1
|
Le Collen L, Froguel P, Bonnefond A. Towards the recognition of oligogenic forms of type 2 diabetes. Trends Endocrinol Metab 2025; 36:109-117. [PMID: 38955653 DOI: 10.1016/j.tem.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
The demarcation between monogenic and polygenic type 2 diabetes (T2D) is less distinct than previously believed. Notably, recent research has highlighted a new entity, that we suggest calling oligogenic forms of T2D, serving as a genetic link between these two forms. In this opinion article, we have reviewed scientific advances that suggest categorizing genes involved in oligogenic T2D. Research focused on polygenic T2D has faced challenges in deepening our comprehension of the pathophysiology of T2D due to the inability to directly establish causal links between a signal and the molecular mechanisms underlying the disease. However, the study of oligogenic forms of T2D has illuminated distinct causal connections between genes and disease risk, thereby indicating potential new drug targets.
Collapse
Affiliation(s)
- Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France
| | - Philippe Froguel
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London, UK
| | - Amélie Bonnefond
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
2
|
Baier LJ, Bogardus C. Effect of acute exercise in carriers of TBC1D4 mutation. Nat Metab 2024; 6:2213-2214. [PMID: 39482541 DOI: 10.1038/s42255-024-01116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Affiliation(s)
- Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA.
| |
Collapse
|
3
|
Yin W, Rajvanshi PK, Rogers HM, Yoshida T, Kopp JB, An X, Gassmann M, Noguchi CT. Erythropoietin regulates energy metabolism through EPO-EpoR-RUNX1 axis. Nat Commun 2024; 15:8114. [PMID: 39284834 PMCID: PMC11405798 DOI: 10.1038/s41467-024-52352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Erythropoietin (EPO) plays a key role in energy metabolism, with EPO receptor (EpoR) expression in white adipose tissue (WAT) mediating its metabolic activity. Here, we show that male mice lacking EpoR in adipose tissue exhibit increased fat mass and susceptibility to diet-induced obesity. Our findings indicate that EpoR is present in WAT, brown adipose tissue, and skeletal muscle. Elevated EPO in male mice improves glucose tolerance and insulin sensitivity while reducing expression of lipogenic-associated genes in WAT, which is linked to an increase in transcription factor RUNX1 that directly inhibits lipogenic genes expression. EPO treatment in wild-type male mice decreases fat mass and lipogenic gene expression and increase in RUNX1 protein in adipose tissue which is not observed in adipose tissue EpoR ablation mice. EPO treatment decreases WAT ubiquitin ligase FBXW7 expression and increases RUNX1 stability, providing evidence that EPO regulates energy metabolism in male mice through the EPO-EpoR-RUNX1 axis.
Collapse
Affiliation(s)
- Weiqin Yin
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Praveen Kumar Rajvanshi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Heather M Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Teruhiko Yoshida
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Jeffrey B Kopp
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA
| | - Max Gassmann
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
Marassi M, Morieri ML, Sanga V, Ceolotto G, Avogaro A, Fadini GP. The Elusive Nature of ABCC8-related Maturity-Onset Diabetes of the Young (ABCC8-MODY). A Review of the Literature and Case Discussion. Curr Diab Rep 2024; 24:197-206. [PMID: 38980630 PMCID: PMC11303576 DOI: 10.1007/s11892-024-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Maturity-onset diabetes of the young (MODY) are monogenic forms of diabetes resulting from genetic defects, usually transmitted in an autosomal dominant fashion, leading to β-cell dysfunction. Due to the lack of homogeneous clinical features and univocal diagnostic criteria, MODY is often misdiagnosed as type 1 or type 2 diabetes, hence its diagnosis relies mostly on genetic testing. Fourteen subtypes of MODY have been described to date. Here, we review ABCC8-MODY pathophysiology, genetic and clinical features, and current therapeutic options. RECENT FINDINGS ABCC8-MODY is caused by mutations in the adenosine triphosphate (ATP)-binding cassette transporter subfamily C member 8 (ABCC8) gene, involved in the regulation of insulin secretion. The complexity of ABCC8-MODY genetic picture is mirrored by a variety of clinical manifestations, encompassing a wide spectrum of disease severity. Such inconsistency of genotype-phenotype correlation has not been fully understood. A correct diagnosis is crucial for the choice of adequate treatment and outcome improvement. By targeting the defective gene product, sulfonylureas are the preferred medications in ABCC8-MODY, although efficacy vary substantially. We illustrate three case reports in whom a diagnosis of ABCC8-MODY was suspected after the identification of novel ABCC8 variants that turned out to be of unknown significance. We discuss that careful interpretation of genetic testing is needed even on the background of a suggestive clinical context. We highlight the need for further research to unravel ABCC8-MODY disease mechanisms, as well as to clarify the pathogenicity of identified ABCC8 variants and their influence on clinical presentation and response to therapy.
Collapse
Affiliation(s)
- Marella Marassi
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Mario Luca Morieri
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Viola Sanga
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Giulio Ceolotto
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Angelo Avogaro
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy.
- Veneto Institute of Molecular Medicine, Padua, 35100, Italy.
| |
Collapse
|
5
|
Li WX, Xu LL, Liu CF, Dong BZ, Wang YY. Analysis of an adult diabetes mellitus caused by a rare mutation of the gene: A case report. World J Clin Cases 2024; 12:3942-3949. [PMID: 38994305 PMCID: PMC11235441 DOI: 10.12998/wjcc.v12.i19.3942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND This study presents the clinical and genetic mutation characteristics of an unusual case of adult-onset diabetes mellitus occurring in adolescence, featuring a unique mutation in the peroxisome proliferator-activated receptor gamma (PPARG) gene. Data Access Statement: Research data supporting this publication are available from the NN repository at www.NNN.org/download/. CASE SUMMARY The methodology employed entailed meticulous collection of comprehensive clinical data from the probands and their respective family members. Additionally, high-throughput sequencing was conducted to analyze the PPARG genes of the patient, her siblings, and their offspring. The results of this investigation revealed that the patient initially exhibited elevated blood glucose levels during pregnancy, accompanied by insulin resistance and hypertriglyceridemia. Furthermore, these strains displayed increased susceptibility to diabetic kidney disease without any discernible aggregation patterns. The results from the gene detection process demonstrated a heterozygous mutation of guanine (G) at position 284 in the coding region of exon 2 of PPARG, which replaced the base adenine (A) (exon2c.284A>Gp.Tyr95Cys). This missense mutation resulted in the substitution of tyrosine with cysteine at the 95th position of the translated protein. Notably, both of her siblings harbored a nucleotide heterozygous variation at the same site, and both were diagnosed with diabetes. CONCLUSION The PPARG gene mutation, particularly the p.Tyr95Cys mutation, may represent a newly identified subtype of maturity-onset diabetes of the young. This subtype is characterized by insulin resistance and lipid metabolism disorders.
Collapse
Affiliation(s)
- Wen-Xuan Li
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Li-Li Xu
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Chuan-Feng Liu
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Bing-Zi Dong
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Yun-Yang Wang
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
6
|
Sun J, Wang Y, Fu H, Kang F, Song J, Xu M, Ning G, Wang J, Wang W, Wang Q. Mettl3-Mediated m6A Methylation Controls Pancreatic Bipotent Progenitor Fate and Islet Formation. Diabetes 2024; 73:237-249. [PMID: 37963393 DOI: 10.2337/db23-0360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
The important role of m6A RNA modification in β-cell function has been established; however, how it regulates pancreatic development and endocrine differentiation remains unknown. Here, we generated transgenic mice lacking RNA methyltransferase-like 3 (Mettl3) specifically in Pdx1+ pancreatic progenitor cells and found the mice with the mutation developed hyperglycemia and hypoinsulinemia at age 2 weeks, along with an atrophic pancreas, reduced islet mass, and abnormal increase in ductal formation. At embryonic day 15.5, Mettl3 deletion had caused a significant loss of Ngn3+ endocrine progenitor cells, which was accompanied by increased Sox9+ ductal precursor cells. We identified histone deacetylase 1 (Hdac1) as the critical direct m6A target in bipotent progenitors, the degeneration of which caused abnormal activation of the Wnt/Notch signaling pathway and blocked endocrine differentiation. This transformation could be manipulated in embryonic pancreatic culture in vitro through regulation of the Mettl3-Hdac1-Wnt/Notch signaling axis. Our finding that Mettl3 determines endocrine lineage by modulating Hdac1 activity during the transition of bipotent progenitors might help in the development of targeted endocrine cell protocols for diabetes treatment. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Fu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuyun Kang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxi Song
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Vazquez Arreola E, Knowler WC, Baier LJ, Hanson RL. Effects of the ABCC8 R1420H loss-of-function variant on beta-cell function, diabetes incidence, and retinopathy. BMJ Open Diabetes Res Care 2023; 11:e003700. [PMID: 38164708 PMCID: PMC10729258 DOI: 10.1136/bmjdrc-2023-003700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/11/2023] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION The ABCC8 gene regulates insulin secretion and plays a critical role in glucose homeostasis. The effects of an ABCC8 R1420H loss-of-function variant on beta-cell function, incidence of type 2 diabetes, and age-at-onset, prevalence, and progression of diabetes complications were assessed in a longitudinal study in American Indians. RESEARCH DESIGN AND METHODS We analyzed beta-cell function through the relationship between insulin secretion and insulin sensitivity in members of this population without diabetes aged ≥5 years using standard major axis regression. We used hierarchical logistic regression models to study cross-sectional associations with diabetes complications including increased albuminuria (albumin-to-creatinine ratio (ACR) ≥30 mg/g), severe albuminuria (ACR ≥300 mg/g), reduced estimated glomerular filtration rate (eGFR <60 mL/min/1.73 m2), and retinopathy. This study included 7675 individuals (254 variant carriers) previously genotyped for the R1420H with available phenotypic data and with a median follow-up time of 13.5 years (IQR 4.5-26.8). RESULTS Variant carriers had worse beta-cell function than non-carriers (p=0.0004; on average estimated secretion was 22% lower, in carriers), in children and adults, with no difference in insulin sensitivity (p=0.50). At any body mass index and age before 35 years, carriers had higher type 2 diabetes incidence. This variant did not associate with prevalence of increased albuminuria (OR 0.87, 95% CI 0.66 to 1.16), severe albuminuria (OR 0.96, 95% CI 0.55 to 1.68), or reduced eGFR (OR 0.44, 95% CI 0.18 to 1.06). By contrast, the variant significantly associated with higher retinopathy prevalence (OR 1.74, 95% CI 1.19 to 2.53) and this association was only partially mediated (<11%) by glycemia, duration of diabetes, risk factors of retinopathy, or insulin use. Retinopathy prevalence in carriers was higher regardless of diabetes presence. CONCLUSIONS The ABCC8 R1420H variant is associated with increased risks of diabetes and of retinopathy, which may be partially explained by higher glycemia levels and worse beta-cell function.
