as a functional antibody with antagonistic activity, which could promote T cell proliferation and regulate cytokine production. Furthermore, based on the different epitope specificities, we established a novel enzyme-linked immunosorbent assay (ELISA) which could detect sB7-H4 sensitively and specifically. Using this ELISA kit, sB7-H4 was observed in a high proportion of autoimmune diseases patients. We found that the levels of sB7-H4 were significantly higher in patients with systemic lupus erythematosus (SLE), type I diabetes (T1D) and Graves' disease (GD). Together, sB7-H4 in human serum is regarded not only as a regulator of T cell activation but may also be a diagnostic marker of autoimmune diseases.
Collapse
Affiliation(s)
- Sisi Ding
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hengxin Zhou
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Zhang
- Soochow University-Bright Scistar Antibody Joint Laboratory, Suzhou, China
| | - Huayang Zhao
- Soochow University-Bright Scistar Antibody Joint Laboratory, Suzhou, China
| | - Jian Wu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Chang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
B7-H4 Inhibits the Development of Primary Sjögren's Syndrome by Regulating Treg Differentiation in NOD/Ltj Mice. J Immunol Res 2020; 2020:4896727. [PMID: 33062721 PMCID: PMC7537676 DOI: 10.1155/2020/4896727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022] Open
Abstract
Background This study is aimed at exploring the role of B7-H4 in the pathogenesis of primary Sjögren's syndrome (pSS) in NOD/Ltj mouse. Methods B7-H4 expression in salivary glands was examined by IHC, and lymphocyte infiltration was showed by H&E. Next, anti-B7-H4 mAb or immunoglobulin isotype was injected into NOD/Ltj mice. Cytokine levels were measured by quantitative RT-PCR, and immunoglobulins were measured by ELISA. T cell subsets were analyzed by flow cytometry. Last, we treated NOD/Ltj mice with B7-H4Ig and control Ig. CD4+Foxp3+ T cells were assessed by immunohistochemistry. Two-tailed Student's t-tests were used to detect the statistical difference in various measures between the two groups. Results B7-H4 expression was remarkably reduced in salivary glands of NOD/Ltj mice at 15 weeks compared with the NOD/Ltj mice at 8 weeks. Anti-B7-H4 mAb treatment increased lymphocyte infiltration in salivary glands. Inflammatory cytokines including IL-12, IL-18, IL-1α, TNF-α, IFN-α, and BAFF were upregulated markedly in anti-B7-H4 mAb-treated mice compared to IgG isotype-treated mice. Flow cytometry analysis showed that anti-B7-H4 mAb-treated mice had lower levels of CD4+Foxp3+/CD4+ T cells in spleen. Moreover, Foxp3 mRNA levels of salivary glands were diminished in anti-B7-H4 mAb-treated mice. Flow cytometry analysis showed that anti-B7-H4 mAb inhibited CD4+Foxp3+/CD4+ T cell production, while B7-H4Ig would promote naïve CD4+ T into Treg differentiation. Administration with B7-H4Ig displayed significantly decreased lymphocyte infiltration in salivary glands and low levels of total IgM and IgG in serum. Analysis of inflammatory cytokines in salivary glands after B7-H4Ig treatment revealed that the mRNA levels of IL-12, IL-6, IL-18, IL-1α, TNF-α, and IFN-α were significantly downregulated in B7-H4Ig-treated mice compared to control Ig treatment. B7-H4Ig-treated mice had significantly higher levels of CD4+Foxp3+/CD4+ T cells in spleen. IHC in salivary gland revealed that CD4+Foxp3+ T cells of B7-H4Ig treatment mouse were more than control Ig treatment. Conclusions Our findings implicate that B7-H4 has a protective role for salivary gland epithelial cells (SGECs) and therapeutic potential in the treatment of pSS.
Collapse
|
10
|
Ding S, Shan Y, Sun L, Li S, Jiang R, Chang X, Huang Z, Sun J, Liu C, Fang C, Zhang X. Evaluation of the role of B7-H3 haplotype in association with impaired B7-H3 expression and protection against type 1 diabetes in Chinese Han population. BMC Endocr Disord 2020; 20:123. [PMID: 32787907 PMCID: PMC7425597 DOI: 10.1186/s12902-020-00592-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/13/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Type 1 Diabetes (T1D) is a T cell-mediated autoimmune disorder caused by the destruction of insulin-secreting cells. B7-H3 (CD276) plays a vital role in T cell response. However, B7-H3 expression and its clinical significance in T1D remain unclear. The aim of this study was to investigate the correlations between the expression of B7-H3 and clinical parameters in T1D patients. The possible role of B7-H3 gene variants with T1D was also discussed. METHODS Four B7-H3 single nucleotide polymorphisms (SNPs) were genotyped in 121 T1D patients and 120 healthy controls by polymerase chain reaction (PCR) direct sequencing. Expression of membrane B7-H3 (mB7-H3) in peripheral blood lymphocytes was determined by flow cytometry. Levels of soluble B7-H3 (sB7-H3) in serum were analyzed by enzyme linked immunosorbent assay (ELISA). RESULTS The B7-H3 haplotype T-A-C-T was less frequently observed in T1D patients compared to the controls (OR: 0.31, 95% CI: 0.16-0.61). B7-H3 expression on monocytes showed significant upregulation in T1D patients and was positively correlated with several clinical features including ALT, fast C-peptide 120 min, HbAlc, IFN-γ, IL-6 and TNF-α (P < 0.05). The concentration of sB7-H3 in serum increased in T1D patients (P < 0.0001). We also observed that B7-H3-T-A-C-T was associated with the decreased release of sB7-H3 but not the membrane form. CONCLUSIONS B7-H3 may act as a potential biomarker related to the pathogenesis of T1D. The B7-H3-T-A-C-T polymorphism variant is associated with the low risk of T1D as well as less release of sB7-H3.
Collapse
Affiliation(s)
- Sisi Ding
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, 215007, Jiangsu, People's Republic of China
| | - Yimei Shan
- Department of Endocrinology, Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Lili Sun
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, 215007, Jiangsu, People's Republic of China
| | - Sicheng Li
- Department of Endocrinology, Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Rong Jiang
- Department of Endocrinology, Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Xin Chang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, 215007, Jiangsu, People's Republic of China
| | - Ziyi Huang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, 215007, Jiangsu, People's Republic of China
| | - Jing Sun
- Institute of Medical Biotechnology, Suzhou Health College, Suzhou, 215009, Jiangsu, People's Republic of China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, 215007, Jiangsu, People's Republic of China.
| | - Chen Fang
- Department of Endocrinology, Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China.
