1
|
Nabi-Afjadi M, Ostadhadi S, Liaghat M, Pasupulla AP, Masoumi S, Aziziyan F, Zalpoor H, Abkhooie L, Tarhriz V. Revolutionizing type 1 diabetes management: Exploring oral insulin and adjunctive treatments. Biomed Pharmacother 2024; 176:116808. [PMID: 38805967 DOI: 10.1016/j.biopha.2024.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition that affects millions of people worldwide. Insulin pumps or injections are the standard treatment options for this condition. This article provides a comprehensive overview of the several type 1 diabetes treatment options, focusing on oral insulin. The article is divided into parts that include immune-focused treatments, antigen vaccination, cell-directed interventions, cytokine-directed interventions, and non-immunomodulatory adjuvant therapy. Under the section on non-immunomodulatory adjunctive treatment, the benefits and drawbacks of medications such as metformin, amylin, sodium-glucose cotransporter inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1 Ras), and verapamil are discussed. The article also discusses the advantages of oral insulin, including increased patient compliance and more dependable and regular blood sugar control. However, several variables, including the enzymatic and physical barriers of the digestive system, impair the administration of insulin via the mouth. Researchers have looked at a few ways to get over these challenges, such as changing the structure of the insulin molecule, improving absorption with the use of absorption enhancers or nanoparticles, and taking oral insulin together with other medications. Even with great advancements in the use of these treatment strategies, T1D still needs improvement in the therapeutic difficulties. Future studies in these areas should focus on creating tailored immunological treatments, looking into combination medications, and refining oral insulin formulations in an attempt to better control Type 1 Diabetes. The ultimate objective is to create accurate, customized strategies that will enhance glycemic management and the quality of life for individuals with the condition.
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Samane Ostadhadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Ajay Prakash Pasupulla
- Oral and Maxillofacial Pathology, School of Medicine, Colllege of health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Sajjad Masoumi
- Department of Medical Biotechnology, National institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
2
|
Jarc L, Bandral M, Zanfrini E, Lesche M, Kufrin V, Sendra R, Pezzolla D, Giannios I, Khattak S, Neumann K, Ludwig B, Gavalas A. Regulation of multiple signaling pathways promotes the consistent expansion of human pancreatic progenitors in defined conditions. eLife 2024; 12:RP89962. [PMID: 38180318 PMCID: PMC10945307 DOI: 10.7554/elife.89962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
The unlimited expansion of human progenitor cells in vitro could unlock many prospects for regenerative medicine. However, it remains an important challenge as it requires the decoupling of the mechanisms supporting progenitor self-renewal and expansion from those mechanisms promoting their differentiation. This study focuses on the expansion of human pluripotent stem (hPS) cell-derived pancreatic progenitors (PP) to advance novel therapies for diabetes. We obtained mechanistic insights into PP expansion requirements and identified conditions for the robust and unlimited expansion of hPS cell-derived PP cells under GMP-compliant conditions through a hypothesis-driven iterative approach. We show that the combined stimulation of specific mitogenic pathways, suppression of retinoic acid signaling, and inhibition of selected branches of the TGFβ and Wnt signaling pathways are necessary for the effective decoupling of PP proliferation from differentiation. This enabled the reproducible, 2000-fold, over 10 passages and 40-45 d, expansion of PDX1+/SOX9+/NKX6-1+ PP cells. Transcriptome analyses confirmed the stabilization of PP identity and the effective suppression of differentiation. Using these conditions, PDX1+/SOX9+/NKX6-1+ PP cells, derived from different, both XY and XX, hPS cell lines, were enriched to nearly 90% homogeneity and expanded with very similar kinetics and efficiency. Furthermore, non-expanded and expanded PP cells, from different hPS cell lines, were differentiated in microwells into homogeneous islet-like clusters (SC-islets) with very similar efficiency. These clusters contained abundant β-cells of comparable functionality as assessed by glucose-stimulated insulin secretion assays. These findings established the signaling requirements to decouple PP proliferation from differentiation and allowed the consistent expansion of hPS cell-derived PP cells. They will enable the establishment of large banks of GMP-produced PP cells derived from diverse hPS cell lines. This approach will streamline SC-islet production for further development of the differentiation process, diabetes research, personalized medicine, and cell therapies.
Collapse
Affiliation(s)
- Luka Jarc
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Centre for Diabetes Research (DZD)MunichGermany
| | - Manuj Bandral
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Centre for Diabetes Research (DZD)MunichGermany
| | - Elisa Zanfrini
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Centre for Diabetes Research (DZD)MunichGermany
| | - Mathias Lesche
- Dresden Concept Genome Centre (DcGC), TU DresdenDresdenGermany
- Center for Molecular and Cellular Bioengineering (CMCB) Technology Platform, TU DresdenDresdenGermany
| | - Vida Kufrin
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
| | - Raquel Sendra
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
| | - Daniela Pezzolla
- German Centre for Diabetes Research (DZD)MunichGermany
- Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, TU DresdenDresdenGermany
| | - Ioannis Giannios
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Centre for Diabetes Research (DZD)MunichGermany
| | - Shahryar Khattak
- Stem Cell Engineering Facility, (SCEF), CRTD, Faculty of Medicine, TU DresdenDresdenGermany
| | - Katrin Neumann
- Stem Cell Engineering Facility, (SCEF), CRTD, Faculty of Medicine, TU DresdenDresdenGermany
| | - Barbara Ludwig
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Centre for Diabetes Research (DZD)MunichGermany
- Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, TU DresdenDresdenGermany
- Department of Medicine III, University Hospital Carl Gustav Carus and Faculty of Medicine, TU DresdenDresdenGermany
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Centre for Diabetes Research (DZD)MunichGermany
| |
Collapse
|
3
|
Naqvi RA, Naqvi AR, Singh A, Priyadarshini M, Balamurugan AN, Layden BT. The future treatment for type 1 diabetes: Pig islet- or stem cell-derived β cells? Front Endocrinol (Lausanne) 2023; 13:1001041. [PMID: 36686451 PMCID: PMC9849241 DOI: 10.3389/fendo.2022.1001041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Replacement of β cells is only a curative approach for type 1 diabetes (T1D) patients to avoid the threat of iatrogenic hypoglycemia. In this pursuit, islet allotransplantation under Edmonton's protocol emerged as a medical miracle to attain hypoglycemia-free insulin independence in T1D. Shortage of allo-islet donors and post-transplantation (post-tx) islet loss are still unmet hurdles for the widespread application of this therapeutic regimen. The long-term survival and effective insulin independence in preclinical studies have strongly suggested pig islets to cure overt hyperglycemia. Importantly, CRISPR-Cas9 technology is pursuing to develop "humanized" pig islets that could overcome the lifelong immunosuppression drug regimen. Lately, induced pluripotent stem cell (iPSC)-derived β cell approaches are also gaining momentum and may hold promise to yield a significant supply of insulin-producing cells. Theoretically, personalized β cells derived from a patient's iPSCs is one exciting approach, but β cell-specific immunity in T1D recipients would still be a challenge. In this context, encapsulation studies on both pig islet as well as iPSC-β cells were found promising and rendered long-term survival in mice. Oxygen tension and blood vessel growth within the capsules are a few of the hurdles that need to be addressed. In conclusion, challenges associated with both procedures, xenotransplantation (of pig-derived islets) and stem cell transplantation, are required to be cautiously resolved before their clinical application.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Afsar Raza Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Amar Singh
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Medha Priyadarshini
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Appakalai N. Balamurugan
- Center for Clinical and Translational Research, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Brian T. Layden
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Abstract
The pancreatic β-cells are essential for regulating glucose homeostasis through the coordinated release of the insulin hormone. Dysfunction of the highly specialized β-cells results in diabetes mellitus, a growing global health epidemic. In this review, we describe the development and function of β-cells the emerging concept of heterogeneity within insulin-producing cells, and the potential of other cell types to assume β-cell functionality via transdifferentiation. We also discuss emerging routes to design cells with minimal β-cell properties and human stem cell differentiation efforts that carry the promise to restore normoglycemia in patients suffering from diabetes.
Collapse
Affiliation(s)
- Natanya Kerper
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | - Sudipta Ashe
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
5
|
Role of the Transcription Factor MAFA in the Maintenance of Pancreatic β-Cells. Int J Mol Sci 2022; 23:ijms23094478. [PMID: 35562869 PMCID: PMC9101179 DOI: 10.3390/ijms23094478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic β-cells are specialized to properly regulate blood glucose. Maintenance of the mature β-cell phenotype is critical for glucose metabolism, and β-cell failure results in diabetes mellitus. Recent studies provide strong evidence that the mature phenotype of β-cells is maintained by several transcription factors. These factors are also required for β-cell differentiation from endocrine precursors or maturation from immature β-cells during pancreatic development. Because the reduction or loss of these factors leads to β-cell failure and diabetes, inducing the upregulation or inhibiting downregulation of these transcription factors would be beneficial for studies in both diabetes and stem cell biology. Here, we discuss one such factor, i.e., the transcription factor MAFA. MAFA is a basic leucine zipper family transcription factor that can activate the expression of insulin in β-cells with PDX1 and NEUROD1. MAFA is indeed indispensable for the maintenance of not only insulin expression but also function of adult β-cells. With loss of MAFA in type 2 diabetes, β-cells cannot maintain their mature phenotype and are dedifferentiated. In this review, we first briefly summarize the functional roles of MAFA in β-cells and then mainly focus on the molecular mechanism of cell fate conversion regulated by MAFA.
Collapse
|
6
|
Chmielowiec J, Szlachcic WJ, Yang D, Scavuzzo MA, Wamble K, Sarrion-Perdigones A, Sabek OM, Venken KJT, Borowiak M. Human pancreatic microenvironment promotes β-cell differentiation via non-canonical WNT5A/JNK and BMP signaling. Nat Commun 2022; 13:1952. [PMID: 35414140 PMCID: PMC9005503 DOI: 10.1038/s41467-022-29646-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
In vitro derivation of pancreatic β-cells from human pluripotent stem cells holds promise as diabetes treatment. Despite recent progress, efforts to generate physiologically competent β-cells are still hindered by incomplete understanding of the microenvironment's role in β-cell development and maturation. Here, we analyze the human mesenchymal and endothelial primary cells from weeks 9-20 fetal pancreas and identify a time point-specific microenvironment that permits β-cell differentiation. Further, we uncover unique factors that guide in vitro development of endocrine progenitors, with WNT5A markedly improving human β-cell differentiation. WNT5A initially acts through the non-canonical (JNK/c-JUN) WNT signaling and cooperates with Gremlin1 to inhibit the BMP pathway during β-cell maturation. Interestingly, we also identify the endothelial-derived Endocan as a SST+ cell promoting factor. Overall, our study shows that the pancreatic microenvironment-derived factors can mimic in vivo conditions in an in vitro system to generate bona fide β-cells for translational applications.
