1
|
Handler JS, Li Z, Dveirin RK, Fang W, Goodarzi H, Fertig EJ, Kalhor R. Identifying a gene signature of metastatic potential by linking pre-metastatic state to ultimate metastatic fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607813. [PMID: 39185156 PMCID: PMC11343111 DOI: 10.1101/2024.08.14.607813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Identifying the key molecular pathways that enable metastasis by analyzing the eventual metastatic tumor is challenging because the state of the founder subclone likely changes following metastatic colonization. To address this challenge, we labeled primary mouse pancreatic ductal adenocarcinoma (PDAC) subclones with DNA barcodes to characterize their pre-metastatic state using ATAC-seq and RNA-seq and determine their relative in vivo metastatic potential prospectively. We identified a gene signature separating metastasis-high and metastasis-low subclones orthogonal to the normal-to-PDAC and classical-to-basal axes. The metastasis-high subclones feature activation of IL-1 pathway genes and high NF-κB and Zeb/Snail family activity and the metastasis-low subclones feature activation of neuroendocrine, motility, and Wnt pathway genes and high CDX2 and HOXA13 activity. In a functional screen, we validated novel mediators of PDAC metastasis in the IL-1 pathway, including the NF-κB targets Fos and Il23a, and beyond the IL-1 pathway including Myo1b and Tmem40. We scored human PDAC tumors for our signature of metastatic potential from mouse and found that metastases have higher scores than primary tumors. Moreover, primary tumors with higher scores are associated with worse prognosis. We also found that our metastatic potential signature is enriched in other human carcinomas, suggesting that it is conserved across epithelial malignancies. This work establishes a strategy for linking cancer cell state to future behavior, reveals novel functional regulators of PDAC metastasis, and establishes a method for scoring human carcinomas based on metastatic potential.
Collapse
Affiliation(s)
- Jesse S Handler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zijie Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rachel K Dveirin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weixiang Fang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Arc Institute, Palo Alto 94305, USA
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Convergence Institute, Johns Hopkins Data Science and AI Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Department of Neuroscience, Department of Medicine, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Yu Y, Li M, Zhao Y, Fan F, Wu W, Gao Y, Bai C. Immune cell-derived extracellular vesicular microRNAs induce pancreatic beta cell apoptosis. Heliyon 2022; 8:e11995. [PMID: 36561684 PMCID: PMC9763775 DOI: 10.1016/j.heliyon.2022.e11995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by an autoimmune response against pancreatic islet β cells. Increasing evidence indicates that specific microRNAs (miRNAs) from immune cells extracellular vesicles are involved in islet β cells apoptosis. Methods In this study, the microarray datasets GSE27997 and GSE137637 were downloaded from the Gene Expression Omnibus (GEO) database. miRNAs that promote islet β cells apoptosis in T1DM were searched in PubMed. We used the FunRich tool to determine the miRNA expression in extracellular vesicles derived from immune cells associated with islet β cell apoptosis, of which we selected candidate miRNAs based on fold change expression. Potential upstream transcription factors and downstream target genes of candidate miRNAs were predicted using TransmiR V2.0 and starBase database, respectively. Results Candidate miRNAs expressed in extracellular vesicles derived from T cells, pro-inflammatory macrophages, B cells, and dendritic cells were analyzed to identify the miRNAs involved in β cells apoptosis. Based on these candidate miRNAs, 25 downstream candidate genes, which positively regulate β cell functions, were predicted and screened; 17 transcription factors that positively regulate the candidate miRNAs were also identified. Conclusions Our study demonstrated that immune cell-derived extracellular vesicular miRNAs could promote islet β cell dysfunction and apoptosis. Based on these findings, we have constructed a transcription factor-miRNA-gene regulatory network, which provides a theoretical basis for clinical management of T1DM. This study provides novel insights into the mechanism underlying immune cell-derived extracellular vesicle-mediated islet β cell apoptosis.
