1
|
Brain fractalkine-CX3CR1 signalling is anti-obesity system as anorexigenic and anti-inflammatory actions in diet-induced obese mice. Sci Rep 2022; 12:12604. [PMID: 35871167 PMCID: PMC9308795 DOI: 10.1038/s41598-022-16944-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Fractalkine is one of the CX3C chemokine family, and it is widely expressed in the brain including the hypothalamus. In the brain, fractalkine is expressed in neurons and binds to a CX3C chemokine receptor 1 (CX3CR1) in microglia. The hypothalamus regulates energy homeostasis of which dysregulation is associated with obesity. Therefore, we examined whether fractalkine-CX3CR1 signalling involved in regulating food intake and hypothalamic inflammation associated with obesity pathogenesis. In the present study, fractalkine significantly reduced food intake induced by several experimental stimuli and significantly increased brain-derived neurotrophic factor (BDNF) mRNA expression in the hypothalamus. Moreover, tyrosine receptor kinase B (TrkB) antagonist impaired fractalkine-induced anorexigenic actions. In addition, compared with wild-type mice, CX3CR1-deficient mice showed a significant increase in food intake and a significant decrease in BDNF mRNA expression in the hypothalamus. Mice fed a high-fat diet (HFD) for 16 weeks showed hypothalamic inflammation and reduced fractalkine mRNA expression in the hypothalamus. Intracerebroventricular administration of fractalkine significantly suppressed HFD-induced hypothalamic inflammation in mice. HFD intake for 4 weeks caused hypothalamic inflammation in CX3CR1-deficient mice, but not in wild-type mice. These findings suggest that fractalkine-CX3CR1 signalling induces anorexigenic actions via activation of the BDNF-TrkB pathway and suppresses HFD-induced hypothalamic inflammation in mice.
Collapse
|
2
|
Physiological and Pathophysiological Effects of C-Type Natriuretic Peptide on the Heart. BIOLOGY 2022; 11:biology11060911. [PMID: 35741432 PMCID: PMC9219612 DOI: 10.3390/biology11060911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023]
Abstract
Simple Summary C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), CNP was not previously regarded as an important cardiac modulator. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with its cognate natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. In this review, I introduce the history of research on CNP in the cardiac field. Abstract C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike other members, i.e., atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are cardiac hormones secreted from the atrium and ventricle of the heart, respectively, CNP is regarded as an autocrine/paracrine regulator with broad expression in the body. Because of its low expression levels compared to ANP and BNP, early studies failed to show its existence and role in the heart. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with the distribution of its specific natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. NPR-B generates intracellular cyclic guanosine 3′,5′-monophosphate (cGMP) upon CNP binding, followed by various molecular effects including the activation of cGMP-dependent protein kinases, which generates diverse cytoprotective actions in cardiomyocytes, as well as in cardiac fibroblasts. CNP exerts negative inotropic and positive lusitropic responses in both normal and failing heart models. Furthermore, osteocrin, the intrinsic and specific ligand for the clearance receptor for natriuretic peptides, can augment the effects of CNP and may supply a novel therapeutic strategy for cardiac protection.
Collapse
|
3
|
Sasaki S, Oba K, Kodera Y, Itakura M, Shichiri M. ANGT_HUMAN[448–462], an Anorexigenic Peptide Identified using Plasma Peptidomics. J Endocr Soc 2022; 6:bvac082. [PMID: 35702602 PMCID: PMC9184509 DOI: 10.1210/jendso/bvac082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/19/2022] Open
Abstract
Abstract
The discovery of bioactive peptides is an important research target that enables the elucidation of the pathophysiology of human diseases and provides seeds for drug discovery. Using a large number of native peptides previously identified using plasma peptidomics technology, we sequentially synthesized selected sequences and subjected them to functional screening using human cultured cells. A 15-amino-acid residue proangiotensinogen-derived peptide, designated ANGT_HUMAN[448–462], elicited cellular responses and bound to cultured human cells. Synthetic fluorescent-labeled and biotinylated ANGT_HUMAN[448–462] peptides were rendered to bind to cell- and tissue-derived proteins and peptide-cell protein complexes were retrieved and analyzed using liquid chromatography-tandem mass spectrometry, revealing the β-subunit of ATP synthase as its cell-surface binding protein. Because ATP synthase mediates the effects of anorexigenic peptides, the ability of ANGT_HUMAN[448–462] to modulate eating behavior in mice was investigated. Both intraperitoneal and intracerebroventricular injections of low doses of ANGT_HUMAN[448–462] suppressed spontaneous food and water intake throughout the dark phase of the diurnal cycle without affecting locomotor activity. Immunoreactive ANGT_HUMAN[448–462], distributed throughout human tissues and in human-derived cells, is mostly co-localized with angiotensin II and is occasionally present separately from angiotensin II. In this study, an anorexigenic peptide, ANGT_HUMAN[448–462], was identified by exploring cell surface target proteins of the human native peptides identified using plasma peptidomics.
Collapse
Affiliation(s)
- Sayaka Sasaki
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine Kanagawa 252-0374, Japan
| | - Kazuhito Oba
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine Kanagawa 252-0374, Japan
| | - Yoshio Kodera
- Department of Physics, Kitasato University School of Science, Kanagawa 252-0373, Japan
- Center for Disease Proteomics, Kitasato University School of Science, Kanagawa 252-0373, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine Kanagawa 252-0374, Japan
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Kyosai Hospital, Tokyo 153-8934, Japan
| |
Collapse
|
4
|
Inui T, Kawamura N, Nakama R, Inui A, Katsuura G. Degalactosylated Whey Protein Suppresses Inflammatory Responses Induced by Lipopolysaccharide in Mice. Front Nutr 2022; 9:852355. [PMID: 35571950 PMCID: PMC9101058 DOI: 10.3389/fnut.2022.852355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of degalactosylated whey protein on lipopolysaccharide (LPS)-induced inflammatory responses in mice were observed in comparison with intact whey protein. Intraperitoneal administration of both intact and degalactosylated whey proteins for 5 days did not affect body weight and food intake in mice. On day 6, intraperitoneal administration of LPS induced a marked decrease in body weight 4 h later. The LPS-induced decrease in body weight was significantly suppressed by the administration of degalactosylated whey protein, but not intact whey protein. Administration of LPS also significantly increase plasma tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels, which were significantly suppressed by the administration of degalactosylated whey protein, but not intact whey protein. Moreover, the application of degalactosylated whey protein to RAW264.7 cells significantly reduced mRNA expression of toll-like receptor 4 (TLR4) and significantly increased mRNA expression of mitogen-activated protein kinase phosphatase-1 (MKP-1). The marked increased expression of TNF-α and IL-1β in response to LPS in RAW264.7 cells was significantly suppressed by the application of degalactosylated whey protein. These results suggest that degalactosylated whey protein suppresses the effects of LPS in part by decreasing in TLR4 and increasing in MKP-1.