Collapse
Affiliation(s)
- Jolanta Chmielowiec
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wojciech J Szlachcic
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katrina Wamble
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alejandro Sarrion-Perdigones
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Omaima M Sabek
- Department of Surgery, The Methodist Hospital, Houston, TX, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Koen J T Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Malgorzata Borowiak
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA. .,Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Ma X, Lu Y, Zhou Z, Li Q, Chen X, Wang W, Jin Y, Hu Z, Chen G, Deng Q, Shang W, Wang H, Fu H, He X, Feng XH, Zhu S. Human expandable pancreatic progenitor-derived β cells ameliorate diabetes. SCIENCE ADVANCES 2022; 8:eabk1826. [PMID: 35196077 PMCID: PMC8865776 DOI: 10.1126/sciadv.abk1826] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
An unlimited source of human pancreatic β cells is in high demand. Even with recent advances in pancreatic differentiation from human pluripotent stem cells, major hurdles remain in large-scale and cost-effective production of functional β cells. Here, through chemical screening, we demonstrate that the bromodomain and extraterminal domain (BET) inhibitor I-BET151 can robustly promote the expansion of PDX1+NKX6.1+ pancreatic progenitors (PPs). These expandable PPs (ePPs) maintain pancreatic progenitor cell status in the long term and can efficiently differentiate into functional pancreatic β (ePP-β) cells. Notably, transplantation of ePP-β cells rapidly ameliorated diabetes in mice, suggesting strong potential for cell replacement therapy. Mechanistically, I-BET151 activates Notch signaling and promotes the expression of key PP-associated genes, underscoring the importance of epigenetic and transcriptional modulations for lineage-specific progenitor self-renewal. In summary, our studies achieve the long-term goal of robust expansion of PPs and represent a substantial step toward unlimited supplies of functional β cells for biomedical research and regenerative medicine.
Collapse
Affiliation(s)
- Xiaojie Ma
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yunkun Lu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ziyu Zhou
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qin Li
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Weiyun Wang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yan Jin
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhensheng Hu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Guo Chen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Deng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Weina Shang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Hangzhou Women’s Hospital, Prenatal Diagnosis Center, 369 Kunpeng Road, Hangzhou, China
| | - Hongxing Fu
- Department of Pharmacy, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shunlan International Medical College, 848 Dongxin Road, Hangzhou, China
| | - Xiangwei He
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Saiyong Zhu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Corresponding author.
| |
Collapse
|
8
|
Liu W, Flanders JA, Wang LH, Liu Q, Bowers DT, Wang K, Chiu A, Wang X, Ernst AU, Shariati K, Caserto JS, Parker B, Gao D, Plesser MD, Grunnet LG, Rescan C, Carletto RP, Winkel L, Melero-Martin JM, Ma M. A Safe, Fibrosis-Mitigating, and Scalable Encapsulation Device Supports Long-Term Function of Insulin-Producing Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104899. [PMID: 34897997 PMCID: PMC8881301 DOI: 10.1002/smll.202104899] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Indexed: 06/12/2023]
Abstract
Encapsulation and transplantation of insulin-producing cells offer a promising curative treatment for type 1 diabetes (T1D) without immunosuppression. However, biomaterials used to encapsulate cells often elicit foreign body responses, leading to cellular overgrowth and deposition of fibrotic tissue, which in turn diminishes mass transfer to and from transplanted cells. Meanwhile, the encapsulation device must be safe, scalable, and ideally retrievable to meet clinical requirements. Here, a durable and safe nanofibrous device coated with a thin and uniform, fibrosis-mitigating, zwitterionically modified alginate hydrogel for encapsulation of islets and stem cell-derived beta (SC-β) cells is reported. The device with a configuration that has cells encapsulated within the cylindrical wall, allowing scale-up in both radial and longitudinal directions without sacrificing mass transfer, is designed. Due to its facile mass transfer and low level of fibrotic reactions, the device supports long-term cell engraftment, correcting diabetes in C57BL6/J mice with rat islets for up to 399 days and SCID-beige mice with human SC-β cells for up to 238 days. The scalability and retrievability in dogs are further demonstrated. These results suggest the potential of this new device for cell therapies to treat T1D and other diseases.
Collapse
Affiliation(s)
- Wanjun Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - James A. Flanders
- Department of Clinical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Qingsheng Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T. Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Alan Chiu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alexander U. Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Julia S. Caserto
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Benjamin Parker
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daqian Gao
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D. Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lars G. Grunnet
- Stem Cell Delivery & Pharmacology, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Claude Rescan
- Stem Cell Delivery & Pharmacology, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - Louise Winkel
- Stem Cell Delivery & Pharmacology, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Juan M. Melero-Martin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Ghezelayagh Z, Zabihi M, Kazemi Ashtiani M, Ghezelayagh Z, Lynn FC, Tahamtani Y. Recapitulating pancreatic cell-cell interactions through bioengineering approaches: the momentous role of non-epithelial cells for diabetes cell therapy. Cell Mol Life Sci 2021; 78:7107-7132. [PMID: 34613423 PMCID: PMC11072828 DOI: 10.1007/s00018-021-03951-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, extensive efforts have been made to generate in-vitro pancreatic micro-tissue, for disease modeling or cell replacement approaches in pancreatic related diseases such as diabetes mellitus. To obtain these goals, a closer look at the diverse cells participating in pancreatic development is necessary. Five major non-epithelial pancreatic (pN-Epi) cell populations namely, pancreatic endothelium, mesothelium, neural crests, pericytes, and stellate cells exist in pancreas throughout its development, and they are hypothesized to be endogenous inducers of the development. In this review, we discuss different pN-Epi cells migrating to and existing within the pancreas and their diverse effects on pancreatic epithelium during organ development mediated via associated signaling pathways, soluble factors or mechanical cell-cell interactions. In-vivo and in-vitro experiments, with a focus on N-Epi cells' impact on pancreas endocrine development, have also been considered. Pluripotent stem cell technology and multicellular three-dimensional organoids as new approaches to generate pancreatic micro-tissues have also been discussed. Main challenges for reaching a detailed understanding of the role of pN-Epi cells in pancreas development in utilizing for in-vitro recapitulation have been summarized. Finally, various novel and innovative large-scale bioengineering approaches which may help to recapitulate cell-cell interactions and are crucial for generation of large-scale in-vitro multicellular pancreatic micro-tissues, are discussed.
Collapse
Affiliation(s)
- Zahra Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Zabihi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeinab Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery and School of Biomedical Engineering , University of British Columbia, Vancouver, BC, Canada
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
10
|
Ghezelayagh Z, Zabihi M, Zarkesh I, Gonçalves CAC, Larsen M, Hagh-Parast N, Pakzad M, Vosough M, Arjmand B, Baharvand H, Larijani B, Grapin-Botton A, Aghayan HR, Tahamtani Y. Improved Differentiation of hESC-Derived Pancreatic Progenitors by Using Human Fetal Pancreatic Mesenchymal Cells in a Micro-scalable Three-Dimensional Co-culture System. Stem Cell Rev Rep 2021; 18:360-377. [PMID: 34586606 DOI: 10.1007/s12015-021-10266-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 01/12/2023]
Abstract
Mesenchymal cells of diverse origins differ in gene and protein expression besides producing varying effects on their organ-matched epithelial cells' maintenance and differentiation capacity. Co-culture with rodent's tissue-specific pancreatic mesenchyme accelerates proliferation, self-renewal, and differentiation of pancreatic epithelial progenitors. Therefore, in our study, the impact of three-dimensional (3D) co-culture of human fetal pancreatic-derived mesenchymal cells (hFP-MCs) with human embryonic stem cell-derived pancreatic progenitors (hESC-PPs) development towards endocrine and beta cells was assessed. Besides, the ability to maintain scalable cultures combining hFP-MCs and hESC-PPs was investigated. hFP-MCs expressed many markers in common with bone marrow-derived mesenchymal stem cells (BM-MSCs). However, they showed higher expression of DESMIN compared to BM-MSCs. After co-culture of hESC-PPs with hFP-MCs, the pancreatic progenitor (PP) spheroids generated in Matrigel had higher expression of NGN3 and INSULIN than BM-MSCs co-culture group, which shows an inductive impact of pancreatic mesenchyme on hESC-PPs beta-cells maturation. Pancreatic aggregates generated by forced aggregation through scalable AggreWell system showed similar features compared to the spheroids. These aggregates, a combination of hFP-MCs and hESC-PPs, can be applied as an appropriate tool for assessing endocrine-niche interactions and developmental processes by mimicking the pancreatic tissue.