Collapse
Affiliation(s)
- Elsa Vazquez Arreola
- National Institute of Diabetes and Digestive and Kidney Diseases Phoenix Epidemiology and Clinical Research Branch, Phoenix, Arizona, USA
| | - William C Knowler
- National Institute of Diabetes and Digestive and Kidney Diseases Phoenix Epidemiology and Clinical Research Branch, Phoenix, Arizona, USA
| | - Leslie J Baier
- National Institute of Diabetes and Digestive and Kidney Diseases Phoenix Epidemiology and Clinical Research Branch, Phoenix, Arizona, USA
| | - Robert L Hanson
- National Institute of Diabetes and Digestive and Kidney Diseases Phoenix Epidemiology and Clinical Research Branch, Phoenix, Arizona, USA
| |
Collapse
|
8
|
Zou X, Hu M, Huang X, Zhou L, Li M, Chen J, Ma L, Gao X, Luo Y, Cai X, Li Y, Zhou X, Li N, Shi Y, Han X, Ji L. Rare Variant in Metallothionein 1E Increases the Risk of Type 2 Diabetes in a Chinese Population. Diabetes Care 2023; 46:2249-2257. [PMID: 37878528 DOI: 10.2337/dc22-2031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVE To uncover novel targets for the treatment of type 2 diabetes (T2D) by investigating rare variants with large effects in monogenic forms of the disease. RESEARCH DESIGN AND METHODS We performed whole-exome sequencing in a family with diabetes. We validated the identified gene using Sanger sequencing in additional families and diabetes- and community-based cohorts. Wild-type and variant gene transgenic mouse models were used to study the gene function. RESULTS Our analysis revealed a rare variant of the metallothionein 1E (MT1E) gene, p.C36Y, in a three-generation family with diabetes. This risk allele was associated with T2D or prediabetes in a community-based cohort. MT1E p.C36 carriers had higher HbA1c levels and greater BMI than those carrying the wild-type allele. Mice with forced expression of MT1E p.C36Y demonstrated increased weight gain, elevated postchallenge serum glucose and liver enzyme levels, and hepatic steatosis, similar to the phenotypes observed in human carriers of MT1E p.C36Y. In contrast, mice with forced expression of MT1E p.C36C displayed reduced weight and lower serum glucose and serum triglyceride levels. Forced expression of wild-type and variant MT1E demonstrated differential expression of genes related to lipid metabolism. CONCLUSIONS Our results suggest that MT1E could be a promising target for drug development, because forced expression of MT1E p.C36C stabilized glucose metabolism and reduced body weight, whereas MT1E p.C36Y expression had the opposite effect. These findings highlight the importance of considering the impact of rare variants in the development of new T2D treatments.
Collapse
Affiliation(s)
- Xiantong Zou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Mengdie Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuting Huang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Liping Ma
- Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Xueying Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yufeng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
- Department of Endocrinology, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Na Li
- Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuanping Shi
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| |
Collapse
|
9
|
Kamiar A, Alitter Q, Capcha JMC, Saad A, Webster KA, Shehadeh LA. Ascending aortic aneurysm and histopathology in Alport syndrome: a case report. BMC Nephrol 2023; 24:300. [PMID: 37828432 PMCID: PMC10568822 DOI: 10.1186/s12882-023-03345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Alport syndrome (AS) is caused by mutations in type IV collagen genes that typically target and compromise the integrity of basement membranes in kidney, ocular, and sensorineural cochlear tissues. Type IV and V collagens are also integral components of arterial walls, and whereas collagenopathies including AS are implicated in aortic disease, the incidence of aortic aneurysm in AS is unknown probably because of underreporting. Consequently, AS is not presently considered an independent risk factor for aortic aneurysm and more detailed case studies including histological evidence of basement membrane abnormalities are needed to determine such a possible linkage. CASE PRESENTATION Here, we present unique histopathological findings of an ascending aortic aneurysm collected at the time of surgery from an AS patient wherein hypertension was the only other known risk factor. CONCLUSIONS The studies reveal classical histological features of aortic aneurysm, including atheroma, lymphocytic infiltration, elastin disruption, and myxoid degeneration with probable AS association.
Collapse
Affiliation(s)
- Ali Kamiar
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Fl, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Qusai Alitter
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Jose M C Capcha
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Fl, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Ali Saad
- Departments of Pathology and Pediatrics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Keith A Webster
- Integene International Holdings, LLC, Miami, FL, United States
- Baylor College of Medicine, Houston, TX, United States
- Everglades BioPharma, Houston, TX, United States
| | - Lina A Shehadeh
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Fl, United States.
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
10
|
Wedekind LE, Mahajan A, Hsueh WC, Chen P, Olaiya MT, Kobes S, Sinha M, Baier LJ, Knowler WC, McCarthy MI, Hanson RL. The utility of a type 2 diabetes polygenic score in addition to clinical variables for prediction of type 2 diabetes incidence in birth, youth and adult cohorts in an Indigenous study population. Diabetologia 2023; 66:847-860. [PMID: 36862161 PMCID: PMC10036431 DOI: 10.1007/s00125-023-05870-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/29/2022] [Indexed: 03/03/2023]
Abstract
AIMS/HYPOTHESIS There is limited information on how polygenic scores (PSs), based on variants from genome-wide association studies (GWASs) of type 2 diabetes, add to clinical variables in predicting type 2 diabetes incidence, particularly in non-European-ancestry populations. METHODS For participants in a longitudinal study in an Indigenous population from the Southwestern USA with high type 2 diabetes prevalence, we analysed ten constructions of PS using publicly available GWAS summary statistics. Type 2 diabetes incidence was examined in three cohorts of individuals without diabetes at baseline. The adult cohort, 2333 participants followed from age ≥20 years, had 640 type 2 diabetes cases. The youth cohort included 2229 participants followed from age 5-19 years (228 cases). The birth cohort included 2894 participants followed from birth (438 cases). We assessed contributions of PSs and clinical variables in predicting type 2 diabetes incidence. RESULTS Of the ten PS constructions, a PS using 293 genome-wide significant variants from a large type 2 diabetes GWAS meta-analysis in European-ancestry populations performed best. In the adult cohort, the AUC of the receiver operating characteristic curve for clinical variables for prediction of incident type 2 diabetes was 0.728; with the PS, 0.735. The PS's HR was 1.27 per SD (p=1.6 × 10-8; 95% CI 1.17, 1.38). In youth, corresponding AUCs were 0.805 and 0.812, with HR 1.49 (p=4.3 × 10-8; 95% CI 1.29, 1.72). In the birth cohort, AUCs were 0.614 and 0.685, with HR 1.48 (p=2.8 × 10-16; 95% CI 1.35, 1.63). To further assess the potential impact of including PS for assessing individual risk, net reclassification improvement (NRI) was calculated: NRI for the PS was 0.270, 0.268 and 0.362 for adult, youth and birth cohorts, respectively. For comparison, NRI for HbA1c was 0.267 and 0.173 for adult and youth cohorts, respectively. In decision curve analyses across all cohorts, the net benefit of including the PS in addition to clinical variables was most pronounced at moderately stringent threshold probability values for instituting a preventive intervention. CONCLUSIONS/INTERPRETATION This study demonstrates that a European-derived PS contributes significantly to prediction of type 2 diabetes incidence in addition to information provided by clinical variables in this Indigenous study population. Discriminatory power of the PS was similar to that of other commonly measured clinical variables (e.g. HbA1c). Including type 2 diabetes PS in addition to clinical variables may be clinically beneficial for identifying individuals at higher risk for the disease, especially at younger ages.
Collapse
Affiliation(s)
- Lauren E Wedekind
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, San Francisco, CA, USA
| | - Wen-Chi Hsueh
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Peng Chen
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Muideen T Olaiya
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
- School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Madhumita Sinha
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, San Francisco, CA, USA
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Headington, UK
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| |
Collapse
|
11
|
Looker HC, Chang DC, Baier LJ, Hanson RL, Nelson RG. Diagnostic criteria and etiopathogenesis of type 2 diabetes and its complications: Lessons from the Pima Indians. Presse Med 2023; 52:104176. [PMID: 37783422 PMCID: PMC10805453 DOI: 10.1016/j.lpm.2023.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 07/19/2023] [Indexed: 10/04/2023] Open
Abstract
The Phoenix Epidemiology and Clinical Research Branch of the National Institute of Diabetes and Digestive and Kidney Diseases has conducted prospective studies of diabetes and its complications in the Pima Indians living in Arizona, USA for over 50 years. In this review we highlight areas in which these studies provided vital insights into the criteria used to diagnose type 2 diabetes, the pathophysiologic changes that accompany the development of type 2 diabetes, and the course and determinants of diabetes complications-focusing specifically on diabetic kidney disease. We include data from our longitudinal population-based study of diabetes and its complications, studies on the role of insulin resistance and insulin secretion in the pathophysiology of type 2 diabetes, and in-depth studies of diabetic kidney disease that include measures of glomerular function and research kidney biopsies. We also focus on the emerging health threat posed by youth-onset type 2 diabetes, which was first seen in the Pima Indians in the 1960s and is becoming an increasing issue worldwide.
