1
|
Zhang X, Nguyen MH. Metabolic dysfunction-associated steatotic liver disease: A sexually dimorphic disease and breast and gynecological cancer. Metabolism 2025; 167:156190. [PMID: 40081614 DOI: 10.1016/j.metabol.2025.156190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become a global public health and economic burden worldwide in the past few decades. Epidemiological studies have shown that MASLD is a multisystem disease that is associated not only with liver-related complications but also with an increased risk of developing extrahepatic cancers. MASLD is a sexually dimorphic disease with sex hormones playing an important role in the development and progression of MASLD, especially by the levels and ratios of circulating estrogens and androgens. MASLD is associated with hormone-sensitive cancers including breast and gynecological cancer. The risk of breast and gynecological cancer is elevated in individuals with MASLD driven by shared metabolic risk factors including obesity and insulin resistance. Multiple potential mechanisms underline these associations including metabolic dysfunction, gut dysbiosis, chronic inflammation and dysregulated release of hepatokines. However, the effect of hormone therapy including hormone replacement therapy and anti-estrogen treatment on MASLD and female-specific cancers remains debatable at this time. This synopsis will review the associations between MASLD and breast and gynecological cancer, their underlying mechanisms, implications of hormonal therapies, and their future directions.
Collapse
Affiliation(s)
- Xinrong Zhang
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University Medical Center, Palo Alto, CA, United States
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University Medical Center, Palo Alto, CA, United States; Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, United States; Stanford Cancer Institute, Stanford University Medical Center, Palo Alto, CA, United States.
| |
Collapse
|
2
|
Hwang SH, Choi YH, Huh DA, Kim L, Park K, Lee J, Choi HJ, Lim W, Moon KW. Per- and polyfluoroalkyl substances exposures are associated with non-alcoholic fatty liver disease, particularly fibrosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126085. [PMID: 40113201 DOI: 10.1016/j.envpol.2025.126085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/06/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been reported to exert hepatotoxic effects; however, their impact on nonalcoholic fatty liver disease (NAFLD) remains unclear. This study aimed to investigate the association between PFAS exposure and NAFLD in Korean adults, thereby contributing to the generalization of PFAS's hepatotoxic effects. Using data from the 2018-2020 Korean National Environmental Health Survey (KoNEHS), we analyzed 2635 Korean adults. PFAS exposure levels were estimated based on the serum concentrations of five PFAS. NAFLD was assessed using two steatosis-related indices (hepatic steatosis index [HSI] and fatty liver index [FLI]) and two fibrosis-related indices (fibrosis-4 index [FIB-4] and aspartate aminotransferase to platelet ratio index [APRI]). The models included these indices as continuous and dichotomous variables, the latter based on diagnostic criteria from previous studies. Associations with PFAS exposure were examined using multiple linear regression and robust Poisson regression models. Positive associations were observed between PFAS exposure and three of the four continuous indices, excluding the FLI, as well as the prevalence of NAFLD diagnosed using these indices. Specifically, the HSI showed a significant association only with perfluorononanoic acid, whereas fibrosis-related indices (FIB-4 and APRI) were significantly associated with all five individual PFAS. The associations were stronger in female and non-obese groups when stratified by sex and obesity status. The results of the Bayesian kernel machine regression analysis evaluating the health effects of PFAS mixtures indicated an association between PFAS mixtures and NAFLD, particularly fibrosis-related indices. Additionally, significant associations with NAFLD indices were mostly observed in females and non-obese groups, supporting the findings from the individual PFAS exposure analyses. Our findings suggest that PFAS are associated with NAFLD, particularly for fibrosis. Considering the high serum PFAS concentrations in the Korean population, continuous monitoring and prospective cohort studies are warranted.
Collapse
Affiliation(s)
- Se-Hyun Hwang
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Yun-Hee Choi
- Research Institute for Inflammation, Korea University College of Medicine, Seoul, 02841, Republic of Korea; School of Health and Environmental Science, Korea University, Seoul, 02841, Republic of Korea; Department of Safety and Health, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Da-An Huh
- Institute of Health Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Lita Kim
- Department of Health and Safety Convergence Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea; L-HOPE Program for Community-Based Total Learning Health Systems, Republic of Korea
| | - Kangyeon Park
- Department of Health and Safety Convergence Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea; L-HOPE Program for Community-Based Total Learning Health Systems, Republic of Korea
| | - Jiyoun Lee
- Department of Health and Safety Convergence Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea; L-HOPE Program for Community-Based Total Learning Health Systems, Republic of Korea
| | - Hyeon Jeong Choi
- School of Health and Environmental Science, Korea University, Seoul, 02841, Republic of Korea
| | - Woohyun Lim
- School of Health and Environmental Science, Korea University, Seoul, 02841, Republic of Korea
| | - Kyong Whan Moon
- School of Health and Environmental Science, Korea University, Seoul, 02841, Republic of Korea; L-HOPE Program for Community-Based Total Learning Health Systems, Republic of Korea
| |
Collapse
|
3
|
Ouyang Q, Dong Y, Li R, Hu Y, Xue Q, Yu X, Li J, Zhang P, Wu N, Yang Y, Li F, Wang T, Li Y, Li S, Pan XF. Associations of Hysterectomy, Oophorectomy, and Hormone Replacement Therapy With the Risk of Type 2 Diabetes Mellitus in Postmenopausal Women. Clin Endocrinol (Oxf) 2025. [PMID: 40255188 DOI: 10.1111/cen.15253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE Female-specific risk factors warrant attention in the prevention and control of type 2 diabetes mellitus (T2DM). The study aimed to investigate the relationships of hysterectomy, bilateral oophorectomy, and hormone replacement therapy (HRT) with the risk of T2DM in postmenopausal women. DESIGN We included 127,514 postmenopausal women without T2DM at baseline from the UK Biobank. MEASUREMENTS Hysterectomy, bilateral oophorectomy, and HRT were self-reported at baseline, and incident T2DM was identified using ICD-10 code E11 during the follow-up period. RESULTS Compared to no hysterectomy/bilateral oophorectomy, hysterectomy alone (HR, 1.20; 95%CI: 1.09, 1.32) and combined hysterectomy and bilateral oophorectomy (HR, 1.19; 95%CI: 1.08, 1.32) were associated with higher risks of incident T2DM. Independent of other factors, the history of HRT was associated with a higher risk of T2DM (HR, 1.08; 95%CI: 1.03, 1.14), but this positive association was observed only in women without no hysterectomy or bilateral oophorectomy. Within the women without surgical procedures, the association between HRT and T2DM existed only in those younger than 45 years (HR, 1.27; 95%CI: 1.14, 1.41), but not in the older (HR, 1.03; 95%CI: 0.96, 1.09). CONCLUSIONS Hysterectomy, regardless of bilateral oophorectomy status, was associated with a higher risk of T2DM. The HRT use, particularly early use in women without surgical interventions, was associated with a high risk. Our findings indicate that female-specific risk factors such as hysterectomy and bilateral oophorectomy and HRT use should be incorporated into the assessments for potential risk of T2DM in postmenopausal women.
Collapse
Affiliation(s)
- Qingqing Ouyang
- Department of Epidemiology and Biostatistics, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yidan Dong
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Li
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Hu
- Reproductive Endocrinology and Regulation Laboratory & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingping Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xinyue Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyi Li
- Department of Epidemiology and Biostatistics, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peiqi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nianwei Wu
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunhaonan Yang
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fan Li
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianlei Wang
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingru Li
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuo Li
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Zhang JW, Zhang N, Lyu Y, Zhang XF. Influence of Sex in the Development of Liver Diseases. Semin Liver Dis 2025; 45:15-32. [PMID: 39809453 DOI: 10.1055/a-2516-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The liver is a sexually dimorphic organ. Sex differences in prevalence, progression, prognosis, and treatment prevail in most liver diseases, and the mechanism of how liver diseases act differently among male versus female patients has not been fully elucidated. Biological sex differences in normal physiology and disease arise principally from sex hormones and/or sex chromosomes. Sex hormones contribute to the development and progression of most liver diseases, with estrogen- and androgen-mediated signaling pathways mechanistically involved. In addition, genetic factors in sex chromosomes have recently been found to contribute to the sex disparity of many liver diseases, which might explain, to some extent, the difference in gene expression pattern, immune response, and xenobiotic metabolism between men and women. Although increasing evidence suggests that sex is one of the most important modulators of disease prevalence and outcomes, at present, basic and clinical studies have long been sex unbalanced, with female subjects underestimated. As such, this review focuses on sex disparities of liver diseases and summarizes the current understanding of sex-specific mechanisms, including sex hormones, sex chromosomes, etc. We anticipate that understanding sex-specific pathogenesis will aid in promoting personalized therapies for liver disease among male versus female patients.
Collapse
Affiliation(s)
- Jie-Wen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
5
|
Duan H, Gong M, Yuan G, Wang Z. Sex Hormone: A Potential Target at Treating Female Metabolic Dysfunction-Associated Steatotic Liver Disease? J Clin Exp Hepatol 2025; 15:102459. [PMID: 39722783 PMCID: PMC11667709 DOI: 10.1016/j.jceh.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rising due to rapid lifestyle changes. Although females may be less prone to MASLD than males, specific studies on MASLD in females should still be conducted. Previous research has shown that sex hormone levels are strongly linked to MASLD in females. By reviewing a large number of experimental and clinical studies, we summarized the pathophysiological mechanisms of estrogen, androgen, sex hormone-binding globulin, follicle-stimulating hormone, and prolactin involved in the development of MASLD. We also analyzed the role of these hormones in female MASLD patients with polycystic ovarian syndrome or menopause, and explored the potential of targeting sex hormones for the treatment of MASLD. We hope this will provide a reference for further exploration of mechanisms and treatments for female MASLD from the perspective of sex hormones.
Collapse
Affiliation(s)
- Huiyan Duan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minmin Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Hu S, Kang H, Bae M, Kim MB, Jang H, Corvino O, Pham TX, Lee Y, Smyth JA, Park YK, Lee JY. Histone Deacetylase 9 Deletion Inhibits Hepatic Steatosis and Adipose Tissue Inflammation in Male Diet-Induced Obese Mice. J Gastroenterol Hepatol 2025; 40:741-749. [PMID: 39730208 PMCID: PMC11875955 DOI: 10.1111/jgh.16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
AIM The goal of this study was to determine the role of histone deacetylase 9 (HDAC9) in the development of diet-induced metabolic dysfunction-associated steatohepatitis (MASH) and white adipose tissue (WAT) dysfunctions. METHODS We fed male and female mice with global Hdac9 knockout (KO) and their wild-type (WT) littermates an obesogenic high-fat/high-sucrose/high-cholesterol (35%/34%/2%, w/w) diet for 20 weeks. RESULTS Hdac9 deletion markedly inhibited body weight gain and liver steatosis with lower liver weight and triglyceride content than WT in male mice but not females. Consistently, hepatic expression of genes crucial for de novo lipogenesis was markedly suppressed only in male, but not female, Hdac9 KO mice. However, Hdac9 deletion had a minimal effect on hepatic inflammation and fibrosis. In WAT, Hdac9 KO showed less adipocyte hypertrophy, inflammation, and fibrosis in male mice compared with WT. In addition, indirect calorimetry demonstrated that male Hdac9 KO mice had significantly higher metabolic rates, respiratory exchange ratios, and energy expenditure without altering physical activities than WT, which was not observed in female mice. CONCLUSIONS Our findings indicate that global deletion of Hdac9 prevented the development of obesity, hepatic steatosis, and WAT inflammation and fibrosis in male mice with diet-induced obesity and MASH, suggesting that a sex-dependent role of HDAC9 may exist in the pathways mentioned above.