Collapse
Affiliation(s)
- Zahra Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Zabihi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Ibrahim Zarkesh
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Carla A C Gonçalves
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Larsen
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Newsha Hagh-Parast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Anne Grapin-Botton
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Li J, Chen B, Fellows GF, Goodyer CG, Wang R. Activation of Pancreatic Stellate Cells Is Beneficial for Exocrine but Not Endocrine Cell Differentiation in the Developing Human Pancreas. Front Cell Dev Biol 2021; 9:694276. [PMID: 34490247 PMCID: PMC8418189 DOI: 10.3389/fcell.2021.694276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatic stellate cells (PaSCs) are non-endocrine, mesenchymal-like cells that reside within the peri-pancreatic tissue of the rodent and human pancreas. PaSCs regulate extracellular matrix (ECM) turnover in maintaining the integrity of pancreatic tissue architecture. Although there is evidence indicating that PaSCs are involved in islet cell survival and function, its role in islet cell differentiation during human pancreatic development remains unclear. The present study examines the expression pattern and functional role of PaSCs in islet cell differentiation of the developing human pancreas from late 1st to 2nd trimester of pregnancy. The presence of PaSCs in human pancreata (8–22 weeks of fetal age) was characterized by ultrastructural, immunohistological, quantitative RT-PCR and western blotting approaches. Using human fetal PaSCs derived from pancreata at 14–16 weeks, freshly isolated human fetal islet-epithelial cell clusters (hIECCs) were co-cultured with active or inactive PaSCs in vitro. Ultrastructural and immunofluorescence analysis demonstrated a population of PaSCs near ducts and newly formed islets that appeared to make complex cell-cell dendritic-like contacts. A small subset of PaSCs co-localized with pancreatic progenitor-associated transcription factors (PDX1, SOX9, and NKX6-1). PaSCs were highly proliferative, with significantly higher mRNA and protein levels of PaSC markers (desmin, αSMA) during the 1st trimester of pregnancy compared to the 2nd trimester. Isolated human fetal PaSCs were identified by expression of stellate cell markers and ECM. Suppression of PaSC activation, using all-trans retinoic acid (ATRA), resulted in reduced PaSC proliferation and ECM proteins. Co-culture of hIECCs, directly on PaSCs or indirectly using Millicell® Inserts or using PaSC-conditioned medium, resulted in a reduction the number of insulin+ cells but a significant increase in the number of amylase+ cells. Suppression of PaSC activation or Notch activity during the co-culture resulted in an increase in beta-cell differentiation. This study determined that PaSCs, abundant during the 1st trimester of pancreatic development but decreased in the 2nd trimester, are located near ductal and islet structures. Direct and indirect co-cultures of hIECCs with PaSCs suggest that activation of PaSCs has opposing effects on beta-cell and exocrine cell differentiation during human fetal pancreas development, and that these effects may be dependent on Notch signaling.
Collapse
Affiliation(s)
- Jinming Li
- Children's Health Research Institute, Western University, London, ON, Canada.,Departments of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Bijun Chen
- Children's Health Research Institute, Western University, London, ON, Canada
| | - George F Fellows
- Department of Obstetrics and Gynecology, Western University, London, ON, Canada
| | | | - Rennian Wang
- Children's Health Research Institute, Western University, London, ON, Canada.,Departments of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
12
|
Burgos JI, Vallier L, Rodríguez-Seguí SA. Monogenic Diabetes Modeling: In Vitro Pancreatic Differentiation From Human Pluripotent Stem Cells Gains Momentum. Front Endocrinol (Lausanne) 2021; 12:692596. [PMID: 34295307 PMCID: PMC8290520 DOI: 10.3389/fendo.2021.692596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
The occurrence of diabetes mellitus is characterized by pancreatic β cell loss and chronic hyperglycemia. While Type 1 and Type 2 diabetes are the most common types, rarer forms involve mutations affecting a single gene. This characteristic has made monogenic diabetes an interesting disease group to model in vitro using human pluripotent stem cells (hPSCs). By altering the genotype of the original hPSCs or by deriving human induced pluripotent stem cells (hiPSCs) from patients with monogenic diabetes, changes in the outcome of the in vitro differentiation protocol can be analyzed in detail to infer the regulatory mechanisms affected by the disease-associated genes. This approach has been so far applied to a diversity of genes/diseases and uncovered new mechanisms. The focus of the present review is to discuss the latest findings obtained by modeling monogenic diabetes using hPSC-derived pancreatic cells generated in vitro. We will specifically focus on the interpretation of these studies, the advantages and limitations of the models used, and the future perspectives for improvement.
Collapse
Affiliation(s)
- Juan Ignacio Burgos
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ludovic Vallier
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Santiago A. Rodríguez-Seguí
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
13
|
Inoue R, Nishiyama K, Li J, Miyashita D, Ono M, Terauchi Y, Shirakawa J. The Feasibility and Applicability of Stem Cell Therapy for the Cure of Type 1 Diabetes. Cells 2021; 10:cells10071589. [PMID: 34202521 PMCID: PMC8304653 DOI: 10.3390/cells10071589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022] Open
Abstract
Stem cell therapy using islet-like insulin-producing cells derived from human pluripotent stem cells has the potential to allow patients with type 1 diabetes to withdraw from insulin therapy. However, several issues exist regarding the use of stem cell therapy to treat type 1 diabetes. In this review, we will focus on the following topics: (1) autoimmune responses during the autologous transplantation of stem cell-derived islet cells, (2) a comparison of stem cell therapy with insulin injection therapy, (3) the impact of the islet microenvironment on stem cell-derived islet cells, and (4) the cost-effectiveness of stem cell-derived islet cell transplantation. Based on these various viewpoints, we will discuss what is required to perform stem cell therapy for patients with type 1 diabetes.
Collapse
Affiliation(s)
- Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; (R.I.); (K.N.); (J.L.)
| | - Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; (R.I.); (K.N.); (J.L.)
| | - Jinghe Li
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; (R.I.); (K.N.); (J.L.)
| | - Daisuke Miyashita
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (D.M.); (M.O.); (Y.T.)
| | - Masato Ono
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (D.M.); (M.O.); (Y.T.)
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (D.M.); (M.O.); (Y.T.)
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; (R.I.); (K.N.); (J.L.)
- Correspondence: ; Tel.: +81-27-220-8850
| |
Collapse
|
14
|
Szlachcic WJ, Ziojla N, Kizewska DK, Kempa M, Borowiak M. Endocrine Pancreas Development and Dysfunction Through the Lens of Single-Cell RNA-Sequencing. Front Cell Dev Biol 2021; 9:629212. [PMID: 33996792 PMCID: PMC8116659 DOI: 10.3389/fcell.2021.629212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
A chronic inability to maintain blood glucose homeostasis leads to diabetes, which can damage multiple organs. The pancreatic islets regulate blood glucose levels through the coordinated action of islet cell-secreted hormones, with the insulin released by β-cells playing a crucial role in this process. Diabetes is caused by insufficient insulin secretion due to β-cell loss, or a pancreatic dysfunction. The restoration of a functional β-cell mass might, therefore, offer a cure. To this end, major efforts are underway to generate human β-cells de novo, in vitro, or in vivo. The efficient generation of functional β-cells requires a comprehensive knowledge of pancreas development, including the mechanisms driving cell fate decisions or endocrine cell maturation. Rapid progress in single-cell RNA sequencing (scRNA-Seq) technologies has brought a new dimension to pancreas development research. These methods can capture the transcriptomes of thousands of individual cells, including rare cell types, subtypes, and transient states. With such massive datasets, it is possible to infer the developmental trajectories of cell transitions and gene regulatory pathways. Here, we summarize recent advances in our understanding of endocrine pancreas development and function from scRNA-Seq studies on developing and adult pancreas and human endocrine differentiation models. We also discuss recent scRNA-Seq findings for the pathological pancreas in diabetes, and their implications for better treatment.
Collapse
Affiliation(s)
- Wojciech J. Szlachcic
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Ziojla
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Dorota K. Kizewska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marcelina Kempa
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Borowiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
15
|
Loe AKH, Rao-Bhatia A, Kim JE, Kim TH. Mesenchymal Niches for Digestive Organ Development, Homeostasis, and Disease. Trends Cell Biol 2020; 31:152-165. [PMID: 33349527 DOI: 10.1016/j.tcb.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal-epithelial crosstalk plays a crucial role in organ development and stem cell function. However, the identity of the mesenchymal cells involved in this exchange was unclear. Recent significant advances in single-cell transcriptomics have defined the heterogeneity of these mesenchymal niches. By combining multiomic profiling, animal models, and organoid culture, new studies have not only demonstrated the roles of diverse mesenchymal cell populations but also defined the mechanisms underlying their regulation of niche signals. Focusing on several digestive organs, we describe how similar and diverse mesenchymal cell populations promote organ development and maintain proper stem cell activity, and how the heterogeneity of mesenchymal niches is altered in digestive diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abilasha Rao-Bhatia
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ji-Eun Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae-Hee Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
16
|
Yap L, Tay HG, Nguyen MT, Tjin MS, Tryggvason K. Laminins in Cellular Differentiation. Trends Cell Biol 2019; 29:987-1000. [DOI: 10.1016/j.tcb.2019.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
|
17
|
Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nat Commun 2019; 10:4647. [PMID: 31604927 PMCID: PMC6789033 DOI: 10.1038/s41467-019-12624-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cell-derived beta cells offer a promising cell-based therapy for diabetes. However, efficient stem cell to beta cell differentiation has proven difficult, possibly due to the lack of cross-talk with the appropriate mesenchymal niche. To define organ-specific niche signals, we isolated pancreatic and gastrointestinal stromal cells, and analyzed their gene expression during development. Our genetic studies reveal the importance of tightly regulated Hedgehog signaling in the pancreatic mesenchyme: inactivation of mesenchymal signaling leads to annular pancreas, whereas stroma-specific activation of signaling via loss of Hedgehog regulators, Sufu and Spop, impairs pancreatic growth and beta cell genesis. Genetic rescue and transcriptome analyses show that these Sufu and Spop knockout defects occur through Gli2-mediated activation of gastrointestinal stromal signals such as Wnt ligands. Importantly, inhibition of Wnt signaling in organoid and human stem cell cultures significantly promotes insulin-producing cell generation, altogether revealing the requirement for organ-specific regulation of stromal niche signals.
Collapse
|
18
|
Sneddon JB, Tang Q, Stock P, Bluestone JA, Roy S, Desai T, Hebrok M. Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges. Cell Stem Cell 2019; 22:810-823. [PMID: 29859172 DOI: 10.1016/j.stem.2018.05.016] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Restoration of insulin independence and normoglycemia has been the overarching goal in diabetes research and therapy. While whole-organ and islet transplantation have become gold-standard procedures in achieving glucose control in diabetic patients, the profound lack of suitable donor tissues severely hampers the broad application of these therapies. Here, we describe current efforts aimed at generating a sustainable source of functional human stem cell-derived insulin-producing islet cells for cell transplantation and present state-of-the-art efforts to protect such cells via immune modulation and encapsulation strategies.