Collapse
Affiliation(s)
- Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Douglas C Chang
- Obesity and Diabetes Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Leslie J Baier
- Diabetes Molecular Genetics Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Robert L Hanson
- Diabetes Genetic Epidemiology Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA.
| |
Collapse
|
12
|
Yorifuji T, Watanabe Y, Kitayama K, Yamada Y, Higuchi S, Mori J, Kato M, Takahashi T, Okuda T, Aoyama T. Targeted gene panel analysis of Japanese patients with maturity-onset diabetes of the young-like diabetes mellitus: Roles of inactivating variants in the ABCC8 and insulin resistance genes. J Diabetes Investig 2022; 14:387-403. [PMID: 36504295 PMCID: PMC9951579 DOI: 10.1111/jdi.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
AIMS/INTRODUCTION To investigate the genetic background of Japanese patients with suspected maturity-onset diabetes of the young (MODY). MATERIALS AND METHODS On 340 proband patients referred from across Japan, genomic variants were analyzed using a targeted multigene panel analysis combined with the multiplex ligation probe amplification (MLPA) analysis, mitochondrial m.3243A > G analysis and methylation-specific polymerase chain reaction of the imprinted 6q24 locus. Pathogenic/likely pathogenic variants were listed according to the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology criteria. Additionally, variants with a population frequency <0.001 and Combined Annotation Dependent Depletion score >20 (CS >20) were listed as rare variants of uncertain significance-CS >20. RESULTS A total of 157 pathogenic/likely pathogenic variants and 44 rare variants of uncertain significance-CS >20 were identified. In the pathogenic/likely pathogenic variants, alterations in the GCK gene were the most common (82, 52.2%) followed by HNF1A (29, 18.5%), HNF4A (13, 8.3%) and HNF1B (13, 8.3%). One patient was a 29.5% mosaic with a truncating INSR variant. In the rare variants of uncertain significance-CS >20, 20 (45.5%) were in the genes coding for the adenosine triphosphate-sensitive potassium channel, KCNJ11 or ABCC8, and four were in the genes of the insulin-signaling pathway, INSR and PIK3R1. Four variants in ABCC8 were previously reported in patients with congenital hyperinsulinism, suggesting the inactivating nature of these variants, and at least two of our patients had a history of congenital hyperinsulinism evolving into diabetes. In two patients with INSR or PIK3R1 variants, insulin resistance was evident at diagnosis. CONCLUSIONS Causative genomic variants could be identified in at least 46.2% of clinically suspected MODY patients. ABCC8-MODY with inactivating variants could represent a distinct category of MODY. Genes of insulin resistance should be included in the sequencing panel for MODY.
Collapse
Affiliation(s)
- Tohru Yorifuji
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan,Department of Genetic MedicineOsaka City General HospitalOsakaJapan,Clinical Research CenterOsaka City General HospitalOsakaJapan,2nd Department of Internal MedicineDate Red Cross HospitalDate, HokkaidoJapan
| | - Yoh Watanabe
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Kana Kitayama
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Yuki Yamada
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Shinji Higuchi
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Jun Mori
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Masaru Kato
- Department of Genetic MedicineOsaka City General HospitalOsakaJapan
| | - Toru Takahashi
- Department of Genetic MedicineOsaka City General HospitalOsakaJapan
| | - Tokuko Okuda
- Clinical Research CenterOsaka City General HospitalOsakaJapan
| | - Takane Aoyama
- Clinical Research CenterOsaka City General HospitalOsakaJapan
| |
Collapse
|
13
|
A novel splice-affecting HNF1A variant with large population impact on diabetes in Greenland. THE LANCET REGIONAL HEALTH. EUROPE 2022; 24:100529. [PMID: 36649380 PMCID: PMC9832271 DOI: 10.1016/j.lanepe.2022.100529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022]
Abstract
Background The genetic disease architecture of Inuit includes a large number of common high-impact variants. Identification of such variants contributes to our understanding of the genetic aetiology of diseases and improves global equity in genomic personalised medicine. We aimed to identify and characterise novel variants in genes associated with Maturity Onset Diabetes of the Young (MODY) in the Greenlandic population. Methods Using combined data from Greenlandic population cohorts of 4497 individuals, including 448 whole genome sequenced individuals, we screened 14 known MODY genes for previously identified and novel variants. We functionally characterised an identified novel variant and assessed its association with diabetes prevalence and cardiometabolic traits and population impact. Findings We identified a novel variant in the known MODY gene HNF1A with an allele frequency of 1.9% in the Greenlandic Inuit and absent elsewhere. Functional assays indicate that it prevents normal splicing of the gene. The variant caused lower 30-min insulin (β = -232 pmol/L, βSD = -0.695, P = 4.43 × 10-4) and higher 30-min glucose (β = 1.20 mmol/L, βSD = 0.441, P = 0.0271) during an oral glucose tolerance test. Furthermore, the variant was associated with type 2 diabetes (OR 4.35, P = 7.24 × 10-6) and HbA1c (β = 0.113 HbA1c%, βSD = 0.205, P = 7.84 × 10-3). The variant explained 2.5% of diabetes variance in Greenland. Interpretation The reported variant has the largest population impact of any previously reported variant within a MODY gene. Together with the recessive TBC1D4 variant, we show that close to 1 in 5 cases of diabetes (18%) in Greenland are associated with high-impact genetic variants compared to 1-3% in large populations. Funding Novo Nordisk Foundation, Independent Research Fund Denmark, and Karen Elise Jensen's Foundation.
Collapse
|
14
|
An LDLR missense variant poses high risk of familial hypercholesterolemia in 30% of Greenlanders and offers potential of early cardiovascular disease intervention. HGG ADVANCES 2022; 3:100118. [PMID: 36267056 PMCID: PMC9577620 DOI: 10.1016/j.xhgg.2022.100118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
The common Arctic-specific LDLR p.G137S variant was recently shown to be associated with elevated lipid levels. Motivated by this, we aimed to investigate the effect of p.G137S on metabolic health and cardiovascular disease risk among Greenlanders to quantify its impact on the population. In a population-based Greenlandic cohort (n = 5,063), we tested for associations between the p.G137S variant and metabolic health traits as well as cardiovascular disease risk based on registry data. In addition, we explored the variant’s impact on plasma NMR measured lipoprotein concentration and composition in another Greenlandic cohort (n = 1,629); 29.5% of the individuals in the cohort carried at least one copy of the p.G137S risk allele. Furthermore, 25.4% of the heterozygous and 54.7% of the homozygous carriers had high levels (>4.9 mmol/L) of serum LDL cholesterol, which is above the diagnostic level for familial hypercholesterolemia (FH). Moreover, p.G137S was associated with an overall atherosclerotic lipid profile, and increased risk of ischemic heart disease (HR [95% CI], 1.51 [1.18–1.92], p = 0.00096), peripheral artery disease (1.69 [1.01–2.82], p = 0.046), and coronary operations (1.78 [1.21–2.62], p = 0.0035). Due to its high frequency and large effect sizes, p.G137S has a marked population-level impact, increasing the risk of FH and cardiovascular disease for up to 30% of the Greenlandic population. Thus, p.G137S is a potential marker for early intervention in Arctic populations.
Collapse
|
15
|
Liu C, Lai Y, Guan T, Zhan J, Pei J, Wu D, Ying S, Shen Y. Associations of ATP-Sensitive Potassium Channel’s Gene Polymorphisms With Type 2 Diabetes and Related Cardiovascular Phenotypes. Front Cardiovasc Med 2022; 9:816847. [PMID: 35402560 PMCID: PMC8984103 DOI: 10.3389/fcvm.2022.816847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by increased levels of blood glucose but is increasingly recognized as a heterogeneous disease, especially its multiple discrete cardiovascular phenotypes. Genetic variations play key roles in the heterogeneity of diabetic cardiovascular phenotypes. This study investigates possible associations of ATP-sensitive potassium channel (KATP) variants with cardiovascular phenotypes among the Chinese patients with T2D. Six hundred thirty-six patients with T2D and 634 non-diabetic individuals were analyzed in the study. Nine KATP variants were determined by MassARRAY. The KATP rs2285676 (AA + GA, OR = 1.43, 95% CI: 1.13–1.81, P = 0.003), rs1799858 (CC, OR = 1.42, 95% CI: 1.12–1.78, P = 0.004), and rs141294036 (CC, OR = 1.45, 95% CI: 1.15–1.83, P = 0.002) are associated with increased T2D risk. A follow-up of at least 45.8-months (median) indicates further association between the 3 variants and risks of diabetic-related cardiovascular conditions. The associations are categorized as follows: new-onset/recurrent acute coronary syndrome (ACS) (rs2285676/AA + GA, HR = 1.37, 95% CI: 1.10–1.70, P = 0.005; rs141294036/TT + CT, HR = 1.59, 95% CI: 1.28–1.99, P < 0.001), new-onset stroke (rs1799858/CC, HR = 2.58, 95% CI: 1.22–5.43, P = 0.013; rs141294036/CC, HR = 2.30, 95% CI: 1.16–4.55, P = 0.017), new-onset of heart failure (HF) (rs1799858/TT + CT, HR = 2.78, 95% CI: 2.07–3.74, P < 0.001; rs141294036/TT + CT, HR = 1.45, 95% CI: 1.07–1.96, P = 0.015), and new-onset atrial fibrillation (AF) (rs1799858/TT + CT, HR = 2.05, 95% CI: 1.25–3.37, P = 0.004; rs141294036/CC, HR = 2.31, 95% CI: 1.40–3.82, P = 0.001). In particular, the CC genotype of rs1799858 (OR = 2.38, 95% CI: 1.11–5.10, P = 0.025) and rs141294036 (OR = 1.95, 95% CI: 1.04–3.66, P = 0.037) are only associated with the risk of ischemic stroke while its counterpart genotype (TT + CT) is associated with the risks of HF with preserved ejection fraction (HFpEF) (rs1799858, OR = 3.46, 95% CI: 2.31–5.18, P < 0.001) and HF with mildly reduced ejection fraction (HFmrEF) (rs141294036, OR = 2.74, 95% CI: 1.05–7.15, P = 0.039). Furthermore, the 3 variants are associated with increased risks of abnormal serum levels of triglyceride (TIRG) (≥ 1.70 mmol/L), low-density lipoprotein cholesterol (LDL-C) (≥ 1.40 mmol/L), apolipoprotein B (ApoB) (≥ 80 mg/dL), apolipoprotein A-I (ApoA-I) level (< 120 mg/dL), lipoprotein(a) Lp(a) (≥ 300 mg/dL) and high-sensitivity C-reactive protein (HsCRP) (≥ 3.0 mg/L) but exhibited heterogeneity (all P < 0.05). The KATP rs2285676, rs1799858, and rs141294036 are associated with increased risks of T2D and its related cardiovascular phenotypes (ACS, stroke, HF, and AF), but show heterogeneity. The 3 KATP variants may be promising markers for diabetic cardiovascular events favoring “genotype-phenotype” oriented prevention and treatment strategies.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Cheng Liu,
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junfang Zhan
- Department of Health Management Center, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jingxian Pei
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daihong Wu
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Songsong Ying
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Sun Y, Zhang M, Liu R, Wang J, Yang K, Wu Q, Yue W, Yin C. Protective Effect of Maternal First-Trimester Low Body Mass Index Against Macrosomia: A 10-Year Cross-Sectional Study. Front Endocrinol (Lausanne) 2022; 13:805636. [PMID: 35222271 PMCID: PMC8866317 DOI: 10.3389/fendo.2022.805636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/05/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE We aimed to assess whether maternal first-trimester low body mass index (BMI) has a protective effect against macrosomia. METHODS This was a cross-sectional study from January 1, 2011, to June 30, 2021, and 84,900 participants were included. The predictive performance of maternal first-trimester and parental pre-pregnancy BMI for macrosomia was assessed using the area under the receiver-operating characteristics curve (AUC). Multivariate logistic regression analyses were performed to evaluate the independent effect of maternal first-trimester low BMI on macrosomia. Interactions were investigated to evaluate the potential variation of the effect of first-trimester low BMI across different groups. Furthermore, interactions were also examined across groups determined by multiple factors jointly: a) gestational diabetes mellitus (GDM)/GDM history status, parity, and maternal age; and b) GDM/GDM history status, fetal sex, and season of delivery. RESULTS The proportion of macrosomia was 6.14% (5,215 of 84,900). Maternal first-trimester BMI showed the best discrimination of macrosomia (all Delong tests: P < 0.001). The protective effect of maternal first-trimester low BMI against macrosomia remained significant after adjusting for all confounders of this study [adjusted odds ratios (aOR) = 0.37, 95% CI: 0.32-0.43]. Maternal first-trimester low BMI was inversely associated with macrosomia, irrespective of parity, fetal sex, season of delivery, maternal age, and GDM/GDM history status. The protective effect was most pronounced among pregnant women without GDM/GDM history aged 25 to 29 years old, irrespective of parity (multipara: aOR = 0.32, 95% CI: 0.22-0.47; nullipara: aOR = 0.32, 95% CI: 0.24-0.43). In multipara with GDM/GDM history, the protective effect of low BMI was only observed in the 30- to 34-year-old group (aOR = 0.12, 95% CI: 0.02-0.86). For pregnant women without GDM/GDM history, the protective effect of maternal first-trimester low BMI against macrosomia was the weakest in infants born in winter, irrespective of fetal sex (female: aOR = 0.45, 95% CI: 0.29-0.69; male: aOR = 0.39, 95% CI: 0.28-0.55). CONCLUSION Maternal first-trimester low BMI was inversely associated with macrosomia, and the protective effect was most pronounced among 25- to 29-year-old pregnant women without GDM/GDM history and was only found among 30- to 34-year-old multipara with GDM/GDM history. The protective effect of maternal first-trimester low BMI against macrosomia was the weakest in winter among mothers without GDM/GDM history.
