1
|
Gao X, Liu C, Zhao X. Isomer-resolved characterization of acylcarnitines reveals alterations in type 2 diabetes. Anal Chim Acta 2025; 1351:343856. [PMID: 40187868 DOI: 10.1016/j.aca.2025.343856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Acylcarnitines (CARs) are metabolites of fatty acids that play crucial roles in various cellular energy metabolism pathways. The structural diversity of CAR species arises from several modifications localized on the fatty acyl chain and there is currently a lack of reports characterizing these detailed structures. High-performance liquid chromatography (HPLC)-electrospray mass spectrometry (ESI-MS) is the common tool for CARs analysis. RESULTS In this study, we improved the MS detection signals of CARs by adding NH4HCO3 as buffer in the mobile phase of LC system. We demonstrated that electron activated dissociation (EAD) on the ZenoTOF 7600 system is capable of localizing the hydroxyl group and methyl branching position in CARs. The benzophenone Paternò-Büchi (PB) reaction was used for derivatizing the carbon-carbon double bond (CC). The capability of profiling CARs with detailed structural information was demonstrated by analyzing complex lipid extracts from mouse plasma. Our results also provided visualization of isomers composition, including branched chain isomers of CAR 4:0 and CAR 5:0 and CC location isomers of unsaturated CARs. Notably, we observed significant changes in the relative compositions of branched-chain isomers of CAR 5:0 and CC location isomers of several unsaturated CARs in mouse plasma samples from type 2 diabetes (T2D) compared to normal controls, suggesting their potential as diagnostic indicators for T2D. SIGNIFICANCE In this work, we enhanced the limit of detection for acylcarnitine species by incorporating ammonium bicarbonate into the LC system. The CC positions in the acyl chain of CARs were identified using Paternò-Büchi (PB) derivatization coupled with tandem mass spectrometry. Modifications such as methyl branching and hydroxyl groups along the acyl chain were localized through Electron-Activated Dissociation (EAD) on the Zeno-TOF 7600 system.
Collapse
Affiliation(s)
- Xiangyu Gao
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Chunli Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China.
| |
Collapse
|
2
|
Lutakome P, Heirbaut S, Girma MM, Zhang M, Jing X, Hertogs K, Geerinckx K, Stevens E, Aernouts B, Vandaele L, Asizua D, Kabi F, Fievez V. Temporal and interanimal variation in bloodspot acylcarnitine and amino acid profiles in relation to conventional metabolites and hormones in Holstein dairy cows. J Dairy Sci 2025; 108:5382-5404. [PMID: 40043763 DOI: 10.3168/jds.2024-25646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/30/2025] [Indexed: 05/03/2025]
Abstract
The transition from late gestation to early lactation in dairy cows involves dynamic metabolic adaptations orchestrated by homeorhetic mechanisms, including hepatic fatty acid and AA metabolism. To gain deeper understanding of these mechanisms, we evaluated changes in bloodspot acylcarnitines (AC) and free AA profiles, and conventional blood biomarkers of energy balance (BHB, nonesterified fatty acids [NEFA], glucose, insulin, IGF-1, and fructosamine) along with weekly milk composition and DMI in 2 sequential observational trials. Data were analyzed using correlation and cluster analysis, and linear mixed-effects models with and without repeated measures. Study 1, which involved 28 multiparous Holstein-Friesian cows sampled 7 d before calving and at 3, 6, 9 and 21 d after calving, revealed strong positive correlations between glycine-to-alanine ratio with BHB (r = 0.58) and NEFA (r = 0.59), though these correlations weakened in study 2. Four trajectory patterns in AC, AA, and metabolite ratios were identified. Group 1 (e.g., C5, C16, and C18) showed transient postpartum increase peaking by d 3 or 6, returning to prepartum levels by d 21. Group 2 (e.g., tyrosine, C0:(C16 + C18) exhibited transient postpartum decrease, normalizing by d 21. Group 3 (e.g., C4DC:C3, t[AC]:C0, and valine-to-phenylalanine ratio) displayed variable postpartum responses, whereas group 4 exhibited persistent differences at d 21, with elevated glycine-to-alanine and valine-to-leucine ratios but reduced methionine and ornithine-to-citrulline ratio compared with prepartum levels. Study 2, which examined intercow variations and comprised of 74 cows (83 lactations) sampled at 21 DIM, revealed 2 distinct clusters of clinically healthy cows based on longitudinal time serum BHB profiles: normal and high milk yield-hyperketonemia (HMY-HYK). The HMY-HYK cows had higher milk yield (41.6 ± 1.05 vs. 39.4 ± 0.767 kg/d), average serum BHB and NEFA (0.996 ± 0.086 vs. 0.754 ± 0.062 mmol/L and 0.498 ± 0.051 vs. 0.534 ± 0.071 mmol/L, respectively) and lower insulin (0.343 ± 0.030 vs. 0.368 ± 0.041ng/mL) compared with cows in the normal cluster. The higher milk yield, increased milk urea concentrations, and reduced bloodspot citrulline levels in the HMY-HYK cows suggest enhanced AA catabolism for gluconeogenesis and reduced activity in the ornithine-citrulline cycle. Elevated bloodspot malonylcarnitine, long-chain AC (LCAC) with C16 and C18 carbon chains, acetylcarnitine-to-free carnitine (C2:C0) ratio but lower free carnitine (C0) levels indicate efficient mitochondrial responses, potentially exporting acyl-CoA as C2 and LCAC to mitigate metabolic stress associated with elevated NEFA. In conclusion, bloodspot AC, AA, and metabolite ratios highlight time-dependent and interanimal shifts in adipose and muscle mobilization, as well as adaptive mitochondrial metabolism of NEFA and AA catabolism to support gluconeogenesis and thus, milk synthesis in early lactation.
Collapse
Affiliation(s)
- Pius Lutakome
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; Department of Animal and Range Sciences, College of Agricultural and Environmental Science, Makerere University, PO Box 7062, Kampala, Uganda; Faculty of Agricultural and Environmental Sciences, Mountains of the Moon University, PO Box 837, Fort Portal, Uganda
| | - Stijn Heirbaut
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Muluken Mulat Girma
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mingqi Zhang
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Xiaoping Jing
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Karolien Hertogs
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Katleen Geerinckx
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; Hooibeekhoeve, 2440 Geel, Belgium
| | | | - Ben Aernouts
- KU Leuven, Department of Biosystems, Division of Animal and Human Health Engineering, Campus Geel, 2440 Geel, Belgium
| | | | - Denis Asizua
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organisation (NARO), Kampala, Uganda
| | - Fred Kabi
- Department of Animal and Range Sciences, College of Agricultural and Environmental Science, Makerere University, PO Box 7062, Kampala, Uganda
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Zhang J, Lin F, Xu Y, Sun J, Zhang L, Chen W. Lactylation and Ischemic Stroke: Research Progress and Potential Relationship. Mol Neurobiol 2025; 62:5359-5376. [PMID: 39541071 DOI: 10.1007/s12035-024-04624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke is caused by interrupted cerebral blood flow and is a leading cause of mortality and disability worldwide. Significant advancements have been achieved in comprehending the pathophysiology of stroke and the fundamental mechanisms responsible for ischemic damage. Lactylation, as a newly discovered post-translational modification, has been reported to participate in several physiological and pathological processes. However, research on lactylation and ischemic stroke is scarce. This review summarized the current function of protein lactylation in other diseases or normal physiological processes and explored their potential link with the pathophysiological process and the reparative mechanism of ischemic stroke. We proposed that neuroinflammation, regulation of metabolism, regulation of messenger RNA translation, angiogenesis, and neurogenesis might be the bridge linking lactylation and ischemic stroke. Our study provided a novel perspective for comprehending the role of protein lactylation in the pathophysiological processes underlying ischemic stroke. Lactylation might be a promising target in drug development of ischemic stroke.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Feng Lin
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Yue Xu
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Jiaxin Sun
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Lei Zhang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| | - Wenli Chen
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| |
Collapse
|
4
|
Zhang X, Sun J, Guo J, Hu X, Zhou J, Xie X, Chen X, Luo H, Liu H, Tian Y. Inhibition of adenosine/A2A receptor signaling suppresses dermal fibrosis by enhancing fatty acid oxidation. Cell Commun Signal 2025; 23:206. [PMID: 40301970 PMCID: PMC12042438 DOI: 10.1186/s12964-025-02210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Skin fibrosis presents a major challenge for clinicians treating conditions like systemic sclerosis (SSc) due to its progressive course and limited treatment options. While the role of metabolism in fibrosis has gained increasing attention, the crucial alterations of metabolic pathway and the underlying signaling of metabolic interconnections in regulating SSc-related skin fibrosis remain largely elusive. METHODS Metabolomic analysis was performed on plasma samples from 35 SSc patients to identify metabolic alterations. In bleomycin (BLM)- and hypochlorous acid (HOCL)-induced skin fibrosis mouse models, we assessed the impact of global A2a receptor knockout on skin fibrosis. Single-cell RNA sequencing of mouse skin was utilized to investigate the role of A2A in fibroblasts during fibrotic challenge. Human dermal fibroblasts were used in in vitro experiments, employing RNA sequencing and Seahorse assays, to assess the relationship between A2A signaling and fatty acid oxidation (FAO). Finally, fibroblast-specific conditional A2a knockout mice were used to test the effects of specifically targeting A2A in dermal fibroblasts. RESULTS Adenosine-centered nucleotide metabolism was elevated in the plasma of SSc patients. Mechanistically, by stimulating dermal fibroblasts with key pathogenic cytokines associated with SSc, we observed significant changes in adenosine receptor A2A expression in response to IL-1β. Immunofluorescence revealed upregulation of A2A expression in dermal fibroblasts of SSc patients. Further, global A2a knockout significantly attenuated skin fibrosis in both BLM- and HOCL-induced skin fibrosis mouse models. Single-cell RNA sequencing of mouse skin revealed significant alterations in fatty acid metabolism in fibroblasts from A2a-deficient mice following fibrotic challenge. RNA sequencing, Seahorse assays and in vitro experiments showed that A2A inhibition promotes FAO by upregulating CPT1A expression via suppressing CREB phosphorylation, alleviating fibrosis in human primary dermal fibroblasts. Furthermore, targeted intervention of A2a specifically in fibroblasts improves outcomes and increases CPT1A expression in BLM-induced skin fibrosis mouse model. CONCLUSION Our study highlights the crucial interplay between adenosine metabolism-A2A receptor axis and FAO in SSc-associated skin fibrosis, suggesting that targeting the adenosine receptor A2A-FAO metabolic axis offers a promising therapeutic strategy for skin fibrosis.
Collapse
Affiliation(s)
- Xiaoye Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China
| | - Jinjian Sun
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of General &Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoru Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junyu Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China
| | - Xiaoyun Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Luo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yuzi Tian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Guo W, Zhang C, Zhou Q, Chen T, Xu X, Zhang J, Yu X, Wu H, Zhang X, Ma L, Qian K, Klionsky DJ, Kang R, Kroemer G, Yu Y, Tang D, Wang J. Mitochondrial CCN1 drives ferroptosis via fatty acid β-oxidation. Dev Cell 2025:S1534-5807(25)00206-0. [PMID: 40280135 DOI: 10.1016/j.devcel.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Ferroptosis is a type of oxidative cell death, although its key metabolic processes remain incompletely understood. Here, we employ a comprehensive multiomics screening approach that identified cellular communication network factor 1 (CCN1) as a metabolic catalyst of ferroptosis. Upon ferroptosis induction, CCN1 relocates to mitochondrial complexes, facilitating electron transfer flavoprotein subunit alpha (ETFA)-dependent fatty acid β-oxidation. Compared with a traditional carnitine O-palmitoyltransferase 2 (CPT2)-ETFA pathway, the CCN1-ETFA pathway provides additional substrates for mitochondrial reactive oxygen species production, thereby stimulating ferroptosis through lipid peroxidation. A high-fat diet can enhance the anticancer efficacy of ferroptosis in lung cancer mouse models, depending on CCN1. Furthermore, primary lung cancer cells derived from patients with hypertriglyceridemia or high CCN1 expression demonstrate increased susceptibility to ferroptosis in vitro and in vivo. These findings do not only identify the metabolic role of mitochondrial CCN1 but also establish a strategy for enhancing ferroptosis-based anticancer therapies.
Collapse
Affiliation(s)
- Wanxin Guo
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Congcong Zhang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qianjun Zhou
- Department of Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Tianxiang Chen
- Department of Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jianfeng Zhang
- Department of Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xuewen Yu
- Department of Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Han Wu
- Department of Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Kun Qian
- Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Medical Science Laboratory, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
6
|
Gao X, Zhao X. In-depth characterization of acylcarnitines: utilizing nitroxide radical-directed dissociation in tandem mass spectrometry. Anal Bioanal Chem 2025:10.1007/s00216-025-05868-2. [PMID: 40198344 DOI: 10.1007/s00216-025-05868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Acylcarnitines (ACs) are metabolic intermediates of fatty acids playing important roles in regulating cellular energy and lipid metabolism. The large structural diversity of ACs arises from variations in acyl chain length and the presence of chemical modifications, such as methyl branching, desaturation, hydroxylation, and carboxylation. Numerous studies have demonstrated that these structural isomers of ACs function as biomarkers for a variety of diseases. However, conventional tandem mass spectrometry (MS/MS) via low-energy collision-induced dissociation (CID) faces challenges in distinguishing these isomers. In this study, we report a radical-directed dissociation (RDD) approach for characterization of the intrachain modifications within ACs. The method involves derivatizing ACs with O-benzylhydroxylamine (O-BHA), followed by MS2 CID to produce a nitroxide radical for subsequent RDD along the fatty acyl chain. The above RDD approach was employed on a cyclic ion mobility spectrometry (cIMS) and reversed-phase liquid chromatography (RPLC), enabling the identification and relative quantification of branched chain isomers of ACs. By derivatizing carboxylated ACs with O-BHA, their mass is shifted to a higher region, thereby facilitating their separation from the isobars of hydroxylated ACs. Furthermore, this RDD method effectively allows for the assignment and localization of C = C and hydroxylation positions. This RDD approach has been applied for in-depth profiling of ACs in mice plasma extracts.
Collapse
Affiliation(s)
- Xiangyu Gao
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
7
|
Falcone IG, Rushing BR. Untargeted Metabolomics Reveals Acylcarnitines as Major Metabolic Targets of Resveratrol in Breast Cancer Cells. Metabolites 2025; 15:250. [PMID: 40278380 PMCID: PMC12029535 DOI: 10.3390/metabo15040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Millions of new diagnoses of breast cancer are made each year, with many cases having poor prognoses and limited treatment options, particularly for some subtypes such as triple-negative breast cancer. Resveratrol, a naturally occurring polyphenol, has demonstrated many anticancer properties in breast cancer studies. However, the mechanism of action of this compound remains elusive, although prior evidence suggests that this compound may work through altering cancer cell metabolism. Our objective for the current study was to perform untargeted metabolomics analysis on resveratrol-treated breast cancer cells to identify key metabolic targets of this compound. Methods: MCF-7 and MDA-MB-231 breast cancer cells were treated with varying doses of resveratrol and extracted for mass spectrometry-based untargeted metabolomics. Data preprocessing and filtering of metabolomics data from MCF-7 samples yielded 4751 peaks, with 312 peaks matched to an in-house standards library and 3459 peaks matched to public databases. Results: Pathway analysis in MetaboAnalyst identified significant (p < 0.05) metabolic pathways affected by resveratrol treatment, particularly those involving steroid, fatty acid, amino acid, and nucleotide metabolism. Evaluation of standard-matched peaks revealed acylcarnitines as a major target of resveratrol treatment, with long-chain acylcarnitines exhibiting a 2-5-fold increase in MCF-7 cells and a 5-13-fold increase in MDA-MB-231 cells when comparing the 100 µM treated cells to vehicle-treated cells (p < 0.05, VIP > 1). Notably, doses below 10 µM showed an opposite effect, possibly indicating a biphasic effect of resveratrol due to a switch from anti-oxidant to pro-oxidant effects as dose levels increase. Conclusions: These findings suggest that resveratrol induces mitochondrial metabolic reprogramming in breast cancer cells in a dose-dependent manner. The biphasic response indicates a potential optimal dosage for therapeutic effectiveness. Further research is warranted to explore the mechanisms underlying these metabolic alterations and their implications for precision nutrition strategies in cancer treatment.