Collapse
Affiliation(s)
- Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Hyungryun Jang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Olivia Corvino
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Tho X Pham
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Joan A Smyth
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Smiriglia A, Lorito N, Bacci M, Subbiani A, Bonechi F, Comito G, Kowalik MA, Perra A, Morandi A. Estrogen-dependent activation of TRX2 reverses oxidative stress and metabolic dysfunction associated with steatotic disease. Cell Death Dis 2025; 16:57. [PMID: 39890799 PMCID: PMC11785963 DOI: 10.1038/s41419-025-07331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of hepatic disorders, ranging from simple steatosis to steatohepatitis, with the most severe outcomes including cirrhosis, liver failure, and hepatocellular carcinoma. Notably, MASLD prevalence is lower in premenopausal women than in men, suggesting a potential protective role of estrogens in mitigating disease onset and progression. In this study, we utilized preclinical in vitro models-immortalized cell lines and hepatocyte-like cells derived from human embryonic stem cells-exposed to clinically relevant steatotic-inducing agents. These exposures led to lipid droplet (LD) accumulation, increased reactive oxygen species (ROS) levels, and mitochondrial dysfunction, along with decreased expression of markers associated with hepatocyte functionality and differentiation. Estrogen treatment in steatotic-induced liver cells resulted in reduced ROS levels and LD content while preserving mitochondrial integrity, mediated by the upregulation of mitochondrial thioredoxin 2 (TRX2), an antioxidant system regulated by the estrogen receptor. Furthermore, disruption of TRX2, either pharmacologically using auranofin or through genetic interference, was sufficient to counteract the protective effects of estrogens, highlighting a potential mechanism through which estrogens may prevent or slow MASLD progression.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Angela Subbiani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Francesca Bonechi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy.
| |
Collapse
|
8
|
Alves ES, Santos JDM, Cruz AG, Camargo FN, Talarico CHZ, Santos ARM, Silva CAA, Morgan HJN, Matos SL, Araujo LCC, Camporez JP. Hepatic Estrogen Receptor Alpha Overexpression Protects Against Hepatic Insulin Resistance and MASLD. PATHOPHYSIOLOGY 2025; 32:1. [PMID: 39846638 PMCID: PMC11755535 DOI: 10.3390/pathophysiology32010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/15/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with cardiometabolic risk. Although studies have shown that estradiol positively contributes to energy metabolism via estrogen receptor alpha (ERα), its role specifically in the liver is not defined. Therefore, this study aimed to evaluate the effects of ERα overexpression, specifically in the liver in mice fed a high-fat diet (HFD). Methods: Male C57BL/6J mice were divided into four groups, vehicle fed with regular chow (RC) (RC-Vehicle); vehicle fed an HFD (HFD-Vehicle); AAV-treated fed with RC (RC-AAV); and AAV-treated fed an HFD (HFD-AAV), for 6 weeks (8-10 mice per group). AAV was administered intravenously to induce ERα overexpression. Results: We demonstrate that overexpression of ERα in RC-fed mice reduces body fat (28%). These mice show increased oxygen consumption in cultured primary hepatocytes, both in basal (19%) and maximal respiration (34%). In HFD-fed mice, we showed a decrease in hepatic TAG content (43%) associated with improved hepatic insulin sensitivity (145%). Conclusions: From this perspective, our results prove that hepatic ERα signaling is responsible for some of the metabolic protective effects of estrogen in mice. Overexpression of ERα improves hepatocyte mitochondrial function, consequently reducing hepatic lipid accumulation and protecting animals from hepatic steatosis and hepatic insulin resistance. Further investigations will be needed to determine the exact molecular mechanism by which ERα improves hepatic metabolic health.
Collapse
Affiliation(s)
- Ester S. Alves
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Jessica D. M. Santos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Alessandra G. Cruz
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Felipe N. Camargo
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Carlos H. Z. Talarico
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Anne R. M. Santos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Carlos A. A. Silva
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Henrique J. N. Morgan
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Sandro L. Matos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Layanne C. C. Araujo
- Superior Institute of Biomedical Sciences, State University of Ceara, Fortaleza 60714-903, Brazil;
| | - João Paulo Camporez
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| |
Collapse
|
9
|
Höring M, Brunner S, Scheiber J, Honecker J, Liebisch G, Seeliger C, Schinhammer L, Claussnitzer M, Burkhardt R, Hauner H, Ecker J. Sex-specific response of the human plasma lipidome to short-term cold exposure. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159567. [PMID: 39366508 DOI: 10.1016/j.bbalip.2024.159567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Cold-induced lipolysis is widely studied as a potential therapeutic strategy to combat metabolic disease, but its effect on lipid homeostasis in humans remains largely unclear. Blood plasma comprises an enormous repertoire in lipids allowing insights into whole body lipid homeostasis. So far, reported results originate from studies carried out with small numbers of male participants. Here, the blood plasma's lipidome of 78 male and 93 female volunteers, who were exposed to cold below the shivering threshold for 2 h, was quantified by comprehensive lipidomics using high-resolution mass spectrometry. Short-term cold exposure increased the concentrations in 147 of 177 quantified circulating lipids and the response of the plasma's lipidome was sex-specific. In particular, the amounts of generated glycerophospholipid and sphingolipid species differed between the sexes. In women, the BMI could be related with the lipidome's response. A logistic regression model predicted with high sensitivity and specificity whether plasma samples were from male or female subjects based on the cold-induced response of phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and sphingomyelin (SM) species. In summary, cold exposure promotes lipid synthesis by supplying fatty acids generated after lipolysis for all lipid classes. The plasma lipidome, i.e. PC, LPC and SM, shows a sex-specific response, indicating a different regulation of its metabolism in men and women. This supports the need for sex-specific research and avoidance of sex bias in clinical trials.
Collapse
Affiliation(s)
- Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Sarah Brunner
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | | | - Julius Honecker
- Institute of Nutritional Medicine, Else Kröner Fresenius Centre for Nutritional Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Claudine Seeliger
- Institute of Nutritional Medicine, Else Kröner Fresenius Centre for Nutritional Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Laura Schinhammer
- Institute of Nutritional Medicine, Else Kröner Fresenius Centre for Nutritional Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Melina Claussnitzer
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine and Endocrine Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hans Hauner
- Institute of Nutritional Medicine, Else Kröner Fresenius Centre for Nutritional Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
| | - Josef Ecker
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
10
|
Model JFA, Normann RS, Vogt ÉL, Dentz MV, de Amaral M, Xu R, Bachvaroff T, Spritzer PM, Chung JS, Vinagre AS. Interactions between glucagon like peptide 1 (GLP-1) and estrogens regulates lipid metabolism. Biochem Pharmacol 2024; 230:116623. [PMID: 39542180 DOI: 10.1016/j.bcp.2024.116623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Obesity, characterized by excessive fat accumulation in white adipose tissue (WAT), is linked to numerous health issues, including insulin resistance (IR), and type 2 diabetes mellitus (DM2). The distribution of adipose tissue differs by sex, with men typically exhibiting android adiposity and pre-menopausal women displaying gynecoid adiposity. After menopause, women have an increased risk of developing android-type obesity, IR, and DM2. Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are important in treating obesity and DM2 by regulating insulin secretion, impacting glucose and lipid metabolism. GLP-1Rs are found in various tissues including the pancreas, brain, and adipose tissue. Studies suggest GLP-1RAs and estrogen replacement therapies have similar effects on tissues like the liver, central nervous system, and WAT, probably by converging pathways involving protein kinases. To investigate these interactions, female rats underwent ovariectomy (OVR) to promote a state of estrogen deficiency. After 20 days, the rats were euthanized and the tissues were incubated with 10 μM of liraglutide, a GLP-1RA. Results showed significant changes in metabolic parameters: OVR increased lipid catabolism in perirenal WAT and basal lipolysis in subcutaneous WAT, while liraglutide treatment enhanced stimulated lipolysis in subcutaneous WAT. Liver responses included increased stimulated lipolysis with liraglutide. Transcriptome analysis revealed distinct gene expression patterns in WAT of OVR rats and those treated with GLP-1RA, highlighting pathways related to lipid and glucose metabolism. Functional enrichment analysis showed estrogen's pivotal role in these pathways, influencing genes involved in lipid metabolism regulation. Overall, the study underscores GLP-1RA acting directly on adipose tissues and highlights the complex interactions between GLP-1 and estrogen in regulating metabolism, suggesting potential synergistic therapeutic effects in treating metabolic disorders like obesity and DM2.
Collapse
Affiliation(s)
- Jorge F A Model
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafaella S Normann
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Éverton L Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maiza Von Dentz
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marjoriane de Amaral
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rui Xu
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Poli Mara Spritzer
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - J Sook Chung
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Anapaula S Vinagre
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Cherubini A, Della Torre S, Pelusi S, Valenti L. Sexual dimorphism of metabolic dysfunction-associated steatotic liver disease. Trends Mol Med 2024; 30:1126-1136. [PMID: 38890029 DOI: 10.1016/j.molmed.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver condition. MASLD is a sexually dimorphic condition, with its development and progression influenced by sex chromosomes and hormones. Estrogens typically protect against, whereas androgens promote, MASLD. Therapeutic approaches for a sex-specific personalized medicine include estrogen replacement, androgen blockers, and novel drugs targeting hormonal pathways. However, the interactions between hormonal factors and inherited genetic variation impacts MASLD risk, necessitating more tailored therapies. Understanding sex disparities and the role of estrogens could improve MASLD interventions and management, whereas clinical trials addressing sex differences are crucial for advancing personalized treatment. This review explores the underappreciated impact of sexual dimorphism in MASLD and discusses the potential therapeutic application of sex-related hormones.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Serena Pelusi
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
12
|
Zhang S, Zuo X, Luan J, Bai H, Fu Z, Sun M, Zhao X, Feng X. The deleterious effects and potential therapeutic strategy of fluorene-9-bisphenol on circadian activity and liver diseases in zebrafish and mice. J Environ Sci (China) 2024; 145:13-27. [PMID: 38844314 DOI: 10.1016/j.jes.2023.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 01/03/2025]
Abstract
Increasing evidence indicates that disturbance of the clock genes, which leads to systemic endocrine perturbation, plays a crucial role in the pathogenesis of metabolic and liver diseases. Fluorene-9-bisphenol (BHPF) is utilized in the manufacturing of plastic materials but its biological effects on liver homeostasis remain unknown. The impacts and involved mechanisms of BHPF on the liver diseases, metabolism, and circadian clock were comprehensively studied by zebrafish and mouse models. The therapeutic effect of melatonin (MT) was also verified. Zebrafish and mouse models with either acute exposure (0.5 and 1 µmol/L, 1-4 days post-fertilization) or chronic oral exposure (0.5 and 50 mg/(kg·2 days), 30 days) were established with various BHPF concentrations. Herein, we identified a crucial role for estrogenic regulation in liver development and circadian locomotor rhythms damaged by BHPF in a zebrafish model. BHPF mice showed chaos in circadian activity through the imbalance of circadian clock component Brain and Muscle Aryl hydrocarbon receptor nuclear translocator-like 1 in the liver and brain. The liver sexual dimorphic alteration along with reduced growth hormone and estrogens played a critical role in damaged glucose metabolism, hepatic inflammation, and fibrosis induced by BHPF. Besides, sleep improvement by exogenous MT alleviated BHPF-related glucose metabolism and liver injury in mice. We proposed the pathogenesis of metabolic and liver disease resulting from BHPF and promising targeted therapy for liver metabolism disorders associated with endocrine perturbation chemicals. These results might play a warning role in the administration of endocrine-disrupting chemicals in everyday life and various industry applications.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
13
|
Antelo-Cea DA, Martínez-Rojas L, Cabrerizo-Ibáñez I, Roudi Rashtabady A, Hernández-Alvarez MI. Regulation of Mitochondrial and Peroxisomal Metabolism in Female Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:11237. [PMID: 39457018 PMCID: PMC11508381 DOI: 10.3390/ijms252011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity and type 2 diabetes (T2D) are widespread metabolic disorders that significantly impact global health today, affecting approximately 17% of adults worldwide with obesity and 9.3% with T2D. Both conditions are closely linked to disruptions in lipid metabolism, where peroxisomes play a pivotal role. Mitochondria and peroxisomes are vital organelles responsible for lipid and energy regulation, including the β-oxidation and oxidation of very long-chain fatty acids (VLCFAs), cholesterol biosynthesis, and bile acid metabolism. These processes are significantly influenced by estrogens, highlighting the interplay between these organelles' function and hormonal regulation in the development and progression of metabolic diseases, such as obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and T2D. Estrogens modulate lipid metabolism through interactions with nuclear receptors, like peroxisome proliferator-activated receptors (PPARs), which are crucial for maintaining metabolic balance. Estrogen deficiency, such as in postmenopausal women, impairs PPAR regulation, leading to lipid accumulation and increased risk of metabolic disorders. The disruption of peroxisomal-mitochondrial function and estrogen regulation exacerbates lipid imbalances, contributing to insulin resistance and ROS accumulation. This review emphasizes the critical role of these organelles and estrogens in lipid metabolism and their implications for metabolic health, suggesting that therapeutic strategies, including hormone replacement therapy, may offer potential benefits in treating and preventing metabolic diseases.