Collapse
Affiliation(s)
- Yueyang Yu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Mengyin Li
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272067, PR China
| | - Yuxuan Zhao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Fangzhou Fan
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Wenxiang Wu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yuhua Gao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| | - Chunyu Bai
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| |
Collapse
|
3
|
Santiago JA, Quinn JP, Potashkin JA. Sex-specific transcriptional rewiring in the brain of Alzheimer’s disease patients. Front Aging Neurosci 2022; 14:1009368. [PMID: 36389068 PMCID: PMC9659968 DOI: 10.3389/fnagi.2022.1009368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Sex-specific differences may contribute to Alzheimer’s disease (AD) development. AD is more prevalent in women worldwide, and female sex has been suggested as a disease risk factor. Nevertheless, the molecular mechanisms underlying sex-biased differences in AD remain poorly characterized. To this end, we analyzed the transcriptional changes in the entorhinal cortex of symptomatic and asymptomatic AD patients stratified by sex. Co-expression network analysis implemented by SWItchMiner software identified sex-specific signatures of switch genes responsible for drastic transcriptional changes in the brain of AD and asymptomatic AD individuals. Pathway analysis of the switch genes revealed that morphine addiction, retrograde endocannabinoid signaling, and autophagy are associated with both females with AD (F-AD) and males with (M-AD). In contrast, nicotine addiction, cell adhesion molecules, oxytocin signaling, adipocytokine signaling, prolactin signaling, and alcoholism are uniquely associated with M-AD. Similarly, some of the unique pathways associated with F-AD switch genes are viral myocarditis, Hippo signaling pathway, endometrial cancer, insulin signaling, and PI3K-AKT signaling. Together these results reveal that there are many sex-specific pathways that may lead to AD. Approximately 20–30% of the elderly have an accumulation of amyloid beta in the brain, but show no cognitive deficit. Asymptomatic females (F-asymAD) and males (M-asymAD) both shared dysregulation of endocytosis. In contrast, pathways uniquely associated with F-asymAD switch genes are insulin secretion, progesterone-mediated oocyte maturation, axon guidance, renal cell carcinoma, and ErbB signaling pathway. Similarly, pathways uniquely associated with M-asymAD switch genes are fluid shear stress and atherosclerosis, FcγR mediated phagocytosis, and proteoglycans in cancer. These results reveal for the first time unique pathways associated with either disease progression or cognitive resilience in asymptomatic individuals. Additionally, we identified numerous sex-specific transcription factors and potential neurotoxic chemicals that may be involved in the pathogenesis of AD. Together these results reveal likely molecular drivers of sex differences in the brain of AD patients. Future molecular studies dissecting the functional role of these switch genes in driving sex differences in AD are warranted.
Collapse
Affiliation(s)
| | | | - Judith A. Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: Judith A. Potashkin,
| |
Collapse
|
4
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
5
|
Yang X, Raum JC, Kim J, Yu R, Yang J, Rice G, Li C, Won KJ, Stanescu DE, Stoffers DA. A PDX1 cistrome and single-cell transcriptome resource of the developing pancreas. Development 2022; 149:dev200432. [PMID: 35708349 PMCID: PMC9340549 DOI: 10.1242/dev.200432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/31/2022] [Indexed: 09/09/2023]
Abstract
Pancreatic and duodenal homeobox 1 (PDX1) is crucial for pancreas organogenesis, yet the dynamic changes in PDX1 binding in human or mouse developing pancreas have not been examined. To address this knowledge gap, we performed PDX1 ChIP-seq and single-cell RNA-seq using fetal human pancreata. We integrated our datasets with published datasets and revealed the dynamics of PDX1 binding and potential cell lineage-specific PDX1-bound genes in the pancreas from fetal to adult stages. We identified a core set of developmentally conserved PDX1-bound genes that reveal the broad multifaceted role of PDX1 in pancreas development. Despite the well-known dramatic changes in PDX1 function and expression, we found that PDX1-bound genes are largely conserved from embryonic to adult stages. This points towards a dual role of PDX1 in regulating the expression of its targets at different ages, dependent on other functionally congruent or directly interacting partners. We also showed that PDX1 binding is largely conserved in mouse pancreas. Together, our study reveals PDX1 targets in the developing pancreas in vivo and provides an essential resource for future studies on pancreas development.