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, 215007, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Yeung MY, Grimmig T, Sayegh MH. Costimulation Blockade in Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:267-312. [PMID: 31758538 DOI: 10.1007/978-981-32-9717-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T cells play a pivotal role in orchestrating immune responses directed against a foreign (allogeneic) graft. For T cells to become fully activated, the T-cell receptor (TCR) must interact with the major histocompatibility complex (MHC) plus peptide complex on antigen-presenting cells (APCs), followed by a second "positive" costimulatory signal. In the absence of this second signal, T cells become anergic or undergo deletion. By blocking positive costimulatory signaling, T-cell allo-responses can be aborted, thus preventing graft rejection and promoting long-term allograft survival and possibly tolerance (Alegre ML, Najafian N, Curr Mol Med 6:843-857, 2006; Li XC, Rothstein DM, Sayegh MH, Immunol Rev 229:271-293, 2009). In addition, costimulatory molecules can provide negative "coinhibitory" signals that inhibit T-cell activation and terminate immune responses; strategies to promote these pathways can also lead to graft tolerance (Boenisch O, Sayegh MH, Najafian N, Curr Opin Organ Transplant 13:373-378, 2008). However, T-cell costimulation involves an incredibly complex array of interactions that may act simultaneously or at different times in the immune response and whose relative importance varies depending on the different T-cell subsets and activation status. In transplantation, the presence of foreign alloantigen incites not only destructive T effector cells but also protective regulatory T cells, the balance of which ultimately determines the fate of the allograft (Lechler RI, Garden OA, Turka LA, Nat Rev Immunol 3:147-158, 2003). Since the processes of alloantigen-specific rejection and regulation both require activation of T cells, costimulatory interactions may have opposing or synergistic roles depending on the cell being targeted. Such complexities present both challenges and opportunities in targeting T-cell costimulatory pathways for therapeutic purposes. In this chapter, we summarize our current knowledge of the various costimulatory pathways in transplantation and review the current state and challenges of harnessing these pathways to promote graft tolerance (summarized in Table 10.1).
Collapse
Affiliation(s)
- Melissa Y Yeung
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Tanja Grimmig
- Department of Surgery, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Mohamed H Sayegh
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine and Immunology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
12
|
The B7x Immune Checkpoint Pathway: From Discovery to Clinical Trial. Trends Pharmacol Sci 2019; 40:883-896. [PMID: 31677920 DOI: 10.1016/j.tips.2019.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
B7x (B7 homolog x, also known as B7-H4, B7S1, and VTCN1) was discovered by ourselves and others in 2003 as the seventh member of the B7 family. It is an inhibitory immune checkpoint of great significance to human disease. Tissue-expressed B7x minimizes autoimmune and inflammatory responses. It is overexpressed in a broad spectrum of human cancers, where it suppresses antitumor immunity. Further, B7x and PD-L1 tend to have mutually exclusive expression in cancer cells. Therapeutics targeting B7x are effective in animal models of cancers and autoimmune disorders, and early-phase clinical trials are underway to determine the efficacy and safety of targeting B7x in human diseases. It took 15 years moving from the discovery of B7x to clinical trials. Further studies will be necessary to identify its receptors, reveal its physiological functions in organs, and combine therapies targeting B7x with other treatments.
Collapse
|
13
|
Saha A, Taylor PA, Lees CJ, Panoskaltsis-Mortari A, Osborn MJ, Feser CJ, Thangavelu G, Melchinger W, Refaeli Y, Hill GR, Munn DH, Murphy WJ, Serody JS, Maillard I, Kreymborg K, van den Brink M, Dong C, Huang S, Zang X, Allison JP, Zeiser R, Blazar BR. Donor and host B7-H4 expression negatively regulates acute graft-versus-host disease lethality. JCI Insight 2019; 4:127716. [PMID: 31578305 DOI: 10.1172/jci.insight.127716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
B7-H4 is a negative regulatory B7 family member. We investigated the role of host and donor B7-H4 in regulating acute graft-versus-host disease (GVHD). Allogeneic donor T cells infused into B7-H4-/- versus WT recipients markedly accelerated GVHD-induced lethality. Chimera studies pointed toward B7-H4 expression on host hematopoietic cells as more critical than parenchymal cells in controlling GVHD. Rapid mortality in B7-H4-/- recipients was associated with increased donor T cell expansion, gut T cell homing and loss of intestinal epithelial integrity, increased T effector function (proliferation, proinflammatory cytokines, cytolytic molecules), and reduced apoptosis. Higher metabolic demands of rapidly proliferating donor T cells in B7-H4-/- versus WT recipients required multiple metabolic pathways, increased extracellular acidification rates (ECARs) and oxygen consumption rates (OCRs), and increased expression of fuel substrate transporters. During GVHD, B7-H4 expression was upregulated on allogeneic WT donor T cells. B7-H4-/- donor T cells given to WT recipients increased GVHD mortality and had function and biological properties similar to WT T cells from allogeneic B7-H4-/- recipients. Graft-versus-leukemia responses were intact regardless as to whether B7-H4-/- mice were used as hosts or donors. Taken together, these data provide new insights into the negative regulatory processes that control GVHD and provide support for developing therapeutic strategies directed toward the B7-H4 pathway.
Collapse
Affiliation(s)
- Asim Saha
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patricia A Taylor
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher J Lees
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela Panoskaltsis-Mortari
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark J Osborn
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Colby J Feser
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Govindarajan Thangavelu
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wolfgang Melchinger
- Department of Hematology, Oncology, and Stem-Cell Transplantation, Freiburg University Medical Center, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Yosef Refaeli
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Geoffrey R Hill
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - David H Munn
- Department of Pediatrics, Georgia Health Sciences University, Augusta, Georgia, USA
| | - William J Murphy
- Department of Dermatology, UC Davis School of Medicine, Sacramento, California, USA
| | - Jonathan S Serody
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ivan Maillard
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katharina Kreymborg
- Department of Immunology and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marcel van den Brink
- Department of Immunology and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Shuyu Huang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert Zeiser
- Department of Hematology, Oncology, and Stem-Cell Transplantation, Freiburg University Medical Center, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Zhong JX, Chen J, Rao X, Duan L. Dichotomous roles of co-stimulatory molecules in diabetes mellitus. Oncotarget 2018; 9:2902-2911. [PMID: 29416823 PMCID: PMC5788691 DOI: 10.18632/oncotarget.23102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Numerous studies have established the importance of immune dysfunction in the development of diabetes mellitus, including typ1 and typ2 diabetes, and it is worth noting that T cell activation acts a key role in the pathogenesis of loss of β cell mass, adipose inflammation and insulin resistance. Regarding as an important checkpoint in the process of T cell activation, co-stimulatory molecules interaction between antigen present cells and T cells have been identified the critical role in the development of diabetes mellitus. Thus, blockage of co-stimulatory dyads interaction between antigen present cells and T cells was supposed to a potential of therapeutic strategies. However, studies also showed that inhibition or deletion of some co-stimulatory molecules do not always reduce the development of diabetes, and even exacerbate the disease activity. Here, in this context, we highlight the dichotomous role of co-stimulatory molecules interaction in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Ji-Xin Zhong
- Department of Endocrinology, Central Hospital of Wuhan, Wuhan, Hubei, China 430061
| | - Jie Chen
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA 44106
- Basic Medical Department of Medical College, Xiamen University, Xiamen, China 361102
| | - Xiaoquan Rao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA 44106
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China 361003
| |
Collapse
|
15
|
Xiao ZX, Zheng X, Hu L, Wang J, Olsen N, Zheng SG. Immunosuppressive Effect of B7-H4 Pathway in a Murine Systemic Lupus Erythematosus Model. Front Immunol 2017; 8:1765. [PMID: 29321778 PMCID: PMC5732181 DOI: 10.3389/fimmu.2017.01765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
B7-H4, one of the co-stimulatory molecules of the B7 family, has been shown to play an important role in negatively regulating the adaptive immune response by inhibiting the proliferation, activation, and cytokine production of T cells. In this study, we investigate the role of B7-H4 in development of systemic lupus erythematosus (SLE). We investigated a murine model of SLE using transfer of bone marrow-derived dendritic cells (BMDCs) that were incubated with activated syngeneic lymphocyte-derived DNA. The recipient mouse produced anti-ds-DNA antibodies as well as displayed splenomegaly and lymphadenopathy as shown by significantly increased weights, and the kidneys showed lupus-like pathological changes include urine protein and glomerulonephritis with hyperplasia in glomeruli and increased mesangial cells and vasculitis with perivascular cell infiltration, glomerular deposition of IgG and complement C3. We showed that B7-H4 deficiency in BMDCs could cause greater production of anti-ds-DNA antibodies in transferred mice, and the lymph tissue swelling and the kidney lesions were also exacerbated with B7-H4 deficiency. Treatment with a B7-H4 antagonist antibody also aggravated the lupus model. Conversely, B7-H4 Ig alleviated the lupus manifestations. Therefore, we conclude that B7-H4 is a negative check point for the development of SLE in this murine model. These results suggest that this approach may have a clinical potential in treating human SLE.