Collapse
Affiliation(s)
- Julie B Sneddon
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Stock
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shuvo Roy
- UCSF-UC Berkeley Joint Ph.D. Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tejal Desai
- UCSF-UC Berkeley Joint Ph.D. Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
Guerriero I, De Angelis MT, D'Angelo F, Leveque R, Savignano E, Roberto L, Lucci V, Mazzone P, Laurino S, Storto G, Nardelli A, Sgambato A, Ceccarelli M, De Felice M, Amendola E, Falco G. Exploring the Molecular Crosstalk between Pancreatic Bud and Mesenchyme in Embryogenesis: Novel Signals Involved. Int J Mol Sci 2019; 20:ijms20194900. [PMID: 31623299 PMCID: PMC6811752 DOI: 10.3390/ijms20194900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 01/07/2023] Open
Abstract
Pancreatic organogenesis is a multistep process that requires the cooperation of several signaling pathways. In this context, the role of pancreatic mesenchyme is important to define the epithelium development; nevertheless, the precise space–temporal signaling activation still needs to be clarified. This study reports a dissection of the pancreatic embryogenesis, highlighting the molecular network surrounding the epithelium–mesenchyme interaction. To investigate this crosstalk, pancreatic epithelium and surrounding mesenchyme, at embryonic day 10.5, were collected through laser capture microdissection (LCM) and characterized based on their global gene expression. We performed a bioinformatic analysis to hypothesize crosstalk interactions, validating the most promising genes and verifying the precise localization of their expression in the compartments, by RNA in situ hybridization (ISH). Our analyses pointed out also the c-Met gene, a very well-known factor involved in stimulating motility, morphogenesis, and organ regeneration. We also highlighted the potential crosstalk between Versican (Vcan) and Syndecan4 (Sdc4) since these genes are involved in pancreatic tissue repair, strengthening the concept that the same signaling pathways required during pancreatic embryogenesis are also involved in tissue repair. This finding leads to novel strategies for obtaining functional pancreatic stem cells for cell replacement therapies.
Collapse
Affiliation(s)
- Ilaria Guerriero
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Maria Teresa De Angelis
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Fulvio D'Angelo
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Rita Leveque
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Eleonora Savignano
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Luca Roberto
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Valeria Lucci
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Pellegrino Mazzone
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Simona Laurino
- IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| | - Giovanni Storto
- IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| | - Anna Nardelli
- Istituto di Biostrutture e Bioimmagini-CNR, Via De Amicis No. 95, 80145 Napoli, Italy.
| | - Alessandro Sgambato
- IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| | - Michele Ceccarelli
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy.
| | - Mario De Felice
- Istituto per l'Endocrinologia e l'OncologiaSperimentale "G. Salvatore", CNR, 80131 Napoli, Italy.
| | - Elena Amendola
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
- Istituto per l'Endocrinologia e l'OncologiaSperimentale "G. Salvatore", CNR, 80131 Napoli, Italy.
| | - Geppino Falco
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
| |
Collapse
|
20
|
Yang W, Lampe PD, Kensel-Hammes P, Hesson J, Ware CB, Crisa L, Cirulli V. Connexin 43 Functions as a Positive Regulator of Stem Cell Differentiation into Definitive Endoderm and Pancreatic Progenitors. iScience 2019; 19:450-460. [PMID: 31430690 PMCID: PMC6708988 DOI: 10.1016/j.isci.2019.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/04/2019] [Accepted: 07/18/2019] [Indexed: 01/05/2023] Open
Abstract
Efficient stem cell differentiation into pancreatic islet cells is of critical importance for the development of cell replacement therapies for diabetes. Here, we identify the expression pattern of connexin 43 (Cx43), a gap junction (GJ) channel protein, in human embryonic stem cell (hESC)-derived definitive endoderm (DE) and primitive gut tube cells, representing early lineages for posterior foregut (PF), pancreatic progenitors (PP), pancreatic endocrine progenitors (PE), and islet cells. As the function of GJ channels is dependent on their gating status, we tested the impact of supplementing hESC-derived PP cell cultures with AAP10, a peptide that promotes Cx43 GJ channel opening. We found that this treatment promotes the expression of DE markers FoxA2 and Sox17, leads to a more efficient derivation of DE, and improves the yield of PF, PP, and PE cells. These results demonstrate a functional involvement of GJ channels in the differentiation of embryonic stem cells into pancreatic cell lineages.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Medicine, UW Diabetes Institute, University of Washington, 850 Republican Street, S475, Seattle, WA 98109, USA
| | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Patricia Kensel-Hammes
- Department of Medicine, UW Diabetes Institute, University of Washington, 850 Republican Street, S475, Seattle, WA 98109, USA
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, S480, Seattle, WA 98109, USA
| | - Carol B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, S480, Seattle, WA 98109, USA
| | - Laura Crisa
- Department of Medicine, UW Diabetes Institute, University of Washington, 850 Republican Street, S475, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, S480, Seattle, WA 98109, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA.
| | - Vincenzo Cirulli
- Department of Medicine, UW Diabetes Institute, University of Washington, 850 Republican Street, S475, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, S480, Seattle, WA 98109, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
21
|
Sakhneny L, Khalifa-Malka L, Landsman L. Pancreas organogenesis: Approaches to elucidate the role of epithelial-mesenchymal interactions. Semin Cell Dev Biol 2019; 92:89-96. [DOI: 10.1016/j.semcdb.2018.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
|
22
|
Soltanian A, Ghezelayagh Z, Mazidi Z, Halvaei M, Mardpour S, Ashtiani MK, Hajizadeh-Saffar E, Tahamtani Y, Baharvand H. Generation of functional human pancreatic organoids by transplants of embryonic stem cell derivatives in a 3D-printed tissue trapper. J Cell Physiol 2019; 234:9564-9576. [PMID: 30362564 DOI: 10.1002/jcp.27644] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
Organoids can be regarded as a beneficial tool for discovery of new therapeutics for diabetes and/or maturation of pancreatic progenitors (PP) towards β cells. Here, we devised a strategy to enhance maturation of PP by assembly of three-dimensional (3D) pancreatic organoids (PO) containing human embryonic stem (ES) cell derivatives including ES-derived pancreatic duodenal homeobox 1 (PDX1) + early PP, mesenchymal stem cells, and endothelial cells at an optimized cell ratio, on Matrigel. The PO was placed in a 3D-printed tissue trapper and heterotopically implanted into the peritoneal cavity of immunodeficient mice where it remained for 90 days. Our results indicated that, in contrast to corresponding early PP transplants, 3D PO developed more vascularization as indicated by greater area and number of vessels, a higher number of insulin-positive cells and improvement of human C-peptide secretions. Based on our findings, PO-derived β cells could be considered a novel strategy to study human β-cell development, novel therapeutics, and regenerative medicine for diabetes.
Collapse
Affiliation(s)
- Anahita Soltanian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Ghezelayagh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Zahra Mazidi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Majid Halvaei
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soura Mardpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
23
|
Harari N, Sakhneny L, Khalifa-Malka L, Busch A, Hertel KJ, Hebrok M, Landsman L. Pancreatic pericytes originate from the embryonic pancreatic mesenchyme. Dev Biol 2019; 449:14-20. [PMID: 30771302 PMCID: PMC9728144 DOI: 10.1016/j.ydbio.2019.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/20/2019] [Accepted: 01/20/2019] [Indexed: 01/01/2023]
Abstract
The embryonic origin of pericytes is heterogeneous, both between and within organs. While pericytes of coelomic organs were proposed to differentiate from the mesothelium, a single-layer squamous epithelium, the embryonic origin of pancreatic pericytes has yet to be reported. Here, we show that adult pancreatic pericytes originate from the embryonic pancreatic mesenchyme. Our analysis indicates that pericytes of the adult mouse pancreas originate from cells expressing the transcription factor Nkx3.2. In the embryonic pancreas, Nkx3.2-expressing cells constitute the multilayered mesenchyme, which surrounds the pancreatic epithelium and supports multiple events in its development. Thus, we traced the fate of the pancreatic mesenchyme. Our analysis reveals that pancreatic mesenchymal cells acquire various pericyte characteristics, including gene expression, typical morphology, and periendothelial location, during embryogenesis. Importantly, we show that the vast majority of pancreatic mesenchymal cells differentiate into pericytes already at embryonic day 13.5 and progressively acquires a more mature pericyte phenotype during later stages of pancreas organogenesis. Thus, our study indicates the embryonic pancreatic mesenchyme as the primary origin to adult pancreatic pericytes. As pericytes of other coelomic organs were suggested to differentiate from the mesothelium, our findings point to a distinct origin of these cells in the pancreas. Thus, our study proposes a complex ontogeny of pericytes of coelomic organs.
Collapse
Affiliation(s)
- Neta Harari
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lina Sakhneny
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Laura Khalifa-Malka
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anke Busch
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Limor Landsman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
24
|
Mesodermal induction of pancreatic fate commitment. Semin Cell Dev Biol 2018; 92:77-88. [PMID: 30142440 DOI: 10.1016/j.semcdb.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022]
Abstract
The pancreas is a compound gland comprised of both exocrine acinar and duct cells as well as endocrine islet cells. Most notable amongst the latter are the insulin-synthesizing β-cells, loss or dysfunction of which manifests in diabetes mellitus. All exocrine and endocrine cells derive from multipotent pancreatic progenitor cells arising from the primitive gut epithelium via inductive interactions with adjacent mesodermal tissues. Research in the last two decades has revealed the identity of many of these extrinsic cues and they include signaling molecules used in many other developmental contexts such as retinoic acid, fibroblast growth factors, and members of the TGF-β superfamily. As important as these inductive cues is the absence of other signaling molecules such as hedgehog family members. Much has been learned about the interactions of extrinsic factors with fate regulators intrinsic to the pancreatic endoderm. This new knowledge has had tremendous impact on the development of directed differentiation protocols for converting pluripotent stem cells to β-cells in vitro.