Collapse
Affiliation(s)
- Xiaodun Yang
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey C. Raum
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junil Kim
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul 06978, Republic of Korea
| | - Reynold Yu
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juxiang Yang
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabriella Rice
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark
| | - Diana E. Stanescu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris A. Stoffers
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Flowers E, Asam K, Allen IE, Kanaya AM, Aouizerat BE. Co‑expressed microRNAs, target genes and pathways related to metabolism, inflammation and endocrine function in individuals at risk for type 2 diabetes. Mol Med Rep 2022; 25:156. [PMID: 35244194 PMCID: PMC8941378 DOI: 10.3892/mmr.2022.12672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) may be considered important regulators of risk for type 2 diabetes (T2D). The aim of the present study was to identify novel sets of miRNAs associated with T2D risk, as well as their gene and pathway targets. Circulating miRNAs (n=59) were measured in plasma from participants in a previously completed clinical trial (n=82). An agnostic statistical approach was applied to identify novel sets of miRNAs with optimal co-expression patterns. In silico analyses were used to identify the messenger RNA and biological pathway targets of the miRNAs within each factor. A total of three factors of miRNAs were identified, containing 18, seven and two miRNAs each. Eight biological pathways were revealed to contain genes targeted by the miRNAs in all three factors, 38 pathways contained genes targeted by the miRNAs in two factors, and 55, 18 and two pathways were targeted by the miRNAs in a single factor, respectively (all q<0.05). The pathways containing genes targeted by miRNAs in the largest factor shared a common theme of biological processes related to metabolism and inflammation. By contrast, the pathways containing genes targeted by miRNAs in the second largest factor were related to endocrine function and hormone activity. The present study focused on the pathways uniquely targeted by each factor of miRNAs in order to identify unique mechanisms that may be associated with a subset of individuals. Further exploration of the genes and pathways related to these biological themes may provide insights about the subtypes of T2D and lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Elena Flowers
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA 94143‑0610, USA
| | - Kesava Asam
- Bluestone Center for Clinical Research, New York University, New York, NY 10010, USA
| | - Isabel Elaine Allen
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143‑0610, USA
| | - Alka M Kanaya
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143‑0610, USA
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, NY 10010, USA
| |
Collapse
|
7
|
Novo LC, Cavani L, Pinedo P, Melendez P, Peñagaricano F. Genomic Analysis of Visceral Fat Accumulation in Holstein Cows. Front Genet 2022; 12:803216. [PMID: 35058972 PMCID: PMC8764383 DOI: 10.3389/fgene.2021.803216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Visceral fat is related to important metabolic processes, including insulin sensitivity and lipid mobilization. The goal of this study was to identify individual genes, pathways, and molecular processes implicated in visceral fat deposition in dairy cows. Data from 172 genotyped Holstein cows classified at slaughterhouse as having low (n = 77; omental fold <5 mm in thickness and minimum fat deposition in omentum) or high (n = 95; omental fold ≥20 mm in thickness and marked fat deposition in omentum) omental fat were analyzed. The identification of regions with significant additive and non-additive genetic effects was performed using a two-step mixed model-based approach. Genomic scans were followed by gene-set analyses in order to reveal the genetic mechanisms controlling abdominal obesity. The association mapping revealed four regions located on BTA19, BTA20 and BTA24 with significant additive effects. These regions harbor genes, such as SMAD7, ANKRD55, and the HOXB family, that are implicated in lipolysis and insulin tolerance. Three regions located on BTA1, BTA13, and BTA24 showed marked non-additive effects. These regions harbor genes MRAP, MIS18A, PRNP and TSHZ1, that are directly implicated in adipocyte differentiation, lipid metabolism, and insulin sensitivity. The gene-set analysis revealed functional terms related to cell arrangement, cell metabolism, cell proliferation, cell signaling, immune response, lipid metabolism, and membrane permeability, among other functions. We further evaluated the genetic link between visceral fat and two metabolic disorders, ketosis, and displaced abomasum. For this, we analyzed 28k records of incidence of metabolic disorders from 14k cows across lactations using a single-step genomic BLUP approach. Notably, the region on BTA20 significantly associated with visceral fat deposition was also associated with the incidence of displaced abomasum. Overall, our findings suggest that visceral fat deposition in dairy cows is controlled by both additive and non-additive effects. We detected at least one region with marked pleiotropic effects affecting both visceral fat accumulation and displaced abomasum.