Collapse
Affiliation(s)
- Ze Xiu Xiao
- Department of Clinical Immunology, Third Hospital at Sun Yat-sen University, Guangzhou, Guangdong, China.,Laboratory of Immunotherapy, Sun Yat-Sen University, Guangzhou, China
| | - Xu Zheng
- Laboratory of Immunotherapy, Sun Yat-Sen University, Guangzhou, China
| | - Li Hu
- Laboratory of Immunotherapy, Sun Yat-Sen University, Guangzhou, China
| | - Julie Wang
- Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Nancy Olsen
- Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Song Guo Zheng
- Department of Clinical Immunology, Third Hospital at Sun Yat-sen University, Guangzhou, Guangdong, China.,Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| |
Collapse
|
16
|
Tumor-expressed immune checkpoint B7x promotes cancer progression and antigen-specific CD8 T cell exhaustion and suppressive innate immune cells. Oncotarget 2017; 8:82740-82753. [PMID: 29137299 PMCID: PMC5669925 DOI: 10.18632/oncotarget.21098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 02/04/2023] Open
Abstract
B7x (B7-H4 or B7S1) is a coinhibitory member of the B7 immune checkpoint ligand family that regulates immune function following ligation with its unknown cognate receptors. B7x has limited expression on normal tissues, but is up-regulated on solid human tumors to inhibit anti-tumor immunity and associates with poor clinical prognosis. We assessed the contribution of cytokine stimuli to induce surface B7x expression on cancer cells and the role of tumor-expressed B7x in a murine pulmonary metastasis model, and finally evaluated the potential interaction between B7x and Neuropilin-1, a suggested potential cognate receptor. We showed that pro-inflammatory and anti-inflammatory cytokines IFNγ, TNFα, and IL-10 did not induce expression of B7x on human or murine cancer cells. Following i.v. injection of CT26, a murine colon cancer cell line in the BALB/c background, we observed a significant increase in tumor burden in the lung of B7x-expressing CT26 mice compared to B7x-negative parental CT26 control mice. This was marked by a significant increase in M2 tumor associated macrophages and antigen-specific CD8 T cell exhaustion. Finally, we found through multiple systems that there was no evidence for B7x and Neuropilin-1 direct interaction. Thus, the B7x pathway has an essential role in modulating the innate and adaptive immune cell infiltrate in the tumor microenvironment with its currently unknown cognate receptor(s).
Collapse
|
17
|
Abstract
The immune system is guided by a series of checks and balances, a major component of which is a large array of co-stimulatory and co-inhibitory pathways that modulate the host response. Although co-stimulation is essential for boosting and shaping the initial response following signaling through the antigen receptor, inhibitory pathways are also critical for modulating the immune response. Excessive co-stimulation and/or insufficient co-inhibition can lead to a breakdown of self-tolerance and thus to autoimmunity. In this review, we will focus on the role of co-stimulatory and co-inhibitory pathways in two systemic (systemic lupus erythematosus and rheumatoid arthritis) and two organ-specific (multiple sclerosis and type 1 diabetes) emblematic autoimmune diseases. We will also discuss how mechanistic analysis of these pathways has led to the identification of potential therapeutic targets and initiation of clinical trials for autoimmune diseases, as well as outline some of the challenges that lie ahead.
Collapse
Affiliation(s)
- Qianxia Zhang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
| |
Collapse
|
18
|
Abstract
Observations noting the presence of white blood cell infiltrates within tumors date back more than a century, however the cellular and molecular mechanisms regulating tumor immunity continue to be elucidated. The recent successful use of monoclonal antibodies to block immune regulatory pathways to enhance tumor-specific immune responses for the treatment of cancer has encouraged the identification of additional immune regulatory receptor/ligand pathways. Over the past several years, a growing body of data has identified B7-H4 (VTCN1/B7x/B7S1) as a potential therapeutic target for the treatment of cancer. The potential clinical significance of B7-H4 is supported by the high levels of B7-H4 expression found in numerous tumor tissues and correlation of the level of expression on tumor cells with adverse clinical and pathologic features, including tumor aggressiveness. The biological activity of B7-H4 has been associated with decreased inflammatory CD4+ T-cell responses and a correlation between B7-H4-expressing tumor-associated macrophages and FoxP3+ regulatory T cells (Tregs) within the tumor microenvironment. Since B7-H4 is expressed on tumor cells and tumor-associated macrophages in various cancer types, therapeutic blockade of B7-H4 could favorably alter the tumor microenvironment allowing for antigen-specific clearance tumor cells. The present review highlights the therapeutic potential of targeting B7-H4.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
19
|
Janakiram M, Shah UA, Liu W, Zhao A, Schoenberg MP, Zang X. The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3. Immunol Rev 2017; 276:26-39. [PMID: 28258693 PMCID: PMC5338461 DOI: 10.1111/imr.12521] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022]
Abstract
The B7-CD28 family of ligands and receptors play important roles in T-cell co-stimulation and co-inhibition. Phylogenetically they can be divided into three groups. The recent discovery of the new molecules (B7-H3 [CD276], B7x [B7-H4/B7S1], and HHLA2 [B7H7/B7-H5]/TMIGD2 [IGPR-1/CD28H]) of the group III has expanded therapeutic possibilities for the treatment of human diseases. In this review, we describe the discovery, structure, and function of B7-H3, B7x, HHLA2, and TMIGD2 in immune regulation. We also discuss their roles in important pathological states such as cancers, autoimmune diseases, transplantation, and infection. Various immunotherapeutical approaches are emerging including antagonistic monoclonal antibodies and agonistic fusion proteins to inhibit or potentiate these molecules and pathways in cancers and autoimmune diseases.