Collapse
|
25
|
Scavuzzo MA, Hill MC, Chmielowiec J, Yang D, Teaw J, Sheng K, Kong Y, Bettini M, Zong C, Martin JF, Borowiak M. Endocrine lineage biases arise in temporally distinct endocrine progenitors during pancreatic morphogenesis. Nat Commun 2018; 9:3356. [PMID: 30135482 PMCID: PMC6105717 DOI: 10.1038/s41467-018-05740-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
Decoding the molecular composition of individual Ngn3 + endocrine progenitors (EPs) during pancreatic morphogenesis could provide insight into the mechanisms regulating hormonal cell fate. Here, we identify population markers and extensive cellular diversity including four EP subtypes reflecting EP maturation using high-resolution single-cell RNA-sequencing of the e14.5 and e16.5 mouse pancreas. While e14.5 and e16.5 EPs are constantly born and share select genes, these EPs are overall transcriptionally distinct concomitant with changes in the underlying epithelium. As a consequence, e16.5 EPs are not the same as e14.5 EPs: e16.5 EPs have a higher propensity to form beta cells. Analysis of e14.5 and e16.5 EP chromatin states reveals temporal shifts, with enrichment of beta cell motifs in accessible regions at later stages. Finally, we provide transcriptional maps outlining the route progenitors take as they make cell fate decisions, which can be applied to advance the in vitro generation of beta cells. Endocrine progenitors form early in pancreatic development but the diversity of this cell population is unclear. Here, the authors use single cell RNA sequencing of the mouse pancreas at e14.5 and e16.5 to show that endocrine progenitors are temporally distinct and those formed later are more likely to become beta cells
Collapse
Affiliation(s)
- Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jolanta Chmielowiec
- Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jessica Teaw
- Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kuanwei Sheng
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuelin Kong
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,The Texas Heart Institute, Houston, TX, 77030, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA. .,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Scavuzzo MA, Teaw J, Yang D, Borowiak M. Generation of Scaffold-free, Three-dimensional Insulin Expressing Pancreatoids from Mouse Pancreatic Progenitors In Vitro. J Vis Exp 2018. [PMID: 29912186 DOI: 10.3791/57599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The pancreas is a complex organ composed of many different cell types that work together to regulate blood glucose homeostasis and digestion. These cell types include enzyme-secreting acinar cells, an arborized ductal system responsible for the transportation of enzymes to the gut, and hormone-producing endocrine cells. Endocrine beta-cells are the sole cell type in the body that produce insulin to lower blood glucose levels. Diabetes, a disease characterized by a loss or the dysfunction of beta-cells, is reaching epidemic proportions. Thus, it is essential to establish protocols to investigate beta-cell development that can be used for screening purposes to derive the drug and cell-based therapeutics. While the experimental investigation of mouse development is essential, in vivo studies are laborious and time-consuming. Cultured cells provide a more convenient platform for screening; however, they are unable to maintain the cellular diversity, architectural organization, and cellular interactions found in vivo. Thus, it is essential to develop new tools to investigate pancreatic organogenesis and physiology. Pancreatic epithelial cells develop in the close association with mesenchyme from the onset of organogenesis as cells organize and differentiate into the complex, physiologically competent adult organ. The pancreatic mesenchyme provides important signals for the endocrine development, many of which are not well understood yet, thus difficult to recapitulate during the in vitro culture. Here, we describe a protocol to culture three-dimensional, cellular complex mouse organoids that retain mesenchyme, termed pancreatoids. The e10.5 murine pancreatic bud is dissected, dissociated, and cultured in a scaffold-free environment. These floating cells self-assemble with mesenchyme enveloping the developing pancreatoid and a robust number of endocrine beta-cells developing along with the acinar and the duct cells. This system can be used to study the cell fate determination, structural organization, and morphogenesis, cell-cell interactions during organogenesis, or for the drug, small molecule, or genetic screening.
Collapse
Affiliation(s)
| | - Jessica Teaw
- Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine; Molecular and Cellular Biology Department, Baylor College of Medicine; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine
| | - Diane Yang
- Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine; Molecular and Cellular Biology Department, Baylor College of Medicine; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine; Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine; Molecular and Cellular Biology Department, Baylor College of Medicine; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine; McNair Medical Institute, Baylor College of Medicine;
| |
Collapse
|
27
|
Trinder M, Zhou L, Oakie A, Riopel M, Wang R. β-cell insulin receptor deficiency during in utero development induces an islet compensatory overgrowth response. Oncotarget 2018; 7:44927-44940. [PMID: 27384998 PMCID: PMC5216695 DOI: 10.18632/oncotarget.10342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/12/2016] [Indexed: 12/11/2022] Open
Abstract
The presence of insulin receptor (IR) on β-cells suggests that insulin has an autocrine/paracrine role in the regulation of β-cell function. It has previously been reported that the β-cell specific loss of IR (βIRKO) leads to the development of impaired glycemic regulation and β-cell death in mice. However, temporally controlled βIRKO induced during the distinct transitions of fetal pancreas development has yet to be investigated. We hypothesized that the presence of IR on β-cells during the 2nd transition phase of the fetal murine pancreas is required for maintaining normal islet development.We utilized a mouse insulin 1 promoter driven tamoxifen-inducible Cre-recombinase IR knockout (MIP-βIRKO) mouse model to investigate the loss of β-cell IR during pancreatic development at embryonic day (e) 13, a phase of endocrine proliferation and β-cell fate determination. Fetal pancreata examined at e19-20 showed significantly reduced IR levels in the β-cells of MIP-βIRKO mice. Morphologically, MIP-βIRKO pancreata exhibited significantly enlarged islet size with increased β-cell area and proliferation. MIP-βIRKO pancreata also displayed significantly increased Igf-2 protein level and Akt activity with a reduction in phospho-p53 when compared to control littermates. Islet vascular formation and Vegf-a protein level was significantly increased in MIP-βIRKO pancreata.Our results demonstrate a developmental role for the β-cell IR, whereby its loss leads to an islet compensatory overgrowth, and contributes further information towards elucidating the temporally sensitive signaling during β-cell commitment.
Collapse
Affiliation(s)
- Mark Trinder
- Children's Health Research Institute, London, Ontario, Canada.,Departments of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Liangyi Zhou
- Children's Health Research Institute, London, Ontario, Canada.,Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | - Amanda Oakie
- Children's Health Research Institute, London, Ontario, Canada.,Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | - Matthew Riopel
- Children's Health Research Institute, London, Ontario, Canada
| | - Rennian Wang
- Children's Health Research Institute, London, Ontario, Canada.,Departments of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
28
|
Ameri J, Borup R, Prawiro C, Ramond C, Schachter KA, Scharfmann R, Semb H. Efficient Generation of Glucose-Responsive Beta Cells from Isolated GP2 + Human Pancreatic Progenitors. Cell Rep 2017; 19:36-49. [PMID: 28380361 DOI: 10.1016/j.celrep.2017.03.032] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022] Open
Abstract
Stem cell-based therapy for type 1 diabetes would benefit from implementation of a cell purification step at the pancreatic endoderm stage. This would increase the safety of the final cell product, allow the establishment of an intermediate-stage stem cell bank, and provide a means for upscaling β cell manufacturing. Comparative gene expression analysis revealed glycoprotein 2 (GP2) as a specific cell surface marker for isolating pancreatic endoderm cells (PECs) from differentiated hESCs and human fetal pancreas. Isolated GP2+ PECs efficiently differentiated into glucose responsive insulin-producing cells in vitro. We found that in vitro PEC proliferation declines due to enhanced expression of the cyclin-dependent kinase (CDK) inhibitors CDKN1A and CDKN2A. However, we identified a time window when reducing CDKN1A or CDKN2A expression increased proliferation and yield of GP2+ PECs. Altogether, our results contribute tools and concepts toward the isolation and use of PECs as a source for the safe production of hPSC-derived β cells.
Collapse
Affiliation(s)
- Jacqueline Ameri
- The Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, BMC, B10, 22184 Lund, Sweden
| | - Rehannah Borup
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christy Prawiro
- The Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Cyrille Ramond
- INSERM U1016, University Paris-Descartes, Cochin Institute, 75014 Paris, France
| | - Karen A Schachter
- The Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Raphael Scharfmann
- INSERM U1016, University Paris-Descartes, Cochin Institute, 75014 Paris, France
| | - Henrik Semb
- The Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, BMC, B10, 22184 Lund, Sweden.
| |
Collapse
|
29
|
EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity. Nat Cell Biol 2017; 19:1313-1325. [PMID: 29058721 DOI: 10.1038/ncb3628] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023]
Abstract
Apicobasal polarity is known to affect epithelial morphogenesis and cell differentiation, but it remains unknown how these processes are mechanistically orchestrated. We find that ligand-specific EGFR signalling via PI(3)K and Rac1 autonomously modulates apicobasal polarity to enforce the sequential control of morphogenesis and cell differentiation. Initially, EGF controls pancreatic tubulogenesis by negatively regulating apical polarity induction. Subsequently, betacellulin, working via inhibition of atypical protein kinase C (aPKC), causes apical domain constriction within neurogenin3+ endocrine progenitors, which results in reduced Notch signalling, increased neurogenin3 expression, and β-cell differentiation. Notably, the ligand-specific EGFR output is not driven at the ligand level, but seems to have evolved in response to stage-specific epithelial influences. The EGFR-mediated control of β-cell differentiation via apical polarity is also conserved in human neurogenin3+ cells. We provide insight into how ligand-specific EGFR signalling coordinates epithelial morphogenesis and cell differentiation via apical polarity dynamics.
Collapse
|
30
|
Pauerstein PT, Tellez K, Willmarth KB, Park KM, Hsueh B, Efsun Arda H, Gu X, Aghajanian H, Deisseroth K, Epstein JA, Kim SK. A radial axis defined by semaphorin-to-neuropilin signaling controls pancreatic islet morphogenesis. Development 2017; 144:3744-3754. [PMID: 28893946 DOI: 10.1242/dev.148684] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/04/2017] [Indexed: 12/24/2022]
Abstract
The islets of Langerhans are endocrine organs characteristically dispersed throughout the pancreas. During development, endocrine progenitors delaminate, migrate radially and cluster to form islets. Despite the distinctive distribution of islets, spatially localized signals that control islet morphogenesis have not been discovered. Here, we identify a radial signaling axis that instructs developing islet cells to disperse throughout the pancreas. A screen of pancreatic extracellular signals identified factors that stimulated islet cell development. These included semaphorin 3a, a guidance cue in neural development without known functions in the pancreas. In the fetal pancreas, peripheral mesenchymal cells expressed Sema3a, while central nascent islet cells produced the semaphorin receptor neuropilin 2 (Nrp2). Nrp2 mutant islet cells developed in proper numbers, but had defects in migration and were unresponsive to purified Sema3a. Mutant Nrp2 islets aggregated centrally and failed to disperse radially. Thus, Sema3a-Nrp2 signaling along an unrecognized pancreatic developmental axis constitutes a chemoattractant system essential for generating the hallmark morphogenetic properties of pancreatic islets. Unexpectedly, Sema3a- and Nrp2-mediated control of islet morphogenesis is strikingly homologous to mechanisms that regulate radial neuronal migration and cortical lamination in the developing mammalian brain.