Collapse
Affiliation(s)
- Larissa C Novo
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Ligia Cavani
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Pablo Pinedo
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Pedro Melendez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
8
|
Gentry AE, Robins J, Makowski M, Kliewer W. Differential DNA Methylation and Cardiometabolic Risk in African American Mother-Adolescent Dyads. Biol Res Nurs 2022; 24:75-84. [PMID: 34719281 PMCID: PMC9248288 DOI: 10.1177/10998004211039017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cardiovascular disease disproportionately affects African Americans as the leading cause of morbidity and mortality. Among African Americans, compared to other racial groups, cardiovascular disease onset occurs at an earlier age due to a higher prevalence of cardiometabolic risk factors, particularly obesity, hypertension and type 2 diabetes. Emerging evidence suggests that heritable epigenetic processes are related to increased cardiovascular disease risk, but this is largely unexplored in adolescents or across generations. MATERIALS AND METHODS In a cross-sectional descriptive pilot study in low-income African American mother-adolescent dyads, we examined associations between DNA methylation and the cardiometabolic indicators of body mass index, waist circumference, and insulin resistance. RESULTS Four adjacent cytosine and guanine nucleotides (CpG) sites were significantly differentially methylated and associated with C-reactive protein (CRP), 62 with waist circumference, and none to insulin resistance in models for both mothers and adolescents. CONCLUSION Further study of the relations among psychological and environmental stressors, indicators of cardiovascular disease, risk, and epigenetic factors will improve understanding of cardiovascular disease risk so that preventive measures can be instituted earlier and more effectively. To our knowledge this work is the first to examine DNA methylation and cardiometabolic risk outcomes in mother-adolescent dyads.
Collapse
Affiliation(s)
- Amanda Elswick Gentry
- Department of Psychiatry, Virginia
Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University,
Richmond, VA, USA,Amanda Elswick Gentry, PhD, Department of
Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia
Commonwealth University, 800 East Leigh Street, Suite 100, Room 130-B, Richmond,
VA 23219, USA.
| | - Jo Robins
- School of Nursing, Virginia
Commonwealth University, Richmond, VA, USA
| | | | - Wendy Kliewer
- Department of Psychology, College of
Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
9
|
Osipovich AB, Dudek KD, Greenfest-Allen E, Cartailler JP, Manduchi E, Potter Case L, Choi E, Chapman AG, Clayton HW, Gu G, Stoeckert CJ, Magnuson MA. A developmental lineage-based gene co-expression network for mouse pancreatic β-cells reveals a role for Zfp800 in pancreas development. Development 2021; 148:dev196964. [PMID: 33653874 PMCID: PMC8015253 DOI: 10.1242/dev.196964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
To gain a deeper understanding of pancreatic β-cell development, we used iterative weighted gene correlation network analysis to calculate a gene co-expression network (GCN) from 11 temporally and genetically defined murine cell populations. The GCN, which contained 91 distinct modules, was then used to gain three new biological insights. First, we found that the clustered protocadherin genes are differentially expressed during pancreas development. Pcdhγ genes are preferentially expressed in pancreatic endoderm, Pcdhβ genes in nascent islets, and Pcdhα genes in mature β-cells. Second, after extracting sub-networks of transcriptional regulators for each developmental stage, we identified 81 zinc finger protein (ZFP) genes that are preferentially expressed during endocrine specification and β-cell maturation. Third, we used the GCN to select three ZFPs for further analysis by CRISPR mutagenesis of mice. Zfp800 null mice exhibited early postnatal lethality, and at E18.5 their pancreata exhibited a reduced number of pancreatic endocrine cells, alterations in exocrine cell morphology, and marked changes in expression of genes involved in protein translation, hormone secretion and developmental pathways in the pancreas. Together, our results suggest that developmentally oriented GCNs have utility for gaining new insights into gene regulation during organogenesis.