Collapse
Affiliation(s)
- Murali Janakiram
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Urvi A Shah
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weifeng Liu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Mark P Schoenberg
- Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xingxing Zang
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
20
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
21
|
Radichev IA, Maneva-Radicheva LV, Amatya C, Salehi M, Parker C, Ellefson J, Burn P, Savinov AY. Loss of Peripheral Protection in Pancreatic Islets by Proteolysis-Driven Impairment of VTCN1 (B7-H4) Presentation Is Associated with the Development of Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 2016; 196:1495-506. [PMID: 26773144 DOI: 10.4049/jimmunol.1403251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 12/05/2015] [Indexed: 12/28/2022]
Abstract
Ag-specific activation of T cells is an essential process in the control of effector immune responses. Defects in T cell activation, particularly in the costimulation step, have been associated with many autoimmune conditions, including type 1 diabetes (T1D). Recently, we demonstrated that the phenotype of impaired negative costimulation, due to reduced levels of V-set domain-containing T cell activation inhibitor 1 (VTCN1) protein on APCs, is shared between diabetes-susceptible NOD mice and human T1D patients. In this study, we show that a similar process takes place in the target organ, as both α and β cells within pancreatic islets gradually lose their VTCN1 protein during autoimmune diabetes development despite upregulation of the VTCN1 gene. Diminishment of functional islet cells' VTCN1 is caused by the active proteolysis by metalloproteinase N-arginine dibasic convertase 1 (NRD1) and leads to the significant induction of proliferation and cytokine production by diabetogenic T cells. Inhibition of NRD1 activity, alternatively, stabilizes VTCN1 and dulls the anti-islet T cell responses. Therefore, we suggest a general endogenous mechanism of defective VTCN1 negative costimulation, which affects both lymphoid and peripheral target tissues during T1D progression and results in aggressive anti-islet T cell responses. This mechanism is tied to upregulation of NRD1 expression and likely acts in two synergistic proteolytic modes: cell-intrinsic intracellular and cell-extrinsic systemic. Our results highlight an importance of VTCN1 stabilization on cell surfaces for the restoration of altered balance of immune control during T1D.
Collapse
Affiliation(s)
- Ilian A Radichev
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Lilia V Maneva-Radicheva
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Christina Amatya
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Maryam Salehi
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Camille Parker
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Jacob Ellefson
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Paul Burn
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Alexei Y Savinov
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD 57105
| |
Collapse
|
22
|
Th17 Cells in Type 1 Diabetes: Role in the Pathogenesis and Regulation by Gut Microbiome. Mediators Inflamm 2015; 2015:638470. [PMID: 26843788 PMCID: PMC4710950 DOI: 10.1155/2015/638470] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease which is characterized by progressive destruction of insulin producing pancreatic islet β cells. The risk of developing T1D is determined by both genetic and environmental factors. A growing body of evidence supports an important role of T helper type 17 (Th17) cells along with impaired T regulatory (Treg) cells in the development of T1D in animal models and humans. Alteration of gut microbiota has been implicated to be responsible for the imbalance between Th17 and Treg cells. However, there is controversy concerning a pathogenic versus protective role of Th17 cells in murine models of diabetes in the context of influence of gut microbiota. In this review we will summarize current knowledge about Th17 cells and gut microbiota involved in T1D and propose Th17 targeted therapy in children with islet autoimmunity to prevent progression to overt diabetes.
Collapse
|
23
|
Guo Y, Wang AY. Novel Immune Check-Point Regulators in Tolerance Maintenance. Front Immunol 2015; 6:421. [PMID: 26347744 PMCID: PMC4539525 DOI: 10.3389/fimmu.2015.00421] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/02/2015] [Indexed: 01/24/2023] Open
Abstract
The great success of anti-cytotoxic lymphocyte antigen 4 (CTLA4) and anti-programed cell death protein 1 (PD1) in cancer treatment has encouraged more effort in harnessing the immune response through immunomodulatory molecules in various diseases. The immunoglobulin (Ig) super family comprises the majority of immunomodulatory molecules. Discovery of novel Ig super family members has brought novel insights into the function of different immune cells in tolerance maintenance. In this review, we discuss the function of newly identified B7 family molecules, B7-H4 and V-domain Ig Suppressor of T cell Activation (VISTA), and the butyrophilin/butyrophilin-like family members. We discuss the current stages of immunomodulatory molecules in clinical trials of organ transplantation. The potential of engaging the novel Ig superfamily members in tolerance maintenance is also discussed. We conclude with the challenges remaining to manipulate these molecules in the immune response.
Collapse
Affiliation(s)
- Yanxia Guo
- Merck Research Laboratories , Palo Alto, CA , USA
| | - Adele Y Wang
- Merck Research Laboratories , Palo Alto, CA , USA
| |
Collapse
|
24
|
Hair follicle dermal sheath derived cells improve islet allograft survival without systemic immunosuppression. J Immunol Res 2015; 2015:607328. [PMID: 26000314 PMCID: PMC4427120 DOI: 10.1155/2015/607328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 12/26/2022] Open
Abstract
Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1) or fibroblasts (FB, group 2) under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P < 0.001) without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation.
Collapse
|
25
|
Pawar RD, Goilav B, Xia Y, Herlitz L, Doerner J, Chalmers S, Ghosh K, Zang X, Putterman C. B7x/B7-H4 modulates the adaptive immune response and ameliorates renal injury in antibody-mediated nephritis. Clin Exp Immunol 2015; 179:329-43. [PMID: 25205493 DOI: 10.1111/cei.12452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2014] [Indexed: 12/12/2022] Open
Abstract
Kidney disease is one of the leading causes of death in patients with lupus and other autoimmune diseases affecting the kidney, and is associated with deposition of antibodies as well as infiltration of T lymphocytes and macrophages, which are responsible for initiation and/or exacerbation of inflammation and tissue injury. Current treatment options have relatively limited efficacy; therefore, novel targets need to be explored. The co-inhibitory molecule, B7x, a new member of the B7 family expressed predominantly by non-lymphoid tissues, has been shown to inhibit the proliferation, activation and functional responses of CD4 and CD8 T cells. In this study, we found that B7x was expressed by intrinsic renal cells, and was up-regulated upon stimulation with inflammatory triggers. After passive administration of antibodies against glomerular antigens, B7x(-/-) mice developed severe renal injury accompanied by a robust adaptive immune response and kidney up-regulation of inflammatory mediators, as well as local infiltration of T cells and macrophages. Furthermore, macrophages in the spleen of B7x(-/-) mice were polarized to an inflammatory phenotype. Finally, treatment with B7x-immunoglobulin (Ig) in this nephritis model decreased kidney damage and reduced local inflammation. We propose that B7x can modulate kidney damage in autoimmune diseases including lupus nephritis and anti-glomerular basement membrane disease. Thus, B7x mimetics may be a novel therapeutic option for treatment of immune-mediated kidney disease.