Collapse
Affiliation(s)
- Isabella G. Falcone
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Blake R. Rushing
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
8
|
Rogalska M, Błachnio-Zabielska A, Zabielski P, Janica JR, Roszczyc-Owsiejczuk K, Pogodzińska K, Andrzejuk A, Dąbrowski A, Flisiak R, Rogalski P. Acylcarnitine and Free Fatty Acid Profiles in Primary Biliary Cholangitis: Associations with Fibrosis and Inflammation. Nutrients 2025; 17:1097. [PMID: 40218855 PMCID: PMC11990100 DOI: 10.3390/nu17071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by bile duct destruction, cholestasis, and fibrosis. Acylcarnitines are esters of carnitine responsible for the transport of long-chain fatty acids into mitochondria for β-oxidation, playing a crucial role in energy metabolism and lipid homeostasis. This study aimed to assess acylcarnitine and free fatty acid (FFA) profiles in PBC patients and their associations with fibrosis severity and inflammation. Methods: This cross-sectional study included 46 PBC patients and 32 healthy controls. Acylcarnitines and FFAs were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzymatic assays, respectively. Liver stiffness was measured by point shear wave elastography (ElastPQ), and fibrosis was assessed using APRI and FIB-4 scores. Inflammatory markers (IL-6, IL-1β) were also analyzed. Results: PBC patients had significantly higher levels of C18:1-acylcarnitine (median: 165.1 ng/mL) compared with the controls (152.4 ng/mL, p = 0.0036). Similarly, the FFA levels were markedly elevated in the PBC patients (median: 0.46 mM/L) compared with the controls (0.26 mM/L, p < 0.0001). Patients with higher liver stiffness (ElastPQ > 5.56 kPa) had significantly elevated C18:1-acylcarnitine (p = 0.0008) and FFA levels (p = 0.00098). Additionally, FFAs were significantly increased in patients with higher APRI and FIB-4 scores and were associated with elevated inflammatory markers (IL-6, IL-1β) and liver injury markers. Multivariate regression analysis confirmed C18:1-acylcarnitine (OR = 1.031, 95% CI: 1.007-1.057, p = 0.013) and FFAs (OR = 2.25 per 0.1 mM/L increase, 95% CI: 1.20-4.22, p = 0.012) as independent predictors of fibrosis severity in PBC. Conclusions: C18:1-acylcarnitine and FFAs are significantly elevated in PBC and are strongly associated with fibrosis severity and inflammation. These findings suggest a link between lipid metabolism disturbances and PBC. Both metabolites may potentially serve as non-invasive biomarkers of fibrosis progression in PBC, warranting further investigation.
Collapse
Affiliation(s)
- Magdalena Rogalska
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Agnieszka Błachnio-Zabielska
- Hygiene, Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, 15-089 Białystok, Poland; (A.B.-Z.); (K.R.-O.); (K.P.)
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Jacek Robert Janica
- Department of Pediatric Radiology, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Kamila Roszczyc-Owsiejczuk
- Hygiene, Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, 15-089 Białystok, Poland; (A.B.-Z.); (K.R.-O.); (K.P.)
| | - Karolina Pogodzińska
- Hygiene, Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, 15-089 Białystok, Poland; (A.B.-Z.); (K.R.-O.); (K.P.)
| | | | - Andrzej Dąbrowski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Białystok, Poland; (A.D.); (P.R.)
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Paweł Rogalski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Białystok, Poland; (A.D.); (P.R.)
| |
Collapse
|
9
|
Hong Z, Zhou K, Wei Y, Ma B, Xie G, Zhang Z, Liang J. Associations of Plasma and Fecal Metabolites with Body Mass Index and Body Fat Distribution in Children. J Clin Endocrinol Metab 2025; 110:e1173-e1184. [PMID: 38703096 DOI: 10.1210/clinem/dgae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
CONTEXT Childhood obesity continues to be a critical public health concern with far-reaching implications for well-being. OBJECTIVE This study aimed to investigate the association between metabolites in plasma and feces and indicators including body mass index (BMI), BMI for age Z score (BMIZ), and body fat distribution among children aged 6 to 9 years in China. METHODS This cross-sectional study enrolled 424 healthy children, including 186 girls and 238 boys. Dual-energy X-ray absorptiometry was used to determine the body fat content and regional fat distribution. Plasma and fecal metabolites were analyzed using targeted metabolomic technologies. RESULTS A total of 200 plasma metabolites and 212 fecal metabolites were accurately quantified via ultra-performance liquid chromatography coupled with tandem mass spectrometry. By using orthogonal projections to latent structures discriminant analysis and random forest model, we discovered that 9 plasma metabolites and 11 fecal metabolites were associated with different weight statuses. After adjusting for potential covariates and false discovery rate correction, multiple linear regression analyses revealed that plasma metabolites (fumaric acid, glycine, l-glutamine, methylmalonic acid, and succinic acid) and fecal metabolites (protocatechuic acid) were negatively associated (β -1.373 to -.016, pFDR < 0.001-0.031; β -1.008 to -.071, pFDR 0.005-0.033), while plasma metabolites (isovaleric acid, isovalerylcarnitine, l-glutamic acid, and pyroglutamic acid) and fecal metabolites (3-aminoisobutanoic acid, butyric acid, N-acetylneuraminic acid, octanoylcarnitine, oleoylcarnitine, palmitoylcarnitine, stearoylcarnitine, taurochenodesoxycholic acid, and taurodeoxycholic acid) exhibited positive associations with BMI, BMIZ, and body fat distribution (β .023-2.396, pFDR < 0.001; β .014-1.736, pFDR < 0.001-0.049). CONCLUSION Plasma and fecal metabolites such as glutamine may serve as potential therapeutic targets for the development of obesity.
Collapse
Affiliation(s)
- Zhen Hong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510145, China
| | - Kejun Zhou
- Department of Medical Laboratory, Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Yuanhuan Wei
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510145, China
| | - Bingjie Ma
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Guoxiang Xie
- Department of Medical Laboratory, Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510145, China
| | - Jingjing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| |
Collapse
|
10
|
Arnold M, Buyukozkan M, Doraiswamy PM, Nho K, Wu T, Gudnason V, Launer LJ, Wang-Sattler R, Adamski J, De Jager PL, Ertekin-Taner N, Bennett DA, Saykin AJ, Peters A, Suhre K, Kaddurah-Daouk R, Kastenmüller G, Krumsiek J. Individual bioenergetic capacity as a potential source of resilience to Alzheimer's disease. Nat Commun 2025; 16:1910. [PMID: 39994231 PMCID: PMC11850607 DOI: 10.1038/s41467-025-57032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Impaired glucose uptake in the brain is an early presymptomatic manifestation of Alzheimer's disease (AD), with symptom-free periods of varying duration that likely reflect individual differences in metabolic resilience. We propose a systemic "bioenergetic capacity", the individual ability to maintain energy homeostasis under pathological conditions. Using fasting serum acylcarnitine profiles from the AD Neuroimaging Initiative as a blood-based readout for this capacity, we identified subgroups with distinct clinical and biomarker presentations of AD. Our data suggests that improving beta-oxidation efficiency can decelerate bioenergetic aging and disease progression. The estimated treatment effects of targeting the bioenergetic capacity were comparable to those of recently approved anti-amyloid therapies, particularly in individuals with specific mitochondrial genotypes linked to succinylcarnitine metabolism. Taken together, our findings provide evidence that therapeutically enhancing bioenergetic health may reduce the risk of symptomatic AD. Furthermore, monitoring the bioenergetic capacity via blood acylcarnitine measurements can be achieved using existing clinical assays.
Collapse
Affiliation(s)
- Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Mustafa Buyukozkan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - P Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tong Wu
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, MD, USA
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Philip L De Jager
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Taub Institute, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Medical Faculty, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Diabetes Research (DZD e.V.), Munich, Germany
- German Center for Cardiovascular Disease (DZHK e.V.), Munich Heart Alliance, Munich, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Dhieb D, Bastaki K. Pharmaco-Multiomics: A New Frontier in Precision Psychiatry. Int J Mol Sci 2025; 26:1082. [PMID: 39940850 PMCID: PMC11816785 DOI: 10.3390/ijms26031082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The landscape of psychiatric care is poised for transformation through the integration of pharmaco-multiomics, encompassing genomics, proteomics, metabolomics, transcriptomics, epigenomics, and microbiomics. This review discusses how these approaches can revolutionize personalized treatment strategies in psychiatry by providing a nuanced understanding of the molecular bases of psychiatric disorders and individual pharmacotherapy responses. With nearly one billion affected individuals globally, the shortcomings of traditional treatments, characterized by inconsistent efficacy and frequent adverse effects, are increasingly evident. Advanced computational technologies such as artificial intelligence (AI) and machine learning (ML) play crucial roles in processing and integrating complex omics data, enhancing predictive accuracy, and creating tailored therapeutic strategies. To effectively harness the potential of pharmaco-multiomics approaches in psychiatry, it is crucial to address challenges such as high costs, technological demands, and disparate healthcare systems. Additionally, navigating stringent ethical considerations, including data security, potential discrimination, and ensuring equitable access, is essential for the full realization of this approach. This process requires ongoing validation and comprehensive integration efforts. By analyzing recent advances and elucidating how different omic dimensions contribute to therapeutic customization, this review aims to highlight the promising role of pharmaco-multiomics in enhancing patient outcomes and shifting psychiatric treatments from a one-size-fits-all approach towards a more precise and patient-centered model of care.
Collapse
Affiliation(s)
| | - Kholoud Bastaki
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
12
|
Zhou Y, Chen X, Li T, Gao P, Huang S, Wang X, Lin Z, Huang F, Zhu L, Lu Y, Zhu Y. Neonatal Circulating Amino Acids and Lipid Metabolites Mediate the Association of Maternal Gestational Diabetes Mellitus with Offspring Neurodevelopment at 1 Year. Nutrients 2025; 17:258. [PMID: 39861388 PMCID: PMC11767549 DOI: 10.3390/nu17020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: We aimed to identify neonatal circulating metabolic alterations associated with maternal gestational diabetes mellitus (GDM) and to explore whether these altered metabolites could mediate the association of GDM with offspring neurodevelopment. Additionally, we investigated whether neonatal circulating metabolites could improve the prediction of offspring neurodevelopmental disorders over traditional risk factors. Methods: The retrospective cohort study enrolled 1228 mother-child dyads in South China. GDM was diagnosed at 24-28 weeks of gestation. Neonatal circulating amino acids and lipid metabolites (carnitines) were measured from newborn heel blood 3-7 days postpartum. Offspring neurodevelopment was assessed at age 1 year using the Children Neuropsychological and Behavioral Examination Scale. Neurodevelopmental disorders were defined as developmental delay in any domain of the scale. Results: Twenty-one metabolites associated with GDM were identified, consisting of seven amino acids and fourteen carnitines. Among these metabolites, five (glycine, myristicylcarnitine, palmitoylcarnitine, octadecadienoylcarnitine, and 3-hydroxypalmitylcarnitine) mediated the negative association of GDM with offspring neurodevelopment at 1 year (mediation proportions: 3.91-10.66%). Furthermore, six metabolites (glycine, methionine, malonylcarnitine, isovalerylcarnitine, palmitoylcarnitine, and octadecadienoylcarnitine) significantly increased the predictive performance for offspring neurodevelopmental disorders at 1 year over five traditional risk factors including GDM, parity, infant sex, birth weight, and feeding patterns (area under curve: 0.762 vs. 0.718, p = 0.012). Conclusions: GDM was associated with a variety of amino acid and lipid metabolic alterations in neonatal circulation, among which certain metabolites mediated the association of GDM with adverse neurodevelopmental outcomes in offspring. Moreover, some neonatal circulating metabolites may serve as potential biomarkers that improved the prediction of offspring neurodevelopmental disorders over GDM and other traditional risk factors.
Collapse
Affiliation(s)
- Yueqin Zhou
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (X.C.); (T.L.); (X.W.); (Z.L.); (F.H.); (L.Z.); (Y.L.)
| | - Xiaoyan Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (X.C.); (T.L.); (X.W.); (Z.L.); (F.H.); (L.Z.); (Y.L.)
| | - Tianze Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (X.C.); (T.L.); (X.W.); (Z.L.); (F.H.); (L.Z.); (Y.L.)
| | - Pingming Gao
- Department of Neonatology, Foshan Women and Children Hospital, Foshan 528000, China;
| | - Saijun Huang
- Department of Child Healthcare, Foshan Women and Children Hospital, Foshan 528000, China;
| | - Xiaotong Wang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (X.C.); (T.L.); (X.W.); (Z.L.); (F.H.); (L.Z.); (Y.L.)
| | - Zongyu Lin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (X.C.); (T.L.); (X.W.); (Z.L.); (F.H.); (L.Z.); (Y.L.)
| | - Fenglian Huang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (X.C.); (T.L.); (X.W.); (Z.L.); (F.H.); (L.Z.); (Y.L.)
| | - Lewei Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (X.C.); (T.L.); (X.W.); (Z.L.); (F.H.); (L.Z.); (Y.L.)
| | - Yeling Lu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (X.C.); (T.L.); (X.W.); (Z.L.); (F.H.); (L.Z.); (Y.L.)
| | - Yanna Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (X.C.); (T.L.); (X.W.); (Z.L.); (F.H.); (L.Z.); (Y.L.)
| |
Collapse
|
13
|
Reiss JD, Yang W, Chang AL, Long JZ, Marić I, Profit J, Sylvester KG, Stevenson DK, Aghaeepour N, Shaw GM. Transgenerational associations between newborn metabolic profiles and bronchopulmonary dysplasia in neonates born to mothers with an obese phenotype. Sci Rep 2025; 15:1144. [PMID: 39774255 PMCID: PMC11707363 DOI: 10.1038/s41598-025-85252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Maternal obesity increases risk for bronchopulmonary dysplasia (BPD) by up to 42%. Identifying metabolic features that may contribute to the association between maternal pre-pregnancy body mass index (BMI) and BPD is critical in defining the molecular relationship between these conditions. We investigated the association between maternal obesity and BPD using newborn screen metabolites as an explanatory variable. We hypothesized that elevated pre-pregnancy BMI compared to a normal BMI referent group, is associated with increased circulating short and long-chain acylcarnitines and subsequent development of BPD. This was a retrospective study with linkage of maternal pre-pregnancy BMI, with newborn screen metabolites obtained from the California Newborn Screening Program and further linked with neonatal outcomes. Results demonstrated elevated levels of phenylalanine and proline associated with an increased risk for BPD (OR 5.3, 95% CI 1.2-23.8 and OR 5.4, 95% CI 1.3-22.3) in the obesity group compared to the referent group. Short- and long-chain acylcarnitines demonstrated a mildly increased risk for BPD in neonates of mothers with severe obesity compared to controls. The findings suggest that specific metabolites may influence the molecular conditioning that increases susceptibility to BPD.