Collapse
Affiliation(s)
- Damián A. Antelo-Cea
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - Laura Martínez-Rojas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
| | - Izan Cabrerizo-Ibáñez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
| | - Ayda Roudi Rashtabady
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Lake JE, Hyatt AN, Feng H, Miao H, Somasunderam A, Utay NS, Corey KE. Transgender Women with HIV Demonstrate Unique Non-Alcoholic Fatty Liver Disease Profiles. Transgend Health 2024; 9:413-420. [PMID: 39449788 PMCID: PMC11496901 DOI: 10.1089/trgh.2022.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD) prevalence and severity may be higher in people with human immunodeficiency virus (HIV) than the general population, and vary with sex and age. We explored NAFLD characteristics by gender. Methods Adult transgender women (TW), cisgender women (CW), and cisgender men (CM) with HIV on antiretroviral therapy and without other known causes of liver disease underwent screening for NAFLD (2017-2020). Circulating factors associated with NAFLD were measured. Hepatic steatosis and fibrosis were assessed using transient elastography by controlled attenuation parameter (CAP) and liver stiffness measurement (LSM), respectively. Analysis of variance/Wilcoxon testing compared normally/non-normally distributed variables, respectively. Logistic regression evaluated factors associated with CAP and LSM. Results Participants (n=194) had median age 48 years and body mass index 28.3 kg/m2; 42% were CM, 37% TW, and 21% CW; 95% were non-white; and 16% had diabetes, 40% dyslipidemia, and 49% hypertension. NAFLD prevalence was 59% using CAP ≥248 dB/m (≥S1 steatosis), 48% using CAP ≥260 dB/m (≥S2 steatosis), and 32% using CAP ≥285 dB/m (≥S3 steatosis). Compared to CM and CW, TW had the highest median CAP scores, were more likely to have ≥S2 steatosis, and had the highest insulin resistance, interleukin-6, and fetuin-A values. TW off versus on gender-affirming hormone therapy (GAHT) had slightly higher median CAP scores. Conclusion TW on GAHT had less hepatic steatosis than TW not on GAHT, although overall NAFLD severity was greater than expected for TW compared to CM and CW. The effects of estrogen supplementation and androgen deprivation on liver health in TW require further study.
Collapse
Affiliation(s)
- Jordan E. Lake
- Department of Medicine, Division of Infectious Diseases, UTHealth McGovern School of Medicine, Houston, Texas, USA
| | - Ana N. Hyatt
- Department of Medicine, Division of Infectious Diseases, UTHealth McGovern School of Medicine, Houston, Texas, USA
| | - Han Feng
- UTHealth School of Public Health, Houston, Texas, USA
| | - Hongyu Miao
- UTHealth School of Public Health, Houston, Texas, USA
| | - Anoma Somasunderam
- Department of Medicine, Division of Infectious Diseases, UTHealth McGovern School of Medicine, Houston, Texas, USA
| | - Netanya S. Utay
- Department of Medicine, Division of Infectious Diseases, UTHealth McGovern School of Medicine, Houston, Texas, USA
| | - Kathleen E. Corey
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Gluvic Z, Obradovic M, Manojlovic M, Vincenza Giglio R, Maria Patti A, Ciaccio M, Suri JS, Rizzo M, Isenovic ER. Impact of different hormones on the regulation of nitric oxide in diabetes. Mol Cell Endocrinol 2024; 592:112325. [PMID: 38968968 DOI: 10.1016/j.mce.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Polymetabolic syndrome achieved pandemic proportions and dramatically influenced public health systems functioning worldwide. Chronic vascular complications are the major contributors to increased morbidity, disability, and mortality rates in diabetes patients. Nitric oxide (NO) is among the most important vascular bed function regulators. However, NO homeostasis is significantly deranged in pathological conditions. Additionally, different hormones directly or indirectly affect NO production and activity and subsequently act on vascular physiology. In this paper, we summarize the recent literature data related to the effects of insulin, estradiol, insulin-like growth factor-1, ghrelin, angiotensin II and irisin on the NO regulation in physiological and diabetes circumstances.
Collapse
Affiliation(s)
- Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mia Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Angelo Maria Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Manfredi Rizzo
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, Castelvetrano, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Papadimitriou K, Mousiolis AC, Mintziori G, Tarenidou C, Polyzos SA, Goulis DG. Hypogonadism and nonalcoholic fatty liver disease. Endocrine 2024; 86:28-47. [PMID: 38771482 DOI: 10.1007/s12020-024-03878-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently proposed to be renamed to metabolic dysfunction-associated steatotic liver disease (MASLD), is a major global public health concern, affecting approximately 25-30% of the adult population and possibly leading to cirrhosis, hepatocellular carcinoma, and liver transplantation. The liver is involved in the actions of sex steroids via their hepatic metabolism and production of the sex hormone-binding globulin (SHBG). Liver disease, including NAFLD, is associated with reproductive dysfunction in men and women, and the prevalence of NAFLD in patients with hypogonadism is considerable. A wide spectrum of possible pathophysiological mechanisms linking NAFLD and male/female hypogonadism has been investigated. As therapies targeting NAFLD may impact hypogonadism in men and women, and vice versa, treatments of the latter may affect NAFLD, and an insight into their pathophysiological pathways is imperative. This paper aims to elucidate the complex association between NAFLD and hypogonadism in men and women and discuss the therapeutic options and their impact on both conditions.
Collapse
Affiliation(s)
- Kasiani Papadimitriou
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Athanasios C Mousiolis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gesthimani Mintziori
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
17
|
Wang Q, Gao S, Chen B, Zhao J, Li W, Wu L. Evaluating the Effects of Perinatal Exposures to BPSIP on Hepatic Cholesterol Metabolism in Female and Male Offspring ICR Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97011. [PMID: 39298647 DOI: 10.1289/ehp14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND A broad suite of bisphenol S (BPS) derivatives as alternatives for BPS have been identified in various human biological samples, including 4-hydroxyphenyl 4-isopropoxyphenylsulfone (BPSIP) detected in human umbilical cord plasma and breast milk. However, very little is known about the health outcomes of prenatal BPS derivative exposure to offspring. OBJECTIVES Our study aimed to investigate the response of hepatic cholesterol metabolism by sex in offspring of dams exposed to BPSIP. METHODS Pregnant ICR mice were exposed to 5 μ g / kg body weight (BW)/day of BPSIP, BPS, or E2 through drinking water from gestational day one until the pups were weaned. The concentration of BPSIP, BPS, or E2 in the plasma and liver of pups was determined by liquid chromatography-tandem mass spectrometry. Metabolic phenotypes were recorded, and histopathology was examined for liver impairment. Transcriptome analysis was employed to characterize the distribution and expression patterns of differentially expressed genes across sexes. The metabolic regulation was validated by quantitative real-time PCR, immunohistochemistry, and immunoblotting. The role of estrogen receptors (ERs) in mediating sex-dependent effects was investigated using animal models and liver organoids. RESULTS Pups of dams exposed to BPSIP showed a higher serum cholesterol level, and liver cholesterol levels were higher in females and lower in males than in the controls. BPSIP concentration in the male liver was 1.22 ± 0.25 ng / g and 0.69 ± 0.27 ng / g in the female liver. Histopathology analysis showed steatosis and lipid deposition in both male and female offspring. Transcriptome and gene expression analyses identified sex-specific differences in cholesterol biosynthesis, absorption, disposal, and efflux between pups of dams exposed to BPSIP and those in controls. In vivo, chromatin immunoprecipitation analysis revealed that the binding of ER α protein to key genes such as Hmgcr, Pcsk9, and Abcg5 was attenuated in BPSIP-exposed females compared to controls, while it was enhanced in males. In vitro, the liver organoid experiments demonstrated that restoration of differential expression induced by BPSIP in key genes, such as Hmgcr, Ldlr, and Cyp7a1, to levels comparable to the controls was only achieved when treated with a combination of ER α agonist and ER β agonist. DISCUSSION Findings from this study suggest that perinatal exposure to BPSIP disrupted cholesterol metabolism in a sex-specific manner in a mouse model, in which ER α played a crucial role both in vivo and in vitro. Therefore, it is crucial to systematically evaluate BPS derivatives to protect maternal health during pregnancy and prevent the transmission of metabolic disorders across generations. https://doi.org/10.1289/EHP14643.
Collapse
Affiliation(s)
- Qi Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, P.R. China
- Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, P.R. China
| | - Shulin Gao
- Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, P.R. China
| | - Baoqiang Chen
- Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, P.R. China
| | - Jiadi Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, P.R. China
| | - Wenyong Li
- Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, P.R. China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, P.R. China
| |
Collapse
|
18
|
Schatoff D, Jung IY, Goldberg IJ. Lipid Disorders and Pregnancy. Endocrinol Metab Clin North Am 2024; 53:483-495. [PMID: 39084821 DOI: 10.1016/j.ecl.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Practicing endocrinologists are likely to confront 2 major issues that occur with dyslipidemias during pregnancy. The most dramatic is the development of severe hypertriglyceridemia leading to acute pancreatitis. The second is the approach to treatment of familial hypercholesterolemia, a common genetic disorder. This article reviews the normal physiology and the pathophysiology of lipoproteins that occurs with pregnancy and then discusses the approaches to prevention and/or treatment of dyslipidemia in pregnancy with a focus on lifestyle and acceptable drug therapies.
Collapse
Affiliation(s)
- Daria Schatoff
- New York University Grossman School of Medicine, New York, USA
| | - Irene Y Jung
- New York University Grossman School of Medicine, New York, USA
| | - Ira J Goldberg
- Department of Medicine, New York University Grossman School of Medicine, New York, USA; Holman Division of Endocrinology, Diabetes & Metabolism, New York University Grossman School of Medicine, New York, USA.
| |
Collapse
|
19
|
Polyzos SA, Goulis DG. Menopause and metabolic dysfunction-associated steatotic liver disease. Maturitas 2024; 186:108024. [PMID: 38760254 DOI: 10.1016/j.maturitas.2024.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
Nonalcoholic fatty liver disease, recently proposed to be renamed metabolic dysfunction-associated steatotic liver disease, is a highly prevalent disease (25-30 % of the global general population) whose prevalence increases after menopause. Apart from the rates of simple steatosis, the severity of the disease (e.g., hepatic fibrosis) increases after menopause. Menopause is associated with higher abdominal adiposity and dysmetabolism of carbohydrate and lipid metabolism, which may contribute to the development and severity of metabolic dysfunction-associated steatotic liver disease and the higher cardiovascular risk observed after menopause. The association between menopause and metabolic dysfunction-associated steatotic liver disease renders menopausal hormone therapy an appealing way to reverse hepatic disease in parallel with the benefits of menopausal hormone therapy in other tissues. In this regard, most animal studies have shown a beneficial effect of estrogens on metabolic dysfunction-associated steatotic liver disease. Still, clinical studies are few, and their data are conflicting. The effect of menopausal hormone therapy on metabolic dysfunction-associated steatotic liver disease may be distinct among estrogen monotherapies and the combinations of estrogens and progestogens. It may also depend on the type of progestogen and the route of administration. However, more studies specifically designed for these aims are needed to draw secure conclusions. This review summarizes the data related to the association between menopause and metabolic dysfunction-associated steatotic liver disease, as well as between menopausal hormone therapy and metabolic dysfunction-associated steatotic liver disease, with a special focus on clinical studies.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, Medical School, Aristotle University of Thessaloniki, Campus of Aristotle University, 54124 Thessaloniki, Greece.
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Ring Road, 56403 Thessaloniki, Greece.
| |
Collapse
|
20
|
Xiang X, Palasuberniam P, Pare R. The Role of Estrogen across Multiple Disease Mechanisms. Curr Issues Mol Biol 2024; 46:8170-8196. [PMID: 39194700 DOI: 10.3390/cimb46080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Estrogen is a significant hormone that is involved in a multitude of physiological and pathological processes. In addition to its pivotal role in the reproductive system, estrogen is also implicated in the pathogenesis of a multitude of diseases. Nevertheless, previous research on the role of estrogen in a multitude of diseases, including Alzheimer's disease, depression, cardiovascular disease, diabetes, osteoporosis, gastrointestinal diseases, and estrogen-dependent cancers, has concentrated on a single disease area, resulting in a lack of comprehensive understanding of cross-disease mechanisms. This has brought some challenges to the current treatment methods for these diseases, because estrogen as a potential therapeutic tool has not yet fully developed its potential. Therefore, this review aims to comprehensively explore the mechanism of estrogen in these seven types of diseases. The objective of this study is to describe the relationship between each disease and estrogen, including the ways in which estrogen participates in regulating disease mechanisms, and to outline the efficacy of estrogen in treating these diseases in clinical practice. By studying the role of estrogen in a variety of disease mechanisms, it is hoped that a more accurate theoretical basis and clinical guidance for future treatment strategies will be provided, thus promoting the effective management and treatment of these diseases.