Collapse
Affiliation(s)
- Toshio Inui
- Saisei Mirai Cell Processing Center, Osaka, Japan
- Kobe Saisei Mirai Clinic, Kobe, Japan
- Inui Immunotherapy Clinic, Osaka, Japan
- *Correspondence: Toshio Inui,
| | - Namiko Kawamura
- Drug Discovery of Next-Generation GcMAF, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Riho Nakama
- Drug Discovery of Next-Generation GcMAF, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akio Inui
- Pharmacological Department of Herbal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Goro Katsuura
- Drug Discovery of Next-Generation GcMAF, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
5
|
Abstract
The global mortality, morbidity, and healthcare costs associated with cardiometabolic disease, including obesity, diabetes, hypertension, and dyslipidemia, are substantial and represent an expanding unmet medical need. Herein, we have identified a physiological role for C-type natriuretic peptide (CNP) in regulating key processes, including thermogenesis and adipogenesis, which combine to coordinate metabolic function and prevent the development of cardiometabolic disorders. This protective mechanism, which is in part mediated via an autocrine action of CNP on adipocytes, is underpinned by activation of cognate natriuretic peptide receptors (NPR)-B and NPR-C. This mechanism advances the fundamental understanding of energy homeostasis and glucose handling and offers the promise of improving the treatment of cardiometabolic disease. Thermogenesis and adipogenesis are tightly regulated mechanisms that maintain lipid homeostasis and energy balance; dysfunction of these critical processes underpins obesity and contributes to cardiometabolic disease. C-type natriuretic peptide (CNP) fulfills a multimodal protective role in the cardiovascular system governing local blood flow, angiogenesis, cardiac function, and immune cell reactivity. Herein, we investigated a parallel, preservative function for CNP in coordinating metabolic homeostasis. Global inducible CNP knockout mice exhibited reduced body weight, higher temperature, lower adiposity, and greater energy expenditure in vivo. This thermogenic phenotype was associated with increased expression of uncoupling protein-1 and preferential lipid utilization by mitochondria, a switch corroborated by a corresponding diminution of insulin secretion and glucose clearance. Complementary studies in isolated murine and human adipocytes revealed that CNP exerts these metabolic regulatory actions by inhibiting sympathetic thermogenic programming via Gi-coupled natriuretic peptide receptor (NPR)-C and reducing peroxisome proliferator-activated receptor-γ coactivator-1α expression, while concomitantly driving adipogenesis via NPR-B/protein kinase-G. Finally, we identified an association between CNP/NPR-C expression and obesity in patient samples. These findings establish a pivotal physiological role for CNP as a metabolic switch to balance energy homeostasis. Pharmacological targeting of these receptors may offer therapeutic utility in the metabolic syndrome and related cardiovascular disorders.
Collapse
|
6
|
Reduced brain fractalkine-CX3CR1 signaling is involved in the impaired cognition of streptozotocin-treated mice. IBRO Rep 2020; 9:233-240. [PMID: 32995659 PMCID: PMC7509139 DOI: 10.1016/j.ibror.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022] Open
Abstract
Patients with diabetes mellitus are predisposed to cognitive impairment. Fractalkine-CX3CR1 in the brain signaling represents a primary neuron-microglia inter-regulatory system for several brain functions including learning and memory processes. The present study addressed whether fractalkine-CX3CR1 signaling in the hippocampus contributes to the cognitive deficits observed in streptozotocin (STZ)-treated mice. Our results showed that STZ-treated mice exhibited significant cognitive deficits in the Y-maze test, and a decrease in fractalkine and CX3CR1 levels in the hippocampus. Moreover, intracerebroventricular injection of the CX3CR1 antagonist 18a in normal mice induced significant cognitive deficits in the Y-maze test. STZ-treated mice showed a significant increase in plasma corticosterone levels and a decrease in plasma and hippocampal levels of insulin-like growth factor-1 (IGF-1). Therefore, we examined the effects of corticosterone and IGF-1 on regulation of fractalkine and CX3CR1 expression. Dexamethasone (DEX) application significantly decreased the mRNA expression of fractalkine in primary neuron and astrocyte cultures, and of CX3CR1 in primary microglia cultures. On the other hand, IGF-1 application significantly increased the mRNA expression of fractalkine in primary neuron cultures and CX3CR1 in primary microglia cultures. In addition, administration of DEX and the IGF-1 receptor tyrosine kinase inhibitor picropodophyllin significantly reduced the mRNA expression of fractalkine and CX3CR1 in the hippocampus. These findings indicate that impaired cognition in STZ-treated mice is associated with reduced fractalkine-CX3CR1 signaling in the hippocampus which may be induced by an increase in corticosterone and a decrease in IGF-1.