Collapse
Affiliation(s)
- Yongqing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Man Zhang
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ruixia Liu
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Qingqing Wu
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chenghong Yin, ; Wentao Yue, ; Qingqing Wu,
| | - Wentao Yue
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chenghong Yin, ; Wentao Yue, ; Qingqing Wu,
| | - Chenghong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Chenghong Yin, ; Wentao Yue, ; Qingqing Wu,
| |
Collapse
|
17
|
Wedekind LE, Mitchell CM, Andersen CC, Knowler WC, Hanson RL. Epidemiology of Type 2 Diabetes in Indigenous Communities in the United States. Curr Diab Rep 2021; 21:47. [PMID: 34807308 PMCID: PMC8665733 DOI: 10.1007/s11892-021-01406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW The present review focuses on the epidemiology of type 2 diabetes (T2D) in Indigenous communities in the continental United States (U.S.)-including disease prevention and management-and discusses special considerations in conducting research with Indigenous communities. RECENT FINDINGS Previous studies have reported the disparately high prevalence of diabetes, especially T2D, among Indigenous peoples in the U.S. The high prevalence and incidence of early-onset T2D in Indigenous youth relative to that of all youth in the U.S. population pose challenges to the prevention of complications of diabetes. Behavioral, dietary, lifestyle, and genetic factors associated with T2D in Indigenous communities are often investigated. More limited is the discussion of the historical and ongoing consequences of colonization and displacement that impact the aforementioned risk factors. Future research is necessary to assess community-specific needs with respect to diabetes prevention and management across the diversity of Indigenous communities in the U.S.
Collapse
Affiliation(s)
- Lauren E Wedekind
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Cassie M Mitchell
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
| | - Coley C Andersen
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA.
| |
Collapse
|
18
|
Pahl MC, Doege CA, Hodge KM, Littleton SH, Leonard ME, Lu S, Rausch R, Pippin JA, De Rosa MC, Basak A, Bradfield JP, Hammond RK, Boehm K, Berkowitz RI, Lasconi C, Su C, Chesi A, Johnson ME, Wells AD, Voight BF, Leibel RL, Cousminer DL, Grant SFA. Cis-regulatory architecture of human ESC-derived hypothalamic neuron differentiation aids in variant-to-gene mapping of relevant complex traits. Nat Commun 2021; 12:6749. [PMID: 34799566 PMCID: PMC8604959 DOI: 10.1038/s41467-021-27001-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
The hypothalamus regulates metabolic homeostasis by influencing behavior and endocrine systems. Given its role governing key traits, such as body weight and reproductive timing, understanding the genetic regulation of hypothalamic development and function could yield insights into disease pathogenesis. However, given its inaccessibility, studying human hypothalamic gene regulation has proven challenging. To address this gap, we generate a high-resolution chromatin architecture atlas of an established embryonic stem cell derived hypothalamic-like neuron model across three stages of in vitro differentiation. We profile accessible chromatin and identify physical contacts between gene promoters and putative cis-regulatory elements to characterize global regulatory landscape changes during hypothalamic differentiation. Next, we integrate these data with GWAS loci for various complex traits, identifying multiple candidate effector genes. Our results reveal common target genes for these traits, potentially affecting core developmental pathways. Our atlas will enable future efforts to determine hypothalamic mechanisms influencing disease susceptibility.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Claudia A Doege
- Department of Pathology, Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sheridan H Littleton
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Rick Rausch
- Department of Pediatrics, Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Maria Caterina De Rosa
- Department of Pediatrics, Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alisha Basak
- Department of Pediatrics, Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jonathan P Bradfield
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Reza K Hammond
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Robert I Berkowitz
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Chiara Lasconi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin F Voight
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics (Pediatrics) and the Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Diana L Cousminer
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- GSK, Human Genetics and Computational Biology, 1250 South Collegeville Road, Collegeville, PA, 19426, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Li M, Gong S, Han X, Zhang S, Ren Q, Cai X, Luo Y, Zhou L, Zhang R, Liu W, Zhu Y, Zhou X, Sun Y, Li Y, Ma Y, Ji L. Genetic variants of ABCC8 and phenotypic features in Chinese early onset diabetes. J Diabetes 2021; 13:542-553. [PMID: 33300273 DOI: 10.1111/1753-0407.13144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ABCC8 variants cause neonatal diabetes, maturity onset diabetes of the young (MODY), and hyperinsulinemic hypoglycemia because of activating or inactivating variants. In this study we used targeted exon sequencing to investigate genetic variants of ABCC8 and phenotypic features in Chinese patients with early onset diabetes (EOD). METHODS A cross-sectional study of 543 Chinese patients with EOD was recruited and the exons of them were conducted targeted sequencing. The pathogenicity of ABCC8 variants was defined according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guideline. The phenotypes of patients owing to ABCC8 variants (ABCC8-MODY) were characterized. RESULTS Among the 543 participants, eight (1.5%) patients with ABCC8-MODY were identified. They harbored eight missense ABCC8 variants (p.R306C, p.E1326K, and p.R1379H, previously reported; p.R298C, p.F1176C, p.R1221W, p.K1358R, and p.I1404V) classified as likely pathogenic. Two family members with ABCC8-MODY were also confirmed. The average diagnosed age of the 10 patients was 26.8 ± 12.9 years. The majority of them had unsatisfactory glucose control, 80% of them had diabetic kidney disease, and neurological features were not observed. CONCLUSION Using targeted exon sequencing followed by pathogenicity analysis, we could be able to make genetic diagnoses for eight (1.5%) patients with ABCC8-MODY. The phenotype was variable with higher risk of diabetic microvascular complications. Genetic diagnosis is conducive for facilitating the personalized treatment of ABCC8-MODY.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yanfang Sun
- Department of Internal Medicine, Hebei Province Sanhe Hospital, Langfang, China
| | - Yufeng Li
- Department of Endocrinology and Metabolism, Capital Medical University Pinggu Hospital, Beijing, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| |
Collapse
|
20
|
Ma Y, Luo Y, Gong S, Zhou X, Li Y, Liu W, Zhang S, Cai X, Ren Q, Zhou L, Zhang X, Wang Y, Huang X, Gao X, Hu M, Han X, Ji L. Low-Frequency Genetic Variant in the Hepatic Glucokinase Gene Is Associated With Type 2 Diabetes and Insulin Resistance in Chinese Population. Diabetes 2021; 70:809-816. [PMID: 33298402 DOI: 10.2337/db20-0564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022]
Abstract
Glucokinase (GCK) regulates insulin secretion and hepatic glucose metabolism, and its inactivating variants could cause diabetes. We aimed to evaluate the association of a low-frequency variant of GCK (rs13306393) with type 2 diabetes (T2D), prediabetes, or both (impaired glucose regulation [IGR]) in a Chinese population. An association study was first conducted in a random cluster sampling population (sample 1: 537 T2D, 768 prediabetes, and 1,912 control), and then another independent population (sample 2: 3,896 T2D, 2,301 prediabetes, and 868 control) was used to confirm the findings in sample 1. The A allele of rs13306393 was associated with T2D (odds ratio 3.08 [95% CI 1.77-5.36], P = 0.00007) in sample 1; rs13306393 was also associated with prediabetes (1.67 [1.05-2.65], P = 0.03) in sample 2. In a pooled analysis of the two samples, the A allele increased the risk of T2D (1.57 [1.15-2.15], P = 0.005), prediabetes (1.83 [1.33-2.54], P = 0.0003) or IGR (1.68 [1.26-2.25], P = 0.0004), insulin resistance estimated by HOMA (β = 0.043, P = 0.001), HbA1c (β = 0.029, P = 0.029), and urinary albumin excretion (β = 0.033, P = 0.025), irrespective of age, sex, and BMI. Thus, the Chinese-specific low-frequency variant increased the risk of T2D through reducing insulin sensitivity rather than islet β-cell function, which should be considered in the clinical use of GCK activators in the future.