Collapse
Affiliation(s)
- Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Karrie D Dudek
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Emily Greenfest-Allen
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | - Elisabetta Manduchi
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Leah Potter Case
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Eunyoung Choi
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Austin G Chapman
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hannah W Clayton
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Guoqiang Gu
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Christian J Stoeckert
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Magnuson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
10
|
Ebrahimi AG, Hollister-Lock J, Sullivan BA, Tsuchida R, Bonner-Weir S, Weir GC. Beta cell identity changes with mild hyperglycemia: Implications for function, growth, and vulnerability. Mol Metab 2020; 35:100959. [PMID: 32244186 PMCID: PMC7082551 DOI: 10.1016/j.molmet.2020.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE As diabetes develops, marked reductions of insulin secretion are associated with very modest elevations of glucose. We wondered if these glucose changes disrupt beta cell differentiation enough to account for the altered function. METHODS Rats were subjected to 90% partial pancreatectomies and those with only mild glucose elevations 4 weeks or 10 weeks after surgery had major alterations of gene expression in their islets as determined by RNAseq. RESULTS Changes associated with glucose toxicity demonstrated that many of the critical genes responsible for insulin secretion were downregulated while the expression of normally suppressed genes increased. Also, there were marked changes in genes associated with replication, aging, senescence, stress, inflammation, and increased expression of genes controlling both class I and II MHC antigens. CONCLUSIONS These findings suggest that mild glucose elevations in the early stages of diabetes lead to phenotypic changes that adversely affect beta cell function, growth, and vulnerability.
Collapse
Affiliation(s)
- Aref G Ebrahimi
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, One Joslin Place, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, One Joslin Place, Harvard Medical School, Boston, MA 02215, USA
| | - Brooke A Sullivan
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, One Joslin Place, Harvard Medical School, Boston, MA 02215, USA
| | - Ryohei Tsuchida
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, One Joslin Place, Harvard Medical School, Boston, MA 02215, USA
| | - Susan Bonner-Weir
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, One Joslin Place, Harvard Medical School, Boston, MA 02215, USA
| | - Gordon C Weir
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, One Joslin Place, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Gene expression profiling and identification of hub genes in Nellore cattle with different marbling score levels. Genomics 2019; 112:873-879. [PMID: 31170441 DOI: 10.1016/j.ygeno.2019.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/16/2019] [Accepted: 06/01/2019] [Indexed: 12/21/2022]
Abstract
The marbling rate evaluation is difficult and expensive, requiring slaughter of the animal or ultrasound measurement. Thus, this trait is generally not included in animal breeding programs. The use of molecular techniques to elucidate intramuscular fat deposition may help improve this trait. In this respect, transcriptome studies and differential gene expression analysis by RNA-Seq can contribute to advances in this area. The objective of this study was to use RNA-Seq to identify differentially expressed genes (DEGs) in muscle tissue (longissimus thoracis) of Nellore cattle divergently ranked on marbling, in order to increase our understanding of genes involved in the expression of this trait. The results revealed 49 DEGs and three hub genes (CISH, UFM1, TSHZ1), all of them involved in insulin and diabetes mellitus metabolism. These results indicating key genes and pathways, which may help to develop strategies designed to select animals with greater marbling.
Collapse
|
12
|
Hart NJ, Powers AC. Use of human islets to understand islet biology and diabetes: progress, challenges and suggestions. Diabetologia 2019; 62:212-222. [PMID: 30547228 PMCID: PMC6325002 DOI: 10.1007/s00125-018-4772-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
Over the last two decades, improved access to human islets and the development of human islet distribution networks have enabled the use of millions of human islets in hundreds of scientific research projects, leading to a dramatic increase in our understanding of human islet biology. Here we discuss recent scientific advances as well as methodological and experimental challenges that impact human islet quality, experimental outcomes and the reporting of human islets used in scientific publications. In a survey of over 200 scientific publications with human islet experimentation, we found that the reporting of critical information was quite variable, sometimes obscure, and often failed to adequately outline the experiments and results using human islets. As the complexity of human islet research grows, we propose that members of the human islet research ecosystem work together to develop procedures and approaches for accessible and transparent collecting and reporting of crucial human islet characteristics and, through this, enhance collaboration, reproducibility and rigour, leading to further advances in our understanding of human islet biology.