Collapse
Key Words
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- CNS, central nervous system
- CX3CR1
- CX3CR1, CX3C chemokine receptor 1
- DEX, dexamethasone
- DM, diabetes mellitus
- DMSO, dimethyl sulfoxide
- Diabetes
- EDTA, ethylenediaminetetraacetic acid
- Fractalkine
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- IGF-1, insulin-like growth factor-1
- LTP, long-term potentiation
- Memory
- Mice
- NMDA, N-methyl-d-aspartate
- PPP, picropodophyllin
- STZ, streptozotocin
- Streptozotocin
Collapse
|
7
|
Pathak MP, Das A, Patowary P, Chattopadhyay P. Contentious role of 'Good Adiponectin' in pulmonary and cardiovascular diseases: Is adiponectin directed therapy a boon or a bane? Biochimie 2020; 175:106-119. [PMID: 32473183 DOI: 10.1016/j.biochi.2020.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 11/24/2022]
Abstract
After two decades of its discovery, numerous facts of adiponectin (APN) biology has been uncovered, yet, APN remains an elusive adipokine. Findings from clinical studies and animal models established APN's ameliorative role in cardiovascular disease (CVD) and pulmonary disease (PD) but the same condition is prognostic for mortality in the same set of patients which cornered APN towards a dubious state. A repertoire of mechanisms associated with the positive association of APN in both lean/cachectic or obese CVD and PD patients from past publications are evaluated. Newer pharmacological agent may be explored to regulate elevated blood APN concentration in COPD or CHF patients whereas administration of recombinant APN as well as growth hormone may augment blood APN concentration in obese subjects associated with low blood and intracellular APN concentration. However, some APN directed therapy in clinical as well as in pre-clinical setup has pronounced some contentious effects. After reviewing the mechanisms of the contentious role of APN functioning in pathologic conditions of CVD and PD in both lean and obese conditions, the authors came to conclusion that APN directed therapy may be utilized with caution keeping in mind the different age group, sex and the different CVD as well as pulmonary diseases they are suffering from.
Collapse
Affiliation(s)
- Manash Pratim Pathak
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | | |
Collapse
|
8
|
Vinnakota S, Chen HH. The Importance of Natriuretic Peptides in Cardiometabolic Diseases. J Endocr Soc 2020; 4:bvaa052. [PMID: 32537542 PMCID: PMC7278279 DOI: 10.1210/jendso/bvaa052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
The natriuretic peptide (NP) system is composed of 3 distinct peptides (atrial natriuretic peptide or ANP, B-type natriuretic peptide or BNP, and C-type natriuretic peptide or CNP) and 3 receptors (natriuretic peptide receptor-A or NPR-A or particulate guanynyl cyclase-A natriuretic peptide receptor-B or NPR-B or particulate guanynyl cyclase-B, and natriuretic peptide receptor-C or NPR-C or clearance receptor). ANP and BNP function as defense mechanisms against ventricular stress and the deleterious effects of volume and pressure overload on the heart. Although the role of NPs in cardiovascular homeostasis has been extensively studied and well established, much remains uncertain about the signaling pathways in pathological states like heart failure, a state of impaired natriuretic peptide function. Elevated levels of ANP and BNP in heart failure correlate with disease severity and have a prognostic value. Synthetic ANP and BNP have been studied for their therapeutic role in hypertension and heart failure, and promising trials are under way. In recent years, the expression of ANP and BNP in human adipocytes has come to light. Through their role in promotion of adipocyte browning, lipolysis, lipid oxidation, and modulation of adipokine secretion, they have emerged as key regulators of energy consumption and metabolism. NPR-A signaling in skeletal muscles and adipocytes is emerging as pivotal to the maintenance of long-term insulin sensitivity, which is disrupted in obesity and reduced glucose-tolerance states. Genetic variants in the genes encoding for ANP and BNP have been associated with a favorable cardiometabolic profile. In this review, we discuss several pathways that have been proposed to explain the role of NPs as endocrine networkers. There is much to be explored about the therapeutic role of NPs in improving metabolic milieu.
Collapse
Affiliation(s)
- Shravya Vinnakota
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Horng H Chen
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Taura D, Nakao K, Nakagawa Y, Kinoshita H, Sone M, Nakao K. C-type natriuretic peptide (CNP)/guanylate cyclase B (GC-B) system and endothelin-1(ET-1)/ET receptor A and B system in human vasculature. Can J Physiol Pharmacol 2020; 98:611-617. [PMID: 32268070 DOI: 10.1139/cjpp-2019-0686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To assess the physiological and clinical implications of the C-type natriuretic peptide (CNP)/guanylyl cyclase B (GC-B) system in the human vasculature, we have examined gene expressions of CNP and its receptor, GC-B, in human vascular endothelial cells (ECs) and smooth muscle cells (SMCs) and have also compared the endothelin-1(ET-1)/endothelin receptor-A (ETR-A) and endothelin receptor-B (ETR-B) system in human aortic ECs (HAECs) and vascular SMCs (HSMCs) in vitro. We also examined these gene expressions in human embryonic stem (ES)/induced pluripotent stem cell (iPS)-derived ECs and mural cells (MCs). A little but significant amount of mRNA encoding CNP was detected in both human ES-derived ECs and HAECs. A substantial amount of GC-B was expressed in both ECs (iPS-derived ECs and HAECs) and SMCs (iPS-derived MCs and HSMCs). ET-1 was expressed solely in ECs. ETR-A was expressed in SMCs, while ETR-B was expressed in ECs. These results indicate the existence of a vascular CNP/GC-B system in the human vascular wall, indicating the evidence for clinical implication of the CNP/GC-B system in concert with the ET-1/ETR-A and ETR-B system in the human vasculature.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhiro Nakao
- National Cardiovascular, Cerebrovascular Research Center Hospital, Suita, Japan
| | - Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideyuki Kinoshita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakatsu Sone
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
NAKAO K. Translational science: Newly emerging science in biology and medicine - Lessons from translational research on the natriuretic peptide family and leptin. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:538-567. [PMID: 31708497 PMCID: PMC6856003 DOI: 10.2183/pjab.95.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Translation is the process of turning observations in the laboratory, clinic, and community into interventions that improve the health of individuals and the public, ranging from diagnostics and therapeutics to medical procedures and behavioral changes. Translational research is defined as the effort to traverse a particular step of the translation process for a particular target or disease. Translational science is a newly emerging science, distinct from basic and clinical sciences in biology and medicine, and is a field of investigation focused on understanding the scientific and operational principles underlying each step of the translational process. Advances in translational science will increase the efficacy and safety of translational research in all diagnostic and therapeutic areas. This report examines translational research on novel hormones, the natriuretic peptide family and leptin, which have achieved clinical applications or for which studies are still ongoing, and also emphasizes the lessons that translational science has learned from more than 30 years' experience in translational research.