Collapse
Affiliation(s)
- Yumin Ma
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Siqian Gong
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xianghai Zhou
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yufeng Li
- Departments of Endocrinology and Metabolism, Beijing Pinggu Hospital, Beijing, China
| | - Wei Liu
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Simin Zhang
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Qian Ren
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuying Zhang
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yanai Wang
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuting Huang
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueying Gao
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Mengdie Hu
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Departments of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| |
Collapse
|
21
|
Li M, Han X, Ji L. Clinical and Genetic Characteristics of ABCC8 Nonneonatal Diabetes Mellitus: A Systematic Review. J Diabetes Res 2021; 2021:9479268. [PMID: 34631896 PMCID: PMC8497126 DOI: 10.1155/2021/9479268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Diabetes mellitus (DM) is a major chronic metabolic disease in the world, and the prevalence has been increasing rapidly in recent years. The channel of KATP plays an important role in the regulation of insulin secretion. The variants in ABCC8 gene encoding the SUR1 subunit of KATP could cause a variety of phenotypes, including neonatal diabetes mellitus (ABCC8-NDM) and ABCC8-induced nonneonatal diabetes mellitus (ABCC8-NNDM). Since the features of ABCC8-NNDM have not been elucidated, this study is aimed at concluding the genetic features and clinical characteristics. METHODS We comprehensively reviewed the literature associated with ABCC8-NNDM in the following databases: MEDLINE, PubMed, and Web of Science to investigate the features of ABCC8-NNDM. RESULTS Based on a comprehensive literature search, we found that 87 probands with ABCC8-NNDM carried 71 ABCC8 genetic variant alleles, 24% of whom carried inactivating variants, 24% carried activating variants, and the remaining 52% carried activating or inactivating variants. Nine of these variants were confirmed to be activating or inactivating through functional studies, while four variants (p.R370S, p.E1506K, p.R1418H, and p.R1420H) were confirmed to be inactivating. The phenotypes of ABCC8-NNDM were variable and could also present with early hyperinsulinemia followed by reduced insulin secretion, progressing to diabetes later. They had a relatively high risk of microvascular complications and low prevalence of nervous disease, which is different from ABCC8-NDM. CONCLUSIONS Genetic testing is essential for proper diagnosis and appropriate treatment for patients with ABCC8-NNDM. And further studies are required to determine the complex mechanism of the variants of ABCC8-NNDM.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| |
Collapse
|
22
|
Tang C, Meng L, Zhang P, Liang X, Dang C, Liang H, Wu J, Lan H, Qin Y. Case Report: A Novel ABCC8 Variant in a Chinese Pedigree of Maturity-Onset Diabetes of the Young. Front Endocrinol (Lausanne) 2021; 12:758723. [PMID: 35002955 PMCID: PMC8734027 DOI: 10.3389/fendo.2021.758723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We aimed to analyze a novel ABCC8 variant of a Chinese patient with suspected maturity-onset diabetes of the young (MODY) and to provide evidence for precise diagnosis and appropriate treatment. METHOD A Chinese family with suspected MODY was recruited in this study, which included a 15-year-old female patient with diabetes. Clinical data and blood samples were collected from the proband and other family members. All of the living relatives were given an oral glucose tolerance test. Next-generation sequencing was performed to identify the mutated genes in the proband. Sanger sequencing was utilized to confirm the location of the pathogenic variant in all subjects. Further treatment was referred to targeted family members according to genetic testing. RESULTS The proband was found to have a random blood glucose level of 244.8 mg/dl and an HbA1c level of 9.2%. Before this investigation, her grandparents had been diagnosed with diabetes. The second uncle, two aunts, mother, and cousin of the proband were diagnosed with diabetes by abnormal HbA1C (6.5-12.1%) and fasting blood glucose (FBG, 91.4-189.7 mg/dl). The second aunt of the proband had impaired glucose homeostasis (HbA1C = 6.4% and FBG = 88.0 mg/dl). One novel missense variant c.1432G>A (p.A478T) in exon 9 of the ABCC8 gene was detected in the proband with suspected MODY. The variant was also found in six family members with diabetes or impaired glucose homeostasis, including her second uncle, two aunts, mother, and cousin. After the treatment was switched to glimepiride, the fasting blood glucose was adjusted to 99.54 mg/dl, the 2-h postprandial blood glucose was 153.54 mg/dl, serum fructosamine was 259 μmol/l, and HbA1c was 5.8%. The glycemic control remained optimal, and no hypoglycemic episodes were observed in the living relatives. CONCLUSION This study revealed one novel missense variant of the ABCC8 gene in Chinese families. The present findings indicated that the members of this family responded to treatment with sulfonylureas as previously seen in ABCC8 MODY.
Collapse
Affiliation(s)
- Chaoyan Tang
- Department of Endocrinology, The First People's Hospital of Yulin, Yulin, China
| | - Liheng Meng
- Department of Endocrinology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ping Zhang
- Department of Endocrinology, The First People's Hospital of Yulin, Yulin, China
| | - Xinghuan Liang
- Department of Endocrinology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chaozhi Dang
- Department of Endocrinology, The First People's Hospital of Yulin, Yulin, China
| | - Hui Liang
- Department of Endocrinology, The First People's Hospital of Yulin, Yulin, China
| | - Junfeng Wu
- Department of Endocrinology, The First People's Hospital of Yulin, Yulin, China
| | - Haiyun Lan
- Department of Endocrinology, The First People's Hospital of Yulin, Yulin, China
| | - Yingfen Qin
- Department of Endocrinology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Gong S, Han X, Li M, Cai X, Liu W, Luo Y, Zhang SM, Zhou L, Ma Y, Huang X, Li Y, Zhou X, Zhu Y, Wang Q, Chen L, Ren Q, Zhang P, Ji L. Genetics and Clinical Characteristics of PPARγ Variant-Induced Diabetes in a Chinese Han Population. Front Endocrinol (Lausanne) 2021; 12:677130. [PMID: 34764936 PMCID: PMC8576343 DOI: 10.3389/fendo.2021.677130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES PPARγ variants cause lipodystrophy, insulin resistance, and diabetes. This study aimed to determine the relationship between PPARγ genotypes and phenotypes and to explore the pathogenesis of diabetes beyond this relationship. METHODS PPARγ2 exons in 1,002 Chinese patients with early-onset type 2 diabetes (diagnosed before 40 years of age) were sequenced. The functions of variants were evaluated by in vitro assays. Additionally, a review of the literature was performed to obtain all reported cases with rare PPARγ2 variants to evaluate the characteristics of variants in different functional domains. RESULTS Six (0.6%) patients had PPARγ2 variant-induced diabetes (PPARG-DM) in the early-onset type 2 diabetes group, including three with the p.Tyr95Cys variant in activation function 1 domain (AF1), of which five patients (83%) had diabetic kidney disease (DKD). Functional experiments showed that p.Tyr95Cys suppresses 3T3-L1 preadipocyte differentiation. A total of 64 cases with damaging rare variants were reported previously. Patients with rare PPARγ2 variants in AF1 of PPARγ2 had a lower risk of lipodystrophy and a higher rate of obesity than those with variants in other domains, as confirmed in patients identified in this study. CONCLUSION The prevalence of PPARG-DM is similar in Caucasian and Chinese populations, and DKD was often observed in these patients. Patients with variants in the AF1 of PPARγ2 had milder clinical phenotypes and lack typical lipodystrophy features than those with variants in other domains. Our findings emphasize the importance of screening such patients via genetic testing and suggest that thiazolidinediones might be a good choice for these patients.
Collapse
Affiliation(s)
- Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
- *Correspondence: Linong Ji, ; Xueyao Han,
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Si-min Zhang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuting Huang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Yufeng Li
- Department of Endocrinology, Beijing Pinggu District Hospital, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Qiuping Wang
- Department of Endocrinology, Beijing Liangxiang Hospital, Beijing, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Ping Zhang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
- *Correspondence: Linong Ji, ; Xueyao Han,
| |
Collapse
|
24
|
Bonnefond A, Boissel M, Bolze A, Durand E, Toussaint B, Vaillant E, Gaget S, Graeve FD, Dechaume A, Allegaert F, Guilcher DL, Yengo L, Dhennin V, Borys JM, Lu JT, Cirulli ET, Elhanan G, Roussel R, Balkau B, Marre M, Franc S, Charpentier G, Vaxillaire M, Canouil M, Washington NL, Grzymski JJ, Froguel P. Pathogenic variants in actionable MODY genes are associated with type 2 diabetes. Nat Metab 2020; 2:1126-1134. [PMID: 33046911 DOI: 10.1038/s42255-020-00294-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies have identified 240 independent loci associated with type 2 diabetes (T2D) risk, but this knowledge has not advanced precision medicine. In contrast, the genetic diagnosis of monogenic forms of diabetes (including maturity-onset diabetes of the young (MODY)) are textbook cases of genomic medicine. Recent studies trying to bridge the gap between monogenic diabetes and T2D have been inconclusive. Here, we show a significant burden of pathogenic variants in genes linked with monogenic diabetes among people with common T2D, particularly in actionable MODY genes, thus implying that there should be a substantial change in care for carriers with T2D. We show that, among 74,629 individuals, this burden is probably driven by the pathogenic variants found in GCK, and to a lesser extent in HNF4A, KCNJ11, HNF1B and ABCC8. The carriers with T2D are leaner, which evidences a functional metabolic effect of these mutations. Pathogenic variants in actionable MODY genes are more frequent than was previously expected in common T2D. These results open avenues for future interventions assessing the clinical interest of these pathogenic mutations in precision medicine.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| | - Mathilde Boissel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | | | - Emmanuelle Durand
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Bénédicte Toussaint
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Stefan Gaget
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Franck De Graeve
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Aurélie Dechaume
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Frédéric Allegaert
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - David Le Guilcher
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Loïc Yengo
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Australia
| | - Véronique Dhennin
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | | | | | | | - Gai Elhanan
- Desert Research Institute, Reno, NV, USA
- Renown Institute of Health Innovation, Reno, NV, USA
| | - Ronan Roussel
- Department of Diabetology Endocrinology Nutrition, Hôpital Bichat, DHU FIRE, Assistance Publique Hôpitaux de Paris, Paris, France
- Inserm U1138, Centre de Recherche des Cordeliers, Paris, France
- UFR de Médecine, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Beverley Balkau
- Inserm U1018, Institut Gustave Roussy, Center for Research in Epidemiology and Population Health, Villejuif, France
- University Paris-Saclay, University Paris-Sud, Villejuif, France
| | - Michel Marre
- Inserm U1138, Centre de Recherche des Cordeliers, Paris, France
- CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Sylvia Franc
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
- Department of Diabetes, Sud-Francilien Hospital, University Paris-Sud, Orsay, Corbeil-Essonnes, France
| | - Guillaume Charpentier
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
| | - Martine Vaxillaire
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Mickaël Canouil
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | | | - Joseph J Grzymski
- Desert Research Institute, Reno, NV, USA
- Renown Institute of Health Innovation, Reno, NV, USA
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| |
Collapse
|
25
|
Kim HI, Ye B, Gosalia N, Köroğlu Ç, Hanson RL, Hsueh WC, Knowler WC, Baier LJ, Bogardus C, Shuldiner AR, Van Hout CV, Van Hout CV. Characterization of Exome Variants and Their Metabolic Impact in 6,716 American Indians from the Southwest US. Am J Hum Genet 2020; 107:251-264. [PMID: 32640185 DOI: 10.1016/j.ajhg.2020.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
Applying exome sequencing to populations with unique genetic architecture has the potential to reveal novel genes and variants associated with traits and diseases. We sequenced and analyzed the exomes of 6,716 individuals from a Southwestern American Indian (SWAI) population with well-characterized metabolic traits. We found that the SWAI population has distinct allelic architecture compared to populations of European and East Asian ancestry, and there were many predicted loss-of-function (pLOF) and nonsynonymous variants that were highly enriched or private in the SWAI population. We used pLOF and nonsynonymous variants in the SWAI population to evaluate gene-burden associations of candidate genes from European genome-wide association studies (GWASs) for type 2 diabetes, body mass index, and four major plasma lipids. We found 19 significant gene-burden associations for 11 genes, providing additional evidence for prioritizing candidate effector genes of GWAS signals. Interestingly, these associations were mainly driven by pLOF and nonsynonymous variants that are unique or highly enriched in the SWAI population. Particularly, we found four pLOF or nonsynonymous variants in APOB, APOE, PCSK9, and TM6SF2 that are private or enriched in the SWAI population and associated with low-density lipoprotein (LDL) cholesterol levels. Their large estimated effects on LDL cholesterol levels suggest strong impacts on protein function and potential clinical implications of these variants in cardiovascular health. In summary, our study illustrates the utility and potential of exome sequencing in genetically unique populations, such as the SWAI population, to prioritize candidate effector genes within GWAS loci and to find additional variants in known disease genes with potential clinical impact.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cristopher V Van Hout
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA.