Collapse
Affiliation(s)
- Philip T Pauerstein
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Krissie Tellez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kirk B Willmarth
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Keon Min Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian Hsueh
- Departments of Bioengineering and of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H Efsun Arda
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl Deisseroth
- Departments of Bioengineering and of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Scavuzzo MA, Yang D, Borowiak M. Organotypic pancreatoids with native mesenchyme develop Insulin producing endocrine cells. Sci Rep 2017; 7:10810. [PMID: 28883507 PMCID: PMC5589819 DOI: 10.1038/s41598-017-11169-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Replacement of lost beta cells in patients with diabetes has the potential to alleviate them of their disease, yet current protocols to make beta cells are inadequate for therapy. In vitro screens can reveal the signals necessary for endocrine maturation to improve beta cell production, however the complexities of in vivo development that lead to beta cell formation are lost in two-dimensional systems. Here, we create three-dimensional organotypic pancreatic cultures, named pancreatoids, composed of embryonic day 10.5 murine epithelial progenitors and native mesenchyme. These progenitors assemble in scaffold-free, floating conditions and, with the inclusion of native mesenchyme, develop into pancreatoids expressing markers of different pancreatic lineages including endocrine-like cells. Treatment of pancreatoids with (-)-Indolactam-V or phorbol 12-myristate 13-acetate, two protein kinase C activators, leads to altered morphology which otherwise would be overlooked in two-dimensional systems. Protein kinase C activation also led to fewer Insulin+ cells, decreased Ins1 and Ins2 mRNA levels, and increased Pdx1 and Hes1 mRNA levels with a high number of DBA+ cells. Thus, organotypic pancreatoids provide a useful tool for developmental studies, and can further be used for disease modeling, small molecules and genetic screens, or applied to human pluripotent stem cell differentiation for beta-like cell formation.
Collapse
Affiliation(s)
- Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX, 77030, USA. .,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Chang R, Faleo G, Russ HA, Parent AV, Elledge SK, Bernards DA, Allen JL, Villanueva K, Hebrok M, Tang Q, Desai TA. Nanoporous Immunoprotective Device for Stem-Cell-Derived β-Cell Replacement Therapy. ACS NANO 2017; 11:7747-7757. [PMID: 28763191 PMCID: PMC5667644 DOI: 10.1021/acsnano.7b01239] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Encapsulation of human embryonic stem-cell-differentiated beta cell clusters (hES-βC) holds great promise for cell replacement therapy for the treatment of diabetics without the need for chronic systemic immune suppression. Here, we demonstrate a nanoporous immunoprotective polymer thin film cell encapsulation device that can exclude immune molecules while allowing exchange of oxygen and nutrients necessary for in vitro and in vivo stem cell viability and function. Biocompatibility studies show the device promotes neovascular formation with limited foreign body response in vivo. The device also successfully prevented teratoma escape into the peritoneal cavity of mice. Long-term animal studies demonstrate evidence of engraftment, viability, and function of cells encapsulated in the device after 6 months. Finally, in vivo study confirms that the device was able to effectively immuno-isolate cells from the host immune system.
Collapse
Affiliation(s)
- Ryan Chang
- UCSF-UC Berkeley Joint PhD Program in Bioengineering, San Francisco, California 94143, United States
| | - Gaetano Faleo
- Department of Surgery, University of California, San Francisco, San Francisco, California 94143, United States
| | - Holger A. Russ
- Diabetes Center, University of California, San Francisco, San Francisco, California 94143, United States
| | - Audrey V. Parent
- Diabetes Center, University of California, San Francisco, San Francisco, California 94143, United States
| | - Susanna K. Elledge
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Daniel A. Bernards
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Jessica L. Allen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Karina Villanueva
- Diabetes Center, University of California, San Francisco, San Francisco, California 94143, United States
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, San Francisco, California 94143, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, California 94143, United States
- Diabetes Center, University of California, San Francisco, San Francisco, California 94143, United States
| | - Tejal A. Desai
- UCSF-UC Berkeley Joint PhD Program in Bioengineering, San Francisco, California 94143, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
33
|
Epshtein A, Rachi E, Sakhneny L, Mizrachi S, Baer D, Landsman L. Neonatal pancreatic pericytes support β-cell proliferation. Mol Metab 2017; 6:1330-1338. [PMID: 29031732 PMCID: PMC5641631 DOI: 10.1016/j.molmet.2017.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE The maintenance and expansion of β-cell mass rely on their proliferation, which reaches its peak in the neonatal stage. β-cell proliferation was found to rely on cells of the islet microenvironment. We hypothesized that pericytes, which are components of the islet vasculature, support neonatal β-cell proliferation. METHODS To test our hypothesis, we combined in vivo and in vitro approaches. Briefly, we used a Diphtheria toxin-based transgenic mouse system to specifically deplete neonatal pancreatic pericytes in vivo. We further cultured neonatal pericytes isolated from the neonatal pancreas and combined the use of a β-cell line and primary cultured mouse β-cells. RESULTS Our findings indicate that neonatal pancreatic pericytes are required and sufficient for β-cell proliferation. We observed impaired proliferation of neonatal β-cells upon in vivo depletion of pancreatic pericytes. Furthermore, exposure to pericyte-conditioned medium stimulated proliferation in cultured β-cells. CONCLUSIONS This study introduces pancreatic pericytes as regulators of neonatal β-cell proliferation. In addition to advancing current understanding of the physiological β-cell replication process, these findings could facilitate the development of protocols aimed at expending these cells as a potential cure for diabetes.
Collapse
Affiliation(s)
- Alona Epshtein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eleonor Rachi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lina Sakhneny
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shani Mizrachi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daria Baer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Limor Landsman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
34
|
Epshtein A, Sakhneny L, Landsman L. Isolating and Analyzing Cells of the Pancreas Mesenchyme by Flow Cytometry. J Vis Exp 2017. [PMID: 28190046 PMCID: PMC5352303 DOI: 10.3791/55344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pancreas is comprised of epithelial cells that are required for food digestion and blood glucose regulation. Cells of the pancreas microenvironment, including endothelial, neuronal, and mesenchymal cells were shown to regulate cell differentiation and proliferation in the embryonic pancreas. In the adult, the function and mass of insulin-producing cells were shown to depend on cells in their microenvironment, including pericyte, immune, endothelial, and neuronal cells. Lastly, changes in the pancreas microenvironment were shown to regulate pancreas tumorigenesis. However, the cues underlying these processes are not fully defined. Therefore, characterizing the different cell types that comprise the pancreas microenvironment and profiling their gene expression are crucial to delineate the tissue development and function under normal and diseased states. Here, we describe a method that allows for the isolation of mesenchymal cells from the pancreas of embryonic, neonatal, and adult mice. This method utilizes the enzymatic digestion of mouse pancreatic tissue and the subsequent fluorescence-activated cell sorting (FACS) or flow-cytometric analysis of labeled cells. Cells can be labeled by either immunostaining for surface markers or by the expression of fluorescent proteins. Cell isolation can facilitate the characterization of genes and proteins expressed in cells of the pancreas mesenchyme. This protocol was successful in isolating and culturing highly enriched mesenchymal cell populations from the embryonic, neonatal, and adult mouse pancreas.
Collapse
Affiliation(s)
- Alona Epshtein
- Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University
| | - Lina Sakhneny
- Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University
| | - Limor Landsman
- Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University;
| |
Collapse
|
35
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
36
|
Corbi SCT, Bastos AS, Nepomuceno R, Cirelli T, dos Santos RA, Takahashi CS, Rocha CS, Orrico SRP, Maurer-Morelli CV, Scarel-Caminaga RM. Expression Profile of Genes Potentially Associated with Adequate Glycemic Control in Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2017; 2017:2180819. [PMID: 28812028 PMCID: PMC5547755 DOI: 10.1155/2017/2180819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 12/18/2022] Open
Abstract
Despite increasing research in type 2 diabetes mellitus (T2D), there are few studies showing the impact of the poor glycemic control on biological processes occurring in T2D. In order to identify potential genes related to poorly/well-controlled patients with T2D, our strategy of investigation included a primary screen by microarray (Human Genome U133) in a small group of individuals followed by an independent validation in a greater group using RT-qPCR. Ninety patients were divided as follows: poorly controlled T2D (G1), well-controlled T2D (G2), and normoglycemic individuals (G3). After using affy package in R, differentially expressed genes (DEGs) were prospected as candidate genes potentially relevant for the glycemic control in T2D patients. After validation by RT-qPCR, the obtained DEGs were as follows-G1 + G2 versus G3: HLA-DQA1, SOS1, and BRCA2; G2 versus G1: ENO2, VAMP2, CCND3, CEBPD, LGALS12, AGBL5, MAP2K5, and PPAP2B; G2 versus G3: HLA-DQB1, MCM4, and SEC13; and G1 versus G3: PPIC. This demonstrated a systemic exacerbation of the gene expression related to immune response in T2D patients. Moreover, genes related to lipid metabolisms and DNA replication/repair were influenced by the glycemic control. In conclusion, this study pointed out candidate genes potentially associated with adequate glycemic control in T2D patients, contributing to the knowledge of how the glycemic control could systemically influence gene expression.