Collapse
Affiliation(s)
- Kazuwa NAKAO
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Wilson MO, Barrell GK, Prickett TCR, Espiner EA. Molecular forms of C-type natriuretic peptide in cerebrospinal fluid and plasma reflect differential processing in brain and pituitary tissues. Peptides 2018; 99:223-230. [PMID: 29056567 DOI: 10.1016/j.peptides.2017.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 01/22/2023]
Abstract
C-type natriuretic peptide (CNP) is a paracrine growth factor widely expressed within tissues of the central nervous system. Consistent with this is the high concentration of CNP in cerebrospinal fluid (CSF), exceeding levels in the systemic circulation. CNP abundance is high in hypothalamus and especially enriched in pituitary tissue where - in contrast to hypothalamus - processing to CNP-22 is minimal. Recently we have shown that dexamethasone acutely raises CNP peptides throughout the brain as well as in CSF and plasma. Postulating that molecular forms of CNP would differ in central tissues compared to forms in pituitary and plasma, we have characterized the molecular forms of CNP in tissues (hypothalamus, anterior and posterior pituitary gland) and associated fluids (CSF and plasma) using size-exclusion high performance liquid chromatography (SE-HPLC) and radioimmunoassay in control (saline-treated) and dexamethasone-treated adult sheep. Three immunoreactive-CNP components were identified which were consistent with proCNP (1-103), CNP-53 and CNP-22, but the presence and proportions of these different fragments differed among tissues. Peaks consistent with CNP-53 were the dominant form in all tissues and fluids. Peaks consistent with proCNP, conspicuous in hypothalamic extracts, were negligible in CSF whereas proportions of low molecular weight immunoreactivity (IR) consistent with CNP-22 were similar in hypothalamus, posterior pituitary gland and CSF. In contrast, in both plasma and the anterior pituitary gland, proportions of higher molecular weight IR, consistent with CNP-53 and proCNP, predominated, and low molecular weight IR consistent with CNP-22 was very low. After dexamethasone, proCNP like material - but not other forms - was increased in all samples except CSF, consistent with increased synthesis and secretion. In conclusion, immunoreactive forms of CNP in central tissues differ from those identified in anterior pituitary tissue and plasma - suggesting that the anterior pituitary gland may contribute to systemic levels of CNP in some physiological settings.
Collapse
Affiliation(s)
- Michele O Wilson
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand.
| | - Graham K Barrell
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand
| | | | - Eric A Espiner
- Department of Medicine, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
12
|
Topçu S, Özhan B, Alkan A, Akyol M, Şimşek Orhon F, Başkan S, Ulukol B, Berberoğlu M, Şıklar Z, Şatıroğlu Tufan NL, Tufan AÇ. Plasma Amino-Terminal Propeptide of C-Type Natriuretic Peptide Concentration in Normal-Weight and Obese Children. J Clin Res Pediatr Endocrinol 2017; 9:308-314. [PMID: 28739556 PMCID: PMC5785636 DOI: 10.4274/jcrpe.4543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE In studies on the relationship between amino-terminal propeptide of C-type natriuretic peptide (NT-proCNP) concentration and height velocity in children, CNP has been implicated as an emerging new growth marker during childhood. It has been reported that besides its well-studied role in growth, plasma CNP levels are reduced in overweight and/or obese adolescents, suggesting CNP as a potential biomarker in childhood obesity. The primary goal of this study was to test this hypothesis in a Turkish population. METHODS Consent was taken from 317 children [ages 0-18 (158 girls, 159 boys)] and their parents. All subjects were physically examined; anthropometric measurements were obtained. Body mass index was calculated. During routine blood work, 1 mL extra blood was taken. Plasma NT-proCNP concentration was measured by enzyme-linked immunosorbent assay. RESULTS Results confirmed the previously described relationship between plasma NT-proCNP concentration and growth velocity. Plasma NT-proCNP concentration showed a negative correlation with age, weight, and height in children. Gender was not a factor that alters the age-dependent plasma NT-proCNP concentration until puberty. CONCLUSION Unlike previous reports, plasma NT-proCNP concentration of overweight/obese children was not significantly lower than that of children with normal weight in age groups analyzed in a Turkish population. Thus, it is too early to conclude that CNP is a potential biomarker in childhood obesity. Further studies are necessary to address this question.
Collapse
Affiliation(s)
- Seda Topçu
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara, Turkey
| | - Bayram Özhan
- Pamukkale University Faculty of Medicine, Department of Pediatric Endocrinology, Denizli, Turkey
| | - Afra Alkan
- Ankara Yıldırım Beyazıt University Faculty of Medicine, Department of Biostatistics, Ankara, Turkey
| | - Mesut Akyol
- Ankara Yıldırım Beyazıt University Faculty of Medicine, Department of Biostatistics, Ankara, Turkey
| | - Filiz Şimşek Orhon
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara, Turkey
| | - Sevgi Başkan
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara, Turkey
| | - Betül Ulukol
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara, Turkey
| | - Merih Berberoğlu
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Zeynep Şıklar
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - N. Lale Şatıroğlu Tufan
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara, Turkey
,* Address for Correspondence: Ankara University Faculty of Medicine, Department of Forensic Medicine, Forensic Genetics Laboratory & Department of Pediatric Genetics, Molecular Genetics Laboratory, Ankara, Turkey E-mail:
| | - A. Çevik Tufan
- Ankara Yıldırım Beyazıt University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
13
|
Verboven K, Hansen D, Jocken JWE, Blaak EE. Natriuretic peptides in the control of lipid metabolism and insulin sensitivity. Obes Rev 2017; 18:1243-1259. [PMID: 28901677 DOI: 10.1111/obr.12598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/08/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in human substrate and energy metabolism, thereby connecting the heart with several insulin-sensitive organs like adipose tissue, skeletal muscle and liver. Obesity may be associated with an impaired regulation of the natriuretic peptide system, also indicated as a natriuretic handicap. Evidence points towards a contribution of this natriuretic handicap to the development of obesity, type 2 diabetes mellitus and cardiometabolic complications, although the causal relationship is not fully understood. Nevertheless, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on current literature regarding the metabolic roles of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Furthermore, it will be discussed how exercise and lifestyle intervention may modulate the natriuretic peptide-related metabolic effects.