Collapse
Affiliation(s)
- Jonathan D Reiss
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA.
| | - Wei Yang
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA
| | - Alan L Chang
- Stanford Department of Anesthesiology, Perioperative and Pain Medicine, 300 Pasteur Drive, Stanford, CA, USA
| | - Jonathan Z Long
- Department of Pathology and Stanford, Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Ivana Marić
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA
| | - Jochen Profit
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA
| | - Karl G Sylvester
- Stanford Department of Surgery, Division of Pediatric Surgery, 453 Quarry Rd, Palo Alto, CA, USA
| | - David K Stevenson
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA
| | - Nima Aghaeepour
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA
- Stanford Department of Anesthesiology, Perioperative and Pain Medicine, 300 Pasteur Drive, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary M Shaw
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA
| |
Collapse
|
14
|
Sadri H, Ghaffari MH, Sauerwein H, Schuchardt S, Martín-Tereso J, Doelman J, Daniel JB. Longitudinal characterization of the muscle metabolome in dairy cows during the transition from lactation cessation to lactation resumption. J Dairy Sci 2025; 108:1062-1077. [PMID: 39343201 DOI: 10.3168/jds.2024-25324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Skeletal muscle is vital in maintaining metabolic homeostasis and adapting to the physiological needs of pregnancy and lactation. Despite advancements in understanding metabolic changes in dairy cows around calving and early lactation, there are still gaps in our knowledge, especially concerning muscle metabolism and the changes associated with drying off. This study aimed to characterize the skeletal muscle metabolome in the context of the dietary and metabolic changes occurring during the transition from the cessation of lactation to the resumption of lactation in dairy cows. Twelve Holstein dairy cows housed in tiestalls were dried off 6 wk before the expected calving date. Cows were individually fed ad libitum TMR composed of grass silage, corn silage, and concentrate during lactation and of corn silage, barley straw, and concentrate during the dry period. The metabolome was characterized in skeletal muscle samples (M. longissimus dorsi) collected on wk -7 (9 d before dry-off), -5 (6 d after dry-off), and wk -1, and wk 1 relative to calving. The targeted metabolomics approach was conducted using the MxP Quant 500 kit (Biocrates Life Sciences AG) with liquid chromatography, flow injection, and electrospray ionization triple quadrupole mass spectrometry. Statistical analysis on the muscle metabolite data was performed using MetaboAnalyst 5.0, which allowed us to conduct various multivariate analyses such as principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), informative heat map generation, and hierarchical clustering. The statistical analysis revealed a clear separation between pregnancy (wk -7, -5, and -1) and postcalving (wk 1). Starting 5 wk before calving and continuing through the first week thereafter, the concentration of 3-methylhistidine (3-MH) in the muscle increased. This coincided with an increase in the concentrations of 11 AA (Phe, His, Tyr, Trp, Arg, Asn, Leu, Ile, Gly, Ser, and Thr) in the first week after calving, whereas Gln decreased. l-Arginine pathway metabolites (homoarginine, ornithine, citrulline, and asymmetric dimethylarginine), betaine, and sarcosine followed a similar pattern, increasing from wk -7 to -5, but decreasing from wk -1 to 1. The transition from pregnancy to lactation was associated with an increase in concentrations of the long-chain acylcarnitine species C16, C16:1, C18, and C18:1 in the muscle, whereas the concentrations of phosphatidylcholine and sphingomyelin in the muscle remained stable. The significant changes observed in the metabolome mainly concerned the AA and AA-related metabolites, indicating muscle protein breakdown in the first week after calving. The metabolites produced by the l-Arg pathway might contribute to regulating skeletal muscle mass and function in periparturient dairy cows. The elevated concentrations of long-chain acylcarnitine species in the muscle in the first week after calving suggest incomplete fatty acid oxidation, likely due to insufficient metabolic adaptation in response to the fatty acid load around the time of calving.
Collapse
Affiliation(s)
- H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran; Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - S Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | | | - John Doelman
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands
| | - J B Daniel
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands.
| |
Collapse
|
15
|
Chen W, Zhou Z, Qi R, Zhou J, Liang H, Huang P, Zou Z, Dong L, Li H, Du B, Li P. Ameliorative effects of Trichosanthes kirilowii Maxim. seed oil on hyperlipidemia rats associated with the regulation of gut microbiology and metabolomics. Food Res Int 2024; 197:115141. [PMID: 39593355 DOI: 10.1016/j.foodres.2024.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024]
Abstract
The mechanisms underlying the ameliorative effects of polyunsaturated fatty acids (PUFAs) on metabolic disorders induced by a high-fat diet (HFD) remain poorly unclear. In this study, we investigated the anti-hyperlipidemic effects of Trichosanthes kirilowii Maxim. (T. kirilowii) seed oil rich in conjugated linolenic acid in HFD-induced hyperlipidemic rats, by the gut microbiome, cecum bile acids (BAs), and serum metabolomics. The results showed that T. kirilowii seed oil improved dyslipidemia, hepatic steatosis, oxidative stress, and inflammatory responses in HFD-induced rats. Meanwhile, T. kirilowii seed oil inhibited sterol regulatory element-binding protein 1c (SREBP-1c) mediated fatty acid synthesis and upregulated cholesterol 7-alpha hydroxylase (CYP7A1) mediated hepatic cholesterol metabolism to exert hypolipidemic effects. The administration of high dose T. kirilowii seed oil (THD) improved gut microbiota dysbiosis, increased the relative abundance of beneficial bacteria Romboutsia and unidentified_Oscillospiraceae, and decreased the relative abundance of Christensenellaceae_R-7 group, Phascolarctobacterium, and Bacteroides in HFD-induced rats. T. kirilowii seed oil reduced the accumulation of cecum primary BAs in HFD-induced rats. In addition, THD reversed the HFD-induced changes in 24 serum metabolites including leucine, isoleucine, acetylcarnitine, and glucose. Metabolic pathway enrichment analysis of the differential metabolites revealed that valine, leucine and isoleucine metabolism, butanoate metabolism, citrate cycle, and glycolysis were potential metabolic pathways involved in the anti-hyperlipidemic effects of T. kirilowii seed oil. In conclusion, this study found that dietary T. kirilowii seed oil alleviated gut microbiota dysbiosis and improved metabolic disorders in hyperlipidemic rats. This provides new insights into the anti-hyperlipidemic mechanism by which other families of PUFAs are derived from different plants.
Collapse
Affiliation(s)
- Weili Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhangbao Zhou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruida Qi
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jun Zhou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huiying Liang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pinxi Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zebin Zou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ling Dong
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Hua Li
- Anhui Youyu Kuayue Food Development Co., Ltd, Anqing, Anhui 246300, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
16
|
Wu Y, Wang Y, Lin Y, Zhong X, Liu Y, Cai Y, Xue J. Metabolomics reveals the metabolic disturbance caused by arsenic in the mouse model of inflammatory bowel disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117305. [PMID: 39515204 DOI: 10.1016/j.ecoenv.2024.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Arsenic exposure has long been a significant global health concern due to its association with various human diseases. The adverse health effects of arsenic can be influenced by multiple factors, resulting in considerable individual variability. Individuals with inflammatory bowel disease (IBD) are particularly vulnerable to the effects of toxin exposure, yet the specific impact of arsenic in the context of IBD remains unclear. In this study, we employed a non-targeted metabolomics approach to investigate how arsenic exposure affects metabolic homeostasis in an IBD model using Helicobacter trogontum-infected interleukin-10 deficient mice. Our results demonstrated that arsenic exposure disrupted the balance of various metabolites, including tryptophan, polyunsaturated fatty acids, purine and pyrimidine metabolites, and branched-chain amino acids, in mice with colitis but not in those without colitis. Notably, several crucial metabolites involved in anti-inflammatory responses, oxidative stress, and energy metabolism were significantly altered in mice with colitis. These results indicate that arsenic exposure in an IBD context can lead to extensive metabolic disturbances, potentially exacerbating disease severity and impacting overall health. This study underscores the necessity of evaluating arsenic toxicity in relation to IBD to better understand and mitigate associated health risks.
Collapse
Affiliation(s)
- Yanmei Wu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yin Wang
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yiling Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiang Zhong
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingchuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
17
|
Tobolski D, Zwierzchowski G, Wójcik R, Haxhiaj K, Wishart DS, Ametaj BN. Metabolic Fingerprinting of Blood and Urine of Dairy Cows Affected by Bovine Leukemia Virus: A Mass Spectrometry Approach. Metabolites 2024; 14:624. [PMID: 39590860 PMCID: PMC11596772 DOI: 10.3390/metabo14110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
OBJECTIVES This study investigated metabolic changes associated with bovine leukemia virus (BLV) infection in dairy cows, focusing on pre-parturition alterations. METHODS Metabolite identification in serum and urine samples was performed using a targeted metabolomics method, employing the TMIC Prime kit in combination with flow injection analysis and liquid chromatography-tandem mass spectrometry. RESULTS Of 145 cows examined, 42 (28.9%) were BLV-seropositive. Around 38% of infected cows showed high somatic cell counts indicative of subclinical mastitis, with 15 experiencing additional health issues such as ketosis, milk fever, and lameness. Despite these conditions, no significant differences in milk yield or composition were observed between the infected and control groups. Metabolomic analysis conducted at -8 and -4 weeks prepartum revealed significant metabolic differences between BLV-infected and healthy cows. At -8 weeks, 30 serum metabolites were altered, including sphingomyelins, lysophosphatidylcholines, amino acids, and acylcarnitines, suggesting disruptions in membrane integrity, energy metabolism, and immune function indicative of early neoplastic transformations. By -4 weeks, the number of altered metabolites decreased to 17, continuing to reflect metabolic disruptions in cows with leukemia. Multivariate analysis highlighted distinct metabolic profiles between infected and control cows, identifying key discriminating metabolites such as choline, aspartic acid, phenylalanine, and arginine. Urine metabolomics revealed significant prepartum shifts in metabolites related to glucose, asymmetric dimethylarginine, and pyruvic acid, among others. CONCLUSIONS The research confirmed metabolomics' efficacy in defining a BLV infection metabolic profile, elucidating leukosis-associated metabolic disruptions. This approach facilitates the identification of BLV-infected cows and enhances understanding of infection pathophysiology, providing a foundation for advanced management and intervention strategies in dairy herds. The study underscores the profound impact of leukosis on metabolic processes and highlights urine metabolomics' utility in non-invasively detecting BLV infection, offering the potential for improved herd health management.
Collapse
Affiliation(s)
- Dawid Tobolski
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Grzegorz Zwierzchowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (G.Z.); (K.H.)
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 1a Oczapowskiego Str., 10-719 Olsztyn, Poland
| | - Roman Wójcik
- Faculty of Veterinary Medicine, University of Warmia and Mazury, 1a Oczapowskiego Str., 10-719 Olsztyn, Poland;
| | - Klevis Haxhiaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (G.Z.); (K.H.)
| | - David S. Wishart
- Departments of Biological and Computer Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Burim N. Ametaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (G.Z.); (K.H.)
| |
Collapse
|
18
|
Kim SJ, Jo Y, Park SJ, Ji E, Lee JY, Choi E, Baek JY, Jang IY, Jung HW, Kim K, Ryu D, Yoo HJ, Kim BJ. Metabolomic profiles of ovariectomized mice and their associations with body composition and frailty-related parameters in postmenopausal women. J Endocrinol Invest 2024; 47:2551-2563. [PMID: 38493245 DOI: 10.1007/s40618-024-02338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Menopause, a dramatical estrogen-deficient condition, is considered the most significant milestone in women's health. PURPOSE To investigate the metabolite changes attributed to estrogen deficiency using random forest (RF)-based machine learning (ML) modeling strategy in ovariectomized (OVX) mice as well as determine the clinical relevance of selected metabolites in older women. METHODS AND RESULTS Untargeted and targeted metabolomic analyses revealed that metabolites related to TCA cycle, sphingolipids, phospholipids, fatty acids, and amino acids, were significantly changed in the plasma and/or muscle of OVX mice. Subsequent ML classifiers based on RF algorithm selected alpha-ketoglutarate (AKG), arginine, carnosine, ceramide C24, phosphatidylcholine (PC) aa C36:6, and PC ae C42:3 in plasma as well as PC aa 34:1, PC aa C34:3, PC aa C36:5, PC aa C32:1, PC aa C36:2, and sphingosine in muscle as top featured metabolites that differentiate the OVX mice from the sham-operated group. When circulating levels of AKG, arginine, and carnosine, which showed the most significant changes in OVX mice blood, were measured in postmenopausal women, higher plasma AKG levels were associated with lower bone mass, weak grip strength, poor physical performance, and increased frailty risk. CONCLUSIONS Metabolomics- and ML-based methods identified the key metabolites of blood and muscle that were significantly changed after ovariectomy in mice, and the clinical implication of several metabolites was investigated by looking at their correlation with body composition and frailty-related parameters in postmenopausal women. These findings provide crucial context for understanding the diverse physiological alterations caused by estrogen deficiency in women.
Collapse
Affiliation(s)
- S J Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center,, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Y Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - S J Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - E Ji
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - J Y Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - E Choi
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - J-Y Baek
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - I Y Jang
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - H-W Jung
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - K Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - D Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| | - H J Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center,, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - B-J Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| |
Collapse
|
19
|
Aydin Ö, Meijnikman AS, de Jonge PA, van Stralen K, Börger H, Okur K, Iqbal Z, Warmbrunn MV, Acherman YIZ, Bruin S, Winkelmeijer M, Schimmel AWM, Holst JJ, Poulsen SS, Bäckhed F, Nieuwdorp M, Groen AK, Gerdes VEA. Post-Bariatric Hypoglycemia: an Impaired Metabolic Response to a Meal. Obes Surg 2024; 34:3796-3806. [PMID: 39153140 PMCID: PMC11481667 DOI: 10.1007/s11695-024-07309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 08/19/2024]
Abstract
AIMS/HYPOTHESIS Post-bariatric hypoglycemia (PBH) is caused by postprandial hyperinsulinemia, due to anatomical alterations and changes in post-prandial metabolism after bariatric surgery. The mechanisms underlying the failing regulatory and compensatory systems are unclear. In this study, we investigated the differences in post-prandial hormones and metabolic profiles between patients with and without PBH. METHODS We performed a mixed meal test (MMT) in 63 subjects before and 1 year after Roux-en-Y gastric bypass (RYGB) surgery. Blood was withdrawn at 0, 10, 20, 30, 60, and 120 min after ingestion of a standardized meal. Glucose, insulin, GLP-1, FGF-19, and FGF-21 were measured and untargeted metabolomics analysis was performed on blood plasma to analyze which hormonal and metabolic systems were altered between patients with and without PBH. RESULTS Out of 63, a total of 21 subjects (33%) subjects developed PBH (glucose < 3.1 mmol/L) after surgery. Decreased glucose and increased insulin excursions during MMT were seen in PBH (p < 0.05). GLP-1, FGF-19, and FGF-21 were elevated after surgery (p < 0.001), but did not differ between PBH and non-PBH groups. We identified 20 metabolites possibly involved in carbohydrate metabolism which differed between the two groups, including increased carnitine and acylcholines in PBH. CONCLUSION Overall, 33% of the subjects developed PBH 1 year after RYGB surgery. While GLP-1, FGF-19, and FGF-21 were similar in PBH and non-PBH patients, metabolomics analysis revealed changes in carnitine and acyclcholines that are possibly involved in energy metabolism, which may play a role in the occurrence of PBH.