Collapse
Affiliation(s)
- Xiuting Xiang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
21
|
Lonardo A, Weiskirchen R. From Hypothalamic Obesity to Metabolic Dysfunction-Associated Steatotic Liver Disease: Physiology Meets the Clinics via Metabolomics. Metabolites 2024; 14:408. [PMID: 39195504 PMCID: PMC11356647 DOI: 10.3390/metabo14080408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic health is tightly regulated by neuro-hormonal control, and systemic metabolic dysfunction may arise from altered function of the hypothalamic-anterior pituitary axis (HAPA). Ancient experimental observations of hypothalamic obesity (HO) and liver cirrhosis occurring among animals subjected to hypothalamic injury can now be explained using the more recent concepts of lipotoxicity and metabolic dysfunction-associated steatotic liver disease (MASLD). Lipotoxicity, the range of abnormalities resulting from the harmful effects of fatty acids accumulated in organs outside of adipose tissue, is the common pathogenic factor underlying closely related conditions like hypothalamic syndrome, HO, and MASLD. The hormonal deficits and the array of metabolic and metabolomic disturbances that occur in cases of HO are discussed, along with the cellular and molecular mechanisms that lead, within the MASLD spectrum, from uncomplicated steatotic liver disease to steatohepatitis and cirrhosis. Emphasis is placed on knowledge gaps and how they can be addressed through novel studies. Future investigations should adopt precision medicine approaches by precisely defining the hormonal imbalances and metabolic dysfunctions involved in each individual patient with HO, thus paving the way for tailored management of MASLD that develops in the context of altered HAPA.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria of Modena (-2023), 41126 Modena, Italy
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH), University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
22
|
Khan MM, Khan ZA, Khan MA. Metabolic complications of psychotropic medications in psychiatric disorders: Emerging role of de novo lipogenesis and therapeutic consideration. World J Psychiatry 2024; 14:767-783. [PMID: 38984346 PMCID: PMC11230099 DOI: 10.5498/wjp.v14.i6.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/19/2024] Open
Abstract
Although significant advances have been made in understanding the patho-physiology of psychiatric disorders (PDs), therapeutic advances have not been very convincing. While psychotropic medications can reduce classical symptoms in patients with PDs, their long-term use has been reported to induce or exaggerate various pre-existing metabolic abnormalities including diabetes, obesity and non-alcoholic fatty liver disease (NAFLD). The mechanism(s) underlying these metabolic abnormalities is not clear; however, lipid/fatty acid accumulation due to enhanced de novo lipogenesis (DNL) has been shown to reduce membrane fluidity, increase oxidative stress and inflammation leading to the development of the aforementioned metabolic abnormalities. Intriguingly, emerging evidence suggest that DNL dysregulation and fatty acid accumulation could be the major mechanisms associated with the development of obesity, diabetes and NAFLD after long-term treatment with psychotropic medications in patients with PDs. In support of this, several adjunctive drugs comprising of anti-oxidants and anti-inflammatory agents, that are used in treating PDs in combination with psychotropic medications, have been shown to reduce insulin resistance and development of NAFLD. In conclusion, the above evidence suggests that DNL could be a potential pathological factor associated with various metabolic abnormalities, and a new avenue for translational research and therapeutic drug designing in PDs.
Collapse
Affiliation(s)
- Mohammad M Khan
- Laboratory of Translational Neurology and Molecular Psychiatry, Department of Biotechnology, Era’s Lucknow Medical College and Hospital, and Faculty of Science, Era University, Lucknow 226003, India
| | - Zaw Ali Khan
- Era’s Lucknow Medical College and Hospital, Era University, Lucknow 226003, India
| | - Mohsin Ali Khan
- Era’s Lucknow Medical College and Hospital, Era University, Lucknow 226003, India
| |
Collapse
|
23
|
Chen H, Luo S, Deng X, Li S, Mao Y, Yan J, Cheng Y, Liu X, Pan J, Huang H. Pre-eclamptic foetal programming predisposes offspring to hepatic steatosis via DNA methylation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167189. [PMID: 38648899 DOI: 10.1016/j.bbadis.2024.167189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVES Gamete and embryo-foetal origins of adult diseases hypothesis proposes that adulthood chronic disorders are associated with adverse foetal and early life traits. Our study aimed to characterise developmental changes and underlying mechanisms of metabolic disorders in offspring of pre-eclampsia (PE) programmed pregnancy. METHODS Nω-Nitro-l-arginine methyl ester hydrochloride (L-NAME) induced pre-eclampsia-like C57BL/6J mouse model was used. Lipid profiling, histological morphology, indirect calorimetry, mRNA sequencing, and pyrosequencing were performed on PE offspring of both young and elderly ages. RESULTS PE offspring exhibited increased postnatal weight gain, hepatic lipid accumulation, enlarged adipocytes, and impaired energy balance that continued to adulthood. Integrated RNA sequencing of foetal and 52-week-old livers revealed that the differentially expressed genes were mainly enriched in lipid metabolism, including glycerol-3-phosphate acyl-transferase 3 (Gpat3), a key enzyme for de novo synthesis of triglycerides (TG), and carnitine palmitoyltransferase-1a (Cpt1a), a key transmembrane enzyme that mediates fatty acid degradation. Pyrosequencing of livers from PE offspring identified hypomethylated and hypermethylated regions in Gpat3 and Cpt1a promoters, which were associated with upregulated and downregulated expressions of Gpat3 and Cpt1a, respectively. These epigenetic alterations are persistent and consistent from the foetal stage to adulthood in PE offspring. CONCLUSION These findings suggest a methylation-mediated epigenetic mechanism for PE-induced intergenerational lipid accumulation, impaired energy balance and obesity in offspring, and indicate the potential benefits of early interventions in offspring exposed to maternal PE to reduce their susceptibility to metabolic disorder in their later life.
Collapse
Affiliation(s)
- Huixi Chen
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; State Key Laboratory of Cardiology, Shanghai 200000, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Sisi Luo
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China
| | - Xiuyu Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200000, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China
| | - Sisi Li
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China; Reproductive Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China
| | - Jing Yan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China
| | - Xia Liu
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China.
| | - Hefeng Huang
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China; Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China; Reproductive Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; State Key Laboratory of Cardiology, Shanghai 200000, China.
| |
Collapse
|
24
|
Marková I, Hüttl M, Miklánková D, Šedová L, Šeda O, Malínská H. The Effect of Ovariectomy and Estradiol Substitution on the Metabolic Parameters and Transcriptomic Profile of Adipose Tissue in a Prediabetic Model. Antioxidants (Basel) 2024; 13:627. [PMID: 38929066 PMCID: PMC11200657 DOI: 10.3390/antiox13060627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Menopause brings about profound physiological changes, including the acceleration of insulin resistance and other abnormalities, in which adipose tissue can play a significant role. This study analyzed the effect of ovariectomy and estradiol substitution on the metabolic parameters and transcriptomic profile of adipose tissue in prediabetic females of hereditary hypertriglyceridemic rats (HHTgs). The HHTgs underwent ovariectomy (OVX) or sham surgery (SHAM), and half of the OVX group received 17β-estradiol (OVX+E2) post-surgery. Ovariectomy resulted in weight gain, an impaired glucose tolerance, ectopic triglyceride (TG) deposition, and insulin resistance exemplified by impaired glycogenesis and lipogenesis. Estradiol alleviated some of the disorders associated with ovariectomy; in particular, it improved insulin sensitivity and reduced TG deposition. A transcriptomic analysis of perimetrial adipose tissue revealed 809 differentially expressed transcripts in the OVX vs. SHAM groups, mostly pertaining to the regulation of lipid and glucose metabolism, and oxidative stress. Estradiol substitution affected 1049 transcripts with overrepresentation in the signaling pathways of lipid metabolism. The principal component and hierarchical clustering analyses of transcriptome shifts corroborated the metabolic data, showing a closer resemblance between the OVX+E2 and SHAM groups compared to the OVX group. Changes in the adipose tissue transcriptome may contribute to metabolic abnormalities accompanying ovariectomy-induced menopause in HHTg females. Estradiol substitution may partially mitigate some of these disorders.
Collapse
Affiliation(s)
- Irena Marková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (D.M.); (H.M.)
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (D.M.); (H.M.)
| | - Denisa Miklánková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (D.M.); (H.M.)
| | - Lucie Šedová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.Š.); (O.Š.)
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.Š.); (O.Š.)
| | - Hana Malínská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (D.M.); (H.M.)
| |
Collapse
|
25
|
Santos JDM, Silva JFT, Alves EDS, Cruz AG, Santos ARM, Camargo FN, Talarico CHZ, Silva CAA, Camporez JP. Strength Training Protects High-Fat-Fed Ovariectomized Mice against Insulin Resistance and Hepatic Steatosis. Int J Mol Sci 2024; 25:5066. [PMID: 38791103 PMCID: PMC11120807 DOI: 10.3390/ijms25105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Menopause is characterized by a reduction in sex hormones in women and is associated with metabolic changes, including fatty liver and insulin resistance. Lifestyle changes, including a balanced diet and physical exercise, are necessary to prevent these undesirable changes. Strength training (ST) has been widely used because of the muscle and metabolic benefits it provides. Our study aims to evaluate the effects of ST on hepatic steatosis and insulin resistance in ovariectomized mice fed a high-fat diet (HFD) divided into four groups as follows: simulated sedentary surgery (SHAM-SED), trained simulated surgery (SHAM-EXE), sedentary ovariectomy (OVX-SED), and trained ovariectomy (OVX-EXE). They were fed an HFD for 9 weeks. ST was performed thrice a week. ST efficiently reduced body weight and fat percentage and increased lean mass in OVX mice. Furthermore, ST reduced the accumulation of ectopic hepatic lipids, increased AMPK phosphorylation, and inhibited the de novo lipogenesis pathway. OVX-EXE mice also showed a better glycemic profile, associated with greater insulin sensitivity identified by the euglycemic-hyperinsulinemic clamp, and reduced markers of hepatic oxidative stress compared with sedentary animals. Our data support the idea that ST can be indicated as a non-pharmacological treatment approach to mitigate metabolic changes resulting from menopause.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil (J.F.T.S.); (E.d.S.A.); (A.G.C.); (A.R.M.S.); (F.N.C.); (C.H.Z.T.); (C.A.A.S.)
| |
Collapse
|
26
|
Jin Z, Tian C, Kang M, Hu S, Zhao L, Zhang W. The 100 top-cited articles in menopausal syndrome: a bibliometric analysis. Reprod Health 2024; 21:47. [PMID: 38589898 PMCID: PMC11003046 DOI: 10.1186/s12978-024-01770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/10/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Significant scientific research has been conducted concerning menopausal syndrome(MPS), yet few bibliometric analyses have been performed. Our aim was to recognise the 100 most highly cited published articles on MPS and to analytically evaluate their key features. METHODS To identify the 100 most frequently cited articles, a search was conducted on Web of Science using the term 'menopausal syndrome'. Articles that matched the predetermined criteria were scrutinised to obtain the following data: citation ranking, year of publication, publishing journal, journal impact factor, country of origin, academic institution, authors, study type, and keywords. RESULTS The publication period is from January 1, 2000, to August 31, 2022. The maximum number of citations was 406 and in 2012. The median citations per year was 39.70. Most of the articles focused on treatment and complications. These articles were published in 36 different journals, with the Journal of MENOPAUSE having published the greatest number (14%). Forty-eight articles (48%) were from the United States, with the University of Pittsburgh being the leading institute (9%). Joann E. Manson was the most frequent first author (n = 6). Observational studies were the most frequently conducted research type (n = 53), followed by experimental studies (n = 33). Keyword analysis identified classic research topics, including genitourinary syndrome of menopause, bone mineral density (BMD), and anti-mullerian hormone (AMH) loci. CONCLUSION Using bibliometrics, we conducted an analysis to identify the inadequacies, traditional focal points, and potential prospects in the study of MPS across current scientific areas. Treatment and complications are at the core of MPS research, whereas prediction and biomarkers have less literature of high quality. There is a necessity for innovative analytical metrics to measure the real effect of these papers with a high level of citation on clinical application.