Collapse
Affiliation(s)
- K Verboven
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - D Hansen
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
14
|
Glöde A, Naumann J, Gnad T, Cannone V, Kilic A, Burnett JC, Pfeifer A. Divergent effects of a designer natriuretic peptide CD-NP in the regulation of adipose tissue and metabolism. Mol Metab 2017; 6:276-287. [PMID: 28271034 PMCID: PMC5323888 DOI: 10.1016/j.molmet.2016.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 01/06/2023] Open
Abstract
Objective Obesity is defined as an abnormal increase in white adipose tissue (WAT) and is a major risk factor for type 2 diabetes and cardiovascular disease. Brown adipose tissue (BAT) dissipates energy and correlates with leanness. Natriuretic peptides have been shown to be beneficial for brown adipocyte differentiation and browning of WAT. Methods Here, we investigated the effects of an optimized designer natriuretic peptide (CD-NP) on murine adipose tissues in vitro and in vivo. Results In murine brown and white adipocytes, CD-NP activated cGMP production, promoted adipogenesis, and increased thermogenic markers. Consequently, mice treated for 10 days with CD-NP exhibited increased “browning” of WAT. To study CD-NP effects on diet-induced obesity (DIO), we delivered CD-NP for 12 weeks. Although CD-NP reduced inflammation in WAT, CD-NP treated DIO mice exhibited a significant increase in body mass, worsened glucose tolerance, and hepatic steatosis. Long-term CD-NP treatment resulted in an increased expression of the NP scavenging receptor (NPR-C) and decreased lipolytic activity. Conclusions NP effects differed depending on the duration of treatment raising questions about the rational of natriuretic peptide treatment in obese patients. The optimized designer natriuretic peptide CD-NP promotes adipogenesis. Duration of treatment is decisive: short-term promotes browning whereas long-term treatment exacerbates obesity and diabetes. Long-term CD-NP treatment reduces WAT inflammation and increases adiponectin expression.
Collapse
Affiliation(s)
- Anja Glöde
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany; Bonn International Graduate School of Drug Sciences BIGSDrugS, University of Bonn, Bonn, Germany
| | - Jennifer Naumann
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
| | - Ana Kilic
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany; Bonn International Graduate School of Drug Sciences BIGSDrugS, University of Bonn, Bonn, Germany.
| |
Collapse
|
15
|
Moro C. Targeting cardiac natriuretic peptides in the therapy of diabetes and obesity. Expert Opin Ther Targets 2016; 20:1445-1452. [DOI: 10.1080/14728222.2016.1254198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Ueda Y, Yasoda A, Yamashita Y, Kanai Y, Hirota K, Yamauchi I, Kondo E, Sakane Y, Yamanaka S, Nakao K, Fujii T, Inagaki N. C-type natriuretic peptide restores impaired skeletal growth in a murine model of glucocorticoid-induced growth retardation. Bone 2016; 92:157-167. [PMID: 27594049 DOI: 10.1016/j.bone.2016.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 01/27/2023]
Abstract
Glucocorticoids are widely used for treating autoimmune conditions or inflammatory disorders. Long-term use of glucocorticoids causes impaired skeletal growth, a serious side effect when they are used in children. We have previously demonstrated that C-type natriuretic peptide (CNP) is a potent stimulator of endochondral bone growth. In this study, we investigated the effect of CNP on impaired bone growth caused by glucocorticoids by using a transgenic mouse model with an increased circulating CNP level. Daily administration of a high dose of dexamethasone (DEX) to 4-week-old male wild-type mice for 4weeks significantly shortened their naso-anal length, which was restored completely in DEX-treated CNP transgenic mice. Impaired growth of the long bones and vertebrae by DEX was restored to a large extent in the CNP transgenic background, with recovery in the narrowed growth plate by increased cell volume, whereas the decreased proliferation and increased apoptosis of the growth plate chondrocytes were unaffected. Trabecular bone volume was not changed by DEX treatment, but decreased significantly in a CNP transgenic background. In young male rats, the administration of high doses of DEX greatly decreased N-terminal proCNP concentrations, a marker of CNP production. In organ culture experiments using fetal wild-type murine tibias, longitudinal growth of tibial explants was inhibited by DEX but reversed by CNP. These findings now warrant further study of the therapeutic potency of CNP in glucocorticoid-induced bone growth impairment.
Collapse
Affiliation(s)
- Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Yui Yamashita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Eri Kondo
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Yoriko Sakane
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Shigeki Yamanaka
- Department of Maxillofacial Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Kazumasa Nakao
- Department of Maxillofacial Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| |
Collapse
|
17
|
Rossi J. Central natriuretic peptide receptor (NPR)-B and peripheral lipid accumulation. Peptides 2016; 84:68-9. [PMID: 27554311 DOI: 10.1016/j.peptides.2016.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Jari Rossi
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Karsenty G, Olson EN. Bone and Muscle Endocrine Functions: Unexpected Paradigms of Inter-organ Communication. Cell 2016; 164:1248-1256. [PMID: 26967290 DOI: 10.1016/j.cell.2016.02.043] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/21/2023]
Abstract
Most physiological functions originate with the communication between organs. Mouse genetics has revived this holistic view of physiology through the identification of inter-organ communications that are unanticipated, functionally important, and would have been difficult to uncover otherwise. This Review highlights this point by showing how two tissues usually not seen as endocrine ones, bone and striated muscles, influence several physiological processes in a significant manner.