Collapse
Affiliation(s)
- Nathaniel J Hart
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, 7465 Medical Research Bldg IV, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN, 37232-0475, USA
- Institute for Cellular Transplantation, College of Medicine, Department of Surgery, Arizona Health Sciences Center, Tucson, AZ, USA
| | - Alvin C Powers
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, 7465 Medical Research Bldg IV, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN, 37232-0475, USA.
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- VA Tennessee Valley Healthcare, Nashville, TN, USA.
| |
Collapse
|
13
|
Lawlor N, Márquez EJ, Orchard P, Narisu N, Shamim MS, Thibodeau A, Varshney A, Kursawe R, Erdos MR, Kanke M, Gu H, Pak E, Dutra A, Russell S, Li X, Piecuch E, Luo O, Chines PS, Fuchbserger C, Sethupathy P, Aiden AP, Ruan Y, Aiden EL, Collins FS, Ucar D, Parker SCJ, Stitzel ML. Multiomic Profiling Identifies cis-Regulatory Networks Underlying Human Pancreatic β Cell Identity and Function. Cell Rep 2019; 26:788-801.e6. [PMID: 30650367 PMCID: PMC6389269 DOI: 10.1016/j.celrep.2018.12.083] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/26/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
EndoC-βH1 is emerging as a critical human β cell model to study the genetic and environmental etiologies of β cell (dys)function and diabetes. Comprehensive knowledge of its molecular landscape is lacking, yet required, for effective use of this model. Here, we report chromosomal (spectral karyotyping), genetic (genotyping), epigenomic (ChIP-seq and ATAC-seq), chromatin interaction (Hi-C and Pol2 ChIA-PET), and transcriptomic (RNA-seq and miRNA-seq) maps of EndoC-βH1. Analyses of these maps define known (e.g., PDX1 and ISL1) and putative (e.g., PCSK1 and mir-375) β cell-specific transcriptional cis-regulatory networks and identify allelic effects on cis-regulatory element use. Importantly, comparison with maps generated in primary human islets and/or β cells indicates preservation of chromatin looping but also highlights chromosomal aberrations and fetal genomic signatures in EndoC-βH1. Together, these maps, and a web application we created for their exploration, provide important tools for the design of experiments to probe and manipulate the genetic programs governing β cell identity and (dys)function in diabetes.
Collapse
Affiliation(s)
- Nathan Lawlor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Eladio J Márquez
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Narisu Narisu
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Muhammad Saad Shamim
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Arushi Varshney
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael R Erdos
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Huiya Gu
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Evgenia Pak
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Amalia Dutra
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Sheikh Russell
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77030, USA
| | - Xingwang Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Emaly Piecuch
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT 06032, USA
| | - Oscar Luo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter S Chines
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Christian Fuchbserger
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Aviva Presser Aiden
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Erez Lieberman Aiden
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francis S Collins
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT 06032, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT 06032, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| |
Collapse
|
14
|
E2F1 Mediates the Retinoic Acid-Induced Transcription of Tshz1 during Neuronal Differentiation in a Cell Division-Dependent Manner. Mol Cell Biol 2018; 38:MCB.00217-18. [PMID: 30104253 DOI: 10.1128/mcb.00217-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/09/2018] [Indexed: 11/20/2022] Open
Abstract
The involvement of cell division in cellular differentiation has long been accepted. Cell division may be required not only for the expansion of a differentiated cell population but also for the execution of differentiation processes. Nonetheless, knowledge regarding how specific differentiation processes are controlled in a cell division-dependent manner is far from complete. Here, we determined the involvement of cell division in neuronal differentiation. We initially confirmed that cell division is an essential event for the neuronal differentiation of P19 embryonic carcinoma cells. We investigated the induction mechanisms of Tshz1, whose expression is induced by retinoic acid (RA) in a cell division-dependent manner. Promoter analysis of Tshz1 revealed a specific region required for RA-dependent transcription. A series of experiments was used to identify E2F1 as the induction factor for the RA-dependent transcription of Tshz1 We propose that E2F1 mediates neuronal differentiation in a cell division-dependent manner.