Collapse
Affiliation(s)
- Zishan Jin
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Chuanxi Tian
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mengjiao Kang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shiwan Hu
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Wei Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
27
|
Li L, Yao Y, Wang Y, Cao J, Jiang Z, Yang Y, Wang H, Ma H. G protein-coupled estrogen receptor 1 ameliorates nonalcoholic steatohepatitis through targeting AMPK-dependent signaling. J Biol Chem 2024; 300:105661. [PMID: 38246352 PMCID: PMC10876613 DOI: 10.1016/j.jbc.2024.105661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), especially nonalcoholic steatohepatitis (NASH), has emerged as a prevalent cause of liver cirrhosis and hepatocellular carcinoma, posing severe public health challenges worldwide. The incidence of NASH is highly correlated with an increased prevalence of obesity, insulin resistance, diabetes, and other metabolic diseases. Currently, no approved drugs specifically targeted for the therapies of NASH partially due to the unclear pathophysiological mechanisms. G protein-coupled estrogen receptor 1 (GPER1) is a membrane estrogen receptor involved in the development of metabolic diseases such as obesity and diabetes. However, the function of GPER1 in NAFLD/NASH progression remains unknown. Here, we show that GPER1 exerts a beneficial role in insulin resistance, hepatic lipid accumulation, oxidative stress, or inflammation in vivo and in vitro. In particular, we observed that the lipid accumulation, inflammatory response, fibrosis, or insulin resistance in mouse NAFLD/NASH models were exacerbated by hepatocyte-specific GPER1 knockout but obviously mitigated by hepatic GPER1 activation in female and male mice. Mechanistically, hepatic GPER1 activates AMP-activated protein kinase signaling by inducing cyclic AMP release, thereby exerting its protective effect. These data suggest that GPER1 may be a promising therapeutic target for NASH.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yulei Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
28
|
Zhang Y, Jiang Y, Sun Q, Li M, Chen S, Liang J, Liu C. Full sexual maturity-cycle exposure to environmentally relevant concentrations of 17β-estradiol decreases reproductive capacity of zebrafish. J Environ Sci (China) 2024; 137:580-592. [PMID: 37980041 DOI: 10.1016/j.jes.2023.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 11/20/2023]
Abstract
17β-Estradiol (E2) has been widely detected in natural water and treatment with E2 induces potential endocrine disrupting effects in fish. However, effects on fish fecundity and steroid system after treatment with environmentally relevant concentrations of E2 for the full sexual maturation cycle remain unclear. In this study, zebrafish were treatment with 0, 10 or 100 ng/L E2 from embryo to adult stage, and effects on gonadal development and differentiation, steroid hormone levels, transcription of genes associated with the hypothalamic-pituitary-gonadal-liver (HPG) axis in adults and fertilization rate of offspring were assessed. The results showed that treatment with E2 lead to increased number of feminization in zebrafish. In females, E2 decreased cumulative amount of spawning and inhibited the maturation of oocyte. In males, E2 inhibited the maturation and motility of sperm, as well as decreased the movement speed of sperm. These adverse effects on sperm might be responsible for the reduced fertilization observed in offspring. In addition, treatment with E2 changed the levels of steroid hormones in zebrafish gonad and altered the transcriptional levels of genes associated with HPG axis, which is responsible for the regulation of germ cells maturation and gonadal development in zebrafish. Overall, these results suggested that treatment with environmentally relevant concentrations of E2 for the full sexual maturity cycle resulted in adverse effects on reproduction in zebrafish.
Collapse
Affiliation(s)
- Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanjun Jiang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyu Liang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
29
|
Thomas NS, Scalzo RL, Wellberg EA. Diabetes mellitus in breast cancer survivors: metabolic effects of endocrine therapy. Nat Rev Endocrinol 2024; 20:16-26. [PMID: 37783846 PMCID: PMC11487546 DOI: 10.1038/s41574-023-00899-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Breast cancer is the most common invasive malignancy in the world, with millions of survivors living today. Type 2 diabetes mellitus (T2DM) is also a globally prevalent disease that is a widely studied risk factor for breast cancer. Most breast tumours express the oestrogen receptor and are treated with systemic therapies designed to disrupt oestrogen-dependent signalling. Since the advent of targeted endocrine therapy six decades ago, the mortality from breast cancer has steadily declined; however, during the past decade, an elevated risk of T2DM after breast cancer treatment has been reported, particularly for those who received endocrine therapy. In this Review, we highlight key events in the history of endocrine therapies, beginning with the development of tamoxifen. We also summarize the sequence of reported adverse metabolic effects, which include dyslipidaemia, hepatic steatosis and impaired glucose tolerance. We discuss the limitations of determining a causal role for breast cancer treatments in T2DM development from epidemiological data and describe informative preclinical studies that suggest complex mechanisms through which endocrine therapy might drive T2DM risk and progression. We also reinforce the life-saving benefits of endocrine therapy and highlight the need for better predictive biomarkers of T2DM risk and preventive strategies for the growing population of breast cancer survivors.
Collapse
Affiliation(s)
- Nisha S Thomas
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Rebecca L Scalzo
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA.
| |
Collapse
|
30
|
Hutchison AL, Tavaglione F, Romeo S, Charlton M. Endocrine aspects of metabolic dysfunction-associated steatotic liver disease (MASLD): Beyond insulin resistance. J Hepatol 2023; 79:1524-1541. [PMID: 37730124 DOI: 10.1016/j.jhep.2023.08.030] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
While the association of metabolic dysfunction-associated steatotic liver disease (MASLD) with obesity and insulin resistance is widely appreciated, there are a host of complex interactions between the liver and other endocrine axes. While it can be difficult to definitively distinguish direct causal relationships and those attributable to increased adipocyte mass, there is substantial evidence of the direct and indirect effects of endocrine dysregulation on the severity of MASLD, with strong evidence that low levels of growth hormone, sex hormones, and thyroid hormone promote the development and progression of disease. The impact of steroid hormones, e.g. cortisol and dehydroepiandrosterone, and adipokines is much more divergent. Thoughtful assessment, based on individual risk factors and findings, and management of non-insulin endocrine axes is essential in the evaluation and management of MASLD. Multiple therapeutic options have emerged that leverage various endocrine axes to reduce the fibroinflammatory cascade in MASH.
Collapse
Affiliation(s)
| | - Federica Tavaglione
- Clinical Medicine and Hepatology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy; Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Michael Charlton
- Center for Liver Diseases, University of Chicago, United States.
| |
Collapse
|
31
|
Ramírez-Hernández D, López-Sánchez P, Lezama-Martínez D, Kuyoc-Arroyo NM, Rodríguez-Rodríguez JE, Fonseca-Coronado S, Valencia-Hernández I, Flores-Monroy J. Timing Matters: Effects of Early and Late Estrogen Replacement Therapy on Glucose Metabolism and Vascular Reactivity in Ovariectomized Aged Wistar Rats. J Renin Angiotensin Aldosterone Syst 2023; 2023:6683989. [PMID: 38025203 PMCID: PMC10665112 DOI: 10.1155/2023/6683989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular disease incidence increases after menopause due to the loss of estrogen cardioprotective effects. However, there are conflicting data regarding the timing of estrogen therapy (ERT) and its effect on vascular dysfunction associated with impaired glucose metabolism. The aim of this work was to evaluate the effect of early and late ERT on blood glucose/insulin balance and vascular reactivity in aged ovariectomized Wistar rats. Eighteen-month-old female Wistar rats were randomized as follows: (1) sham, (2) 10-week postovariectomy (10 w), (3) 10 w postovariectomy+early estradiol therapy (10 w-early E2), (4) 20-week postovariectomy (20 w), and (5) 20-week postovariectomy+late estradiol therapy (20 w-late E2). Early E2 was administered 3 days after ovariectomy and late therapy after 10 weeks, in both groups. 17β-Estradiol (E2) was administered daily for 10 weeks (5 μg/kg/day). Concentration-response curves to angiotensin II, KCl, and acetylcholine (ACh) were performed. Heart rate (HR), diastolic and systolic blood pressure (DBP and SBP), glucose, insulin, HOMA-IR, and nitric oxide (NO) levels were determined. Higher glucose levels were found in all groups compared to the sham group, except the 20 w-late E2 group. Insulin was increased in all ovariectomized groups compared to sham. The HOMA-IR index showed insulin resistance in all ovariectomized groups, except for the 10 w-early E2 group. The 10 w-early E2 group increased NO levels vs. the 10 w group. After 10 w postovariectomy, the vascular response to KCl and Ach increases, despite early E2 administration. Early and late E2 treatment decreased vascular reactivity to Ang II. At 20-week postovariectomy, DBP increased, even with E2 administration, while SBP and HR remained unchanged. The effects of E2 therapy on blood glucose/insulin balance and vascular reactivity depend on the timing of therapy. Early ERT may provide some protective effects on insulin resistance and vascular function, whereas late ERT may not have the same benefits.
Collapse
Affiliation(s)
- Diana Ramírez-Hernández
- Myocardial Pharmacology Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, 54740 State of Mexico, Mexico
| | - Pedro López-Sánchez
- Laboratorio de Farmacología Molecular, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico
| | - Diego Lezama-Martínez
- Myocardial Pharmacology Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, 54740 State of Mexico, Mexico
| | - Neidy M. Kuyoc-Arroyo
- Myocardial Pharmacology Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, 54740 State of Mexico, Mexico
| | - Jessica E. Rodríguez-Rodríguez
- Biological Pharmaceutical Chemist Career, Faculty of Higher Education Zaragoza, National Autonomous University of Mexico, Batalla 5 de Mayo S/N, Ejército de Oriente, Iztapalapa, 09230 Mexico City, Mexico
- Laboratory 7, Biomedicine Unit, Faculty of Higher Education Iztacala, National Autonomous University of Mexico, Avenida de los Barrios 1, Los Reyes Ixtacala, 54090 Tlalnepantla de Baz, Mexico
| | - Salvador Fonseca-Coronado
- Immunology Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, 54740 State of Mexico, Mexico
| | - Ignacio Valencia-Hernández
- Laboratorio de Farmacología Cardiovascular, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico
| | - Jazmin Flores-Monroy
- Myocardial Pharmacology Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, 54740 State of Mexico, Mexico
| |
Collapse
|
32
|
Cuño-Gómiz C, de Gregorio E, Tutusaus A, Rider P, Andrés-Sánchez N, Colell A, Morales A, Marí M. Sex-based differences in natural killer T cell-mediated protection against diet-induced steatohepatitis in Balb/c mice. Biol Sex Differ 2023; 14:85. [PMID: 37964320 PMCID: PMC10644614 DOI: 10.1186/s13293-023-00569-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is prevalent in Western countries, evolving into metabolic dysfunction-associated steatohepatitis (MASH) with a sexual dimorphism. Fertile women exhibit lower MASLD risk than men, which diminishes post-menopause. While NKT-cell involvement in steatohepatitis is debated, discrepancies may stem from varied mouse strains used, predominantly C57BL6/J with Th1-dominant responses. Exploration of steatohepatitis, encompassing both genders, using Balb/c background, with Th2-dominant immune response, and CD1d-deficient mice in the Balb/c background (lacking Type I and Type II NKT cells) can clarify gender disparities and NKT-cell influence on MASH progression. METHODS A high fat and choline-deficient (HFCD) diet was used in male and female mice, Balb/c mice or CD1d-/- mice in the Balb/c background that exhibit a Th2-dominant immune response. Liver fibrosis and inflammatory gene expression were measured by qPCR, and histology assessment. NKT cells, T cells, macrophages and neutrophils were assessed by flow cytometry. RESULTS Female mice displayed milder steatohepatitis after 6 weeks of HFCD, showing reduced liver damage, inflammation, and fibrosis compared to males. Male Balb/c mice exhibited NKT-cell protection against steatohepatitis whereas CD1d-/- males on HFCD presented decreased hepatoprotection, increased liver fibrosis, inflammation, neutrophilic infiltration, and inflammatory macrophages. In contrast, the NKT-cell role was negligible in early steatohepatitis development in both female mice, as fibrosis and inflammation were similar despite augmented liver damage in CD1d-/- females. Relevant, hepatic type I NKT levels in female Balb/c mice were significantly lower than in male. CONCLUSIONS NKT cells exert a protective role against experimental steatohepatitis as HFCD-treated CD1d-/- males had more severe fibrosis and inflammation than male Balb/c mice. In females, the HFCD-induced hepatocellular damage and the immune response are less affected by NKT cells on early steatohepatitis progression, underscoring sex-specific NKT-cell influence in MASH development.