Collapse
Affiliation(s)
- Gerard Karsenty
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
19
|
Yamashita Y, Yamada-Goto N, Katsuura G, Ochi Y, Kanai Y, Miyazaki Y, Kuwahara K, Kanamoto N, Miura M, Yasoda A, Ohinata K, Inagaki N, Nakao K. Brain-specific natriuretic peptide receptor-B deletion attenuates high-fat diet-induced visceral and hepatic lipid deposition in mice. Peptides 2016; 81:38-50. [PMID: 27020246 DOI: 10.1016/j.peptides.2016.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 12/19/2022]
Abstract
C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B (NPR-B), are abundantly distributed in the hypothalamus. To explore the role of central CNP/NPR-B signaling in energy regulation, we generated mice with brain-specific NPR-B deletion (BND mice) by crossing Nestin-Cre transgenic mice and mice with a loxP-flanked NPR-B locus. Brain-specific NPR-B deletion prevented body weight gain induced by a high-fat diet (HFD), and the mesenteric fat and liver weights were significantly decreased in BND mice fed an HFD. The decreased liver weight in BND mice was attributed to decreased lipid accumulation in the liver, which was confirmed by histologic findings and lipid content. Gene expression analysis revealed a significant decrease in the mRNA expression levels of CD36, Fsp27, and Mogat1 in the liver of BND mice, and uncoupling protein 2 mRNA expression was significantly lower in the mesenteric fat of BND mice fed an HFD than in that of control mice. This difference was not observed in the epididymal or subcutaneous fat. Although previous studies reported that CNP/NPR-B signaling inhibits SNS activity in rodents, SNS is unlikely to be the underlying mechanism of the metabolic phenotype observed in BND mice. Taken together, CNP/NPR-B signaling in the brain could be a central factor that regulates visceral lipid accumulation and hepatic steatosis under HFD conditions. Further analyses of the precise mechanisms will enhance our understanding of the contribution of the CNP/NPR-B system to energy regulation.
Collapse
Affiliation(s)
- Yui Yamashita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Nobuko Yamada-Goto
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University, School of Medicine, 35, Shinano-machi, Shinjyuku-ku, Tokyo 160-8582, Japan.
| | - Goro Katsuura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukari Ochi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuri Miyazaki
- Division of Food Science and Biotechnology, Kyoto University Graduate School of Agriculture, Gokasyo, Uji-shi, Kyoto 611-0011, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naotetsu Kanamoto
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masako Miura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Kyoto University Graduate School of Agriculture, Gokasyo, Uji-shi, Kyoto 611-0011, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuwa Nakao
- Kyoto University Graduate School of Medicine Medical Innovation Center, 53, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
20
|
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) is a key mediator in physiological processes such as vascular tone, and its essential involvement in pathways regulating metabolism has been recognized in recent years. Here, we focus on the fundamental role of cGMP in brown adipose tissue (BAT) differentiation and function. In contrast to white adipose tissue (WAT), which stores energy in the form of lipids, BAT consumes energy stored in lipids to generate heat. This so-called non-shivering thermogenesis takes place in BAT mitochondria, which express the specific uncoupling protein 1 (UCP1). The energy combusting properties of BAT render it a promising target in antiobesity strategies in which BAT could burn the surplus energy that has accumulated in obese and overweight individuals. cGMP is generated by guanylyl cyclases upon activation by nitric oxide or natriuretic peptides. It affects several downstream molecules including cGMP-receptor proteins such as cGMP-dependent protein kinase and is degraded by phosphodiesterases. The cGMP pathway contains several signaling molecules that can increase cGMP signaling, resulting in activation and recruitment of brown adipocytes, and hence can enhance the energy combusting features of BAT. In this review we highlight recent results showing the physiological significance of cGMP signaling in BAT, as well as pharmacological options targeting cGMP signaling that bear a high potential to become BAT-centered therapies for the treatment of obesity.
Collapse
|
21
|
Natriuretic peptide control of energy balance and glucose homeostasis. Biochimie 2016; 124:84-91. [DOI: 10.1016/j.biochi.2015.05.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/19/2015] [Indexed: 12/27/2022]
|
22
|
Wilson MO, Barrell GK, Prickett TCR, Espiner EA. Sustained increases in plasma C-type natriuretic peptides fail to increase concentrations in cerebrospinal fluid: Evidence from pregnant sheep. Peptides 2015; 69:103-8. [PMID: 25913855 DOI: 10.1016/j.peptides.2015.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/17/2023]
Abstract
C-type natriuretic peptide (CNP) is a paracrine growth factor with high abundance in CNS tissues and cerebrospinal fluid (CSF). Consistent with findings of CNP transcripts in the cerebral microvasculature and hypothalamus, CNP increases the permeability of the blood-brain barrier and reduces food intake when administered intracerebroventricularly in rodents. Whether high concentrations of CNP in plasma can affect CSF levels is unknown. Accordingly we have studied changes (days 4, 87 and 116) in concurrent plasma and CSF concentrations of CNP peptides in pregnant sheep - a physiologically unique setting in which plasma CNP is elevated for prolonged periods. Preliminary studies in non pregnant sheep showed stable CNP levels in CSF during repetitive sampling. Compared with values in non pregnant controls, plasma concentrations of CNP peptides were markedly raised (30-fold) at days 87 and 116 in pregnant sheep, yet CSF levels in the two groups did not differ. CNP peptides in CSF decreased from day 4 to day 87 in pregnant sheep, possibly reflecting an adaptive response of the cerebral vasculature to increased hemodynamic load. We conclude that sustained high concentrations of CNP - far exceeding levels encountered in human pathophysiology - fail to affect CNP peptide levels in CSF.
Collapse
Affiliation(s)
- Michele O Wilson
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647 Christchurch, New Zealand.
| | - Graham K Barrell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647 Christchurch, New Zealand
| | | | - Eric A Espiner
- Department of Medicine, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
23
|
Begg DP, Steinbrecher KA, Mul JD, Chambers AP, Kohli R, Haller A, Cohen MB, Woods SC, Seeley RJ. Effect of guanylate cyclase-C activity on energy and glucose homeostasis. Diabetes 2014; 63:3798-804. [PMID: 24898144 PMCID: PMC4207398 DOI: 10.2337/db14-0160] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Uroguanylin is a gastrointestinal hormone primarily involved in fluid and electrolyte handling. It has recently been reported that prouroguanylin, secreted postprandially, is converted to uroguanylin in the brain and activates the receptor guanylate cyclase-C (GC-C) to reduce food intake and prevent obesity. We tested central nervous system administration of two GC-C agonists and found no significant reduction of food intake. We also carefully phenotyped mice lacking the GC-C receptor and found them to have normal body weight, adiposity, and glucose tolerance. Interestingly, uroguanylin knockout mice had a small but significant increase in body weight and adiposity that was accompanied by glucose intolerance. Our data indicate that the modest effects of uroguanylin on energy and glucose homeostasis are not mediated by central GC-C receptors.