Collapse
Affiliation(s)
- Sâmia Cruz Tfaile Corbi
- Department of Diagnosis and Surgery, School of Dentistry, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
- Department of Morphology, School of Dentistry, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Alliny Souza Bastos
- Department of Diagnosis and Surgery, School of Dentistry, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Rafael Nepomuceno
- Department of Diagnosis and Surgery, School of Dentistry, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
- Department of Morphology, School of Dentistry, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Thamiris Cirelli
- Department of Diagnosis and Surgery, School of Dentistry, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
- Department of Morphology, School of Dentistry, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | | | - Catarina Satie Takahashi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto and Department of Biology, FFCLRP, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Cristiane S. Rocha
- Department of Medical Genetics, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Silvana Regina Perez Orrico
- Department of Diagnosis and Surgery, School of Dentistry, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | | | - Raquel Mantuaneli Scarel-Caminaga
- Department of Morphology, School of Dentistry, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
- *Raquel Mantuaneli Scarel-Caminaga:
| |
Collapse
|
37
|
Lu J, Xia Q, Zhou Q. How to make insulin-producing pancreatic β cells for diabetes treatment. SCIENCE CHINA-LIFE SCIENCES 2016; 60:239-248. [DOI: 10.1007/s11427-016-0211-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022]
|
38
|
Richardson T, Barner S, Candiello J, Kumta PN, Banerjee I. Capsule stiffness regulates the efficiency of pancreatic differentiation of human embryonic stem cells. Acta Biomater 2016; 35:153-65. [PMID: 26911881 DOI: 10.1016/j.actbio.2016.02.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/24/2015] [Accepted: 02/17/2016] [Indexed: 12/14/2022]
Abstract
Encapsulation of donor islets using a hydrogel material is a well-studied strategy for islet transplantation, which protects donor islets from the host immune response. Replacement of donor islets by human embryonic stem cell (hESC) derived islets will also require a means of immune-isolating hESCs by encapsulation. However, a critical consideration of hESC differentiation is the effect of surrounding biophysical environment, in this case capsule biophysical properties, on differentiation. The objective of this study, thus, was to evaluate the effect of capsule properties on growth, viability, and differentiation of encapsulated hESCs throughout pancreatic induction. It was observed that even in the presence of soluble chemical cues for pancreatic induction, substrate properties can significantly modulate pancreatic differentiation, hence necessitating careful tuning of capsule properties. Capsules in the range of 4-7kPa supported cell growth and viability, whereas capsules of higher stiffness suppressed cell growth. While an increase in capsule stiffness enhanced differentiation at the intermediate definitive endoderm (DE) stage, increased stiffness strongly suppressed pancreatic progenitor (PP) induction. Signaling pathway analysis indicated an increase in pSMAD/pAKT levels with substrate stiffness likely the cause of enhancement of DE differentiation. In contrast, sonic hedgehog inhibition was more efficient under softer gel conditions, which is necessary for successful PP differentiation. STATEMENT OF SIGNIFICANCE Cell replacement therapy for type 1 diabetes (T1D), affecting millions of people worldwide, requires the immunoisolation of insulin-producing islets by encapsulation with a semi-impermeable material. Due to the shortage of donor islets, human pluripotent stem cell (hPSC) derived islets are an attractive alternative. However, properties of the encapsulating substrate are known to influence hPSC cell fate. In this work, we determine the effect of substrate stiffness on growth and pancreatic fate of encapsulated hPSCs. We precisely identify the range of substrate properties conducive for pancreatic cell fate, and also the mechanism by which substrate properties modify the cell signaling pathways and hence cell fate. Such information will be critical in driving regenerative cell therapy for long term treatment of T1D.
Collapse
Affiliation(s)
- Thomas Richardson
- Department of Chemical Engineering, University of Pittsburgh, United States
| | - Sierra Barner
- Department of Chemical Engineering, University of Pittsburgh, United States
| | - Joseph Candiello
- Department of Bioengineering, University of Pittsburgh, United States
| | - Prashant N Kumta
- Department of Chemical Engineering, University of Pittsburgh, United States; McGowan Institute of Regenerative Medicine, University of Pittsburgh, United States; Department of Bioengineering, University of Pittsburgh, United States; Department of Mechanical and Materials Science, University of Pittsburgh, United States; Department of Oral Biology, University of Pittsburgh, United States
| | - Ipsita Banerjee
- Department of Chemical Engineering, University of Pittsburgh, United States; McGowan Institute of Regenerative Medicine, University of Pittsburgh, United States; Department of Bioengineering, University of Pittsburgh, United States.
| |
Collapse
|
39
|
Cras-Méneur C, Elghazi L, Fort P, Bernal-Mizrachi E. Noninvasive in vivo imaging of embryonic β-cell development in the anterior chamber of the eye. Islets 2016; 8:35-47. [PMID: 26950054 PMCID: PMC4878273 DOI: 10.1080/19382014.2016.1148236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The fetal environment plays a decisive role in modifying the risk for developing diabetes later in life. Developing novel methodology for noninvasive imaging of β-cell development in vivo under the controlled physiological conditions of the host can serve to understand how this environment affects β-cell growth and differentiation. A number of culture models have been designed for pancreatic rudiment but none match the complexity of the in utero or even normal physiological environment. Speier et al. recently developed a platform of noninvasive in vivo imaging of pancreatic islets using the anterior chamber of the eye where islets get vascularized, grow and respond to physiological changes. The same methodology was adapted for the study of pancreatic development. E13.0, still undifferentiated rudiments with fluorescent lineage tracing were implanted in the AC of the eye, allowing the longitudinal study of their growth and differentiation. Within 48 h the anlages get vascularized and grow but their mesenchyme displays a selective growth advantage. The resulting imbalance leads to alteration in the differentiation pattern of the progenitors. Reducing the mesenchyme to its bare minimum before implantation allows the restoration of a proper balance and a development that mimics the normal pancreatic development. These groundbreaking observations demonstrate that the anterior chamber of the eye provides a good system for noninvasive in vivo fluorescence imaging of the developing pancreas under the physiology of the host and can have important implications for designing strategies to prevent or reverse the deleterious effects of hyperglycemia on altering β-cell function later in life.
Collapse
Affiliation(s)
- Corentin Cras-Méneur
- Internal Medicine Department, Division of Metabolism, Endocrinology and Diabetes, University of Michigan in Ann Arbor, Ann Arbor, Michigan, USA
| | - Lynda Elghazi
- Internal Medicine Department, Division of Metabolism, Endocrinology and Diabetes, University of Michigan in Ann Arbor, Ann Arbor, Michigan, USA
| | - Patrice Fort
- Ophthalmology Department, University of Michigan in Ann Arbor, Ann Arbor, Michigan, USA
| | - Ernesto Bernal-Mizrachi
- Internal Medicine Department, Division of Metabolism, Endocrinology and Diabetes, University of Michigan in Ann Arbor, Ann Arbor, Michigan, USA
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
40
|
Human pancreatic beta-like cells converted from fibroblasts. Nat Commun 2016; 7:10080. [PMID: 26733021 PMCID: PMC4729817 DOI: 10.1038/ncomms10080] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic beta cells are of great interest for biomedical research and regenerative medicine. Here we show the conversion of human fibroblasts towards an endodermal cell fate by employing non-integrative episomal reprogramming factors in combination with specific growth factors and chemical compounds. On initial culture, converted definitive endodermal progenitor cells (cDE cells) are specified into posterior foregut-like progenitor cells (cPF cells). The cPF cells and their derivatives, pancreatic endodermal progenitor cells (cPE cells), can be greatly expanded. A screening approach identified chemical compounds that promote the differentiation and maturation of cPE cells into functional pancreatic beta-like cells (cPB cells) in vitro. Transplanted cPB cells exhibit glucose-stimulated insulin secretion in vivo and protect mice from chemically induced diabetes. In summary, our study has important implications for future strategies aimed at generating high numbers of functional beta cells, which may help restoring normoglycemia in patients suffering from diabetes.
Collapse
|
41
|
Abstract
A wealth of data and comprehensive reviews exist on pancreas development in mammals, primarily mice, and other vertebrates. By contrast, human pancreatic development has been less comprehensively reviewed. Here, we draw together those studies conducted directly in human embryonic and fetal tissue to provide an overview of what is known about human pancreatic development. We discuss the relevance of this work to manufacturing insulin-secreting β-cells from pluripotent stem cells and to different aspects of diabetes, especially permanent neonatal diabetes, and its underlying causes.
Collapse
Affiliation(s)
- Rachel E Jennings
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK Endocrinology Department, Central Manchester University Hospitals NHS Foundation Trust, Grafton St, Manchester M13 9WU, UK
| | - Andrew A Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - James P Strutt
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - David T Gerrard
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK Bioinformatics Unit, Faculty of Life Science, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - Neil A Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK Endocrinology Department, Central Manchester University Hospitals NHS Foundation Trust, Grafton St, Manchester M13 9WU, UK
| |
Collapse
|
42
|
Dynamic Proteomic Analysis of Pancreatic Mesenchyme Reveals Novel Factors That Enhance Human Embryonic Stem Cell to Pancreatic Cell Differentiation. Stem Cells Int 2015; 2016:6183562. [PMID: 26681951 PMCID: PMC4670689 DOI: 10.1155/2016/6183562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022] Open
Abstract
Current approaches in human embryonic stem cell (hESC) to pancreatic beta cell differentiation have largely been based on knowledge gained from developmental studies of the epithelial pancreas, while the potential roles of other supporting tissue compartments have not been fully explored. One such tissue is the pancreatic mesenchyme that supports epithelial organogenesis throughout embryogenesis. We hypothesized that detailed characterization of the pancreatic mesenchyme might result in the identification of novel factors not used in current differentiation protocols. Supplementing existing hESC differentiation conditions with such factors might create a more comprehensive simulation of normal development in cell culture. To validate our hypothesis, we took advantage of a novel transgenic mouse model to isolate the pancreatic mesenchyme at distinct embryonic and postnatal stages for subsequent proteomic analysis. Refined sample preparation and analysis conditions across four embryonic and prenatal time points resulted in the identification of 21,498 peptides with high-confidence mapping to 1,502 proteins. Expression analysis of pancreata confirmed the presence of three potentially important factors in cell differentiation: Galectin-1 (LGALS1), Neuroplastin (NPTN), and the Laminin α-2 subunit (LAMA2). Two of the three factors (LGALS1 and LAMA2) increased expression of pancreatic progenitor transcript levels in a published hESC to beta cell differentiation protocol. In addition, LAMA2 partially blocks cell culture induced beta cell dedifferentiation. Summarily, we provide evidence that proteomic analysis of supporting tissues such as the pancreatic mesenchyme allows for the identification of potentially important factors guiding hESC to pancreas differentiation.
Collapse
|
43
|
Dhawan S, Tschen SI, Zeng C, Guo T, Hebrok M, Matveyenko A, Bhushan A. DNA methylation directs functional maturation of pancreatic β cells. J Clin Invest 2015; 125:2851-60. [PMID: 26098213 DOI: 10.1172/jci79956] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Pancreatic β cells secrete insulin in response to postprandial increases in glucose levels to prevent hyperglycemia and inhibit insulin secretion under fasting conditions to protect against hypoglycemia. β cells lack this functional capability at birth and acquire glucose-stimulated insulin secretion (GSIS) during neonatal life. Here, we have shown that during postnatal life, the de novo DNA methyltransferase DNMT3A initiates a metabolic program by repressing key genes, thereby enabling the coupling of insulin secretion to glucose levels. In a murine model, β cell-specific deletion of Dnmt3a prevented the metabolic switch, resulting in loss of GSIS. DNMT3A bound to the promoters of the genes encoding hexokinase 1 (HK1) and lactate dehydrogenase A (LDHA) - both of which regulate the metabolic switch - and knockdown of these two key DNMT3A targets restored the GSIS response in islets from animals with β cell-specific Dnmt3a deletion. Furthermore, DNA methylation-mediated repression of glucose-secretion decoupling genes to modulate GSIS was conserved in human β cells. Together, our results reveal a role for DNA methylation to direct the acquisition of pancreatic β cell function.