Collapse
Affiliation(s)
- Carlos Cuño-Gómiz
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Patricia Rider
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Nuria Andrés-Sánchez
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293, Montpellier, France
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain.
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain.
| |
Collapse
|
33
|
Cao YT, Zhang WH, Lou Y, Yan QH, Zhang YJ, Qi F, Xiang LL, Lv TS, Fang ZY, Yu JY, Zhou XQ. Sex- and reproductive status-specific relationships between body composition and non-alcoholic fatty liver disease. BMC Gastroenterol 2023; 23:364. [PMID: 37875811 PMCID: PMC10598923 DOI: 10.1186/s12876-023-02997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Sex and reproductive status differences exist in both non-alcoholic fatty liver disease (NAFLD) and body composition. Our purpose was to investigate the relationship between body composition and the severity of liver steatosis and fibrosis in NAFLD in different sex and reproductive status populations. METHODS This cross-sectional study included 880 patients (355 men, 417 pre-menopausal women, 108 post-menopausal women). Liver steatosis and fibrosis and body composition data were measured using FibroScan and a bioelectrical impedance body composition analyzer (BIA), respectively, and the following parameters were obtained: liver stiffness measurement (LSM), controlled attenuation parameter (CAP), waist circumference (WC), body mass index (BMI), percent body fat (PBF), visceral fat area (VFA), appendicular skeletal muscle mass (ASM), appendicular skeletal muscle mass index (ASMI), fat mass (FM), fat free mass (FFM), and FFM to FM ratio (FFM/FM). Multiple ordinal logistic regression (MOLR) was used to analyze the independent correlation between body composition indicators and liver steatosis grade and fibrosis stage in different sex and menopausal status populations. RESULTS Men had higher WC, ASM, ASMI, FFM, and FFM/FM than pre- or post-menopausal women, while pre-menopausal women had higher PBF, VFA, and FM than the other two groups (p < 0.001). Besides, men had greater CAP and LSM values (p < 0.001). For MOLR, after adjusting for confounding factors, WC (OR, 1.07; 95% CI, 1.02-1.12; P = 0.011) and FFM/FM (OR, 0.52; 95% CI, 0.31-0.89; P = 0.017) in men and visceral obesity (OR, 4.16; 95% CI, 1.09-15.90; P = 0.037) in post-menopausal women were independently associated with liver steatosis grade. WC and visceral obesity were independently associated with liver fibrosis stage in men (OR, 1.05; 95% CI, 1.01-1.09, P = 0.013; OR, 3.92; 95% CI, 1.97-7.81; P < 0.001, respectively). CONCLUSIONS Increased WC and low FFM/FM in men and visceral obesity in post-menopausal women were independent correlates of more severe liver steatosis. In addition, increased WC and visceral obesity were independent correlates of worse liver fibrosis in men. These data support the sex- and reproductive status-specific management of NAFLD.
Collapse
Affiliation(s)
- Yu-Tian Cao
- Department of Endocrinology, Affiliated Hospital of Nanjing, Jiangsu Province Hospital of Chinese Medicine, University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Hui Zhang
- Department of Endocrinology, Affiliated Hospital of Nanjing, Jiangsu Province Hospital of Chinese Medicine, University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lou
- Department of Endocrinology, Affiliated Hospital of Nanjing, Jiangsu Province Hospital of Chinese Medicine, University of Chinese Medicine, Nanjing, China
| | - Qian-Hua Yan
- Department of Endocrinology, Affiliated Hospital of Nanjing, Jiangsu Province Hospital of Chinese Medicine, University of Chinese Medicine, Nanjing, China
| | - Yu-Juan Zhang
- Department of Endocrinology, Affiliated Hospital of Nanjing, Jiangsu Province Hospital of Chinese Medicine, University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Qi
- Department of Endocrinology, Affiliated Hospital of Nanjing, Jiangsu Province Hospital of Chinese Medicine, University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liu-Lan Xiang
- Department of Endocrinology, Affiliated Hospital of Nanjing, Jiangsu Province Hospital of Chinese Medicine, University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tian-Su Lv
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhu-Yuan Fang
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiang-Yi Yu
- Department of Endocrinology, Affiliated Hospital of Nanjing, Jiangsu Province Hospital of Chinese Medicine, University of Chinese Medicine, Nanjing, China
| | - Xi-Qiao Zhou
- Department of Endocrinology, Affiliated Hospital of Nanjing, Jiangsu Province Hospital of Chinese Medicine, University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
34
|
Zhu J, Zhou Y, Jin B, Shu J. Role of estrogen in the regulation of central and peripheral energy homeostasis: from a menopausal perspective. Ther Adv Endocrinol Metab 2023; 14:20420188231199359. [PMID: 37719789 PMCID: PMC10504839 DOI: 10.1177/20420188231199359] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Estrogen plays a prominent role in regulating and coordinating energy homeostasis throughout the growth, development, reproduction, and aging of women. Estrogen receptors (ERs) are widely expressed in the brain and nearly all tissues of the body. Within the brain, central estrogen via ER regulates appetite and energy expenditure and maintains cell glucose metabolism, including glucose transport, aerobic glycolysis, and mitochondrial function. In the whole body, estrogen has shown beneficial effects on weight control, fat distribution, glucose and insulin resistance, and adipokine secretion. As demonstrated by multiple in vitro and in vivo studies, menopause-related decline of circulating estrogen may induce the disturbance of metabolic signals and a significant decrease in bioenergetics, which could trigger an increased incidence of late-onset Alzheimer's disease, type 2 diabetes mellitus, hypertension, and cardiovascular diseases in postmenopausal women. In this article, we have systematically reviewed the role of estrogen and ERs in body composition and lipid/glucose profile variation occurring with menopause, which may provide a better insight into the efficacy of hormone therapy in maintaining energy metabolic homeostasis and hold a clue for development of novel therapeutic approaches for target tissue diseases.
Collapse
Affiliation(s)
- Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yier Zhou
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bihui Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Shu
- Reproductive Medicine Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
35
|
Xue Y, Gong Y, Li X, Peng F, Ding G, Zhang Z, Shi J, Savul IS, Xu Y, Chen Q, Han L, Mao S, Sun Z. Sex differences in paternal arsenic-induced intergenerational metabolic effects are mediated by estrogen. Cell Biosci 2023; 13:165. [PMID: 37691128 PMCID: PMC10493026 DOI: 10.1186/s13578-023-01121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Gene-environment interactions contribute to metabolic disorders such as diabetes and dyslipidemia. In addition to affecting metabolic homeostasis directly, drugs and environmental chemicals can cause persistent alterations in metabolic portfolios across generations in a sex-specific manner. Here, we use inorganic arsenic (iAs) as a prototype drug and chemical to dissect such sex differences. METHODS After weaning, C57BL/6 WT male mice were treated with 250 ppb iAs in drinking water (iAsF0) or normal water (conF0) for 6 weeks and then bred with 15-week-old, non-exposed females for 3 days in cages with only normal water (without iAs), to generate iAsF1 or conF1 mice, respectively. F0 females and all F1 mice drank normal water without iAs all the time. RESULTS We find that exposure of male mice to 250 ppb iAs leads to glucose intolerance and insulin resistance in F1 female offspring (iAsF1-F), with almost no change in blood lipid profiles. In contrast, F1 males (iAsF1-M) show lower liver and blood triglyceride levels than non-exposed control, with improved glucose tolerance and insulin sensitivity. The liver of F1 offspring shows sex-specific transcriptomic changes, with hepatocyte-autonomous alternations of metabolic fluxes in line with the sex-specific phenotypes. The iAsF1-F mice show altered levels of circulating estrogen and follicle-stimulating hormone. Ovariectomy or liver-specific knockout of estrogen receptor α/β made F1 females resemble F1 males in their metabolic responses to paternal iAs exposure. CONCLUSIONS These results demonstrate that disrupted reproductive hormone secretion in alliance with hepatic estrogen signaling accounts for the sex-specific intergenerational effects of paternal iAs exposure, which shed light on the sex disparities in long-term gene-environment interactions.
Collapse
Affiliation(s)
- Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- National Center for International Research on Animal Gut Nutrition, Center for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yingyun Gong
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Li
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Fei Peng
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Guolian Ding
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junchao Shi
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ilma Saleh Savul
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shengyong Mao
- National Center for International Research on Animal Gut Nutrition, Center for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Zheng Sun
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
36
|
Conlon DM, Welty FK, Reyes-Soffer G, Amengual J. Sex-Specific Differences in Lipoprotein Production and Clearance. Arterioscler Thromb Vasc Biol 2023; 43:1617-1625. [PMID: 37409532 PMCID: PMC10527393 DOI: 10.1161/atvbaha.122.318247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Therapeutic approaches to reduce atherogenic lipid and lipoprotein levels remain the most effective and assessable strategies to prevent and treat cardiovascular disease. The discovery of novel research targets linked to pathways associated with cardiovascular disease development has enhanced our ability to decrease disease burden; however, residual cardiovascular disease risks remain. Advancements in genetics and personalized medicine are essential to understand some of the factors driving residual risk. Biological sex is among the most relevant factors affecting plasma lipid and lipoprotein profiles, playing a pivotal role in the development of cardiovascular disease. This minireview summarizes the most recent preclinical and clinical studies covering the effect of sex on plasma lipid and lipoprotein levels. We highlight the recent advances in the mechanisms regulating hepatic lipoprotein production and clearance as potential drivers of disease presentation. We focus on using sex as a biological variable in studying circulating lipid and lipoprotein levels.
Collapse
Affiliation(s)
| | | | - Gissette Reyes-Soffer
- Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University College of Physicians and Surgeons
| | - Jaume Amengual
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences. University of Illinois Urbana Champaign
| |
Collapse
|
37
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
38
|
Guo M, Cao X, Ji D, Xiong H, Zhang T, Wu Y, Suo L, Pan M, Brugger D, Chen Y, Zhang K, Ma B. Gut Microbiota and Acylcarnitine Metabolites Connect the Beneficial Association between Estrogen and Lipid Metabolism Disorders in Ovariectomized Mice. Microbiol Spectr 2023; 11:e0014923. [PMID: 37140372 PMCID: PMC10269676 DOI: 10.1128/spectrum.00149-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Decreased estrogen level is one of the main causes of lipid metabolism disorders and coronary heart disease in women after menopause. Exogenous estradiol benzoate is effective to some extent in alleviating lipid metabolism disorders caused by estrogen deficiency. However, the role of gut microbes in the regulation process is not yet appreciated. The objective of this study was to investigate the effects of estradiol benzoate supplementation on lipid metabolism, gut microbiota, and metabolites in ovariectomized (OVX) mice and to reveal the importance of gut microbes and metabolites in the regulation of lipid metabolism disorders. This study found that high doses of estradiol benzoate supplementation effectively attenuated fat accumulation in OVX mice. There was a significant increase in the expression of genes enriched in hepatic cholesterol metabolism and a concomitant decrease in the expression of genes enriched in unsaturated fatty acid metabolism pathways. Further screening of the gut for characteristic metabolites associated with improved lipid metabolism revealed that estradiol benzoate supplementation influenced major subsets of acylcarnitine metabolites. Ovariectomy significantly increased the abundance of characteristic microbes that are significantly negatively associated with acylcarnitine synthesis, such as Lactobacillus and Eubacterium ruminantium group bacteria, while estradiol benzoate supplementation significantly increased the abundance of characteristic microbes that are significantly positively associated with acylcarnitine synthesis, such as Ileibacterium and Bifidobacterium spp. The use of pseudosterile mice with gut microbial deficiency greatly facilitated the synthesis of acylcarnitine due to estradiol benzoate supplementation and also alleviated lipid metabolism disorders to a greater extent in OVX mice. IMPORTANCE Our findings establish a role for gut microbes in the progression of estrogen deficiency-induced lipid metabolism disorders and reveal key target bacteria that may have the potential to regulate acylcarnitine synthesis. These findings suggest a possible route for the use of microbes or acylcarnitine to regulate disorders of lipid metabolism induced by estrogen deficiency.