Collapse
Affiliation(s)
- Denovan P Begg
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Kris A Steinbrecher
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| | - Adam P Chambers
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - April Haller
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| | - Mitchell B Cohen
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Stephen C Woods
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| | - Randy J Seeley
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
24
|
Gruden G, Landi A, Bruno G. Natriuretic peptides, heart, and adipose tissue: new findings and future developments for diabetes research. Diabetes Care 2014; 37:2899-908. [PMID: 25342830 DOI: 10.2337/dc14-0669] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Natriuretic peptides (NPs) play a key role in cardiovascular homeostasis, counteracting the deleterious effects of volume and pressure overload and activating antibrotic and antihypertrophic pathways in the heart. N-terminal B-type NP (NT-proBNP) also is a promising biomarker of global cardiovascular risk in the general population, and there is increasing interest on its potential use in diabetic patients for screening of silent cardiovascular abnormalities, cardiovascular risk stratification, and guided intervention. Recently, both atrial NP (ANP) and B-type NP (BNP) have emerged as key mediators in the control of metabolic processes including the heart in the network of organs that regulate energy usage and metabolism. Epidemiological studies have shown that ANP and BNP are reduced in people with obesity, insulin resistance, and diabetes, and this deficiency may contribute to enhance their global cardiovascular risk. Moreover, ANP and BNP have receptors in the adipose tissue, enhance lipolysis and energy expenditure, and modulate adipokine release and food intake. Therefore, low ANP and BNP levels may be not only a consequence but also a cause of obesity, and recent prospective studies have shown that low levels of NT-proBNP and midregional proANP (MR-proANP) are a strong predictor of type 2 diabetes onset. Whether ANP and BNP supplementation may result in either cardiovascular or metabolic benefits in humans remains, however, to be established.
Collapse
Affiliation(s)
- Gabriella Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrea Landi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Graziella Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
25
|
Hoffmann LS, Chen HH. cGMP: transition from bench to bedside: a report of the 6th International Conference on cGMP Generators, Effectors and Therapeutic Implications. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:707-18. [PMID: 24927824 DOI: 10.1007/s00210-014-0999-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
Essential physiological homeostatic processes such as vascular tone, fluid balance, cardiorenal function, and sensory processes are regulated by the second messenger cyclic guanosine 3', 5'-monophosphate (cGMP). Dysregulation of cGMP-dependent pathways plays an important role in cardiovascular diseases such as hypertension, pulmonary hypertension, heart failure, or erectile dysfunction. Thus, the cGMP pathway consisting of the cGMP-generating guanylyl cyclases, protein kinases, and phosphodiesterases (PDE) has evolved to an important drug target and is the focus of a wide variety of research fields ranging from unraveling mechanisms on the molecular level to understanding the regulation of physiological and pathophysiological processes by cGMP. Based on the results from basic and preclinical research, therapeutic drugs have been developed which modulate the cGMP pathway and are investigated in clinical trials. Riociguat, a nitric oxide (NO)-independent soluble guanylyl cyclase stimulator; recombinant B-type natriuretic peptide (BNP); or recombinant atrial natriuretic peptide (ANP) and PDE5 inhibitors are cGMP-modulating drugs that are already available for the treatment of pulmonary hypertension, acute heart failure, and erectile dysfunction, respectively. The latest results from basic to clinical research on cGMP were presented on the 6th International Conference on cGMP in Erfurt, Germany, and are summarized in this article.
Collapse
Affiliation(s)
- Linda S Hoffmann
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Bonn, Germany,
| | | |
Collapse
|
26
|
Bruno G, Barutta F, Landi A, Cavallo Perin P, Gruden G. The effect of age and NT-proBNP on the association of central obesity with 6-years cardiovascular mortality of middle-aged and elderly diabetic people: the population-based Casale Monferrato study. PLoS One 2014; 9:e96076. [PMID: 24788805 PMCID: PMC4006893 DOI: 10.1371/journal.pone.0096076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/03/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Among people with type 2 diabetes the relationship between central obesity and cardiovascular mortality has not been definitely assessed. Moreover, NT-proBNP is negatively associated with central obesity, but no study has examined their combined effect on survival. We have examined these issues in a well-characterized population-based cohort. METHODS AND FINDINGS Survival data of 2272 diabetic people recruited in 2000 who had no other chronic disease have been updated to 31 December 2006. NT-proBNP was measured in a subgroup of 1690 patients. Cox proportional hazards modeling was employed to estimate the independent associations between cardiovascular and all-cause mortality and waist circumference. Mean age was 67.9 years, 49.3% were men. Both age and NT-proBNP were negatively correlated with waist circumference (r = -0.11, p<0.001 and r = -0.07, p = 0.002). Out of 2272 subjects, 520 deaths (221 for CV mortality) occurred during a median follow-up of 5.4 years. Central obesity was not associated with CV mortality (hazard ratio, HR, adjusted for age, sex, diabetes duration, 1.14, 95% CI 0.86-1.52). NTproBNP was a negative confounder and age a strong modifier of this relationship (p for interaction<0.001): age<70 years, fully adjusted model HR = 3.52 (1.17-10.57) and age ≥70 years, HR = 0.80 (0.46-1.40). Respective HRs for all-cause mortality were 1.86 (1.03-3.32) and 0.73 (0.51-1.04). CONCLUSIONS In diabetic people aged 70 years and lower, central obesity was independently associated with increased cardiovascular mortality, independently of the negative effect of NT-proBNP. In contrast, no effect on 6-years survival was evident in diabetic people who have yet survived up to 70 years.