Collapse
Affiliation(s)
- R D Pawar
- The Division of Rheumatology, Albert Einstein College of Medicine, NY, USA; Department of Microbiology & Immunology, Albert Einstein College of Medicine, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sun AC, Ou D, Luciani DS, Warnock GL. B7-H4 as a protective shield for pancreatic islet beta cells. World J Diabetes 2014; 5:739-746. [PMID: 25512776 PMCID: PMC4265860 DOI: 10.4239/wjd.v5.i6.739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/16/2014] [Accepted: 09/10/2014] [Indexed: 02/05/2023] Open
Abstract
Auto- and alloreactive T cells are major culprits that damage β-cells in type 1 diabetes (T1D) and islet transplantation. Current immunosuppressive drugs can alleviate immune-mediated attacks on islets. T cell co-stimulation blockade has shown great promise in autoimmunity and transplantation as it solely targets activated T cells, and therefore avoids toxicity of current immunosuppressive drugs. An attractive approach is offered by the newly-identified negative T cell co-signaling molecule B7-H4 which is expressed in normal human islets, and its expression co-localizes with insulin. A concomitant decrease in B7-H4/insulin co-localization is observed in human type 1 diabetic islets. B7-H4 may play protective roles in the pancreatic islets, preserving their function and survival. In this review we outline the protective effect of B7-H4 in the contexts of T1D, islet cell transplantation, and potentially type 2 diabetes. Current evidence offers encouraging data regarding the role of B7-H4 in reversal of autoimmune diabetes and donor-specific islet allograft tolerance. Additionally, unique expression of B7-H4 may serve as a potential biomarker for the development of T1D. Future studies should continue to focus on the islet-specific effects of B7-H4 with emphasis on mechanistic pathways in order to promote B7-H4 as a potential therapy and cure for T1D.
Collapse
|
27
|
Radichev IA, Maneva-Radicheva LV, Amatya C, Parker C, Ellefson J, Wasserfall C, Atkinson M, Burn P, Savinov AY. Nardilysin-dependent proteolysis of cell-associated VTCN1 (B7-H4) marks type 1 diabetes development. Diabetes 2014; 63:3470-82. [PMID: 24848066 PMCID: PMC4171653 DOI: 10.2337/db14-0213] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
T-cell responses directed against insulin-secreting pancreatic β-cells are the key events highlighting type 1 diabetes (T1D). Therefore, a defective control of T-cell activation is thought to underlie T1D development. Recent studies implicated a B7-like negative costimulatory protein, V-set domain-containing T-cell activation inhibitor-1 (VTCN1), as a molecule capable of inhibiting T-cell activation and, potentially, an important constituent in experimental models of T1D. Here, we unravel a general deficiency within the VTCN1 pathway that is shared between diabetes-prone mice and a subset of T1D patients. Gradual loss of membrane-tethered VTCN1 from antigen-presenting cells combined with an increased release of soluble VTCN1 (sVTCN1) occurs in parallel to natural T1D development, potentiating hyperproliferation of diabetogenic T cells. Mechanistically, we demonstrate that the loss of membrane-tethered VTCN1 is linked to proteolytic cleavage mediated by the metalloproteinase nardilysin. The cleaved sVTCN1 fragment was detected at high levels in the peripheral blood of 53% T1D patients compared with only 9% of the healthy subjects. Elevated blood sVTCN1 levels appeared early in the disease progression and correlated with the aggressive pace of disease, highlighting the potential use of sVTCN1 as a new T1D biomarker, and identifying nardilysin as a potential therapeutic target.
Collapse
Affiliation(s)
- Ilian A Radichev
- Sanford Project/Children's Health Research Center at Sanford Research, Sioux Falls, SD Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD
| | - Lilia V Maneva-Radicheva
- Sanford Project/Children's Health Research Center at Sanford Research, Sioux Falls, SD Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD
| | - Christina Amatya
- Sanford Project/Children's Health Research Center at Sanford Research, Sioux Falls, SD Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD
| | - Camille Parker
- Sanford Project/Children's Health Research Center at Sanford Research, Sioux Falls, SD Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD
| | - Jacob Ellefson
- Sanford Project/Children's Health Research Center at Sanford Research, Sioux Falls, SD Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD
| | - Clive Wasserfall
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL
| | - Mark Atkinson
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL
| | - Paul Burn
- Sanford Project/Children's Health Research Center at Sanford Research, Sioux Falls, SD Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD
| | - Alexei Y Savinov
- Sanford Project/Children's Health Research Center at Sanford Research, Sioux Falls, SD Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD
| |
Collapse
|
28
|
Abstract
B7-H4 is a ligand in the B7 costimulatory family, executing suppressive function on the immune system in many diseases, such as cancer, allograft rejection, and autoimmune diseases. The receptor for this molecule has yet to be clarified. The engagement of B7-H4 inhibits proliferation of immune cells by stopping the cell cycle at the G0/G1 phase and leads to apoptosis via the Fas/FasL pathway consequently accelerating tumor progression and alleviating allograft rejection. The pathogenic role of B7-H4 in tumors has been widely established, but few studies have focused on its function in other disorders. Here, we review recent advances in our understanding of B7-H4 biology in disease settings other than tumors and document the beneficial values to treat those diseases by targeting this molecule and related signaling pathways.
Collapse
|
29
|
Abstract
OBJECTIVES B7-H4 is a negative coregulatory molecule known to be involved in immune response. We study here B7-H4 expression and its possible role in diabetes and cancer development. METHODS Formalin-fixed, paraffin-processed pancreas samples from patients with type 1 diabetes (T1D), insulinoma, pancreatic ductal adenocarcinoma (PDAC), and normal organ donors were studied by bright-field and multifluorescence immunohistochemistry to examine B7-H4 expression and its colocalization with islet endocrine hormones. Quantitative RT-PCR and Western blot assay were used to examine B7-H4 mRNA and protein expression in the islet and exocrine tissues from normal donors and pancreatic cancer cell lines. RESULTS B7-H4 protein expression in islet β cells is decreased in T1D and PDAC, but increased in insulinoma patients when compared to normal controls; the changes in B7-H4 expression are concomitant with insulin expression on the islet β cells. The insulin/B7-H4 colocalization on the β cells, expressed in colocalization coefficient Pearson r, is also changed in these islets. CONCLUSIONS Our observation of altered B7-H4 expression, concomitant with insulin expression, in the pancreatic islets of T1D, PDAC, and insulinoma patients when compared to normal controls suggests that B7-H4 pathway might play an important role in maintenance of β-cell function, but its exact role remains to be explored.