| |
Collapse
|
26
|
Kadayifci FZ, Haggard S, Jeon S, Ranard K, Tao D, Pan YX. Early-life Programming of Type 2 Diabetes Mellitus: Understanding the Association between Epigenetics/Genetics and Environmental Factors. Curr Genomics 2020; 20:453-463. [PMID: 32477001 PMCID: PMC7235385 DOI: 10.2174/1389202920666191009110724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022] Open
Abstract
Type 2 Diabetes Mellitus is an increasing public health problem that poses a severe social and economic burden affecting both developed and developing countries. Defects in insulin signaling itself are among the earliest indications that an individual is predisposed to the development of insulin resistance and subsequently Type 2 Diabetes Mellitus. To date, however, the underlying molecular mechanisms which result in resistance to the actions of insulin are poorly understood. Furthermore, it has been shown that maternal obesity is associated with an increased risk of obesity and insulin resistance in the offspring. However, the genetic and/or epigenetic modifications within insulin-sensitive tissues such as the liver and skeletal muscle, which contribute to the insulin-resistant phenotype, still remain unknown. More importantly, a lack of in-depth understanding of how the early life environment can have long-lasting effects on health and increased risk of Type 2 Diabetes Mellitus in adulthood poses a major limitation to such efforts. The focus of the current review is thus to discuss recent experimental and human evidence of an epigenetic component associated with components of nutritional programming of Type 2 Diabetes Mellitus, including altered feeding behavior, adipose tissue, and pancreatic beta-cell dysfunction, and transgenerational risk transmission.
Collapse
Affiliation(s)
- Fatma Z Kadayifci
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sage Haggard
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sookyoung Jeon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katie Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dandan Tao
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
27
|
Kong X, Xing X, Zhang X, Hong J, Yang W. Early-onset type 2 diabetes is associated with genetic variants of β-cell function in the Chinese Han population. Diabetes Metab Res Rev 2020; 36:e3214. [PMID: 31465628 DOI: 10.1002/dmrr.3214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/24/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the genetic factors contributing to early-onset type 2 diabetes (EOD) in the Chinese Hans populations. MATERIALS AND METHODS For 2734 newly diagnosed type 2 diabetes patients and 4041 normal glycemic controls, 25 single nucleotide polymorphisms from 24 genomic loci linked to diabetes were successfully genotyped. Three genetic risk scores (GRSs) were constructed, including the weighted type 2 diabetes-related GRS (wT-GRS), the weighted β-cell function-related GRS (wB-GRS), and the weighted GRS constructed by risk alleles not related to β-cell function (wNB-GRS). For patients with diabetes, EOD, middle-age-onset type 2 diabetes (MOD), and late-onset type 2 diabetes (LOD) were defined by onset ages ≤40, 40 to 60, and ≥60 years, respectively. RESULTS From single marker analysis, different gene profiles were identified between EOD and LOD patients. EOD patients had greater wT-GRS and wB-GRS values than LOD patients. After adjustment for sex, elevated wT-GRS and wB-GRS values were significantly associated with an increased risk for EOD by 1.11- and 1.21-fold per allele (P = 1.69 × 10-7 ; 6.07 × 10-8 ). The wT-GRS and wNB-GRS were nominally related to an increased risk of LOD by 1.03-fold per allele (P = 1.03 × 10-2 , 1.78 × 10-2 ). In patients with diabetes, higher wT-GRS and wB-GRS were associated with younger onset age [wT-GRS: β (SE) = -0.0033(0.0016), P = 3.74 × 10-2 ; wB-GRS: -0.0076(0.0028), 7.45 × 10-3 ] and decreased insulinogenic index [wT-GRS: -0.0384(0.0098), 9.39 × 10-5 ; wB-GRS: -0.0722(0.0176), 4.21 × 10-5 ]. CONCLUSION Our findings indicate a strong genetic predisposition for EOD, which can be mainly attributed to genetic variants linked to β-cell function, suggesting the β-cell dysfunction plays a key role in the pathogenesis of EOD in Chinese Han individuals.
Collapse
Affiliation(s)
- Xiaomu Kong
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyan Xing
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Xuelian Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Hong
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Wenying Yang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
28
|
Abstract
Precision medicine is a new health care concept intended to hasten progress toward individualized treatment and, in so doing, to improve everyone's opportunity to enjoy good health. Yet, this concept pays scant attention to opportunities for change in the social determinants that are the major drivers of health. Precision medicine research is likely to generate improvements in medical care but may have the unintended consequence of worsening existing disparities in health care access. For prevention, precision medicine emphasizes comprehensive risk prediction and individual efforts to accomplish risk reduction. The application of the precision medicine vision to type 2 diabetes, a growing threat to population health, fails to acknowledge collective responsibility for a health-promoting society.
Collapse
Affiliation(s)
- Wylie Burke
- Department of Bioethics and Humanities, University of Washington, Seattle, WA
| | | | - David Schenck
- Ethics Program, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
29
|
Mao X, He Z, Zhou F, Huang Y, Zhu G. Prognostic significance and molecular mechanisms of adenosine triphosphate-binding cassette subfamily C members in gastric cancer. Medicine (Baltimore) 2019; 98:e18347. [PMID: 31852133 PMCID: PMC6922578 DOI: 10.1097/md.0000000000018347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the major leading causes of tumor-related deaths worldwide. Adenosine triphosphate-binding cassette subfamily C (ABCC) consists of 13 members, ABCC1 to 13, which were examined for their associations with GC.The online Kaplan-Meier Plotter database was used to determine the prognostic significance of ABCC subfamily members in GC. Stratified analyses were performed using gender, disease stage, degree of tumor differentiation, expression of human epidermal growth factor receptor 2 (HER2), and Lauren classification. Molecular mechanisms were examined using the database for annotation, visualization, and integrated discovery database.ABCC1, ABCC3, ABCC7, ABCC8, ABCC9, and ABCC10 expression showed prognostic significance in the whole population and in male and female subpopulations (all P ≤ .05). Furthermore, high expression of most ABCC family members always suggested a poor prognosis, except for ABCC7 (P > .05). Stratified analyses revealed that ABCC1, ABCC3, ABCC7, ABCC8, ABCC9, and ABCC10 expression showed prognostic significance for the whole population, as well as male and female populations. ABCC2 and ABCC9 were significantly correlated with all disease stages, while ABCC2 and ABCC6 were significantly correlated with all Lauren classifications. Expression of ABCC1, ABCC3, ABCC5, ABCC7, ABCC8, ABCC9, and ABCC10 was significantly correlated with either negative or positive of HER2 status (all P ≤ .05). Enrichment analysis indicated that these genes were involved in ATPase activity, transmembrane transport, or were ABC transporters (all P ≤ .05).ABCC1, ABCC3, ABCC7, ABCC8, ABCC9, and ABCC10 may be potential prognosis biomarkers for GC, acting as ABC transporters and via ATPase activity.
Collapse
Affiliation(s)
- Xianshuang Mao
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Zhenhua He
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Fengsheng Zhou
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Yongchu Huang
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
30
|
Horwood PF, Tarantola A, Goarant C, Matsui M, Klement E, Umezaki M, Navarro S, Greenhill AR. Health Challenges of the Pacific Region: Insights From History, Geography, Social Determinants, Genetics, and the Microbiome. Front Immunol 2019; 10:2184. [PMID: 31572391 PMCID: PMC6753857 DOI: 10.3389/fimmu.2019.02184] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
The Pacific region, also referred to as Oceania, is a geographically widespread region populated by people of diverse cultures and ethnicities. Indigenous people in the region (Melanesians, Polynesians, Micronesians, Papuans, and Indigenous Australians) are over-represented on national, regional, and global scales for the burden of infectious and non-communicable diseases. Although social and environmental factors such as poverty, education, and access to health-care are assumed to be major drivers of this disease burden, there is also developing evidence that genetic and microbiotic factors should also be considered. To date, studies investigating genetic and/or microbiotic links with vulnerabilities to infectious and non-communicable diseases have mostly focused on populations in Europe, Asia, and USA, with uncertain associations for other populations such as indigenous communities in Oceania. Recent developments in personalized medicine have shown that identifying ethnicity-linked genetic vulnerabilities can be important for medical management. Although our understanding of the impacts of the gut microbiome on health is still in the early stages, it is likely that equivalent vulnerabilities will also be identified through the interaction between gut microbiome composition and function with pathogens and the host immune system. As rapid economic, dietary, and cultural changes occur throughout Oceania it becomes increasingly important that further research is conducted within indigenous populations to address the double burden of high rates of infectious diseases and rapidly rising non-communicable diseases so that comprehensive development goals can be planned. In this article, we review the current knowledge on the impact of nutrition, genetics, and the gut microbiome on infectious diseases in indigenous people of the Pacific region.