Collapse
Affiliation(s)
- Ömrüm Aydin
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Abraham S Meijnikman
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Patrick A de Jonge
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Karlijn van Stralen
- Department of Scientific Research, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Hanneke Börger
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Kadriye Okur
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Zainab Iqbal
- Cardiometabolic Research, Vrije Universiteit, Amsterdam, the Netherlands
| | - Moritz V Warmbrunn
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Yair I Z Acherman
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Sjoerd Bruin
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Maaike Winkelmeijer
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Alinda W M Schimmel
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Bäckhed
- Department of Cardiovascular and Metabolic Research, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Albert K Groen
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Victor E A Gerdes
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands.
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands.
- Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands.
| |
Collapse
|
20
|
Wang T, Ning M, Mo Y, Tian X, Fu Y, Laher I, Li S. Metabolomic Profiling Reveals That Exercise Lowers Biomarkers of Cardiac Dysfunction in Rats with Type 2 Diabetes. Antioxidants (Basel) 2024; 13:1167. [PMID: 39456421 PMCID: PMC11505272 DOI: 10.3390/antiox13101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
The increasing prevalence of type 2 diabetes mellitus (T2DM) leads to significant global health challenges, including cardiac structural and functional deficits, which in severe cases can progress to heart failure that can further strain healthcare resources. Aerobic exercise can ameliorate cardiac dysfunction in individuals with diabetes, although a comprehensive understanding of its underlying mechanisms remains elusive. This study utilizes untargeted metabolomics to reveal aerobic-exercise-activated metabolic biomarkers in the cardiac tissues of Sprague Dawley rats with T2DM. Metabolomics analysis revealed that diabetes altered 1029 myocardial metabolites, while aerobic exercise reversed 208 of these metabolites, of which 112 were upregulated and 96 downregulated. Pathway topology analysis suggested that these metabolites predominantly contributed to purine metabolism and arginine biosynthesis. Furthermore, receiver operating characteristic curve analysis identified 10 potential biomarkers, including xanthine, hypoxanthine, inosine, dGMP, l-glutamic acid, l-arginine, l-tryptophan, (R)-3-hydroxybutyric acid, riboflavin, and glucolepidiin. Finally, data from Pearson correlation analysis indicated that some metabolic biomarkers strongly correlated with cardiac function. Our data suggest that certain metabolic biomarkers play an important role in ameliorating diabetes-related cardiac dysfunction by aerobic exercise.
Collapse
Affiliation(s)
- Tutu Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (T.W.); (M.N.); (Y.M.); (X.T.); (Y.F.)
| | - Miaomiao Ning
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (T.W.); (M.N.); (Y.M.); (X.T.); (Y.F.)
| | - Yurou Mo
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (T.W.); (M.N.); (Y.M.); (X.T.); (Y.F.)
| | - Xinyu Tian
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (T.W.); (M.N.); (Y.M.); (X.T.); (Y.F.)
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (T.W.); (M.N.); (Y.M.); (X.T.); (Y.F.)
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (T.W.); (M.N.); (Y.M.); (X.T.); (Y.F.)
| |
Collapse
|
21
|
Newton-Tanzer E, Can SN, Demmelmair H, Horak J, Holdt L, Koletzko B, Grote V. Apparent Saturation of Branched-Chain Amino Acid Catabolism After High Dietary Milk Protein Intake in Healthy Adults. J Clin Endocrinol Metab 2024:dgae599. [PMID: 39302872 DOI: 10.1210/clinem/dgae599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 09/22/2024]
Abstract
CONTEXT Milk protein contains high concentrations of branched-chain amino acids (BCAA) that play a critical role in anabolism and are implicated in the onset of obesity and chronic disease. Characterizing BCAA catabolism in the postprandial phase could elucidate the impact of protein intake on obesity risk established in the "early protein hypothesis." OBJECTIVE To examine the acute effects of protein content of young child formulas as test meals on BCAA catabolism, observing postprandial plasma concentrations of BCAA in relation to their degradation products. METHODS The TOMI Add-On Study is a randomized, double-blind crossover study in which 27 healthy adults consumed 2 isocaloric young child formulas with alternating higher (HP) and lower (LP) protein and fat content as test meals during separate interventions, while 9 blood samples were obtained over 5 hours. BCAA, branched-chain α-keto acids (BCKA), and acylcarnitines were analyzed using a fully targeted HPLC-ESI-MS/MS approach. RESULTS Mean concentrations of BCAA, BCKA, and acylcarnitines were significantly higher after HP than LP over the 5 postprandial hours, except for the BCKA α-ketoisovalerate (KIVA). The latter metabolite showed higher postprandial concentrations after LP. With increasing mean concentrations of BCAA, concentrations of corresponding BCKA, acylcarnitines, and urea increased until a breakpoint was reached, after which concentrations of degradation products decreased (for all metabolites except valine and KIVA and Carn C4:0-iso). CONCLUSION BCAA catabolism is markedly influenced by protein content of the test meal. We present novel evidence for the apparent saturation of the BCAA degradation pathway in the acute postprandial phase up to 5 hours after consumption.
Collapse
Affiliation(s)
- Emily Newton-Tanzer
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Sultan Nilay Can
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Hans Demmelmair
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Jeannie Horak
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| |
Collapse
|
22
|
Guo J, Yang P, Wang JH, Tang SH, Han JZ, Yao S, Yu K, Liu CC, Dong SS, Zhang K, Duan YY, Yang TL, Guo Y. Blood metabolites, neurocognition and psychiatric disorders: a Mendelian randomization analysis to investigate causal pathways. Transl Psychiatry 2024; 14:376. [PMID: 39285197 PMCID: PMC11405529 DOI: 10.1038/s41398-024-03095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Neurocognitive dysfunction is observationally associated with the risk of psychiatric disorders. Blood metabolites, which are readily accessible, may become highly promising biomarkers for brain disorders. However, the causal role of blood metabolites in neurocognitive function, and the biological pathways underlying their association with psychiatric disorders remain unclear. METHODS To explore their putative causalities, we conducted bidirectional two-sample Mendelian randomization (MR) using genetic variants associated with 317 human blood metabolites (nmax = 215,551), g-Factor (an integrated index of multiple neurocognitive tests with nmax = 332,050), and 10 different psychiatric disorders (n = 9,725 to 807,553) from the large-scale genome-wide association studies of European ancestry. Mediation analysis was used to assess the potential causal pathway among the candidate metabolite, neurocognitive trait and corresponding psychiatric disorder. RESULTS MR evidence indicated that genetically predicted acetylornithine was positively associated with g-Factor (0.035 standard deviation units increase in g-Factor per one standard deviation increase in acetylornithine level; 95% confidence interval, 0.021 to 0.049; P = 1.15 × 10-6). Genetically predicted butyrylcarnitine was negatively associated with g-Factor (0.028 standard deviation units decrease in g-Factor per one standard deviation increase in genetically proxied butyrylcarnitine; 95% confidence interval, -0.041 to -0.015; P = 1.31 × 10-5). There was no evidence of associations between genetically proxied g-Factor and metabolites. Furthermore, the mediation analysis via two-step MR revealed that the causal pathway from acetylornithine to bipolar disorder was partly mediated by g-Factor, with a mediated proportion of 37.1%. Besides, g-Factor mediated the causal pathway from butyrylcarnitine to schizophrenia, with a mediated proportion of 37.5%. Other neurocognitive traits from different sources provided consistent findings. CONCLUSION Our results provide genetic evidence that acetylornithine protects against bipolar disorder through neurocognitive abilities, while butyrylcarnitine has an adverse effect on schizophrenia through neurocognition. These findings may provide insight into interventions at the metabolic level for risk of neurocognitive and related disorders.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ping Yang
- Hunan Brain Hospital, Clinical Medical School of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, P. R. China
| | - Jia-Hao Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shi-Hao Tang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ji-Zhou Han
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shi Yao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Ke Yu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Cong-Cong Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Kun Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
| |
Collapse
|
23
|
Zhao HY, Tan J, Li LX, Wang Y, Liu M, Jiang LS, Zhao YC. Longitudinal characterization of serum metabolome and lipidome reveals that the ceramide profile is associated with metabolic health in early postpartum cows experiencing different lipolysis. J Dairy Sci 2024; 107:7446-7468. [PMID: 38788838 DOI: 10.3168/jds.2023-24510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
Reduced feed intake in early lactation prompts increased fat mobilization to meet dairy cow energy needs for milk production. The increased lipolysis in cows presents significant health risks with unclear mechanisms. The objectives of our study were to compare the longitudinal profiles of metabolites and lipids of serum from high- and low-lipolysis cows. Forty multiparous Holstein dairy cows were enrolled in the retrospective study. Serum samples were collected on d 7 before expected calving, as well as on d 5, 7, 14, and 21 postpartum. Dairy cows were grouped according to mean serum nonesterified fatty acids on d 5 and 7 after parturition as low (<0.600 mmol/L; n = 8; LFM) and high (>0.750 mmol/L; n = 8; HFM), indicating fat mobilization during early lactation. Lactational performance and serum metabolic parameters related to glucose and lipid metabolism, liver functions, oxidative status, and inflammatory responses were determined. Serum samples were subjected to liquid chromatography-MS-based metabolomics and lipidomics. Despite differences in postpartum BW change, there were no observed variations in milk yield and composition between the 2 groups. Serum β-hydroxybutyric acid, glucose, leptin, aspartate aminotransferase, IL-6, and tumor necrosis factor alpha were greater in cows with HFM than in cows with LFM. Serum adiponectin, revised quantitative insulin sensitivity check index, and albumin were lower in cows with HFM than in cows with LFM. Intensified fat mobilization in the HFM cows came along with reduced estimated insulin sensitivity, impaired liver functions, and increased oxidative stress and inflammatory responses. Differences in metabolic patterns were observed across the transition period when comparing serum blood matrixes (e.g., in different amino acids, acylcarnitines, and sphingolipids). The serum metabolome of the HFM cows was characterized by higher concentrations of glycine, acylcarnitines, carnosine, Cer(d20:0/18:0), Cer(d18:1/16:0), and Cer(t18:0/24:0) compared with LFM cows. The differential serum metabolites and lipids at different sampling times during the peripartum period were enriched in the sphingolipid metabolism. Differences in serum metabolic status parameters suggest that cows adopt varied metabolic adaptation strategies to cope with energy deficits postpartum. Our investigation found a comprehensive remodeling of the serum metabolic profiles in transition dairy cattle, highlighting the significance of alterations in sphingolipid species, as they play a crucial role in insulin resistance and metabolic disorders.
Collapse
Affiliation(s)
- H Y Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - J Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - L X Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Y Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - M Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - L S Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China.
| | - Y C Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China.
| |
Collapse
|
24
|
Sevilla-González M, Garibay-Gutiérrez MF, Vargas-Vázquez A, Medina-García AC, Ordoñez-Sánchez ML, Clish CB, Almeda-Valdes P, Tusie-Luna T. Metabolomic Profile Alterations Associated with the SLC16A11 Risk Haplotype Following a Lifestyle Intervention in People With Prediabetes. Curr Dev Nutr 2024; 8:104444. [PMID: 39310668 PMCID: PMC11416210 DOI: 10.1016/j.cdnut.2024.104444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Background A risk haplotype in SLC16A11 characterized by alterations in fatty acid metabolism emerged as a genetic risk factor associated with increased susceptibility to type 2 diabetes (T2D) in Mexican population. Its role on treatment responses is not well understood. Objectives We aimed to determine the impact of the risk haplotype on the metabolomic profile during a lifestyle intervention (LSI). Methods We recruited Mexican-mestizo individuals with ≥1 prediabetes criteria according to the American Diabetes Association with a body mass index between 25 and 45 kg/m2. We conducted a 24-wk quasiexperimental LSI study for diabetes prevention. Here, we compared longitudinal plasma liquid chromatography/mass spectrometry metabolomic changes between carriers and noncarriers. We analyzed the association of risk haplotype with metabolites leveraging repeated assessments using multivariable-adjusted linear mixed models. Results Before the intervention, carriers (N = 21) showed higher concentrations of hippurate, C16 carnitine, glycine, and cinnamoylglycine. After 24 wk of LSI, carriers exhibited a deleterious metabolomic profile. This profile was characterized by increased concentrations of hippurate, cinnamoglycine, xanthosine, N-acetylputrescine, L-acetylcarnitine, ceramide (d18:1/24:1), and decreased concentrations of citrulline and phosphatidylethanolamine. These metabolites were associated with higher concentrations of total cholesterol, triglycerides, and low density lipoprotein cholesterol. The effect of LSI on the risk haplotype was notably more pronounced in its impact on 2 metabolites: methylmalonylcarnitine (β: -0.56; P-interaction = 0.014) and betaine (β: -0.64; P-interaction = 0.017). Interestingly, lower consumption across visits of polyunsaturated (β: -0.038; P = 0.017) fatty acids were associated with higher concentrations of methylmalonylcarnitine. Covariates for adjustment across models included age, sex, genetic ancestry principal components, and body mass index. Conclusions Our study highlights the persistence of deleterious metabolomic patterns associated with the risk haplotype before and during a 24-wk LSI. We also emphasize the potential regulatory role of polyunsaturated fatty acids on methylmalonylcarnitine concentrations suggesting a route for improving interventions for individuals with high-genetic risk.
Collapse
Affiliation(s)
- Magdalena Sevilla-González
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Maria Fernanda Garibay-Gutiérrez
- Unidad de Investigacion en Enfermedades Metabolicas, Instituto Nacional de Ciencias Medicas y Nutricion “Salvador Zubiran,” Mexico City, Mexico
- Departamento de Fisiología. Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Arsenio Vargas-Vázquez
- Unidad de Investigacion en Enfermedades Metabolicas, Instituto Nacional de Ciencias Medicas y Nutricion “Salvador Zubiran,” Mexico City, Mexico
| | - Andrea Celeste Medina-García
- Unidad de Biologia Molecular y Medicina Genomica, Insituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Maria Luisa Ordoñez-Sánchez
- Unidad de Biologia Molecular y Medicina Genomica, Insituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Clary B Clish
- Metabolomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Paloma Almeda-Valdes
- Unidad de Investigacion en Enfermedades Metabolicas, Instituto Nacional de Ciencias Medicas y Nutricion “Salvador Zubiran,” Mexico City, Mexico
- Departamento de Endocrinologia y Metabolismo, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Teresa Tusie-Luna
- Unidad de Biologia Molecular y Medicina Genomica, Insituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|
25
|
Hahn VS, Selvaraj S, Sharma K, Shah SH. Towards Metabolomic-Based Precision Approaches for Classifying and Treating Heart Failure. JACC Basic Transl Sci 2024; 9:1144-1158. [PMID: 39444924 PMCID: PMC11494393 DOI: 10.1016/j.jacbts.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 10/25/2024]
Abstract
Both heart failure and cardiometabolic disease are on the rise, and abnormal cardiac and peripheral metabolism are central to the syndrome of heart failure. Advances in metabolomic profiling have improved our understanding of the heart's metabolic flexibility in patients with and without heart failure. Prior studies have noted patients with heart failure display metabolomic profiles associated with marked abnormalities in the metabolism of fatty acids, branched-chain amino acids, ketones, and glucose compared with control subjects. Metabolomics can highlight specific pathways that are dysregulated; however, other metabolites beyond those related to fuel metabolism may also play a role in precision-medicine approaches. Novel approaches include metabolic flux studies, spatial and single-cell analysis, serial monitoring of treatment response, and integration with other -omics data. The goal of these innovative approaches should be to harness metabolomic technologies to affect precision care for patients with heart failure.