Collapse
|
30
|
Ceeraz S, Nowak EC, Noelle RJ. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol 2013; 34:556-63. [PMID: 23954143 PMCID: PMC3821798 DOI: 10.1016/j.it.2013.07.003] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 12/14/2022]
Abstract
Fine-tuning the immune response and maintaining tolerance to self-antigens involves a complex network of co-stimulatory and co-inhibitory molecules. The recent FDA approval of ipilimumab, a monoclonal antibody blocking cytotoxic T lymphocyte antigen (CTLA)-4, demonstrates the impact of checkpoint regulators in disease. This is reinforced by ongoing clinical trials targeting not only CTLA-4, but also the programmed death (PD)-1 and B7-H4 pathways in various disease states. Recently, two new B7 family inhibitory ligands, V-domain Ig suppressor of T cell activation (VISTA) and B7-H6 were identified. Here, we review recent understanding of B7 family members and their concerted regulation of the immune response to either self or foreign pathogens. We also discuss clinical developments in targeting these pathways in different disease settings, and introduce VISTA as a putative therapeutic target.
Collapse
Affiliation(s)
- Sabrina Ceeraz
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Norris Cotton Cancer Centre, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | | | | |
Collapse
|
31
|
Podojil JR, Miller SD. Targeting the B7 family of co-stimulatory molecules: successes and challenges. BioDrugs 2013; 27:1-13. [PMID: 23329394 DOI: 10.1007/s40259-012-0001-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As more patient data is cross-referenced with animal models of disease, the primary focus on T(h)1 autoreactive effector cell function in autoimmune diseases, such as rheumatoid arthritis and multiple sclerosis, has shifted towards the role of T(h)17 autoreactive effector cells and the ability of regulatory T cells (T(reg)) to modulate the pro-inflammatory autoimmune response. Therefore, the currently favored hypothesis is that a delicate balance between T(h)1/17 effector cells and T(reg) cell function is critical in the regulation of inflammatory autoimmune disease. An intensive area of research with regard to the T(h)1/17:T(reg) cell balance is the utilization of blockade and/or ligation of various co-stimulatory or co-inhibitory molecules, respectively, during ongoing disease to skew the immune response toward a more tolerogenic/regulatory state. Currently, FDA-approved therapies for multiple sclerosis patients are all aimed at the suppression of immune cell function. The other favored method of treatment is a modulation or deletion of autoreactive immune cells via short-term blockade of activating co-stimulatory receptors via treatment with fusion proteins such as CTLA4-Ig and CTLA4-FasL. Based on the initial success of CTLA4-Ig, there are additional fusion proteins that are currently under development. Examples of the more recently identified B7/CD28 family members are PD-L1, PD-L2, inducible co-stimulatory molecule-ligand (ICOS-L), B7-H3, and B7-H4, all of which may emerge as potential fusion protein therapeutics, each with unique, yet often overlapping functions. The expression of both stimulatory and inhibitory B7 molecules seems to play an essential role in modulating immune cell function through a variety of mechanisms, which is supported by findings that suggest each B7 molecule has developed its own indispensable niche in the immune system. As more data are generated, the diagnostic and therapeutic potential of the above B7 family-member-derived fusion proteins becomes ever more apparent. Besides defining the biology of these B7/CD28 family members in vivo, additional difficulty in the development of these therapies lies in maintaining the normal immune functions of recognition and reaction to non-self-antigens following viral or bacterial infection in the patient. Further complicating the clinical translation of these therapies, the mechanism of action identified for a particular reagent may depend upon the method of immune-cell activation and the subset of immune cells targeted in the study.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Tarry 6-718, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | | |
Collapse
|
32
|
Kristensen NN, Schmidt EGW, Rasmussen S, Balk-Møller E, Claesson MH. B7-H4-Ig treatment of normal mice changes lymphocyte homeostasis and increases the potential of regulatory T cells. Immunopharmacol Immunotoxicol 2013; 35:505-13. [DOI: 10.3109/08923973.2013.810642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
B7-H4Ig inhibits mouse and human T-cell function and treats EAE via IL-10/Treg-dependent mechanisms. J Autoimmun 2013; 44:71-81. [PMID: 23683881 DOI: 10.1016/j.jaut.2013.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/06/2013] [Accepted: 04/01/2013] [Indexed: 02/02/2023]
Abstract
We evaluated the therapeutic efficacy and mechanisms of action of both mouse and human B7-H4 Immunoglobulin fusion proteins (mB7-H4Ig; hB7-H4Ig) in treating EAE. The present data show that mB7-H4Ig both directly and indirectly (via increasing Treg function) inhibited CD4⁺ T-cell proliferation and differentiation in both Th1- and Th17-cell promoting conditions while inducing production of IL-10. B7-H4Ig treatment effectively ameliorated progression of both relapsing (R-EAE) and chronic EAE correlating with decreased numbers of activated CD4⁺ T-cells within the CNS and spleen, and a concurrent increase in number and function of Tregs. The functional requirement for Treg activation in treating EAE was demonstrated by a loss of therapeutic efficacy of hB7-H4Ig in R-EAE following inactivation of Treg function either by anti-CD25 treatment or blockade of IL-10. Significant to the eventual translation of this treatment into clinical practice, hB7-H4Ig similarly inhibited the in vitro differentiation of naïve human CD4⁺ T-cells in both Th1- and Th17-promoting conditions, while promoting the production of IL-10. B7-H4Ig thus regulates pro-inflammatory T-cell responses by a unique dual mechanism of action and demonstrates significant promise as a therapeutic for autoimmune diseases, including MS.
Collapse
|
34
|
Dotson AL, Novikova L, Stehno-Bittel L, Benedict SH. Elimination of T cell reactivity to pancreatic β cells and partial preservation of β cell activity by peptide blockade of LFA-1:ICAM-1 interaction in the NOD mouse model. Clin Immunol 2013; 148:149-61. [PMID: 23770626 DOI: 10.1016/j.clim.2013.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/11/2013] [Accepted: 04/30/2013] [Indexed: 01/21/2023]
Abstract
In insulin dependent diabetes mellitus (T1D), self-reactive T cells infiltrate pancreatic islets and induce beta cell destruction and dysregulation of blood glucose. A goal is to control only the self-reactive T cells, leaving the remainder of the T cell population free to protect the host. One approach is blockade of the second signal for T cell activation while allowing the first (antigen-specific) signal to occur. This work proposes that small peptides that block interaction of second signals delivered through the counter receptors LFA-1:ICAM-1 will induce attacking T cells (receiving the antigen signal) to become anergic or undergo apoptosis. In NOD mice, the peptides eliminated T cell reactivity against pancreatic antigens and reduced cellular infiltration into islets, which retained stronger density of insulin staining at five weeks after cessation of therapy. In in vitro studies the peptides induced nonresponsiveness during activation of T cells from mice and from human peripheral blood.