Collapse
|
15
|
Raju R, Chau D, Notelaers T, Myers CL, Verfaillie CM, Hu WS. In Vitro Pluripotent Stem Cell Differentiation to Hepatocyte Ceases Further Maturation at an Equivalent Stage of E15 in Mouse Embryonic Liver Development. Stem Cells Dev 2018; 27:910-921. [PMID: 29851366 DOI: 10.1089/scd.2017.0270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocyte-like cells (HLCs) can be derived from pluripotent stem cells (PSCs) by sequential treatment of chemical cues to mimic the microenvironment of embryonic liver development. However, these HLCs do not reach the full maturity level of primary hepatocytes. In this study, we carried out a meta-analysis of cross-species transcriptome data of in vitro differentiation of human PSCs to HLCs and in vivo mouse embryonic liver development to identify the developmental stage at which HLC maturation was blocked at. Systematic variations were found associated with the data source and removed by batch correction. Using principal component analysis, HLCs from different stages of differentiation were aligned with mouse embryonic liver development chronologically. A "unified developmental time" (DT) scale was developed after aligning in vitro HLC differentiation and in vivo embryonic liver development. HLCs were found to cease further maturation at an equivalent stage of mouse embryonic day (E)13-15. Genes with discordant time dynamics were identified by aligning in vivo and in vitro data set onto a common DT scale. These genes may be targets of genetic intervention for enhancing the maturity of PSC-derived HLCs.
Collapse
Affiliation(s)
- Ravali Raju
- 1 Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota.,2 Stem Cell Institute, University of Minnesota , Minneapolis, Minnesota
| | - David Chau
- 1 Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota.,2 Stem Cell Institute, University of Minnesota , Minneapolis, Minnesota.,3 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Tineke Notelaers
- 4 Department of Development and Regeneration, KU Leuven , Leuven, Belgium .,5 Stem Cell Institute Leuven , KU Leuven, Leuven, Belgium
| | - Chad L Myers
- 6 Department of Computer Science and Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Catherine M Verfaillie
- 4 Department of Development and Regeneration, KU Leuven , Leuven, Belgium .,5 Stem Cell Institute Leuven , KU Leuven, Leuven, Belgium
| | - Wei-Shou Hu
- 1 Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota.,2 Stem Cell Institute, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
16
|
Cooper-Capetini V, de Vasconcelos DAA, Martins AR, Hirabara SM, Donato J, Carpinelli AR, Abdulkader F. Zinc Supplementation Improves Glucose Homeostasis in High Fat-Fed Mice by Enhancing Pancreatic β-Cell Function. Nutrients 2017; 9:nu9101150. [PMID: 29053582 PMCID: PMC5691766 DOI: 10.3390/nu9101150] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential component of the insulin granule and it possibly modulates insulin secretion and signaling. Since insulin resistance is a hallmark in the development of type 2 diabetes mellitus, this study aimed at investigating if zinc supplementation is able to improve glucose tolerance and β-cell function in a model of insulin resistance. Male C57BL/6 mice were distributed in four groups according to the diet: normal fat (NF); normal fat supplemented with ZnCl2 (NFZ); high-fat (HF); and, high-fat chow supplemented with ZnCl2 (HFZ). Intraperitoneal glucose (ipGTT) and insulin (ipITT) tolerance, glycemia, insulinemia, HOMA-IR, and HOMA-β were determined after 15 weeks in each diet. Glucose-stimulated insulin secretion (GSIS) was investigated in isolated islets. The insulin effect on glucose uptake, metabolism, and signaling was investigated in soleus muscle. ZnCl2 did not affect body mass or insulin sensitivity as assessed by ipITT, HOMA-IR, muscle glucose metabolism, and Akt and GSK3-β phosphorylation. However, glucose tolerance, HOMA-β, and GSIS were significantly improved by ZnCl2 supplementation. Therefore, ZnCl2 supplementation improves glucose homeostasis in high fat-fed mice by a mechanism that enhances β-cell function, rather than whole-body or muscle insulin sensitivity.