Collapse
Affiliation(s)
- Virginia S. Hahn
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Senthil Selvaraj
- Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kavita Sharma
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Svati H. Shah
- Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
26
|
Wang L, Sun Y, Du L, Wang Q, Zhan M, Li S, Xiao X. Daily koumiss has positive regulatory effects on blood lipids and immune system: A metabolomics study. Heliyon 2024; 10:e36429. [PMID: 39253138 PMCID: PMC11382052 DOI: 10.1016/j.heliyon.2024.e36429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Koumiss, a traditional Mongolian beverage, is believed to possess high nutritional value and potential medical benefits. However, there is a lack of comprehensive research on its potential impact on the human body. Metabolomics, as a sensitive approach in systems biology, offers a new avenue for studying the overall effects of koumiss. In this work, metabolomics was utilized to identify potential biomarkers and pathways associated with koumiss using UPLC-MS detection, pattern recognition analysis, pathway enrichment, network pharmacology. The findings indicated that koumiss exerts a beneficial regulatory influence on lipid metabolism, neurotransmitters, hormones, phospholipids and arachidonic acid metabolism, besides up regulating the content of nutrients. It could reduce the risks of dyslipidemia and inflammatory responses. This study confirmed the benign regulatory effect of koumiss on normal organism from the perspective of endogenous metabolites, and provided objective support for the promotion and application of this ethnic food.
Collapse
Affiliation(s)
- Leqi Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanfang Sun
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lijing Du
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Zhan
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
27
|
Brejchova J, Brejchova K, Kuda O. Metabolic Pathways of Acylcarnitine Synthesis. Physiol Res 2024; 73:S153-S163. [PMID: 38752770 PMCID: PMC11412349 DOI: 10.33549/physiolres.935261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Acylcarnitines are important markers in metabolic studies of many diseases, including metabolic, cardiovascular, and neurological disorders. We reviewed analytical methods for analyzing acylcarnitines with respect to the available molecular structural information, the technical limitations of legacy methods, and the potential of new mass spectrometry-based techniques to provide new information on metabolite structure. We summarized the nomenclature of acylcarnitines based on historical common names and common abbreviations, and we propose the use of systematic abbreviations derived from the shorthand notation for lipid structures. The transition to systematic nomenclature will facilitate acylcarnitine annotation, reporting, and standardization in metabolomics. We have reviewed the metabolic origins of acylcarnitines important for the biological interpretation of human metabolomic profiles. We identified neglected isomers of acylcarnitines and summarized the metabolic pathways involved in the synthesis and degradation of acylcarnitines, including branched-chain lipids and amino acids. We reviewed the primary literature, mapped the metabolic transformations of acyl-CoAs to acylcarnitines, and created a freely available WikiPathway WP5423 to help researchers navigate the acylcarnitine field. The WikiPathway was curated, metabolites and metabolic reactions were annotated, and references were included. We also provide a table for conversion between common names and abbreviations and systematic abbreviations linked to the LIPID MAPS or Human Metabolome Database.
Collapse
Affiliation(s)
- J Brejchova
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
28
|
Pretorius C, Luies L. Characterising the urinary acylcarnitine and amino acid profiles of HIV/TB co-infection, using LC-MS metabolomics. Metabolomics 2024; 20:92. [PMID: 39096437 PMCID: PMC11297823 DOI: 10.1007/s11306-024-02161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION The human immunodeficiency virus (HIV) and tuberculosis (TB) co-infection presents significant challenges due to the complex interplay between these diseases, leading to exacerbated metabolic disturbances. Understanding these metabolic profiles is crucial for improving diagnostic and therapeutic approaches. OBJECTIVE This study aimed to characterise the urinary acylcarnitine and amino acid profiles, including 5-hydroxyindoleacetic acid (5-HIAA), in patients co-infected with HIV and TB using targeted liquid chromatography mass spectrometry (LC-MS) metabolomics. METHODS Urine samples, categorised into HIV, TB, HIV/TB co-infected, and healthy controls, were analysed using HPLC-MS/MS. Statistical analyses included one-way ANOVA and a Kruskal-Wallis test to determine significant differences in the acylcarnitine and amino acid profiles between groups. RESULTS The study revealed significant metabolic alterations, especially in TB and co-infected groups. Elevated levels of medium-chain acylcarnitines indicated increased fatty acid oxidation, commonly associated with cachexia in TB. Altered amino acid profiles suggested disruptions in protein and glucose metabolism, indicating a shift towards diabetes-like metabolic states. Notably, TB was identified as a primary driver of these changes, affecting protein turnover, and impacting energy metabolism in co-infected patients. CONCLUSION The metabolic profiling of HIV/TB co-infection highlights the profound impact of TB on metabolic pathways, which may exacerbate the clinical complexities of co-infection. Understanding these metabolic disruptions can guide the development of targeted treatments and improve management strategies, ultimately enhancing the clinical outcomes for these patients. Further research is required to validate these findings and explore their implications in larger, diverse populations.
Collapse
Affiliation(s)
- Charles Pretorius
- Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Box 269, Potchefstroom, 2520, South Africa
| | - Laneke Luies
- Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Box 269, Potchefstroom, 2520, South Africa.
| |
Collapse
|
29
|
Kellett SK, Masterson JC. Cellular metabolism and hypoxia interfacing with allergic diseases. J Leukoc Biol 2024; 116:335-348. [PMID: 38843075 DOI: 10.1093/jleuko/qiae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Allergic diseases display significant heterogeneity in their pathogenesis. Understanding the influencing factors, pathogenesis, and advancing new treatments for allergic diseases is becoming more and more vital as currently, prevalence continues to rise, and mechanisms of allergic diseases are not fully understood. The upregulation of the hypoxia response is linked to an elevated infiltration of activated inflammatory cells, accompanied by elevated metabolic requirements. An enhanced hypoxia response may potentially contribute to inflammation, remodeling, and the onset of allergic diseases. It has become increasingly clear that the process underlying immune and stromal cell activation during allergic sensitization requires well-tuned and dynamic changes in cellular metabolism. The purpose of this review is to examine current perspectives regarding metabolic dysfunction in allergic diseases. In the past decade, new technological platforms such as "omic" techniques have been applied, allowing for the identification of different biomarkers in multiple models ranging from altered lipid species content, increased nutrient transporters, and altered serum amino acids in various allergic diseases. Better understanding, recognition, and integration of these alterations would increase our knowledge of pathogenesis and potentially actuate a novel repertoire of targeted treatment approaches that regulate immune metabolic pathways.
Collapse
Affiliation(s)
- Shauna K Kellett
- Allergy, Inflammation & Remodelling Research Laboratory, Department of Biology, Maynooth University, Maynooth, W23 C2N1, County Kildare, Ireland
| | - Joanne C Masterson
- Allergy, Inflammation & Remodelling Research Laboratory, Department of Biology, Maynooth University, Maynooth, W23 C2N1, County Kildare, Ireland
- Gastrointestinal Eosinophilic Diseases Program, Department of Paediatrics, Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 C2N1, County Kildare, Ireland
| |
Collapse
|
30
|
Lv J, Pan C, Cai Y, Han X, Wang C, Ma J, Pang J, Xu F, Wu S, Kou T, Ren F, Zhu ZJ, Zhang T, Wang J, Chen Y. Plasma metabolomics reveals the shared and distinct metabolic disturbances associated with cardiovascular events in coronary artery disease. Nat Commun 2024; 15:5729. [PMID: 38977723 PMCID: PMC11231153 DOI: 10.1038/s41467-024-50125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Risk prediction for subsequent cardiovascular events remains an unmet clinical issue in patients with coronary artery disease. We aimed to investigate prognostic metabolic biomarkers by considering both shared and distinct metabolic disturbance associated with the composite and individual cardiovascular events. Here, we conducted an untargeted metabolomics analysis for 333 incident cardiovascular events and 333 matched controls. The cardiovascular events were designated as cardiovascular death, myocardial infarction/stroke and heart failure. A total of 23 shared differential metabolites were associated with the composite of cardiovascular events. The majority were middle and long chain acylcarnitines. Distinct metabolic patterns for individual events were revealed, and glycerophospholipids alteration was specific to heart failure. Notably, the addition of metabolites to clinical markers significantly improved heart failure risk prediction. This study highlights the potential significance of plasma metabolites on tailed risk assessment of cardiovascular events, and strengthens the understanding of the heterogenic mechanisms across different events.
Collapse
Affiliation(s)
- Jiali Lv
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chang Pan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Xinyue Han
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Institute of Health Data Science, Shandong University, Jinan, China
| | - Jingjing Ma
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaojiao Pang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shuo Wu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Tianzhang Kou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Fandong Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Tao Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jiali Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
31
|
Demmelmair H, Uhl O, Zhou SJ, Makrides M, Gibson RA, Prosser C, Gallier S, Koletzko B. Plasma Sphingomyelins and Carnitine Esters of Infants Consuming Whole Goat or Cow Milk-Based Infant Formulas or Human Milk. J Nutr 2024; 154:1781-1789. [PMID: 38615734 PMCID: PMC11217027 DOI: 10.1016/j.tjnut.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Infant formulas are typically manufactured using skimmed milk, whey proteins, and vegetable oils, which excludes milk fat globule membranes (MFGM). MFGM contains polar lipids, including sphingomyelin (SM). OBJECTIVE The objective of this study was comparison of infant plasma SM and acylcarnitine species between infants who are breastfed or receiving infant formulas with different fat sources. METHODS In this explorative study, we focused on SM and acylcarnitine species concentrations measured in plasma samples from the TIGGA study (ACTRN12608000047392), where infants were randomly assigned to receive either a cow milk-based infant formula (CIF) with vegetable oils only or a goat milk-based infant formula (GIF) with a goat milk fat (including MFGM) and vegetable oil mixture to the age ≥4 mo. Breastfed infants were followed as a reference group. Using tandem mass spectrometry, SM species in the study formulas and SM and acylcarnitine species in plasma samples collected at the age of 4 mo were analyzed. RESULTS Total SM concentrations (∼42 μmol/L) and patterns of SM species were similar in both formulas. The total plasma SM concentrations were not different between the formula groups but were 15 % (CIF) and 21% (GIF) lower in the formula groups than in the breastfed group. Between the formula groups, differences in SM species were statistically significant but small. Total carnitine and major (acyl) carnitine species were not different between the groups. CONCLUSIONS The higher total SM concentration in breastfed than in formula-fed infants might be related to a higher SM content in human milk, differences in cholesterol metabolism, dietary fatty acid intake, or other factors not yet identified. SM and acylcarnitine species composition in plasma is not closely related to the formula fatty acid composition. This trial was registered at Australian New Zealand Clinical Trials Registry as ACTRN12608000047392.
Collapse
Affiliation(s)
- Hans Demmelmair
- Department of Pediatrics, Division of Metabolic and Nutritional Medicine, Ludwig Maximilians University Munich, Dr. von Hauner Children's Hospital, Munich, Germany.
| | - Olaf Uhl
- Department of Pediatrics, Division of Metabolic and Nutritional Medicine, Ludwig Maximilians University Munich, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Shao J Zhou
- Food and Wine, School of Agriculture, University of Adelaide, Adelaide, Australia
| | - Maria Makrides
- Woman's and Children's Health Research Institute, University of Adelaide, Adelaide, Australia
| | - Robert A Gibson
- Food and Wine, School of Agriculture, University of Adelaide, Adelaide, Australia
| | - Colin Prosser
- Science Department, Dairy Goat Co-operative (NZ) Ltd, Hamilton, New Zealand
| | - Sophie Gallier
- Science Department, Dairy Goat Co-operative (NZ) Ltd, Hamilton, New Zealand
| | - Berthold Koletzko
- Department of Pediatrics, Division of Metabolic and Nutritional Medicine, Ludwig Maximilians University Munich, Dr. von Hauner Children's Hospital, Munich, Germany
| |
Collapse
|
32
|
Ghaffari MH, Sanz-Fernandez MV, Sadri H, Sauerwein H, Schuchardt S, Martín-Tereso J, Doelman J, Daniel JB. Longitudinal characterization of the metabolome of dairy cows transitioning from one lactation to the next: Investigations in the liver. J Dairy Sci 2024; 107:4000-4016. [PMID: 38246557 DOI: 10.3168/jds.2023-24432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
This study aimed to investigate the metabolic changes in the livers of dairy cows from 1 wk before dry off to 1 wk after calving. Twelve high-yielding Holstein cows were included in a longitudinal study and housed in a tiestall barn. The cows were dried off at 6 wk before the expected calving date (dry period length = 42 d). During the entire lactation, the cows were milked twice daily at 0600 and 1700 h. Liver biopsies were taken from each cow at 4 different times: wk -7 (before drying off), -5 (after drying off), -1 and +1 relative to calving. A targeted metabolomics approach was performed by liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP Quant 500 kit (Biocrates Life Sciences AG). A total of 185 metabolites in the liver were used for the final data analysis. Principal component analysis revealed a clear separation by days of sampling, indicating a notable shift in metabolic phenotype from late lactation to the dry period and further changes after calving. Changes were observed in several classes of compounds, including AA and biogenic amines. In particular, the changes in acylcarnitines (AcylCN), phosphatidylcholines (PC), sphingomyelins (SM), and bile acids (BA) indicated extensive remodeling of the hepatic lipidome. The changes in AcylCN concentrations in early lactation suggest incomplete fatty acid oxidation in the liver, possibly indicating mitochondrial dysfunction or enzymatic imbalance. In addition, the changes in PC and SM species in early lactation indicate altered cell membrane composition, which may affect cell signaling and functionality. In addition, changes in BA concentrations and profiles indicate dynamic adaptations in BA synthesis, as well as lipid digestion and absorption during the observation period. In particular, principal component analysis showed an overlapping distribution of liver metabolites in primiparous and multiparous cows, indicating no significant difference between these groups. In addition, Volcano plots showed similar liver metabolism between primiparous and multiparous cows, with no significant fold changes (>1.5) in any metabolite at significant P-values (false discovery rate <0.05). These results provide valuable insight into the physiological ranges of liver metabolites during dry period and calving in healthy dairy cows and should contribute to the design and interpretation of future metabolite-based studies of the transition dairy cow.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | | | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - S Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | | | - J Doelman
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands
| | - J-B Daniel
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands.
| |
Collapse
|
33
|
Saadat N, Aguate F, Nowak AL, Hyer S, Lin AB, Decot H, Koch H, Walker DS, Lydic T, Padmanabhan V, Campos GDL, Misra D, Giurgescu C. Changes in Lipid Profiles with the Progression of Pregnancy in Black Women. J Clin Med 2024; 13:2795. [PMID: 38792337 PMCID: PMC11122055 DOI: 10.3390/jcm13102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objectives: Lipid metabolism plays an important role in maternal health and fetal development. There is a gap in the knowledge of how lipid metabolism changes during pregnancy for Black women who are at a higher risk of adverse outcomes. We hypothesized that the comprehensive lipidome profiles would show variation across pregnancy indicative of requirements during gestation and fetal development. Methods: Black women were recruited at prenatal clinics. Plasma samples were collected at 8-18 weeks (T1), 22-29 weeks (T2), and 30-36 weeks (T3) of pregnancy. Samples from 64 women who had term births (≥37 weeks gestation) were subjected to "shotgun" Orbitrap mass spectrometry. Mixed-effects models were used to quantify systematic changes and dimensionality reduction models were used to visualize patterns and identify reliable lipid signatures. Results: Total lipids and major lipid classes showed significant increases with the progression of pregnancy. Phospholipids and glycerolipids exhibited a gradual increase from T1 to T2 to T3, while sphingolipids and total sterol lipids displayed a more pronounced increase from T2 to T3. Acylcarnitines, hydroxy acylcarnitines, and Lyso phospholipid levels significantly decreased from T1 to T3. A deviation was that non-esterified fatty acids decreased from T1 to T2 and increased again from T2 to T3, suggestive of a potential role for these lipids during the later stages of pregnancy. The fatty acids showing this trend included key fatty acids-non-esterified Linoleic acid, Arachidonic acid, Alpha-linolenic acid, Eicosapentaenoic acid, Docosapentaenoic acid, and Docosahexaenoic acid. Conclusions: Mapping lipid patterns and identifying lipid signatures would help develop intervention strategies to reduce perinatal health disparities among pregnant Black women.