Collapse
Affiliation(s)
- Abby L Dotson
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
35
|
Lee IF, Wang X, Hao J, Akhoundsadegh N, Chen L, Liu L, Langermann S, Ou D, Warnock GL. B7-H4.Ig inhibits the development of type 1 diabetes by regulating Th17 cells in NOD mice. Cell Immunol 2013; 282:1-8. [PMID: 23623902 DOI: 10.1016/j.cellimm.2013.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 03/14/2013] [Accepted: 03/25/2013] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by immunological destruction of insulin-producing pancreatic β-cells and subsequent hyperglycemia. The non-obese diabetic (NOD) mouse strain spontaneously develops a disease similar to human T1D and is commonly used as an animal model for studying this disease. We have previously shown that the administration of B7-H4-immunoglobulin fusion protein (B7-H4.Ig), a newly identified T-cell co-inhibitory signaling molecule, blocks the onset of diabetes in NOD mice. However, the mechanism(s) by which B7-H4 protects NOD mice from T1D is not fully understood. IL-17 is a pro-inflammatory cytokine, produced by Th17 cells, that activates T cells and other immune cells to produce a variety of cytokines and chemokines. Increasing evidence has shown that therapeutic agents targeting the IL-17 molecule or directly inhibiting IL-17-producing cells regulate autoimmune diabetes in NOD mice, suggesting that IL-17 is involved in the pathogenesis of this disease. In this study, we investigate whether B7-H4.Ig treatment inhibits the generation of Th17 cells which subsequently decreases IL-17 production and prevents the onset of T1D in NOD mice. Pre-diabetic female NOD mice were injected intraperitoneally with control mouse IgG or B7-H4.Ig starting at 4 weeks of age for 12 weeks. Our data showed that the frequency of Th17 cells in B7-H4.Ig-treated mice was significantly decreased. In addition, our data showed that B7-H4.Ig-treated mice had decreased levels of pro-inflammatory cytokines and Th17-associated cytokines, and an increased level of the potent Th17 inhibitor IFN-γ. To further investigate the effect of B7-H4.Ig on differentiation of Th17 cells, we co-cultured splenocytes with Th17-polarizing cytokines in the absence or presence of B7-H4.Ig. Our results indicated that splenocytes, under the Th17 driving conditions in the presence of B7-H4.Ig, had significantly decreased the numbers of Th17 cells compared to cells co-cultured in the absence of B7-H4.Ig. Together, this study suggests that blocking the generation of Th17 cells with the administration of B7-H4.Ig effectively inhibits the development of T1D in NOD mice.
Collapse
Affiliation(s)
- I-Fang Lee
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
BACKGROUND Allograft rejection is one of the main obstacles for islet transplantation. B7-H4 plays a key role in maintaining T-cell homeostasis by reducing T-cell proliferation and cytokine production. In this study, we investigated whether the endogenous expression of B7-H4 in β cells from B7-H4 transgenic mice enhances islet allograft survival. METHODS B7-H4 transgenic C57BL/6 (B6) mice (RIP.B7-H4) were developed by inserting the entire B7-H4 open reading frame under the rat insulin promoter (RIP). B7-H4 protein expression was examined by flow cytometric analysis and immunohistochemical staining. Islet allograft survival was investigated in streptozotocin-induced diabetic recipient BALB/c (H-2d) mice transplanted with 400 islets from RIP.B7-H4 (H-2b) mice under the kidney capsule. The recipient control group received islets from wild-type B6 donors. RESULTS B7-H4 protein was significantly up-regulated in isolated islets from RIP.B7-H4 compared with wild-type B6 mice (56%±23% vs. 3%±1.2%). B7-H4 was coexpressed with insulin, but not glucagon, suggesting that B7-H4 is expressed in a β-cell-specific manner. Recipient BALB/c mice transplanted with RIP.B7-H4 islets established euglycemia for 42.3±18.4 days (mean±SD; n=9) compared with controls at 23.1±7.8 days (mean±SD; n=12; P<0.004, log-rank test). CONCLUSIONS The endogenous expression of B7-H4 in donor β cells from transgenic mice prolongs islet allograft survival, confirming the negative role of B7-H4 in regulating alloreactive T-cell responses.
Collapse
|
37
|
Yao S, Zhu Y, Chen L. Advances in targeting cell surface signalling molecules for immune modulation. Nat Rev Drug Discov 2013; 12:130-46. [PMID: 23370250 PMCID: PMC3698571 DOI: 10.1038/nrd3877] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed a surge in the development of immunomodulatory approaches to combat a broad range of human diseases, including cancer, viral infections, autoimmunity and inflammation as well as in the prevention of transplant rejection. Immunomodulatory approaches mostly involve the use of monoclonal antibodies or recombinant fusion proteins that target cell surface signalling molecules on immune cells to drive immune responses towards the desired direction. Advances in our understanding of the human immune system, along with valuable lessons learned from the first generation of therapeutic biologics, are aiding the design of the next generation of immunomodulatory biologics with better therapeutic efficacy, minimized adverse effects and long-lasting clinical benefit. The recent encouraging results from antibodies targeting programmed cell death protein 1 (PD1) and B7 homolog 1 (B7H1; also known as PDL1) for the treatment of various advanced human cancers show that immunomodulatory therapy has come of age.
Collapse
Affiliation(s)
- Sheng Yao
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University School of Medicine, 300 George Street, New Haven, Connecticut 06519, USA
| | | | | |
Collapse
|
38
|
Rasmussen SB, Kosicki M, Svendsen SG, Claesson MH, Kristensen NN. <i>In vitro</i> activity and function of B7-H4-Ig fusion protein. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/oji.2013.31004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Lee JS, Scandiuzzi L, Ray A, Wei J, Hofmeyer KA, Abadi YM, Loke P, Lin J, Yuan J, Serreze DV, Allison JP, Zang X. B7x in the periphery abrogates pancreas-specific damage mediated by self-reactive CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:4165-74. [PMID: 22972920 DOI: 10.4049/jimmunol.1201241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B7x (B7-H4 or B7S1) is the seventh member of the B7 family, and its in vivo function remains largely unknown. Despite new genetic data linking the B7x gene with autoimmune diseases, how exactly it contributes to peripheral tolerance and autoimmunity is unclear. In this study, we showed that B7x protein was not detected on APCs or T cells in both human and mice, which is unique in the B7 family. Because B7x protein is expressed in some peripheral cells such as pancreatic β cells, we used a CD8 T cell-mediated diabetes model (AI4αβ) in which CD8 T cells recognize an endogenous self-Ag, and found that mice lacking B7x developed more severe diabetes than control AI4αβ mice. Conversely, mice overexpressing B7x in the β cells (Rip-B7xAI4αβ) were diabetes free. Furthermore, adoptive transfer of effector AI4αβ CD8 T cells induced diabetes in control mice, but not in Rip-B7xAI4αβ mice. Mechanistic studies revealed that pathogenic effector CD8 T cells were capable of migrating to the pancreas but failed to robustly destroy tissue when encountering local B7x in Rip-B7xAI4αβ mice. Although AI4αβ CD8 T cells in Rip-B7xAI4αβ and AI4αβ mice showed similar cytotoxic function, cell death, and global gene expression profiles, these cells had greater proliferation in AI4αβ mice than in RIP-B7xAI4αβ mice. These results suggest that B7x in nonlymphoid organs prevents peripheral autoimmunity partially through inhibiting proliferation of tissue-specific CD8 T cells, and that local overexpression of B7x on pancreatic β cells is sufficient to abolish CD8 T cell-induced diabetes.