Collapse
|
44
|
Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, Guo T, Puri S, Haataja L, Cirulli V, Blelloch R, Szot GL, Arvan P, Hebrok M. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J 2015; 34:1759-72. [PMID: 25908839 DOI: 10.15252/embj.201591058] [Citation(s) in RCA: 454] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/01/2015] [Indexed: 12/25/2022] Open
Abstract
Directed differentiation of human pluripotent stem cells into functional insulin-producing beta-like cells holds great promise for cell replacement therapy for patients suffering from diabetes. This approach also offers the unique opportunity to study otherwise inaccessible aspects of human beta cell development and function in vitro. Here, we show that current pancreatic progenitor differentiation protocols promote precocious endocrine commitment, ultimately resulting in the generation of non-functional polyhormonal cells. Omission of commonly used BMP inhibitors during pancreatic specification prevents precocious endocrine formation while treatment with retinoic acid followed by combined EGF/KGF efficiently generates both PDX1(+) and subsequent PDX1(+)/NKX6.1(+) pancreatic progenitor populations, respectively. Precise temporal activation of endocrine differentiation in PDX1(+)/NKX6.1(+) progenitors produces glucose-responsive beta-like cells in vitro that exhibit key features of bona fide human beta cells, remain functional after short-term transplantation, and reduce blood glucose levels in diabetic mice. Thus, our simplified and scalable system accurately recapitulates key steps of human pancreas development and provides a fast and reproducible supply of functional human beta-like cells.
Collapse
Affiliation(s)
- Holger A Russ
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer J Ringler
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Thomas G Hennings
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Gopika G Nair
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Mayya Shveygert
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Tingxia Guo
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Sapna Puri
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Brehm Tower Ann Arbor, MI, USA
| | - Vincenzo Cirulli
- Diabetes and Obesity Center of Excellence, Department of Medicine, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Robert Blelloch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Greg L Szot
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Brehm Tower Ann Arbor, MI, USA
| | - Matthias Hebrok
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
45
|
CDK1 inhibition targets the p53-NOXA-MCL1 axis, selectively kills embryonic stem cells, and prevents teratoma formation. Stem Cell Reports 2015; 4:374-89. [PMID: 25733019 PMCID: PMC4375943 DOI: 10.1016/j.stemcr.2015.01.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/25/2015] [Accepted: 01/26/2015] [Indexed: 11/22/2022] Open
Abstract
Embryonic stem cells (ESCs) have adopted an accelerated cell-cycle program with shortened gap phases and precocious expression of cell-cycle regulatory proteins, including cyclins and cyclin-dependent kinases (CDKs). We examined the effect of CDK inhibition on the pathways regulating proliferation and survival of ESCs. We found that inhibiting cyclin-dependent kinase 1 (CDK1) leads to activation of the DNA damage response, nuclear p53 stabilization, activation of a subset of p53 target genes including NOXA, and negative regulation of the anti-apoptotic protein MCL1 in human and mouse ESCs, but not differentiated cells. We demonstrate that MCL1 is highly expressed in ESCs and loss of MCL1 leads to ESC death. Finally, we show that clinically relevant CDK1 inhibitors prevent formation of ESC-derived tumors and induce necrosis in established ESC-derived tumors. Our data demonstrate that ES cells are uniquely sensitive to CDK1 inhibition via a p53/NOXA/MCL1 pathway.
Collapse
|
46
|
Raikwar SP, Kim EM, Sivitz WI, Allamargot C, Thedens DR, Zavazava N. Human iPS cell-derived insulin producing cells form vascularized organoids under the kidney capsules of diabetic mice. PLoS One 2015; 10:e0116582. [PMID: 25629318 PMCID: PMC4309616 DOI: 10.1371/journal.pone.0116582] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/11/2014] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is caused by autoimmune disease that leads to the destruction of pancreatic β-cells. Transplantation of cadaveric pancreatic organs or pancreatic islets can restore normal physiology. However, there is a chronic shortage of cadaveric organs, limiting the treatment of the majority of patients on the pancreas transplantation waiting list. Here, we hypothesized that human iPS cells can be directly differentiated into insulin producing cells (IPCs) capable of secreting insulin. Using a series of pancreatic growth factors, we successfully generated iPS cells derived IPCs. Furthermore, to investigate the capability of these cells to secrete insulin in vivo, the differentiated cells were transplanted under the kidney capsules of diabetic immunodeficient mice. Serum glucose levels gradually declined to either normal or near normal levels over 150 days, suggesting that the IPCs were secreting insulin. In addition, using MRI, a 3D organoid appeared as a white patch on the transplanted kidneys but not on the control kidneys. These organoids showed neo-vascularization and stained positive for insulin and glucagon. All together, these data show that a pancreatic organ can be created in vivo providing evidence that iPS cells might be a novel option for the treatment of T1D.
Collapse
Affiliation(s)
- Sudhanshu P. Raikwar
- Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, IA, United States of America
- Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - Eun-Mi Kim
- Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, IA, United States of America
- Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - William I. Sivitz
- Division of Endocrinology & Metabolism, University of Iowa, Iowa City, IA, United States of America
| | - Chantal Allamargot
- Central Microscopy Research facility, University of Iowa, Iowa City, IA, United States of America
| | - Daniel R. Thedens
- Department of Radiology, University of Iowa, Iowa City, IA, United States of America
| | - Nicholas Zavazava
- Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, IA, United States of America
- Veterans Affairs Medical Center, Iowa City, IA, United States of America
| |
Collapse
|
47
|
Russ HA, Hebrok M. Taming the young and restless--epigenetic gene regulation in pancreas and beta-cell precursors. EMBO J 2014; 33:2135-6. [PMID: 25154606 DOI: 10.15252/embj.201489751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The in vivo assessment of epigenetic changes during mouse pancreatic beta‐cell differentiation reveals surprising differences to directed, in vitro differentiation of human embryonic stem cells. New findings reported in this issue of The EMBO Journal further identify Ezh2 as a critical determinant of endocrine progenitor number and could instruct improved protocols for stem cell-based therapies.
Collapse
Affiliation(s)
- Holger A Russ
- Diabetes Center, University of California-San Francisco, San Francisco, CA, USA
| | - Matthias Hebrok
- Diabetes Center, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
48
|
Schiesser JV, Micallef SJ, Hawes S, Elefanty AG, Stanley EG. Derivation of insulin-producing beta-cells from human pluripotent stem cells. Rev Diabet Stud 2014; 11:6-18. [PMID: 25148364 DOI: 10.1900/rds.2014.11.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human embryonic stem cells have been advanced as a source of insulin-producing cells that could potentially replace cadaveric-derived islets in the treatment of type 1 diabetes. To this end, protocols have been developed that promote the formation of pancreatic progenitors and endocrine cells from human pluripotent stem cells, encompassing both embryonic stem cells and induced pluripotent stem cells. In this review, we examine these methods and place them in the context of the developmental and embryological studies upon which they are based. In particular, we outline the stepwise differentiation of cells towards definitive endoderm, pancreatic endoderm, endocrine lineages and the emergence of functional beta-cells. In doing so, we identify key factors common to many such protocols and discuss the proposed action of these factors in the context of cellular differentiation and ongoing development. We also compare strategies that entail transplantation of progenitor populations with those that seek to develop fully functional hormone expressing cells in vitro. Overall, our survey of the literature highlights the significant progress already made in the field and identifies remaining deficiencies in developing a pluripotent stem cell based treatment for type 1 diabetes.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Suzanne J Micallef
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Susan Hawes
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Andrew G Elefanty
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Edouard G Stanley
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
49
|
Ikehara S, Li M. Stem cell transplantation improves aging-related diseases. Front Cell Dev Biol 2014; 2:16. [PMID: 25364723 PMCID: PMC4206983 DOI: 10.3389/fcell.2014.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/14/2014] [Indexed: 01/20/2023] Open
Abstract
Aging is a complex process of damage accumulation, and has been viewed as experimentally and medically intractable. The number of patients with age-associated diseases such as type 2 diabetes mellitus (T2DM), osteoporosis, Alzheimer's disease (AD), Parkinson's disease, atherosclerosis, and cancer has increased recently. Aging-related diseases are related to a deficiency of the immune system, which results from an aged thymus and bone marrow cells. Intra bone marrow-bone marrow transplantation (IBM-BMT) is a useful method to treat intractable diseases. This review summarizes findings that IBM-BMT can improve and treat aging-related diseases, including T2DM, osteoporosis and AD, in animal models.
Collapse
Affiliation(s)
- Susumu Ikehara
- Department of Stem Cell Disorders, Kansai Medical University Hirakata, Osaka, Japan
| | - Ming Li
- Department of Stem Cell Disorders, Kansai Medical University Hirakata, Osaka, Japan
| |
Collapse
|
50
|
Schiesser JV, Wells JM. Generation of β cells from human pluripotent stem cells: are we there yet? Ann N Y Acad Sci 2014; 1311:124-37. [PMID: 24611778 DOI: 10.1111/nyas.12369] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1998, the landmark paper describing the isolation and culture of human embryonic stem cells (ESCs) was published. Since that time, the main goal of many diabetes researchers has been to derive β cells from ESCs as a renewable cell-based therapy for the treatment of patients with diabetes. In working toward this goal, numerous protocols that attempt to recapitulate normal pancreatic development have been published that result in the formation of pancreatic cell types from human pluripotent cells. This review examines stem cell differentiation methods and places them within the context of pancreatic development. We additionally compare strategies that are currently being used to generate pancreatic cell types and contrast them with approaches that have been used to generate functional cell types in different lineages. In doing this, we aim to identify how new approaches might be used to improve yield and functionality of in vitro-derived pancreatic β cells as an eventual cell-based therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|