Collapse
Affiliation(s)
- Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48019, USA;
| | - Fernando Aguate
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | | | - Suzanne Hyer
- College of Nursing, University of Central Florida, Orlando, FL 32826, USA
| | - Anna B. Lin
- Molecular Metabolism and Disease Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah Decot
- Molecular Metabolism and Disease Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah Koch
- Molecular Metabolism and Disease Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | | | - Todd Lydic
- Molecular Metabolism and Disease Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | | | - Gustavo de los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Dawn Misra
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Carmen Giurgescu
- College of Nursing, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
34
|
Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 2024; 36:927-946. [PMID: 38513649 DOI: 10.1016/j.cmet.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
35
|
Güil-Oumrait N, Stratakis N, Maitre L, Anguita-Ruiz A, Urquiza J, Fabbri L, Basagaña X, Heude B, Haug LS, Sakhi AK, Iszatt N, Keun HC, Wright J, Chatzi L, Vafeiadi M, Bustamante M, Grazuleviciene R, Andrušaitytė S, Slama R, McEachan R, Casas M, Vrijheid M. Prenatal Exposure to Chemical Mixtures and Metabolic Syndrome Risk in Children. JAMA Netw Open 2024; 7:e2412040. [PMID: 38780942 PMCID: PMC11117089 DOI: 10.1001/jamanetworkopen.2024.12040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 05/25/2024] Open
Abstract
Importance Prenatal exposure to ubiquitous endocrine-disrupting chemicals (EDCs) may increase the risk of metabolic syndrome (MetS) in children, but few studies have studied chemical mixtures or explored underlying protein and metabolic signatures. Objective To investigate associations of prenatal exposure to EDC mixtures with MetS risk score in children and identify associated proteins and metabolites. Design, Setting, and Participants This population-based, birth cohort study used data collected between April 1, 2003, and February 26, 2016, from the Human Early Life Exposome cohort based in France, Greece, Lithuania, Norway, Spain, and the UK. Eligible participants included mother-child pairs with measured prenatal EDC exposures and complete data on childhood MetS risk factors, proteins, and metabolites. Data were analyzed between October 2022 and July 2023. Exposures Nine metals, 3 organochlorine pesticides, 5 polychlorinated biphenyls, 2 polybrominated diphenyl ethers (PBDEs), 5 perfluoroalkyl substances (PFAS), 10 phthalate metabolites, 3 phenols, 4 parabens, and 4 organophosphate pesticide metabolites measured in urine and blood samples collected during pregnancy. Main Outcomes and Measures At 6 to 11 years of age, a composite MetS risk score was constructed using z scores of waist circumference, systolic and diastolic blood pressures, triglycerides, high-density lipoprotein cholesterol, and insulin levels. Childhood levels of 44 urinary metabolites, 177 serum metabolites, and 35 plasma proteins were quantified using targeted methods. Associations were assessed using bayesian weighted quantile sum regressions applied to mixtures for each chemical group. Results The study included 1134 mothers (mean [SD] age at birth, 30.7 [4.9] years) and their children (mean [SD] age, 7.8 [1.5] years; 617 male children [54.4%] and 517 female children [45.6%]; mean [SD] MetS risk score, -0.1 [2.3]). MetS score increased per 1-quartile increase of the mixture for metals (β = 0.44; 95% credible interval [CrI], 0.30 to 0.59), organochlorine pesticides (β = 0.22; 95% CrI, 0.15 to 0.29), PBDEs (β = 0.17; 95% CrI, 0.06 to 0.27), and PFAS (β = 0.19; 95% CrI, 0.14 to 0.24). High-molecular weight phthalate mixtures (β = -0.07; 95% CrI, -0.10 to -0.04) and low-molecular weight phthalate mixtures (β = -0.13; 95% CrI, -0.18 to -0.08) were associated with a decreased MetS score. Most EDC mixtures were associated with elevated proinflammatory proteins, amino acids, and altered glycerophospholipids, which in turn were associated with increased MetS score. Conclusions and Relevance This cohort study suggests that prenatal exposure to EDC mixtures may be associated with adverse metabolic health in children. Given the pervasive nature of EDCs and the increase in MetS, these findings hold substantial public health implications.
Collapse
Affiliation(s)
- Nuria Güil-Oumrait
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Léa Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Augusto Anguita-Ruiz
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lorenzo Fabbri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, National Institute of Health and Medical Research (INSERM), National Institute for Agriculture, Food and the Environment (INRAE), Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Line Småstuen Haug
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hector C. Keun
- Cancer Metabolism & Systems Toxicology Group, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service Foundation Trust, Bradford, United Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Marina Vafeiadi
- Department of Social Medicine, University of Crete, Heraklion, Crete, Greece
| | - Mariona Bustamante
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Sandra Andrušaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Rémy Slama
- Department of Prevention and Treatment of Chronic Diseases, Institute for Advanced Biosciences (IAB; INSERM U1209, CNRS UMR 5309), Université Grenoble Alpes, Grenoble, France
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service Foundation Trust, Bradford, United Kingdom
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
36
|
Lee K, Kuang A, Bain JR, Hayes MG, Muehlbauer MJ, Ilkayeva OR, Newgard CB, Powe CE, Hivert MF, Scholtens DM, Lowe WL. Metabolomic and genetic architecture of gestational diabetes subtypes. Diabetologia 2024; 67:895-907. [PMID: 38367033 DOI: 10.1007/s00125-024-06110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
AIMS/HYPOTHESIS Physiological gestational diabetes mellitus (GDM) subtypes that may confer different risks for adverse pregnancy outcomes have been defined. The aim of this study was to characterise the metabolome and genetic architecture of GDM subtypes to address the hypothesis that they differ between GDM subtypes. METHODS This was a cross-sectional study of participants in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study who underwent an OGTT at approximately 28 weeks' gestation. GDM was defined retrospectively using International Association of Diabetes and Pregnancy Study Groups/WHO criteria, and classified as insulin-deficient GDM (insulin secretion <25th percentile with preserved insulin sensitivity) or insulin-resistant GDM (insulin sensitivity <25th percentile with preserved insulin secretion). Metabolomic analyses were performed on fasting and 1 h serum samples in 3463 individuals (576 with GDM). Genome-wide genotype data were obtained for 8067 individuals (1323 with GDM). RESULTS Regression analyses demonstrated striking differences between the metabolomes for insulin-deficient or insulin-resistant GDM compared to those with normal glucose tolerance. After adjustment for covariates, 33 fasting metabolites, including 22 medium- and long-chain acylcarnitines, were uniquely associated with insulin-deficient GDM; 23 metabolites, including the branched-chain amino acids and their metabolites, were uniquely associated with insulin-resistant GDM; two metabolites (glycerol and 2-hydroxybutyrate) were associated with the same direction of association with both subtypes. Subtype differences were also observed 1 h after a glucose load. In genome-wide association studies, variants within MTNR1B (rs10830963, p=3.43×10-18, OR 1.55) and GCKR (rs1260326, p=5.17×10-13, OR 1.43) were associated with GDM. Variants in GCKR (rs1260326, p=1.36×10-13, OR 1.60) and MTNR1B (rs10830963, p=1.22×10-9, OR 1.49) demonstrated genome-wide significant association with insulin-resistant GDM; there were no significant associations with insulin-deficient GDM. The lead SNP in GCKR, rs1260326, was associated with the levels of eight of the 25 fasting metabolites that were associated with insulin-resistant GDM and ten of 41 1 h metabolites that were associated with insulin-resistant GDM. CONCLUSIONS/INTERPRETATION This study demonstrates that physiological GDM subtypes differ in their metabolome and genetic architecture. These findings require replication in additional cohorts, but suggest that these differences may contribute to subtype-related adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Kristen Lee
- Department of Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James R Bain
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - M Geoffrey Hayes
- Department of Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Camille E Powe
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Marie-France Hivert
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - William L Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
37
|
Lee JH, Gwon MR, Kim JI, Hwang SY, Seong SJ, Yoon YR, Kim M, Kim H. Alterations in Plasma Lipid Profile before and after Surgical Removal of Soft Tissue Sarcoma. Metabolites 2024; 14:250. [PMID: 38786727 PMCID: PMC11123356 DOI: 10.3390/metabo14050250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Soft tissue sarcoma (STS) is a relatively rare malignancy, accounting for about 1% of all adult cancers. It is known to have more than 70 subtypes. Its rarity, coupled with its various subtypes, makes early diagnosis challenging. The current standard treatment for STS is surgical removal. To identify the prognosis and pathophysiology of STS, we conducted untargeted metabolic profiling on pre-operative and post-operative plasma samples from 24 STS patients who underwent surgical tumor removal. Profiling was conducted using ultra-high-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry. Thirty-nine putative metabolites, including phospholipids and acyl-carnitines were identified, indicating changes in lipid metabolism. Phospholipids exhibited an increase in the post-operative samples, while acyl-carnitines showed a decrease. Notably, the levels of pre-operative lysophosphatidylcholine (LPC) O-18:0 and LPC O-16:2 were significantly lower in patients who experienced recurrence after surgery compared to those who did not. Metabolic profiling may identify aggressive tumors that are susceptible to lipid synthase inhibitors. We believe that these findings could contribute to the elucidation of the pathophysiology of STS and the development of further metabolic studies in this rare malignancy.
Collapse
Affiliation(s)
- Jae-Hwa Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.-H.L.); (M.-R.G.); (S.-J.S.); (Y.-R.Y.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Mi-Ri Gwon
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.-H.L.); (M.-R.G.); (S.-J.S.); (Y.-R.Y.)
- Clinical Omics Institute, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Jeung-Il Kim
- Department of Orthopaedic Surgery and Biomedical Research Institute, School of Medicine, Pusan National University, Busan 49241, Republic of Korea;
| | - Seung-young Hwang
- Pharmacokinetics Laboratory, Clinical Trial Center, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Sook-Jin Seong
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.-H.L.); (M.-R.G.); (S.-J.S.); (Y.-R.Y.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Clinical Omics Institute, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Young-Ran Yoon
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.-H.L.); (M.-R.G.); (S.-J.S.); (Y.-R.Y.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Clinical Omics Institute, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Myungsoo Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Hyojeong Kim
- Department of Internal Medicine, Division of Hemato-Oncology, Maryknoll Hospital, Busan 48972, Republic of Korea
| |
Collapse
|
38
|
Catandi GD, Fresa KJ, Cheng MH, Whitcomb LA, Broeckling CD, Chen TW, Chicco AJ, Carnevale EM. Follicular metabolic alterations are associated with obesity in mares and can be mitigated by dietary supplementation. Sci Rep 2024; 14:7571. [PMID: 38555310 PMCID: PMC10981747 DOI: 10.1038/s41598-024-58323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
Obesity is a growing concern in human and equine populations, predisposing to metabolic pathologies and reproductive disturbances. Cellular lipid accumulation and mitochondrial dysfunction play an important role in the pathologic consequences of obesity, which may be mitigated by dietary interventions targeting these processes. We hypothesized that obesity in the mare promotes follicular lipid accumulation and altered mitochondrial function of oocytes and granulosa cells, potentially contributing to impaired fertility in this population. We also predicted that these effects could be mitigated by dietary supplementation with a combination of targeted nutrients to improve follicular cell metabolism. Twenty mares were grouped as: Normal Weight [NW, n = 6, body condition score (BCS) 5.7 ± 0.3], Obese (OB, n = 7, BCS 7.7 ± 0.2), and Obese Diet Supplemented (OBD, n = 7, BCS 7.7 ± 0.2), and fed specific feed regimens for ≥ 6 weeks before sampling. Granulosa cells, follicular fluid, and cumulus-oocyte complexes were collected from follicles ≥ 35 mm during estrus and after induction of maturation. Obesity promoted several mitochondrial metabolic disturbances in granulosa cells, reduced L-carnitine availability in the follicle, promoted lipid accumulation in cumulus cells and oocytes, and increased basal oocyte metabolism. Diet supplementation of a complex nutrient mixture mitigated most of the metabolic changes in the follicles of obese mares, resulting in parameters similar to NW mares. In conclusion, obesity disturbs the equine ovarian follicle by promoting lipid accumulation and altering mitochondrial function. These effects may be partially mitigated with targeted nutritional intervention, thereby potentially improving fertility outcomes in the obese female.
Collapse
Affiliation(s)
- Giovana D Catandi
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Road, Fort Collins, CO, 80521, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kyle J Fresa
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Road, Fort Collins, CO, 80521, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ming-Hao Cheng
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Luke A Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA
| | - Thomas W Chen
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Elaine M Carnevale
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Road, Fort Collins, CO, 80521, USA.