Collapse
Affiliation(s)
- Jun Sik Lee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liechtenstein T, Dufait I, Lanna A, Breckpot K, Escors D. MODULATING CO-STIMULATION DURING ANTIGEN PRESENTATION TO ENHANCE CANCER IMMUNOTHERAPY. IMMUNOLOGY, ENDOCRINE & METABOLIC AGENTS IN MEDICINAL CHEMISTRY 2012; 12:224-235. [PMID: 22945252 PMCID: PMC3428911 DOI: 10.2174/187152212802001875] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the key roles of the immune system is the identification of potentially dangerous pathogens or tumour cells, and raising a wide range of mechanisms to eliminate them from the organism. One of these mechanisms is activation and expansion of antigen-specific cytotoxic T cells, after recognition of antigenic peptides on the surface of antigen presenting cells such as dendritic cells (DCs). However, DCs also process and present autoantigens. Therefore, antigen presentation has to occur in the appropriate context to either trigger immune responses or establishing immunological tolerance. This is achieved by co-stimulation of T cells during antigen presentation. Co-stimulation consists on the simultaneous binding of ligand-receptor molecules at the immunological synapse which will determine the type and extent of T cell responses. In addition, the type of cytokines/chemokines present during antigen presentation will influence the polarisation of T cell responses, whether they lead to tolerance, antibody responses or cytotoxicity. In this review, we will focus on approaches manipulating co-stimulation during antigen presentation, and the role of cytokine stimulation on effective T cell responses. More specifically, we will address the experimental strategies to interfere with negative co-stimulation such as that mediated by PD-L1 (Programmed cell death 1 ligand 1)/PD-1 (Programmed death 1) to enhance anti-tumour immunity.
Collapse
Affiliation(s)
- Therese Liechtenstein
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
| | - Ines Dufait
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
- Department of Physiology-Immunology. Medical School. Free University of Brussels. Laarbeeklaan 103. 1090 Jette. Belgium
| | - Alessio Lanna
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
| | - Karine Breckpot
- Department of Physiology-Immunology. Medical School. Free University of Brussels. Laarbeeklaan 103. 1090 Jette. Belgium
| | - David Escors
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
| |
Collapse
|
41
|
Wang X, Hao J, Metzger DL, Mui A, Lee IF, Akhoundsadegh N, Chen CL, Ou D, Ao Z, Verchere CB, Warnock GL. Blockade of both B7-H4 and CTLA-4 co-signaling pathways enhances mouse islet allograft survival. Islets 2012; 4:284-95. [PMID: 22878670 PMCID: PMC3496653 DOI: 10.4161/isl.21239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Costimulation blockade is an effective way to prevent allograft rejection. In this study, we tested the efficacy of two negative co-signaling molecules in protecting islet allograft function. We used local expression of B7-H4 by adenoviral transduction of islets (Ad-B7-H4) and systemic administration of CTLA-4.Ig to investigate the outcomes of allograft survival. Five groups of streptozotocin-induced diabetic C57BL/6 mice received 400 islets each from BALB/c donors. The groups consisted of control (G1); CTLA-4.Ig (G2); Ad-LacZ (G3); Ad-B7-H4 (G4); and Ad-B7-H4 and CTLA-4.Ig combined (G5). G1 and G3 developed graft failure on average of two weeks. G2, G4 and G5 survived for 43.8 ± 34.8, 54.7 ± 31.2 and 77.8 ± 21.5 d, respectively. Activated T and B cells in the lymph nodes were significantly controlled by CTLA-4.Ig treatment. Significantly reduced infiltrates were also detected in the allografts of G2 compared with G1. By contrast, B7-H4 significantly inhibited Th1-associated IFN-gamma secretion in the early stage and increased Foxp3 (+) T cells in the long-term surviving allografts. Our study suggests that CTLA-4 and B7-H4 inhibit alloimmune responses through distinct mechanisms, and that combination therapy which activates two negative co-signaling pathways can further enhance islet allograft survival.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Surgery; University of British Columbia; Vancouver, BC Canada
- These authors contributed equally to this work
| | - Jianqiang Hao
- Department of Surgery; University of British Columbia; Vancouver, BC Canada
- These authors contributed equally to this work
| | - Daniel L. Metzger
- Department of Pediatrics; University of British Columbia; Vancouver, BC Canada
| | - Alice Mui
- Department of Surgery; University of British Columbia; Vancouver, BC Canada
| | - I-Fang Lee
- Department of Surgery; University of British Columbia; Vancouver, BC Canada
| | | | - C. Lieping Chen
- Department of Immunobiology; Yale University School of Medicine; New Haven, CT USA
| | - Dawei Ou
- Department of Surgery; University of British Columbia; Vancouver, BC Canada
| | - Ziliang Ao
- Department of Surgery; University of British Columbia; Vancouver, BC Canada
| | - C. Bruce Verchere
- 4Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver, BC Canada
| | - Garth L. Warnock
- Department of Surgery; University of British Columbia; Vancouver, BC Canada
- Correspondence to: Garth L. Warnock,
| |
Collapse
|
42
|
McGrath MM, Najafian N. The role of coinhibitory signaling pathways in transplantation and tolerance. Front Immunol 2012; 3:47. [PMID: 22566929 PMCID: PMC3342378 DOI: 10.3389/fimmu.2012.00047] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/28/2012] [Indexed: 12/25/2022] Open
Abstract
Negative costimulatory molecules, acting through so-called inhibitory pathways, play a crucial role in the control of T cell responses. This negative “second signal” opposes T cell receptor activation and leads to downregulation of T cell proliferation and promotes antigen specific tolerance. Much interest has focused upon these pathways in recent years as a method to control detrimental alloresponses and promote allograft tolerance. However, recent experimental data highlights the complexity of negative costimulatory pathways in alloimmunity. Varying effects are observed from molecules expressed on donor and recipient tissues and also depending upon the activation status of immune cells involved. There appears to be significant overlap and redundancy within these systems, rendering this a challenging area to understand and exploit therapeutically. In this article, we will review the literature at the current time regarding the major negative costimulation pathways including CTLA-4:B7, PD-1:PD-L1/PD-L2 and PD-L1:B7-1, B7-H3, B7-H4, HVEM:BTLA/CD160, and TIM-3:Galectin-9. We aim to outline the role of these pathways in alloimmunity and discuss their potential applications for tolerance induction in transplantation.
Collapse
Affiliation(s)
- Martina M McGrath
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital, Harvard Medical School Boston, MA, USA
| | | |
Collapse
|