Collapse
Affiliation(s)
- Mengmeng Guo
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xi Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - De Ji
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hui Xiong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ting Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yujiang Wu
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Langda Suo
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Daniel Brugger
- Institute of Animal Nutrition and Dietetics, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
39
|
Fuller KNZ, Allen J, Kumari R, Akakpo JY, Ruebel M, Shankar K, Thyfault JP. Pre- and Post-Sexual Maturity Liver-specific ERα Knockout Does Not Impact Hepatic Mitochondrial Function. J Endocr Soc 2023; 7:bvad053. [PMID: 37197409 PMCID: PMC10184454 DOI: 10.1210/jendso/bvad053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 05/19/2023] Open
Abstract
Compared with males, premenopausal women and female rodents are protected against hepatic steatosis and present with higher functioning mitochondria (greater hepatic mitochondrial respiration and reduced H2O2 emission). Despite evidence that estrogen action mediates female protection against steatosis, mechanisms remain unknown. Here we validated a mouse model with inducible reduction of liver estrogen receptor alpha (ERα) (LERKO) via adeno-associated virus (AAV) Cre. We phenotyped the liver health and mitochondrial function of LERKO mice (n = 10-12 per group) on a short-term high-fat diet (HFD), and then tested whether timing of LERKO induction at 2 timepoints (sexually immature: 4 weeks old [n = 11 per group] vs sexually mature: 8-10 weeks old [n = 8 per group]) would impact HFD-induced outcomes. We opted for an inducible LERKO model due to known estrogen-mediated developmental programming, and we reported both receptor and tissue specificity with our model. Control mice were ERαfl/fl receiving AAV with green fluorescent protein (GFP) only. Results show that there were no differences in body weight/composition or hepatic steatosis in LERKO mice with either short-term (4-week) or chronic (8-week) high-fat feeding. Similarly, LERKO genotype nor timing of LERKO induction (pre vs post sexual maturity) did not alter hepatic mitochondrial O2 and H2O2 flux, coupling, or OXPHOS protein. Transcriptomic analysis showed that hepatic gene expression in LERKO was significantly influenced by developmental stage. Together, these studies suggest that hepatic ERα is not required in female protection against HFD-induced hepatic steatosis nor does it mediate sexual dimorphism in liver mitochondria function.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
| | - Julie Allen
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
| | - Roshan Kumari
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
| | - Jephte Y Akakpo
- Department of Pharmacology and Toxicology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Meghan Ruebel
- USDA-ARS, Southeast Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Kartik Shankar
- USDA-ARS, Southeast Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
- KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Children’s Healthy Lifestyles and Nutrition, Kansas City, MO 64108, USA
| |
Collapse
|
40
|
Association between perfluoroalkyl substances exposure and the prevalence of nonalcoholic fatty liver disease in the different sexes: a study from the National Health and Nutrition Examination Survey 2005-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44292-44303. [PMID: 36692718 DOI: 10.1007/s11356-023-25258-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/07/2023] [Indexed: 01/25/2023]
Abstract
There is evidence that perfluoroalkyl substances (PFASs) have effects on liver toxicity, and the effects may exhibit sex differences. Our study aims to explore the association between exposure to four PFASs (perfluorooctanoic acid, PFOA; perfluorooctane sulfonate, PFOS; perfluorohexane sulfonate, PFHxS; and perfluorononanoate, PFNA) and the risk of nonalcoholic fatty liver disease (NAFLD) in adults ≥ 20 years old in the US population. The data were based on the National Health and Nutrition Examination Survey (NHANES) 2005-2018. We used Poisson regression to explore the association between the four PFASs and NAFLD. We included 3464 participants; of these, 1200 (34.64%) individuals were defined as having NAFLD, and the prevalence of NAFLD was 39.52% in men and 30.40% in women. After Poisson regression, among the premenopausal and postmenopausal and total women, PFOA had a significantly positive association with NAFLD (p < 0.05). After principal component analysis, the "composite PFAS" was associated with NAFLD in postmenopausal and total women, and the RRs (95% CIs) were 1.306 (1.075, 1.586) and 1.161 (1.007, 1.339), respectively. In adults, we found that PFASs were associated with NAFLD, and the associations varied by sex, particularly for PFOA and PFNA, which had a positive association with NAFLD in women.
Collapse
|
41
|
Zhao M, Ma L, Honda T, Kato A, Ohshiro T, Yokoyama S, Yamamoto K, Ito T, Imai N, Ishizu Y, Nakamura M, Kawashima H, Tsuji NM, Ishigami M, Fujishiro M. Astaxanthin Attenuates Nonalcoholic Steatohepatitis with Downregulation of Osteoprotegerin in Ovariectomized Mice Fed Choline-Deficient High-Fat Diet. Dig Dis Sci 2023; 68:155-163. [PMID: 35397697 DOI: 10.1007/s10620-022-07489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/14/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Postmenopausal estrogen decline increases the risk of developing nonalcoholic steatohepatitis (NASH), and it might accelerate progression to cirrhosis and hepatocellular carcinoma. AIMS This study aimed to investigate a novel therapy for postmenopausal women who are diagnosed with NASH. METHODS Seven-week-old female C57BL/6 J mice were divided into three experimental groups as follows: (1) sham operation (SHAM group), (2) ovariectomy (OVX group), and (3) ovariectomy + 0.02% astaxanthin (OVX + ASTX group). These three groups of mice were fed a choline-deficient high-fat (CDHF) diet for 8 weeks. Blood serum and liver tissues were collected to examine liver injury, histological changes, and hepatic genes associated with NASH. An in vitro study was performed with the hepatic stellate cell line LX-2. RESULTS The administration of ASTX significantly improved pathological NASH with suppressed steatosis, inflammation, and fibrosis, in comparison with those in the OVX-induced estrogen deficiency group. As a result, liver injury was also attenuated with reduced levels of alanine aminotransferase and aspartate transaminase. In addition, our study found that ASTX supplementation decreased hepatic osteoprotegerin (OPG) in vivo, a possible factor that contributes to NASH development. In vitro, this study further confirmed that ASTX has an inhibitory effect on the secretion of OPG in LX-2 human hepatic stellate cells. CONCLUSIONS Our findings suggest that ASTX alleviates CDHF-OVX-induced pathohistological NASH with downregulated OPG, possibly via suppression of the transforming growth factor beta pathway. ASTX could has promise for use in postmenopausal women diagnosed with NASH.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Lingyun Ma
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Asuka Kato
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
- ITOCHU Collaborative Research-Molecular Targeted Cancer Treatment for Next Generation, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Taichi Ohshiro
- ITOCHU Collaborative Research-Molecular Targeted Cancer Treatment for Next Generation, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Yokoyama
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Norihiro Imai
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Noriko M Tsuji
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Department of Food Science, Jumonji University, Saitama, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
42
|
Baumgartner C, Krššák M, Vila G, Krebs M, Wolf P. Ectopic lipid metabolism in anterior pituitary dysfunction. Front Endocrinol (Lausanne) 2023; 14:1075776. [PMID: 36860364 PMCID: PMC9968795 DOI: 10.3389/fendo.2023.1075776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, adapted lifestyle and dietary habits in industrialized countries have led to a progress of obesity and associated metabolic disorders. Concomitant insulin resistance and derangements in lipid metabolism foster the deposition of excess lipids in organs and tissues with limited capacity of physiologic lipid storage. In organs pivotal for systemic metabolic homeostasis, this ectopic lipid content disturbs metabolic action, thereby promotes the progression of metabolic disease, and inherits a risk for cardiometabolic complications. Pituitary hormone syndromes are commonly associated with metabolic diseases. However, the impact on subcutaneous, visceral, and ectopic fat stores between disorders and their underlying hormonal axes is rather different, and the underlying pathophysiological pathways remain largely unknown. Pituitary disorders might influence ectopic lipid deposition indirectly by modulating lipid metabolism and insulin sensitivity, but also directly by organ specific hormonal effects on energy metabolism. In this review, we aim to I) provide information about the impact of pituitary disorders on ectopic fat stores, II) and to present up-to-date knowledge on potential pathophysiological mechanisms of hormone action in ectopic lipid metabolism.
Collapse
|
43
|
Fuller KNZ, McCoin CS, Stierwalt H, Allen J, Gandhi S, Perry CGR, Jambal P, Shankar K, Thyfault JP. Oral combined contraceptives induce liver mitochondrial reactive oxygen species and whole-body metabolic adaptations in female mice. J Physiol 2022; 600:5215-5245. [PMID: 36326014 DOI: 10.1113/jp283733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Compared to age-matched men, pre-menopausal women show greater resilience against cardiovascular disease (CVD), hepatic steatosis, diabetes and obesity - findings that are widely attributed to oestrogen. However, meta-analysis data suggest that current use of oral combined contraceptives (OC) is a risk factor for myocardial infarction, and OC use further compounds with metabolic disease risk factors to increase CVD susceptibility. While mitochondrial function in tissues such as the liver and skeletal muscle is an emerging mechanism by which oestrogen may confer its protection, effects of OC use on mitochondria and metabolism in the context of disease risk remain unexplored. To answer this question, female C57Bl/6J mice were fed a high fat diet and treated with vehicle or OCs for 3, 12 or 20 weeks (n = 6 to 12 per group) at a dose and ratio that mimic the human condition of cycle cessation in the low oestrogen, high progesterone stage. Liver and skeletal muscle mitochondrial function (respiratory capacity, H2 O2 , coupling) was measured along with clinical outcomes of cardiometabolic disease such as obesity, glucose tolerance, hepatic steatosis and aortic atherosclerosis. The main findings indicate that regardless of treatment duration, OCs robustly increase hepatic mitochondrial H2 O2 levels, likely due to diminished antioxidant capacity, but have no impact on muscle mitochondrial H2 O2 . Furthermore, OC-treated mice had lower adiposity and hepatic triglyceride content compared to control mice despite reduced wheel running, spontaneous physical activity and total energy expenditure. Together, these studies describe tissue-specific effects of OC use on mitochondria as well as variable impacts on markers of metabolic disease susceptibility. KEY POINTS: Oestrogen loss in women increases risk for cardiometabolic diseases, a link that has been partially attributed to negative impacts on mitochondria and energy metabolism. To study the effect of oral combined contraceptives (OCs) on hepatic and skeletal muscle mitochondria and whole-body energy metabolism, we used an animal model of OCs which mimics the human condition of cessation of hormonal cycling in the low oestrogen, high progesterone state. OC-treated mice have increased hepatic mitochondrial oxidative stress and decreased physical activity and energy expenditure, despite displaying lower adiposity and liver fat at this time point. These pre-clinical data reveal tissue-specific effects of OCs that likely underlie the clinical findings of increased cardiometabolic disease in women who use OCs compared to non-users, when matched for obesity.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Colin S McCoin
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA.,Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, USA.,University of Kansas Diabetes Institute, Kansas City, KS, USA.,Kansas Center for Metabolism and Obesity Research, Kansas City, KS, USA
| | - Harrison Stierwalt
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Julie Allen
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Center, York University, Toronto, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Center, York University, Toronto, Canada
| | - Purevsuren Jambal
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA.,Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, USA.,University of Kansas Diabetes Institute, Kansas City, KS, USA.,Kansas Center for Metabolism and Obesity Research, Kansas City, KS, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
44
|
Ali D, Figeac F, Caci A, Ditzel N, Schmal C, Kerckhofs G, Havelund J, Færgeman N, Rauch A, Tencerova M, Kassem M. High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: Evidence from ovariectomized mice. Aging Cell 2022; 21:e13726. [PMID: 36217558 PMCID: PMC9741509 DOI: 10.1111/acel.13726] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022] Open
Abstract
Several epidemiological studies have suggested that obesity complicated with insulin resistance and type 2 diabetes exerts deleterious effects on the skeleton. While obesity coexists with estrogen deficiency in postmenopausal women, their combined effects on the skeleton are poorly studied. Thus, we investigated the impact of high-fat diet (HFD) on bone and metabolism of ovariectomized (OVX) female mice (C57BL/6J). OVX or sham operated mice were fed either HFD (60%fat) or normal diet (10%fat) for 12 weeks. HFD-OVX group exhibited pronounced increase in body weight (~86% in HFD and ~122% in HFD-OVX, p < 0.0005) and impaired glucose tolerance. Bone microCT-scanning revealed a pronounced decrease in trabecular bone volume/total volume (BV/TV) (-15.6 ± 0.48% in HFD and -37.5 ± 0.235% in HFD-OVX, p < 0.005) and expansion of bone marrow adipose tissue (BMAT; +60.7 ± 9.9% in HFD vs. +79.5 ± 5.86% in HFD-OVX, p < 0.005). Mechanistically, HFD-OVX treatment led to upregulation of genes markers of senescence, bone resorption, adipogenesis, inflammation, downregulation of gene markers of bone formation and bone development. Similarly, HFD-OVX treatment resulted in significant changes in bone tissue levels of purine/pyrimidine and Glutamate metabolisms, known to play a regulatory role in bone metabolism. Obesity and estrogen deficiency exert combined deleterious effects on bone resulting in accelerated cellular senescence, expansion of BMAT and impaired bone formation leading to decreased bone mass. Our results suggest that obesity may increase bone fragility in postmenopausal women.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Florence Figeac
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Atenisa Caci
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Clarissa Schmal
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Greet Kerckhofs
- Biomechanics Section, Department of Mechanical EngineeringKU LeuvenHeverleeBelgium
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Nils Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Alexander Rauch
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Steno Diabetes Center OdenseOdense University HospitalOdenseDenmark
| | - Michaela Tencerova
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Molecular Physiology of Bone, Institute of PhysiologyCzech Academy of SciencesPragueCzech Republic
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Department of Cellular and Molecular Medicine, Danish Stem Cell Centre (DanStem)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
45
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
46
|
Lamri A, De Paoli M, De Souza R, Werstuck G, Anand S, Pigeyre M. Insight into genetic, biological, and environmental determinants of sexual-dimorphism in type 2 diabetes and glucose-related traits. Front Cardiovasc Med 2022; 9:964743. [PMID: 36505380 PMCID: PMC9729955 DOI: 10.3389/fcvm.2022.964743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
There is growing evidence that sex and gender differences play an important role in risk and pathophysiology of type 2 diabetes (T2D). Men develop T2D earlier than women, even though there is more obesity in young women than men. This difference in T2D prevalence is attenuated after the menopause. However, not all women are equally protected against T2D before the menopause, and gestational diabetes represents an important risk factor for future T2D. Biological mechanisms underlying sex and gender differences on T2D physiopathology are not yet fully understood. Sex hormones affect behavior and biological changes, and can have implications on lifestyle; thus, both sex-specific environmental and biological risk factors interact within a complex network to explain the differences in T2D risk and physiopathology in men and women. In addition, lifetime hormone fluctuations and body changes due to reproductive factors are generally more dramatic in women than men (ovarian cycle, pregnancy, and menopause). Progress in genetic studies and rodent models have significantly advanced our understanding of the biological pathways involved in the physiopathology of T2D. However, evidence of the sex-specific effects on genetic factors involved in T2D is still limited, and this gap of knowledge is even more important when investigating sex-specific differences during the life course. In this narrative review, we will focus on the current state of knowledge on the sex-specific effects of genetic factors associated with T2D over a lifetime, as well as the biological effects of these different hormonal stages on T2D risk. We will also discuss how biological insights from rodent models complement the genetic insights into the sex-dimorphism effects on T2D. Finally, we will suggest future directions to cover the knowledge gaps.