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
39
|
Zhang K, Jiang L, Xue L, Wang Y, Sun Y, Fan M, Qian H, Wang L, Li Y. 5-Heptadecylresorcinol Improves Aging-Associated Hepatic Fatty Acid Oxidation Dysfunction via Regulating Adipose Sirtuin 3. Nutrients 2024; 16:978. [PMID: 38613012 PMCID: PMC11013747 DOI: 10.3390/nu16070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Aging-associated hepatic fatty acid (FA) oxidation dysfunction contributes to impaired adaptive thermogenesis. 5-Heptadecylresorcinol (AR-C17) is a prominent functional component of whole wheat and rye, and has been demonstrated to improve the thermogenic capacity of aged mice via the regulation of Sirt3. However, the effect of AR-C17 on aging-associated hepatic FA oxidation dysfunction remains unclear. Here, 18-month-old C57BL/6J mice were orally administered with AR-C17 at a dose of 150 mg/kg/day for 8 weeks. Systemic glucose and lipid metabolism, hepatic FA oxidation, and the lipolysis of white adipose tissues (WAT) were measured. The results showed that AR-C17 improved the hepatic FA oxidation, and especially acylcarnitine metabolism, of aged mice during cold stimulation, with the enhancement of systemic glucose and lipid metabolism. Meanwhile, AR-C17 improved the WAT lipolysis of aged mice, promoting hepatic acylcarnitine production. Furthermore, the adipose-specific Sirt3 knockout mice were used to investigate and verify the regulation mechanism of AR-C17 on aging-associated hepatic FA oxidation dysfunction. The results showed that AR-C17 failed to improve the WAT lipolysis and hepatic FA oxidation of aged mice in the absence of adipose Sirt3, indicating that AR-C17 might indirectly influence hepatic FA oxidation via regulating WAT Sirt3. Our findings suggest that AR-C17 might improve aging-associated hepatic FA oxidation dysfunction via regulating adipose Sirt3.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (K.Z.); (L.J.); (L.X.); (Y.W.); (Y.S.); (M.F.); (H.Q.)
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (K.Z.); (L.J.); (L.X.); (Y.W.); (Y.S.); (M.F.); (H.Q.)
| |
Collapse
|
40
|
Knuchel R, Erlic Z, Gruber S, Amar L, Larsen CK, Gimenez-Roqueplo AP, Mulatero P, Tetti M, Pecori A, Pamporaki C, Langton K, Peitzsch M, Ceccato F, Prejbisz A, Januszewicz A, Adolf C, Remde H, Lenzini L, Dennedy M, Deinum J, Jefferson E, Blanchard A, Zennaro MC, Eisenhofer G, Beuschlein F. Association of adrenal steroids with metabolomic profiles in patients with primary and endocrine hypertension. Front Endocrinol (Lausanne) 2024; 15:1370525. [PMID: 38596218 PMCID: PMC11002274 DOI: 10.3389/fendo.2024.1370525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Endocrine hypertension (EHT) due to pheochromocytoma/paraganglioma (PPGL), Cushing's syndrome (CS), or primary aldosteronism (PA) is linked to a variety of metabolic alterations and comorbidities. Accordingly, patients with EHT and primary hypertension (PHT) are characterized by distinct metabolic profiles. However, it remains unclear whether the metabolomic differences relate solely to the disease-defining hormonal parameters. Therefore, our objective was to study the association of disease defining hormonal excess and concomitant adrenal steroids with metabolomic alterations in patients with EHT. Methods Retrospective European multicenter study of 263 patients (mean age 49 years, 50% females; 58 PHT, 69 PPGL, 37 CS, 99 PA) in whom targeted metabolomic and adrenal steroid profiling was available. The association of 13 adrenal steroids with differences in 79 metabolites between PPGL, CS, PA and PHT was examined after correction for age, sex, BMI, and presence of diabetes mellitus. Results After adjustment for BMI and diabetes mellitus significant association between adrenal steroids and metabolites - 18 in PPGL, 15 in CS, and 23 in PA - were revealed. In PPGL, the majority of metabolite associations were linked to catecholamine excess, whereas in PA, only one metabolite was associated with aldosterone. In contrast, cortisone (16 metabolites), cortisol (6 metabolites), and DHEA (8 metabolites) had the highest number of associated metabolites in PA. In CS, 18-hydroxycortisol significantly influenced 5 metabolites, cortisol affected 4, and cortisone, 11-deoxycortisol, and DHEA each were linked to 3 metabolites. Discussions Our study indicates cortisol, cortisone, and catecholamine excess are significantly associated with metabolomic variances in EHT versus PHT patients. Notably, catecholamine excess is key to PPGL's metabolomic changes, whereas in PA, other non-defining adrenal steroids mainly account for metabolomic differences. In CS, cortisol, alongside other non-defining adrenal hormones, contributes to these differences, suggesting that metabolic disorders and cardiovascular morbidity in these conditions could also be affected by various adrenal steroids.
Collapse
Affiliation(s)
- Robin Knuchel
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
| | - Zoran Erlic
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
| | - Sven Gruber
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
| | - Laurence Amar
- Université Paris Cité, Paris Cardiovascular Research Center (PARCC), L'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Département de Médecine Génomique des Tumeurs et des Cancers, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- Centre de référence en maladies rares de la surrénale, Hôpital Européen Georges Pompidou, Paris, France
| | - Casper K. Larsen
- Université Paris Cité, Paris Cardiovascular Research Center (PARCC), L'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, Paris Cardiovascular Research Center (PARCC), L'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Département de Médecine Génomique des Tumeurs et des Cancers, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Martina Tetti
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessio Pecori
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Christina Pamporaki
- Medical Clinic III, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Katharina Langton
- Medical Clinic III, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Filippo Ceccato
- Unita' Operativa Complessa (UOC) Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Aleksander Prejbisz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Andrzej Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Christian Adolf
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Hanna Remde
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Livia Lenzini
- Internal & Emergency Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Michael Dennedy
- The Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Jaap Deinum
- Department of Medicine, Section of Vascular Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emily Jefferson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Anne Blanchard
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d’Investigations Cliniques, Paris, France
| | - Maria-Christina Zennaro
- Université Paris Cité, Paris Cardiovascular Research Center (PARCC), L'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension artérielle, Paris, France
| | - Graeme Eisenhofer
- Medical Clinic III, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| |
Collapse
|
41
|
Hernández-Saavedra D, Hinkley JM, Baer LA, Pinckard KM, Vidal P, Nirengi S, Brennan AM, Chen EY, Narain NR, Bussberg V, Tolstikov VV, Kiebish MA, Markunas C, Ilkayeva O, Goodpaster BH, Newgard CB, Goodyear LJ, Coen PM, Stanford KI. Chronic exercise improves hepatic acylcarnitine handling. iScience 2024; 27:109083. [PMID: 38361627 PMCID: PMC10867450 DOI: 10.1016/j.isci.2024.109083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/17/2024] Open
Abstract
Exercise mediates tissue metabolic function through direct and indirect adaptations to acylcarnitine (AC) metabolism, but the exact mechanisms are unclear. We found that circulating medium-chain acylcarnitines (AC) (C12-C16) are lower in active/endurance trained human subjects compared to sedentary controls, and this is correlated with elevated cardiorespiratory fitness and reduced adiposity. In mice, exercise reduced serum AC and increased liver AC, and this was accompanied by a marked increase in expression of genes involved in hepatic AC metabolism and mitochondrial β-oxidation. Primary hepatocytes from high-fat fed, exercise trained mice had increased basal respiration compared to hepatocytes from high-fat fed sedentary mice, which may be attributed to increased Ca2+ cycling and lipid uptake into mitochondria. The addition of specific medium- and long-chain AC to sedentary hepatocytes increased mitochondrial respiration, mirroring the exercise phenotype. These data indicate that AC redistribution is an exercise-induced mechanism to improve hepatic function and metabolism.
Collapse
Affiliation(s)
- Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - J. Matthew Hinkley
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lisa A. Baer
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelsey M. Pinckard
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pablo Vidal
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shinsuke Nirengi
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andrea M. Brennan
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | | | | | | | | | - Christina Markunas
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Bret H. Goodpaster
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Laurie J. Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Paul M. Coen
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
42
|
Huang K, Li Z, He X, Dai J, Huang B, Shi Y, Fan D, Zhang Z, Liu Y, Li N, Zhang Z, Peng J, Liu C, Zeng R, Cen Z, Wang T, Yang W, Cen M, Li J, Yuan S, Zhang L, Hu D, Huang S, Chen P, Lai P, Lin L, Wen J, Zhao Z, Huang X, Yuan L, Zhou L, Wu H, Huang L, Feng K, Wang J, Liao B, Cai W, Deng X, Li Y, Li J, Hu Z, Yang L, Li J, Zhuo Y, Zhang F, Lin L, Luo Y, Zhang W, Ni Q, Hong X, Chang G, Zhang Y, Guan D, Cai W, Lu Y, Li F, Yan L, Ren M, Li L, Chen S. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin α2β1. Cell Metab 2024; 36:598-616.e9. [PMID: 38401546 DOI: 10.1016/j.cmet.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Thrombosis represents the leading cause of death and disability upon major adverse cardiovascular events (MACEs). Numerous pathological conditions such as COVID-19 and metabolic disorders can lead to a heightened thrombotic risk; however, the underlying mechanisms remain poorly understood. Our study illustrates that 2-methylbutyrylcarnitine (2MBC), a branched-chain acylcarnitine, is accumulated in patients with COVID-19 and in patients with MACEs. 2MBC enhances platelet hyperreactivity and thrombus formation in mice. Mechanistically, 2MBC binds to integrin α2β1 in platelets, potentiating cytosolic phospholipase A2 (cPLA2) activation and platelet hyperresponsiveness. Genetic depletion or pharmacological inhibition of integrin α2β1 largely reverses the pro-thrombotic effects of 2MBC. Notably, 2MBC can be generated in a gut-microbiota-dependent manner, whereas the accumulation of plasma 2MBC and its thrombosis-aggravating effect are largely ameliorated following antibiotic-induced microbial depletion. Our study implicates 2MBC as a metabolite that links gut microbiota dysbiosis to elevated thrombotic risk, providing mechanistic insight and a potential therapeutic strategy for thrombosis.
Collapse
Affiliation(s)
- Kan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China; Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xi He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zefeng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Na Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Renli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Wenchao Yang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jingyu Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Shuai Yuan
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Lu Zhang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dandan Hu
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Shuxiang Huang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Liyan Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhengde Zhao
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lining Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Lifang Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Haoliang Wu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Kai Feng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jian Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Baolin Liao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Xilong Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Yueping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jianping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Zhongwei Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Li Yang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Youguang Zhuo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Lin Lin
- Department of Respiratory Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yifeng Luo
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Qianlin Ni
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Xiqiang Hong
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Guangqi Chang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yang Zhang
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Fang Li
- Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China
| | - Li Yan
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Meng Ren
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China.
| |
Collapse
|
43
|
Ng TKS, Wee HN, Ching J, Kovalik JP, Chan AW, Matchar DB. Plasma Acylcarnitines as Metabolic Signatures of Declining Health-Related Quality of Life Measure in Community-Dwelling Older Adults: A Combined Cross-sectional and Longitudinal Pilot Study. J Gerontol A Biol Sci Med Sci 2024; 79:glac114. [PMID: 35605263 DOI: 10.1093/gerona/glac114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Health-related quality of life (HRQoL) measures are predictors of adverse health outcomes in older adults. Studies have demonstrated cross-sectional associations between HRQoL measures and blood-based biochemical markers. Acylcarnitines (ACs) are a class of metabolites generated in the mitochondria and are predictive of multiple geriatric syndromes. Changes in ACs reflect alterations in central carbon metabolic pathways. However, the prospective relationship between plasma ACs and declining HRQoL has not been examined. This study aimed to investigate both cross-sectional and longitudinal associations of baseline ACs with baseline and declining EuroQol-5 Dimension/EuroQol Visual Analogue Scale (EQ-5D/EQ-VAS) in community-dwelling older adults. METHODS One hundred and twenty community-dwelling older adults with EQ-5D/EQ-VAS measurements at baseline and follow-up were included. We quantified ACs at baseline using targeted plasma metabolomics profiling. Multivariate regressions were performed to examine cross-sectional and longitudinal associations between the measures. RESULTS Cross-sectionally, ACs showed no significant associations with either EQ-5D index or EQ-VAS scores. Longitudinally, multiple baseline short-chain ACs were significantly and inversely associated with declining EQ-5D index score, explaining up to 8.5% of variance in the decline. CONCLUSIONS Within a cohort of community-dwelling older adults who had high HRQoL at baseline, we showed that higher levels of short-chain ACs are longitudinally associated with declining HRQoL. These findings reveal a novel association between central carbon metabolic pathways and declining HRQoL. Notably, dysregulation in mitochondrial central carbon metabolism could be detected prior to clinically important decline in HRQoL, providing the first evidence of objective biomarkers as novel predictors to monitor HRQoL in nonpharmacological interventions and epidemiology.
Collapse
Affiliation(s)
- Ted Kheng Siang Ng
- Edson College of Nursing and Health Innovation, Arizona State University, USA
| | - Hai Ning Wee
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- KK Research Centre, KK Women's and Children's Hospital, Singapore
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Angelique W Chan
- Program in Health Services and Systems Research, Duke-National University of Singapore Medical School, Singapore
- Department of Sociology, Faculty of Arts and Social Sciences, National University of Singapore, Singapore
- Center for Aging, Research and Education, Duke-National University of Singapore Medical School, Singapore
| | - David Bruce Matchar
- Program in Health Services and Systems Research, Duke-National University of Singapore Medical School, Singapore
- Center for Aging, Research and Education, Duke-National University of Singapore Medical School, Singapore
- Department of Medicine (General Internal Medicine), Duke University School of Medicine, USA
| |
Collapse
|
44
|
Burkhardt P, Palma-Duran SA, Tuck ARR, Norgren K, Li X, Nikiforova V, Griffin JL, Munic Kos V. Environmental chemicals change extracellular lipidome of mature human white adipocytes. CHEMOSPHERE 2024; 349:140852. [PMID: 38048832 DOI: 10.1016/j.chemosphere.2023.140852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Certain environmental chemicals affect the body's energy balance and are known as metabolism disrupting chemicals (MDCs). MDCs have been implicated in the development of metabolic diseases, such as obesity and type 2 diabetes. In contrast to their well-known impact on developing adipocytes, MDC effects leading to altered energy balance and development of insulin resistance in mature white adipocytes, constituents of adult adipose tissue, are largely unclear. Here, we investigated the effects of six well-established environmental MDCs (bisphenol A (BPA), perfluorooctanoic acid (PFOA), triclosan (TCS), p,p-dichlorodiphenyl-dichloroethylene (ppDDE), tributyltin chloride (TBT) and triphenyl phosphate (TPP)) on mature human white adipocytes derived from mesenchymal stem cells in vitro. We aimed to identify biomarkers and sensitive endpoints of their metabolism disrupting effects. While most of the tested exposures had no effect on adipocyte glucose consumption, lipid storage and assessed gene expression endpoints, the highest concentration of triclosan affected the total lipid storage and adipocyte size, as well as glucose consumption and mRNA expression of the glucose transporter GLUT1, leptin and adiponectin. Additionally, an increased expression of adiponectin was observed with TPP and the positive control PPARγ agonist rosiglitazone. In contrast, the lipidomic analysis of the cell culture medium after a 3-day exposure was extremely sensitive and revealed concentration-dependent changes in the extracellular lipidome of adipocytes exposed to nearly all studied chemicals. While some of the extracellular lipidome changes were specific for the MDC used, some effects were found common to several tested chemicals and included increases in lysophosphatidylcholines, glycerophospholipids and ceramides and a decrease in fatty acids, with possible implications in inflammation, lipid and glucose uptake. This study points to early signs of metabolic disruption and likely systemic effects of mature adipocyte exposure to environmental chemicals, as well as to the need to include lipidomic endpoints in the assessment of adverse effects of MDCs.