Collapse
Affiliation(s)
- Graziella Bruno
- Dept. of Medical Sciences, University of Turin, Turin, Italy
- * E-mail:
| | | | - Andrea Landi
- Dept. of Medical Sciences, University of Turin, Turin, Italy
| | | | | |
Collapse
|
27
|
Schlueter N, de Sterke A, Willmes DM, Spranger J, Jordan J, Birkenfeld AL. Metabolic actions of natriuretic peptides and therapeutic potential in the metabolic syndrome. Pharmacol Ther 2014; 144:12-27. [PMID: 24780848 DOI: 10.1016/j.pharmthera.2014.04.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 12/26/2022]
Abstract
Natriuretic peptides (NPs) are a group of peptide-hormones mainly secreted from the heart, signaling via c-GMP coupled receptors. NP are well known for their renal and cardiovascular actions, reducing arterial blood pressure as well as sodium reabsorption. Novel physiological functions have been discovered in recent years, including activation of lipolysis, lipid oxidation, and mitochondrial respiration. Together, these responses promote white adipose tissue browning, increase muscular oxidative capacity, particularly during physical exercise, and protect against diet-induced obesity and insulin resistance. Exaggerated NP release is a common finding in congestive heart failure. In contrast, NP deficiency is observed in obesity and in type-2 diabetes, pointing to an involvement of NP in the pathophysiology of metabolic disease. Based upon these findings, the NP system holds the potential to be amenable to therapeutical intervention against pandemic diseases such as obesity, insulin resistance, and arterial hypertension. Various therapeutic approaches are currently under development. This paper reviews the current knowledge on the metabolic effects of the NP system and discusses potential therapeutic applications.
Collapse
Affiliation(s)
- Nina Schlueter
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité, University School of Medicine, Berlin, Germany
| | - Anita de Sterke
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité, University School of Medicine, Berlin, Germany
| | - Diana M Willmes
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité, University School of Medicine, Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité, University School of Medicine, Berlin, Germany
| | - Jens Jordan
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - Andreas L Birkenfeld
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité, University School of Medicine, Berlin, Germany.
| |
Collapse
|
28
|
Zandi MR, Jafarzadeh Shirazi MR, Tamadon A, Akhlaghi A, Salehi MS, Niazi A, Moghadam A. Hypothalamic Expression of Melanocortin-4 Receptor and Agouti-related Peptide mRNAs During the Estrous Cycle of Rats. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2014; 3:183-9. [PMID: 25317405 PMCID: PMC4170492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/14/2014] [Accepted: 07/27/2014] [Indexed: 11/16/2022]
Abstract
Melanocortin- 4 receptor (MC4R) and agouti- related peptide (AgRP) are involved in energy homeostasis in rats. According to MC4R and AgRP effects on luteinizing hormone (LH) secretion, they may influence the estrous cycle of rats. Therefore, the aim of this study was to investigate the expression of MC4R and AgRP mRNAs at different stages of estrous cycle in the rat's hypothalamus. The estrous cycle stages (proestrus, estrus, metestrus and diestrus) were determined in 20 adult female rats using vaginal smears. The rats were divided into four equal groups (n=5). Four ovariectomized rats were selected as controls two weeks after surgery. Using real- time PCR, relative expressions (compared to controls) of MC4R and AgRP mRNAs in the hypothalamus of rats were compared in four different groups of estrous cycle. The relative expression of MC4R mRNA in the hypothalamus of female rats during proestrus stage was higher than those in other stages (P=0.001). Despite a lower mean of relative expression of AgRP mRNA at proestrus stage, the relative expression of AgRP mRNA of the four stages of estrous cycle did not differ (P>0.05). In conclusion, changes in the relative expression of MC4R and AgRP mRNAs in four stages of rat estrous cycle indicated a stimulatory role of MC4R in the proestrus and preovulatory stages and an inhibitory role of AgRP in gonadotropin releasing hormone (GnRH) and LH secretions.
Collapse
Affiliation(s)
- Mohammad Reza Zandi
- Department of Animal Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Amin Tamadon
- Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Corresponding author: Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Akhlaghi
- Department of Animal Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Saied Salehi
- Department of Animal Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Biotechnology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Biotechnology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
29
|
Abstract
Many questions must be considered with regard to consuming food, including when to eat, what to eat and how much to eat. Although eating is often thought to be a homeostatic behaviour, little evidence exists to suggest that eating is an automatic response to an acute shortage of energy. Instead, food intake can be considered as an integrated response over a prolonged period of time that maintains the levels of energy stored in adipocytes. When we eat is generally determined by habit, convenience or opportunity rather than need, and meals are preceded by a neurally-controlled coordinated secretion of numerous hormones that prime the digestive system for the anticipated caloric load. How much we eat is determined by satiation hormones that are secreted in response to ingested nutrients, and these signals are in turn modified by adiposity hormones that indicate the fat content of the body. In addition, many nonhomeostatic factors, including stress, learning, palatability and social influences, interact with other controllers of food intake. If a choice of food is available, what we eat is based on pleasure and past experience. This article reviews the hormones that mediate and influence these processes.
Collapse
Affiliation(s)
- Denovan P Begg
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | | |
Collapse
|
30
|
Abstract
Research in resistant hypertension has again focused on autonomic nervous system denervation – 50 years after it had been stopped due to postural hypotension and availability of newer drugs. These (ganglionic blockers) drugs have all been similarly stopped, due to postural hypotension and yet newer antihypertensive agents. Recent demonstration of the feasibility of limited regional transcatheter sympathetic denervation has excited clinicians due to potential therapeutic implications. Standard use of ambulatory blood pressure recording equipment may alter our understanding of the diagnosis, potential treatment strategies, and health care outcomes – when faced with patients whose office blood pressure remains in the hypertensive range – while under treatment with three antihypertensive drugs at the highest tolerable doses, plus a diuretic. We review herein clinical relationships between autonomic function, resistant hypertension, current treatment strategies, and reflect upon the possibility of changes in our approach to resistant hypertension.
Collapse
Affiliation(s)
- John A D'Elia
- Joslin Diabetes Center, Beth Israel Deaconess Medical Center, Boston, MA, USA ; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
31
|
|