Collapse
Affiliation(s)
- Paul F. Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | | | - Cyrille Goarant
- Institut Pasteur de Nouvelle-Calédonie, Noumea, New Caledonia
| | - Mariko Matsui
- Institut Pasteur de Nouvelle-Calédonie, Noumea, New Caledonia
| | - Elise Klement
- Institut Pasteur de Nouvelle-Calédonie, Noumea, New Caledonia
- Internal Medicine and Infectious Diseases Department, Centre Hospitalier Territorial, Noumea, New Caledonia
| | - Masahiro Umezaki
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Severine Navarro
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Andrew R. Greenhill
- School of Health and Life Sciences, Federation University Australia, Churchill, VIC, Australia
| |
Collapse
|
31
|
Olaiya MT, Wedekind LE, Hanson RL, Sinha M, Kobes S, Nelson RG, Baier LJ, Knowler WC. Birthweight and early-onset type 2 diabetes in American Indians: differential effects in adolescents and young adults and additive effects of genotype, BMI and maternal diabetes. Diabetologia 2019; 62:1628-1637. [PMID: 31111170 PMCID: PMC6679754 DOI: 10.1007/s00125-019-4899-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS The aim of this work was to estimate the impact of birthweight on early-onset (age <40 years) type 2 diabetes. METHODS A longitudinal study of American Indians, aged ≥5 years, was conducted from 1965 to 2007. Participants who had a recorded birthweight were followed until they developed diabetes or their last examination before the age of 40 years, whichever came first. Age- and sex-adjusted diabetes incidence rates were computed and Poisson regression was used to model the effect of birthweight on diabetes incidence, adjusted for sex, BMI, a type 2 diabetes susceptibility genetic risk score (GRS) and maternal covariates. RESULTS Among 3039 participants, there were 652 incident diabetes cases over a median follow-up of 14.3 years. Diabetes incidence increased with age and was greater in the lowest and highest quintiles of birthweight. Adjusted for covariates, the effect of birthweight on diabetes varied over time, with a non-linear effect at 10-19 years (p < 0.001) and a negative linear effect at older age intervals (20-29 years, p < 0.001; 30-39 years, p = 0.003). Higher GRS, greater BMI and maternal diabetes had additive but not interactive effects on the association between birthweight and diabetes incidence. CONCLUSIONS/INTERPRETATION In this high-risk population, both low and high birthweights were associated with increased type 2 diabetes risk in adolescence (age 10-19 years) but only low birthweight was associated with increased risk in young adulthood (20-39 years). Higher type 2 diabetes GRS, greater BMI and maternal diabetes added to the risk of early-onset diabetes.
Collapse
Affiliation(s)
- Muideen T Olaiya
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA.
| | - Lauren E Wedekind
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
| | - Madhumita Sinha
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
| | - Robert G Nelson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
| |
Collapse
|
32
|
Pedersen ML. Diabetes care in the dispersed population of Greenland. A new model based on continued monitoring, analysis and adjustment of initiatives taken. Int J Circumpolar Health 2019; 78:1709257. [PMID: 31996108 PMCID: PMC7034430 DOI: 10.1080/22423982.2019.1709257] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes used to be a rare condition among Inuit in Greenland. However, research in recent decades has shown a high prevalence of undiagnosed diabetes. Addressing diabetes in the geographically dispersed population of Greenland presents a challenge to the health care system. In 2008, a new model of diabetes care was introduced in Greenland that included continual monitoring, analysis, and adjustment of initiatives taken. The overall aim of this review was to review the feasibility of the monitoring of an ongoing national diabetes care programme. After ten years of observation it was clear that monitoring of such a programme based on information in electronic medical records in Greenland was feasible. It was found that the majority of the population in Greenland was in contact with the health care system. Increased diagnostic activity resulted in an increased prevalence of diagnosed diabetes. The quality of diabetes care in Greenland and the testing effectiveness of gestational diabetes were improved. Microvascular complications were frequently observed among Greenlandic diabetic patients, except for retinopathy that was as an exception. In summary, this model may improve diabetes care and potentially care for other chronic conditions in Greenland, and may also be helpful in other remote settings where chronic disease care is difficult.Abbreviations: AD: Anno Domini; ADA: American Diabetes Association; BC: Before Christ; BMI: Body Mass Index; BP: Blood Pressure; CWB: Capillary Whole Blood; EMR: Electronic Medical Record; EASD: European Association for Study of Diabetes; GA: Gestational Age; GDM: Gestational Diabetes Mellitus; FIGO: The International Federation of Gynaecology and Obstetrics; HbA1c: Glycosylated haemoglobin; IDF: International Diabetes Federation; LDL: Low density lipoprotein; NDQIA: National Diabetes Quality Improvement Alliancel; NICE: National Institute for Health and Care Excellence; OECD: Organisation for Economic Co-operation and Development; OGTT: Oral Glucose Tolerance Test; QIH: Queen Ingrid Hospital; RCT: Randomised Controlled Tria;l T1D: Type 1 Diabetes; T2D: Type 2 Diabetes; UACR: Urine Albumin Creatinine Ratio; WHO: World Health Organisation.
Collapse
Affiliation(s)
- Michael Lynge Pedersen
- Greenland Center for Health Research, Institute Nursing and Health Science, University of Greenland, Nuuk, Greenland
| |
Collapse
|
33
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
34
|
Rego S, Dagan-Rosenfeld O, Zhou W, Sailani MR, Limcaoco P, Colbert E, Avina M, Wheeler J, Craig C, Salins D, Röst HL, Dunn J, McLaughlin T, Steinmetz LM, Bernstein JA, Snyder MP. High-frequency actionable pathogenic exome variants in an average-risk cohort. Cold Spring Harb Mol Case Stud 2018; 4:a003178. [PMID: 30487145 PMCID: PMC6318774 DOI: 10.1101/mcs.a003178] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Exome sequencing is increasingly utilized in both clinical and nonclinical settings, but little is known about its utility in healthy individuals. Most previous studies on this topic have examined a small subset of genes known to be implicated in human disease and/or have used automated pipelines to assess pathogenicity of known variants. To determine the frequency of both medically actionable and nonactionable but medically relevant exome findings in the general population we assessed the exomes of 70 participants who have been extensively characterized over the past several years as part of a longitudinal integrated multiomics profiling study. We analyzed exomes by identifying rare likely pathogenic and pathogenic variants in genes associated with Mendelian disease in the Online Mendelian Inheritance in Man (OMIM) database. We then used American College of Medical Genetics (ACMG) guidelines for the classification of rare sequence variants. Additionally, we assessed pharmacogenetic variants. Twelve out of 70 (17%) participants had medically actionable findings in Mendelian disease genes. Five had phenotypes or family histories associated with their genetic variants. The frequency of actionable variants is higher than that reported in most previous studies and suggests added benefit from utilizing expanded gene lists and manual curation to assess actionable findings. A total of 63 participants (90%) had additional nonactionable findings, including 60 who were found to be carriers for recessive diseases and 21 who have increased Alzheimer's disease risk because of heterozygous or homozygous APOE e4 alleles (18 participants had both). Our results suggest that exome sequencing may have considerably more utility for health management in the general population than previously thought.
Collapse
Affiliation(s)
- Shannon Rego
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Orit Dagan-Rosenfeld
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - M Reza Sailani
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Patricia Limcaoco
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Elizabeth Colbert
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Monika Avina
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jessica Wheeler
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Colleen Craig
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Denis Salins
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hannes L Röst
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jessilyn Dunn
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- Mobilize Center, Stanford University, Stanford, California 94305, USA
| | - Tracey McLaughlin
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lars M Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, California 94304, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
35
|
Andersen MK, Hansen T. Genetics of metabolic traits in Greenlanders: lessons from an isolated population. J Intern Med 2018; 284:464-477. [PMID: 30101502 DOI: 10.1111/joim.12814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, we describe the extraordinary population of Greenland, which differs from large outbred populations of Europe and Asia, both in terms of population history and living conditions. Many years in isolation, small population size and an extreme environment have shaped the genetic composition of the Greenlandic population. The unique genetic background combined with the transition from a traditional Inuit lifestyle and diet, to a more Westernized lifestyle, has led to an increase in the prevalence of metabolic conditions like obesity, where the prevalence from 1993 to 2010 has increased from 16.4% to 19.4% among men, and from 13.0% to 25.4% among women, type 2 diabetes and cardiovascular diseases. The genetic susceptibility to metabolic conditions has been explored in Greenlanders, as well as other isolated populations, taking advantage of population-genetic properties of these populations. During the last 10 years, these studies have provided examples of loci showing evidence of positive selection, due to adaption to Arctic climate and Inuit diet, including TBC1D4 and FADS/CPT1A, and have facilitated the discovery of several loci associated with metabolic phenotypes. Most recently, the c.2433-1G>A loss-of-function variant in ADCY3 associated with obesity and type 2 diabetes was described. This locus has provided novel biological insights, as it has been shown that reduced ADCY3 function causes obesity through disrupted function in primary cilia. Future studies of isolated populations will likely provide further genetic as well as biological insights.