Collapse
Affiliation(s)
- Paula Burkhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Susana Alejandra Palma-Duran
- Metabolomics STP, The Francis Crick Institute, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Department of Food Science, Research Center in Food and Development A.C., Hermosillo, Mexico
| | - Astrud R R Tuck
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kalle Norgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xinyi Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Violetta Nikiforova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Julian L Griffin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
45
|
Arnold M, Buyukozkan M, Doraiswamy PM, Nho K, Wu T, Gudnason V, Launer LJ, Wang-Sattler R, Adamski J, De Jager PL, Ertekin-Taner N, Bennett DA, Saykin AJ, Peters A, Suhre K, Kaddurah-Daouk R, Kastenmüller G, Krumsiek J. Individual bioenergetic capacity as a potential source of resilience to Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.23.23297820. [PMID: 38313266 PMCID: PMC10836119 DOI: 10.1101/2024.01.23.23297820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Impaired glucose uptake in the brain is one of the earliest presymptomatic manifestations of Alzheimer's disease (AD). The absence of symptoms for extended periods of time suggests that compensatory metabolic mechanisms can provide resilience. Here, we introduce the concept of a systemic 'bioenergetic capacity' as the innate ability to maintain energy homeostasis under pathological conditions, potentially serving as such a compensatory mechanism. We argue that fasting blood acylcarnitine profiles provide an approximate peripheral measure for this capacity that mirrors bioenergetic dysregulation in the brain. Using unsupervised subgroup identification, we show that fasting serum acylcarnitine profiles of participants from the AD Neuroimaging Initiative yields bioenergetically distinct subgroups with significant differences in AD biomarker profiles and cognitive function. To assess the potential clinical relevance of this finding, we examined factors that may offer diagnostic and therapeutic opportunities. First, we identified a genotype affecting the bioenergetic capacity which was linked to succinylcarnitine metabolism and significantly modulated the rate of future cognitive decline. Second, a potentially modifiable influence of beta-oxidation efficiency seemed to decelerate bioenergetic aging and disease progression. Our findings, which are supported by data from more than 9,000 individuals, suggest that interventions tailored to enhance energetic health and to slow bioenergetic aging could mitigate the risk of symptomatic AD, especially in individuals with specific mitochondrial genotypes.
Collapse
Affiliation(s)
- Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mustafa Buyukozkan
- Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - P. Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tong Wu
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, Maryland
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Taub Institute, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | | | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences and Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; IBE, Medical Faculty, Ludwig-Maximilians-Universität, Munich, Germany; German Center for Diabetes Research (DZD e.V.), Munich, Germany; German Center for Cardiovascular Disease (DZHK e.V.), Munich Heart Alliance, Munich, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
46
|
Saprina TV, Bashirova AS, Ivanov VV, Pekov SI, Popov IA, Bashirov SR, Vasilyeva EA, Pavlenko OA, Krinitskii DV, Chen M. Lipidomic markers of obesity and their dynamics after bariatric surgery. BULLETIN OF SIBERIAN MEDICINE 2024; 22:174-187. [DOI: 10.20538/1682-0363-2023-4-174-187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Obesity is considered as a chronic progressive disease, heterogeneous in its etiology and clinical manifestations, and characterized by excess in body fat mass and its deposition in the body. The term “morbid obesity” refers to excessive deposition of adipose tissue with a body mass index (BMI) ≥40 kg / m2 or with a BMI ≥ 35 kg / m2 in the presence of serious complications associated with obesity. Along with obesity, the frequency of type 2 diabetes mellitus and cardiovascular diseases closely associated with it has increased. It results from the progression of metabolic disorders, including insulin resistance, which is inextricably linked with the accumulation of visceral fat and plays a key role in the pathogenesis of obesity-related diseases.The study of lipidomic signatures in obesity and associated conditions is a promising branch of fundamental medicine, which makes it possible to significantly and at a new conceptual level stratify a cohort of obese patients into various phenotypes, including a metabolically healthy and metabolically unhealthy obesity phenotypes. Dynamic changes in the lipidome both in the context of diet, drug treatment, and after various bariatric surgeries are of great interest for developing personalized strategies for the treatment of this disease. Currently available studies and their results suggest that we are only at the very start of studying this promising biomedical field.
Collapse
Affiliation(s)
| | | | | | - S. I. Pekov
- Siberian State Medical University;
Skolkovo Institute of Science and Technology;
Moscow Institute of Physics and Technology
| | - I. A. Popov
- Siberian State Medical University;
Moscow Institute of Physics and Technology
| | | | | | | | | | - M. Chen
- Siberian State Medical University
| |
Collapse
|
47
|
Pataky MW, Kumar AP, Gaul DA, Moore SG, Dasari S, Robinson MM, Klaus KA, Kumar AA, Fernandez FM, Nair KS. Divergent Skeletal Muscle Metabolomic Signatures of Different Exercise Training Modes Independently Predict Cardiometabolic Risk Factors. Diabetes 2024; 73:23-37. [PMID: 37862464 PMCID: PMC10784655 DOI: 10.2337/db23-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
We investigated the link between enhancement of SI (by hyperinsulinemic-euglycemic clamp) and muscle metabolites after 12 weeks of aerobic (high-intensity interval training [HIIT]), resistance training (RT), or combined training (CT) exercise in 52 lean healthy individuals. Muscle RNA sequencing revealed a significant association between SI after both HIIT and RT and the branched-chain amino acid (BCAA) metabolic pathway. Concurrently with increased expression and activity of branched-chain ketoacid dehydrogenase enzyme, many muscle amino metabolites, including BCAAs, glutamate, phenylalanine, aspartate, asparagine, methionine, and γ-aminobutyric acid, increased with HIIT, supporting the substantial impact of HIIT on amino acid metabolism. Short-chain C3 and C5 acylcarnitines were reduced in muscle with all three training modes, but unlike RT, both HIIT and CT increased tricarboxylic acid metabolites and cardiolipins, supporting greater mitochondrial activity with aerobic training. Conversely, RT and CT increased more plasma membrane phospholipids than HIIT, suggesting a resistance exercise effect on cellular membrane protection against environmental damage. Sex and age contributed modestly to the exercise-induced changes in metabolites and their association with cardiometabolic parameters. Integrated transcriptomic and metabolomic analyses suggest various clusters of genes and metabolites are involved in distinct effects of HIIT, RT, and CT. These distinct metabolic signatures of different exercise modes independently link each type of exercise training to improved SI and cardiometabolic risk. ARTICLE HIGHLIGHTS We aimed to understand the link between skeletal muscle metabolites and cardiometabolic health after exercise training. Although aerobic, resistance, and combined exercise training each enhance muscle insulin sensitivity as well as other cardiometabolic parameters, they disparately alter amino and citric acid metabolites as well as the lipidome, linking these metabolomic changes independently to the improvement of cardiometabolic risks with each exercise training mode. These findings reveal an important layer of the unique exercise mode-dependent changes in muscle metabolism, which may eventually lead to more informed exercise prescription for improving SI.
Collapse
Affiliation(s)
- Mark W. Pataky
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | | | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Samuel G. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Matthew M. Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR
| | | | - A. Aneesh Kumar
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Facundo M. Fernandez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | | |
Collapse
|
48
|
Hu JY, Lv M, Zhang KL, Qiao XY, Wang YX, Wang FY. Evaluating the causal relationship between human blood metabolites and gastroesophageal reflux disease. World J Gastrointest Oncol 2023; 15:2169-2184. [PMID: 38173433 PMCID: PMC10758654 DOI: 10.4251/wjgo.v15.i12.2169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/30/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Gastroesophageal reflux disease (GERD) affects approximately 13% of the global population. However, the pathogenesis of GERD has not been fully elucidated. The development of metabolomics as a branch of systems biology in recent years has opened up new avenues for the investigation of disease processes. As a powerful statistical tool, Mendelian randomization (MR) is widely used to explore the causal relationship between exposure and outcome. AIM To analyze of the relationship between 486 blood metabolites and GERD. METHODS Two-sample MR analysis was used to assess the causal relationship between blood metabolites and GERD. A genome-wide association study (GWAS) of 486 metabolites was the exposure, and two different GWAS datasets of GERD were used as endpoints for the base analysis and replication and meta-analysis. Bonferroni correction is used to determine causal correlation features (P < 1.03 × 10-4). The results were subjected to sensitivity analysis to assess heterogeneity and pleiotropy. Using the MR Steiger filtration method to detect whether there is a reverse causal relationship between metabolites and GERD. In addition, metabolic pathway analysis was conducted using the online database based MetaboAnalyst 5.0 software. RESULTS In MR analysis, four blood metabolites are negatively correlated with GERD: Levulinate (4-oxovalerate), stearate (18:0), adrenate (22:4n6) and p-acetamidophenylglucuronide. However, we also found a positive correlation between four blood metabolites and GERD: Kynurenine, 1-linoleoylglycerophosphoethanolamine, butyrylcarnitine and guanosine. And bonferroni correction showed that butyrylcarnitine (odd ratio 1.10, 95% confidence interval: 1.05-1.16, P = 7.71 × 10-5) was the most reliable causal metabolite. In addition, one significant pathways, the "glycerophospholipid metabolism" pathway, can be involved in the pathogenesis of GERD. CONCLUSION Our study found through the integration of genomics and metabolomics that butyrylcarnitine may be a potential biomarker for GERD, which will help further elucidate the pathogenesis of GERD and better guide its treatment. At the same time, this also contributes to early screening and prevention of GERD. However, the results of this study require further confirmation from both basic and clinical real-world studies.
Collapse
Affiliation(s)
- Jia-Yan Hu
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mi Lv
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Kun-Li Zhang
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xi-Yun Qiao
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu-Xi Wang
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Feng-Yun Wang
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
49
|
Burghardt KJ, Kajy M, Ward KM, Burghardt PR. Metabolomics, Lipidomics, and Antipsychotics: A Systematic Review. Biomedicines 2023; 11:3295. [PMID: 38137517 PMCID: PMC10741000 DOI: 10.3390/biomedicines11123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Antipsychotics are an important pharmacotherapy option for the treatment of many mental illnesses. Unfortunately, selecting antipsychotics is often a trial-and-error process due to a lack of understanding as to which medications an individual patient will find most effective and best tolerated. Metabolomics, or the study of small molecules in a biosample, is an increasingly used omics platform that has the potential to identify biomarkers for medication efficacy and toxicity. This systematic review was conducted to identify metabolites and metabolomic pathways associated with antipsychotic use in humans. Ultimately, 42 studies were identified for inclusion in this review, with all but three studies being performed in blood sources such as plasma or serum. A total of 14 metabolite classes and 12 lipid classes were assessed across studies. Although the studies were highly heterogeneous in approach and mixed in their findings, increases in phosphatidylcholines, decreases in carboxylic acids, and decreases in acylcarnitines were most consistently noted as perturbed in patients exposed to antipsychotics. Furthermore, for the targeted metabolomic and lipidomic studies, seven metabolites and three lipid species had findings that were replicated. The most consistent finding for targeted studies was an identification of a decrease in aspartate with antipsychotic treatment. Studies varied in depth of detail provided for their study participants and in study design. For example, in some cases, there was a lack of detail on specific antipsychotics used or concomitant medications, and the depth of detail on sample handling and analysis varied widely. The conclusions here demonstrate that there is a large foundation of metabolomic work with antipsychotics that requires more complete reporting so that an objective synthesis such as a meta-analysis can take place. This will then allow for validation and clinical application of the most robust findings to move the field forward. Future studies should be carefully controlled to take advantage of the sensitivity of metabolomics while limiting potential confounders that may result from participant heterogeneity and varied analysis approaches.
Collapse
Affiliation(s)
- Kyle J. Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University Detroit, Detroit, MI 48201, USA;
| | - Megan Kajy
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University Detroit, Detroit, MI 48201, USA;
| | - Kristen M. Ward
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan Ann Arbor, Detroit, MI 48109, USA;
| | - Paul R. Burghardt
- Department of Nutrition and Food Science, Wayne State University Detroit, Detroit, MI 48201, USA;
| |
Collapse
|
50
|
Iannone V, Babu AF, Lok J, Gómez-Gallego C, D'Auria G, Vazquez-Uribe R, Vaaben TH, Bongers M, Mikkonen S, Vaittinen M, Tikkanen I, Kettunen M, Klåvus A, Sehgal R, Kaminska D, Pihlajamaki J, Hanhineva K, El-Nezami H, Sommer MOA, Kolehmainen M. Changes in liver metabolic pathways demonstrate efficacy of the combined dietary and microbial therapeutic intervention in MASLD mouse model. Mol Metab 2023; 78:101823. [PMID: 37839774 PMCID: PMC10618820 DOI: 10.1016/j.molmet.2023.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease globally, yet no therapies are approved. The effects of Escherichia coli Nissle 1917 expressing aldafermin, an engineered analog of the intestinal hormone FGF19, in combination with dietary change were investigated as a potential treatment for MASLD. METHODS MASLD was induced in C57BL/6J male mice by American lifestyle-induced obesity syndrome diet and then switched to a standard chow diet for seven weeks. In addition to the dietary change, the intervention group received genetically engineered E. coli Nissle expressing aldafermin, while control groups received either E. coli Nissle vehicle or no treatment. MASLD-related plasma biomarkers were measured using an automated clinical chemistry analyzer. The liver steatosis was assessed by histology and bioimaging analysis using Fiji (ImageJ) software. The effects of the intervention in the liver were also evaluated by RNA sequencing and liquid-chromatography-based non-targeted metabolomics analysis. Pathway enrichment studies were conducted by integrating the differentially expressed genes from the transcriptomics findings with the metabolites from the metabolomics results using Ingenuity pathway analysis. RESULTS After the intervention, E. coli Nissle expressing aldafermin along with dietary changes reduced body weight, liver steatosis, plasma aspartate aminotransferase, and plasma cholesterol levels compared to the two control groups. The integration of transcriptomics with non-targeted metabolomics analysis revealed the downregulation of amino acid metabolism and related receptor signaling pathways potentially implicated in the reduction of hepatic steatosis and insulin resistance. Moreover, the downregulation of pathways linked to lipid metabolism and changes in amino acid-related pathways suggested an overall reduction of oxidative stress in the liver. CONCLUSIONS These data support the potential for using engineered microbial therapeutics in combination with dietary changes for managing MASLD.
Collapse
Affiliation(s)
- Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Carlos Gómez-Gallego
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland.
| | - Giuseppe D'Auria
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, FISABIO, 46020 Valencia, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ruben Vazquez-Uribe
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
| | - Troels Holger Vaaben
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
| | - Mareike Bongers
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
| | - Santtu Mikkonen
- University Department of Technical Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maija Vaittinen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Ida Tikkanen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Mikko Kettunen
- Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Anton Klåvus
- Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland
| | - Ratika Sehgal
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Dorota Kaminska
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA 90095, USA
| | - Jussi Pihlajamaki
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland; Department of Life Technologies, Food Sciences Unit, University of Turku, 20014 Turku, Finland
| | - Hani El-Nezami
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; University of Hong Kong, Hong Kong SAR, Molecular and Cell Biology Research Area, School of Biological Sciences, Hong Kong, Hong Kong, China
| | - Morten Otto Alexander Sommer
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark.
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| |
Collapse
|