Collapse
Affiliation(s)
- Amel Lamri
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada
| | - Monica De Paoli
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, ON, Canada
| | - Russell De Souza
- Population Health Research Institute (PHRI), Hamilton, ON, Canada,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Geoff Werstuck
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, ON, Canada
| | - Sonia Anand
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Marie Pigeyre
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada,*Correspondence: Marie Pigeyre
| |
Collapse
|
47
|
Fried ND, Whitehead A, Lazartigues E, Yue X, Gardner JD. Ovarian hormones do not mediate protection against pulmonary hypertension and right ventricular remodeling in female mice exposed to chronic, inhaled nicotine. Am J Physiol Heart Circ Physiol 2022; 323:H941-H948. [PMID: 36206053 PMCID: PMC9602789 DOI: 10.1152/ajpheart.00467.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Electronic cigarette use has increased globally prompting calls for improved understanding of nicotine's cardiovascular health effects. Our group has previously demonstrated that chronic, inhaled nicotine induces pulmonary hypertension and right ventricular (RV) remodeling in male mice, but not female mice, suggesting sex differences in nicotine-related pathology. Clinically, biological females develop pulmonary hypertension more often but have less severe disease than biological males, likely because of the cardiopulmonary protective effects of estrogen. Nicotine is also metabolized more rapidly in biological females because of differences in cytochrome-P450 activity, which are thought to be mediated by female sex hormones. These findings led us to hypothesize that female mice are protected against nicotine-induced pulmonary hypertension by an ovarian hormone-dependent mechanism. In this study, intact and ovariectomized (OVX) female mice were exposed to chronic, inhaled nicotine or room air for 12 h/day for 10-12 wk. We report no differences in serum cotinine levels between intact and OVX mice. In addition, we found no structural (RV or left ventricular dimensions and Fulton index) or functional (RV systolic pressure, pulmonary vascular resistance, cardiac output, ejection fraction, and fractional shortening) evidence of cardiopulmonary dysfunction in intact or OVX mice. We conclude that ovarian hormones do not mediate cardiopulmonary protection against nicotine-induced pulmonary hypertension. Due to profound sex differences in clinical pulmonary hypertension pathogenesis and nicotine metabolism, further studies are necessary to elucidate mechanisms underlying protection from nicotine-induced pathology in female mice.NEW & NOTEWORTHY The emergence of electronic cigarettes poses a threat to cardiovascular and pulmonary health, but the direct contribution of nicotine to these disease processes is largely unknown. Our laboratory has previously shown that chronic, inhaled nicotine induces pulmonary hypertension and right ventricular remodeling in male mice, but not female mice. This study using a bilateral ovariectomy model suggests that the cardiopulmonary protection observed in nicotine-exposed female mice may be independent of ovarian hormones.
Collapse
Affiliation(s)
- Nicholas D Fried
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Anna Whitehead
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Southeast Louisiana Veterans Health Care Systems, New Orleans, Louisiana
| | - Xinping Yue
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jason D Gardner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
48
|
Lambrinoudaki I, Paschou SA, Armeni E, Goulis DG. The interplay between diabetes mellitus and menopause: clinical implications. Nat Rev Endocrinol 2022; 18:608-622. [PMID: 35798847 DOI: 10.1038/s41574-022-00708-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
The menopausal transition is an impactful period in women's lives, when the risk of cardiovascular disease is accelerated. Similarly, diabetes mellitus profoundly impacts cardiovascular risk. However, the interplay between menopause and diabetes mellitus has not been adequately studied. The menopausal transition is accompanied by metabolic changes that predispose to diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), as menopause results in increased risk of upper body adipose tissue accumulation and increased incidence of insulin resistance. Equally, diabetes mellitus can affect ovarian ageing, potentially causing women with type 1 diabetes mellitus and early-onset T2DM to experience menopause earlier than women without diabetes mellitus. Earlier age at menopause has been associated with a higher risk of T2DM later in life. Menopausal hormone therapy can reduce the risk of T2DM and improve glycaemic control in women with pre-existing diabetes mellitus; however, there is not enough evidence to support the administration of menopausal hormone therapy for diabetes mellitus prevention or control. This Review critically appraises studies published within the past few years on the interaction between diabetes mellitus and menopause and addresses all clinically relevant issues, such as the effect of menopause on the development of T2DM, and the management of both menopause and diabetes mellitus.
Collapse
Affiliation(s)
- Irene Lambrinoudaki
- Menopause Unit, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece.
| | - Stavroula A Paschou
- Menopause Unit, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Armeni
- Menopause Unit, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
49
|
Wu Y, Zhang X, Chen J, Cao J, Feng C, Luo Y, Lin Y. Self-recovery study of fluoride-induced ferroptosis in the liver of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106275. [PMID: 36007351 DOI: 10.1016/j.aquatox.2022.106275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Ferroptosis plays a key role in fluorosis in aquatic organisms, but whether it is involved in fluoride-induced liver damage remains unclear. Previous studies have indicated that fluoride toxicity has the reversible tendency, but the mechanism of self-recovery after fluorosis in aquatic animals has not been elucidated. In this study, adult zebrafish and embryos were exposed to 0, 20, 40, 80 mg/L of fluoride for 30, 60 and 90 d and 3, 4 and 5 d post-fertilization (dpf), respectively. After 90 d, adult zebrafish were transferred to clean water for self-recovery of 30 d. The results showed that fluoride induced the prominent histopathologial changes in liver of adults, and the developmental delay and dark liver area in larvae. Fluoride significantly increased the iron overload, while decreased the expression levels of transferrin (tf), transferrin receptor (tfr), ferroportin (fpn), membrane iron transporter (fpn), and ferritin heavy chain (fth) in adults and larvae. Fluoride also induced the oxidative stress in adults and larvae by increasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while decreasing the glutathione (GSH) content and the levels of glutathione peroxidase 4 (gpx4) and solute carrier family 7 member 11 (slc7a11). Self-recovery relieved fluoride-induced ferroptosis by reducing the histopathological damage and oxidative stress, reversing the expression levels of fth and slc7a11, Fe2+ metabolism and GSH synthesis. Lipid peroxidation and Fe2+ metabolism may be the key factor in alleviating effects of self-recovery on fluoride toxicity. Moreover, males are more sensitive than females. Our results provide a theoretical basis for studying the alleviating effects of self-recovery on fluoride toxicity and the underlying mechanism of its protective effect.
Collapse
Affiliation(s)
- Yijie Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiuling Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Cuiping Feng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China.
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China.
| |
Collapse
|
50
|
Lei F, Qin JJ, Song X, Liu YM, Chen MM, Sun T, Huang X, Deng KQ, Zuo X, Yao D, Xu LJ, Lu H, Wang G, Liu F, Chen L, Luo J, Xia J, Wang L, Yang Q, Zhang P, Ji YX, Zhang XJ, She ZG, Zeng Q, Li H, Cai J. The prevalence of MAFLD and its association with atrial fibrillation in a nationwide health check-up population in China. Front Endocrinol (Lausanne) 2022; 13:1007171. [PMID: 36237179 PMCID: PMC9551383 DOI: 10.3389/fendo.2022.1007171] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS The epidemiological characteristics of MAFLD and its relationship with atrial fibrillation (AF) are limited in China. Therefore, we explored the epidemiological characteristics of MAFLD from adults along with the association of MAFLD and 12-ECG diagnosed AF in a nationwide population from health check-up centers. METHODS This observational study used cross-sectional and longitudinal studies with 2,083,984 subjects from 2009 to 2017. Age-, sex-, and regional-standardized prevalence of MAFLD was estimated. Latent class analysis (LCA) was used to identify subclusters of MAFLD. Multivariable logistic regression and mixed-effects Cox regression models were used to analyze the relationship between MAFLD and AF. RESULTS The prevalence of MAFLD increased from 22.75% to 35.58% during the study period, with higher rates in males and populations with high BMI or resided in northern regions. The MAFLD population was clustered into three classes with different metabolic features by LCA. Notably, a high proportion of MAFLD patients in all clusters had overweight and prediabetes or diabetes. The MAFLD was significantly associated with a higher risk of AF in the cross-sectional study and in the longitudinal study. In addition, the coexistence of prediabetes or diabetes had the largest impact on subsequent AF. CONCLUSION Our findings suggested a high prevalence of MAFLD and a high prevalence of other metabolic diseases in the MAFLD population, particularly overweight and glucose dysregulation. Moreover, MAFLD was associated with a significantly higher risk for existing and subsequent subclinical AF in the Chinese population.
Collapse
Affiliation(s)
- Fang Lei
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiaohui Song
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ye-Mao Liu
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
| | - Ming-Ming Chen
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tao Sun
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xuewei Huang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ke-Qiong Deng
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiuran Zuo
- Department of Information, The Central Hospital of Wuhan, Wuhan, China
| | - Dongai Yao
- Physical Examination Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li-Juan Xu
- Physical Examination Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Huiming Lu
- General Medical Department, CR & WISCO General Hospital, Wuhan, China
| | - Gang Wang
- Basic Medical Laboratory, General Hospital of Central Theater Command, Wuhan, China
| | - Feng Liu
- Information Center, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Lidong Chen
- Department of Medical Examination Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an, China
| | - QiongYu Yang
- Chinese Medicine Center, Shiyan Renmin Hospital, Shiyan, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|