Collapse
Affiliation(s)
- Vinícius Cooper-Capetini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | | | - Amanda Roque Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo 05508-000, Brazil.
| | - José Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | - Fernando Abdulkader
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
17
|
Ediger BN, Lim HW, Juliana C, Groff DN, Williams LT, Dominguez G, Liu JH, Taylor BL, Walp ER, Kameswaran V, Yang J, Liu C, Hunter CS, Kaestner KH, Naji A, Li C, Sander M, Stein R, Sussel L, Won KJ, May CL, Stoffers DA. LIM domain-binding 1 maintains the terminally differentiated state of pancreatic β cells. J Clin Invest 2016; 127:215-229. [PMID: 27941246 DOI: 10.1172/jci88016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
The recognition of β cell dedifferentiation in type 2 diabetes raises the translational relevance of mechanisms that direct and maintain β cell identity. LIM domain-binding protein 1 (LDB1) nucleates multimeric transcriptional complexes and establishes promoter-enhancer looping, thereby directing fate assignment and maturation of progenitor populations. Many terminally differentiated endocrine cell types, however, remain enriched for LDB1, but its role is unknown. Here, we have demonstrated a requirement for LDB1 in maintaining the terminally differentiated status of pancreatic β cells. Inducible ablation of LDB1 in mature β cells impaired insulin secretion and glucose homeostasis. Transcriptomic analysis of LDB1-depleted β cells revealed the collapse of the terminally differentiated gene program, indicated by a loss of β cell identity genes and induction of the endocrine progenitor factor neurogenin 3 (NEUROG3). Lineage tracing confirmed that LDB1-depleted, insulin-negative β cells express NEUROG3 but do not adopt alternate endocrine cell fates. In primary mouse islets, LDB1 and its LIM homeodomain-binding partner islet 1 (ISL1) were coenriched at chromatin sites occupied by pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), forkhead box A2 (FOXA2), and NK2 homeobox 2 (NKX2.2) - factors that co-occupy active enhancers in 3D chromatin domains in human islets. Indeed, LDB1 was enriched at active enhancers in human islets. Thus, LDB1 maintains the terminally differentiated state of β cells and is a component of active enhancers in both murine and human islets.
Collapse
|
18
|
Marty-Santos L, Cleaver O. Pdx1 regulates pancreas tubulogenesis and E-cadherin expression. Development 2015; 143:101-12. [PMID: 26657766 DOI: 10.1242/dev.126755] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/19/2015] [Indexed: 12/27/2022]
Abstract
Current efforts in developing treatments for diabetes focus on in vitro generation of functional β-cells for cell replacement therapies; however, these attempts have only been partly successful because factors involved in islet formation remain incompletely understood. The embryonic pancreas, which gives rise to β-cells, undergoes early epithelial rearrangements, including transient stratification of an initially monolayered epithelium, followed by microlumen formation and later resolution into branches. Within the epithelium, a multipotent progenitor cell (MPC) population is specified, giving rise to three important lineages: acinar, ductal and endocrine. Pdx1 is a transcription factor required for pancreas development and lineage specification; however, few Pdx1 targets that regulate pancreatogenesis have been identified. We find that pancreatic defects in Pdx1(-/-) embryos initiate at the time when the progenitor pool is specified and the epithelium should resolve into branches. Pdx1(-/-) microlumen diameters expand aberrantly, resulting in failure of epithelial tubulogenesis and ductal plexus formation. Pdx1(-/-) epithelial cell proliferation is decreased and the MPC pool is rapidly lost. We identify two conserved Pdx1 binding sites in the epithelial cadherin (E-cad, Cdh1) promoter, and show that Pdx1 directly binds and activates E-cad transcription. In addition, Pdx1 is required in vivo for maintenance of E-cad expression, actomyosin complex activity and cell shape. These findings demonstrate a novel link between regulators of epithelial architecture, specification of pancreatic cell fate and organogenesis.
Collapse
Affiliation(s)
- Leilani Marty-Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|