Collapse
Affiliation(s)
- M K Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Andersen MK, Grarup N, Moltke I, Albrechtsen A, Hansen T. Genetic architecture of obesity and related metabolic traits — recent insights from isolated populations. Curr Opin Genet Dev 2018; 50:74-78. [DOI: 10.1016/j.gde.2018.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/11/2018] [Accepted: 02/15/2018] [Indexed: 12/29/2022]
|
37
|
Heinitz S, Piaggi P, Bogardus C, Krakoff J. Decline in the acute insulin response in relationship to plasma glucose concentrations. Diabetes Metab Res Rev 2018; 34. [PMID: 28948712 DOI: 10.1002/dmrr.2953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/11/2017] [Accepted: 09/19/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND To investigate (1) whether the decline in acute insulin response (AIR) precedes or coincides with defined glucose regulation categories and whether acute insulin response decline varies by race and adiposity, (2) linearity of the relationship between acute insulin response and increasing plasma glucose concentrations, (3) longitudinal changes in acute insulin response accounting for changes in insulin action across categories of glucose tolerance. METHODS Clinical cross-sectional and longitudinal study of nondiabetic subjects. Inpatient assessment of oral glucose tolerance (2-h PG, fasting PG), and acute insulin response (intravenous glucose tolerance test) in 326 and 84 Native Americans of full and ≤6/8th Southwestern heritage, respectively, and 115 Whites. Linearity of acute insulin response vs plasma glucose concentrations investigated using spline analyses. Follow-up (average = 2.07 years) glucose tolerance, acute insulin response, and insulin action (hyperinsulinemic-euglycemic clamp) assessed in 230 full Native Americans. RESULTS In certain groups, the relationship between acute insulin response and increasing plasma glucose levels was non-linear. In all groups, acute insulin response decline preceded the cut-offs for traditional glucose regulation categories, although the timing with respect to increasing plasma glucose varied by race and adiposity. Longitudinal data indicated that improvement in insulin action is the key factor to preserve insulin secretion, underlying the reversion of glucose tolerance in prediabetic individuals. CONCLUSIONS With worsening insulin action, the decline in insulin secretion occurred prior to current diagnostic guidelines for impaired glucose regulation. However, the relationship between acute insulin response and increasing plasma glucose varies and was not always non-linear. Understanding the dynamics of this relationship may determine when to initiate preventive pharmacotherapy directed at the preservation of β-cell failure.
Collapse
Affiliation(s)
- Sascha Heinitz
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Clifton Bogardus
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| |
Collapse
|
38
|
Nair AK, Sutherland JR, Traurig M, Piaggi P, Chen P, Kobes S, Hanson RL, Bogardus C, Baier LJ. Functional and association analysis of an Amerindian-derived population-specific p.(Thr280Met) variant in RBPJL, a component of the PTF1 complex. Eur J Hum Genet 2018; 26:238-246. [PMID: 29302047 PMCID: PMC5839029 DOI: 10.1038/s41431-017-0062-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/13/2017] [Accepted: 11/18/2017] [Indexed: 02/08/2023] Open
Abstract
PTF1 complex is critical for pancreatic development and maintenance of adult exocrine pancreas. As a part of our ongoing studies to identify genetic variation that contributes to type 2 diabetes (T2D) in American Indians, we analyzed variation in genes that form this complex, namely PTF1A, RBPJ, and its paralogue RBPJL. A c.839C>T (p.(Thr280Met)) variant (rs200998587:C>T, risk allele frequency = 0.03) in RBPJL, identified only in Amerindian-derived populations, associated with T2D (OR = 1.60[1.21-2.13] per Met allele, P = 0.001) and age of diabetes onset (HR = 1.40[1.14-1.72], P = 0.001). Knockdown of Rbpjl in mouse pancreatic acinar cells resulted in a significant decrease in the mRNA expression of genes encoding exocrine enzymes including Ctrb. CTRB1/2 is an established T2D locus where the protective allele associates with increased GLP-1-stimulated insulin secretion and higher expression of CTRB1/2. In vitro studies show that cells expressing the Met280 allele had lower RBPJL protein levels than cells expressing the Thr280 allele, despite having comparable levels of RNA, suggesting that the Met280 RBPJL is less stable. Additionally, luciferase assays in HEK293 cells which examined two different RBPJL responsive promoters, including the promoter for CTRB1, also identified reduced transactivation by the Met280 RBPJL. Similarly, overexpression of both Met280 and Thr280 RBPJL in mouse pancreatic acinar cells identified a significant impairment in the expression of Cel when transactivated by the Met280 RBPJL. In summary, we identified a functional, Amerindian-derived population-specific c.839C>T (p.(Thr280Met)) variant in the pancreas specific RBPJL that may modify T2D risk by regulating exocrine enzyme expression.
Collapse
Affiliation(s)
- Anup K Nair
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Jeff R Sutherland
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Michael Traurig
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Peng Chen
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
39
|
Szabo M, Máté B, Csép K, Benedek T. Genetic Approaches to the Study of Gene Variants and Their Impact on the Pathophysiology of Type 2 Diabetes. Biochem Genet 2017; 56:22-55. [DOI: 10.1007/s10528-017-9827-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
|
40
|
Loos RJF. CREBRF variant increases obesity risk and protects against diabetes in Samoans. Nat Genet 2017; 48:976-8. [PMID: 27573685 DOI: 10.1038/ng.3653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A genome-wide study in Samoans has identified a protein-altering variant (p.Arg475Gln) in CREBRF as being associated with 1.3-fold increased risk of obesity and, intriguingly, 1.6-fold decreased risk of type 2 diabetes. This variant, which is common among Samoans (minor allele frequency = 26%) but extremely rare in other populations, promotes fat storage and reduces energy use in cellular models.
Collapse
Affiliation(s)
- Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
41
|
Franks PW, Poveda A. Lifestyle and precision diabetes medicine: will genomics help optimise the prediction, prevention and treatment of type 2 diabetes through lifestyle therapy? Diabetologia 2017; 60:784-792. [PMID: 28124081 PMCID: PMC6518113 DOI: 10.1007/s00125-017-4207-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022]
Abstract
Precision diabetes medicine, the optimisation of therapy using patient-level biomarker data, has stimulated enormous interest throughout society as it provides hope of more effective, less costly and safer ways of preventing, treating, and perhaps even curing the disease. While precision diabetes medicine is often framed in the context of pharmacotherapy, using biomarkers to personalise lifestyle recommendations, intended to lower type 2 diabetes risk or to slow progression, is also conceivable. There are at least four ways in which this might work: (1) by helping to predict a person's susceptibility to adverse lifestyle exposures; (2) by facilitating the stratification of type 2 diabetes into subclasses, some of which may be prevented or treated optimally with specific lifestyle interventions; (3) by aiding the discovery of prognostic biomarkers that help guide timing and intensity of lifestyle interventions; (4) by predicting treatment response. In this review we overview the rationale for precision diabetes medicine, specifically as it relates to lifestyle; we also scrutinise existing evidence, discuss the barriers germane to research in this field and consider how this work is likely to proceed.
Collapse
Affiliation(s)
- Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Clinical Research Centre, Lund University, Jan Waldenströms gata 35, Skåne University Hospital, Malmö, SE-20502, Sweden.
- Department of Public Health and Clinical Medicine, Section for Medicine, Umeå University, Umeå, Sweden.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Clinical Research Centre, Lund University, Jan Waldenströms gata 35, Skåne University Hospital, Malmö, SE-20502, Sweden
| |
Collapse
|
42
|
Ovsyannikova AK, Rymar OD, Shakhtshneider EV, Klimontov VV, Koroleva EA, Myakina NE, Voevoda MI. ABCC8-Related Maturity-Onset Diabetes of the Young (MODY12): Clinical Features and Treatment Perspective. Diabetes Ther 2016; 7:591-600. [PMID: 27538677 PMCID: PMC5014798 DOI: 10.1007/s13300-016-0192-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a heterogeneous group of diseases associated with gene mutations leading to dysfunction of pancreatic β-cells. Thirteen identified MODY variants differ from each other by the clinical course and treatment requirement. Currently, MODY subtypes 1-5 are best-studied, descriptions of the other forms are sporadic. This article reports a MODY12 clinical case, caused by a mutation in the gene of the ATP-binding cassette transporter sub-family C member 8 (ABCC8), encoding sulfonylurea receptor 1. Diabetes manifested in a 27-year-old non-obese man with epilepsy in anamnesis. No evidence of ketosis was present, pancreatic antibodies were undetectable, and C-peptide remained within the reference range. During the initial investigation, non-proliferative diabetic retinopathy and elevated albumin excretion rate was revealed. After 4 months, diabetes was complicated by pre-proliferative retinopathy and diabetic macular edema. Recurrent hypoglycemia and an increase in body weight was observed on moderate and even small insulin doses. Taking into account the clinical features and the presence of diabetes in four generations on the maternal side, screening for all MODY subtypes was performed. A mutation in the ABCC8 gene was found in proband and in his mother. After the insulin discontinuation, gliclazide modified release combined with sodium/glucose cotransporter 2 (SGLT2) inhibitors was started. This treatment eliminated hypoglycemia and improved glycemic variability parameters. A decrease in the amplitude of glucose excursions was documented by continuous glucose monitoring. After 3 months of treatment, glycemic control was still optimal, and no hypoglycemic episodes were observed. The case report demonstrates the clinical features of ABCC8-associated MODY and the therapeutic potential of a combination of sulfonylurea with SGLT2 inhibitor in this disease.
Collapse
Affiliation(s)
- Alla K Ovsyannikova
- Institute of Internal and Preventive Medicine, Bogatkov Str., 175/1, 630089, Novosibirsk, Russia
| | - Oksana D Rymar
- Institute of Internal and Preventive Medicine, Bogatkov Str., 175/1, 630089, Novosibirsk, Russia
| | - Elena V Shakhtshneider
- Institute of Internal and Preventive Medicine, Bogatkov Str., 175/1, 630089, Novosibirsk, Russia
| | - Vadim V Klimontov
- Institute of Clinical and Experimental Lymphology, Timakov Str., 2, 630060, Novosibirsk, Russia.
| | - Elena A Koroleva
- Institute of Clinical and Experimental Lymphology, Timakov Str., 2, 630060, Novosibirsk, Russia
| | - Natalya E Myakina
- Institute of Clinical and Experimental Lymphology, Timakov Str., 2, 630060, Novosibirsk, Russia
| | - Mikhail I Voevoda
- Institute of Internal and Preventive Medicine, Bogatkov Str., 175/1, 630089, Novosibirsk, Russia
| |
Collapse
|
43
|
Andersen MK, Pedersen CET, Moltke I, Hansen T, Albrechtsen A, Grarup N. Genetics of Type 2 Diabetes: the Power of Isolated Populations. Curr Diab Rep 2016; 16:65. [PMID: 27189761 DOI: 10.1007/s11892-016-0757-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes (T2D) affects millions of people worldwide. Improving the understanding of the underlying mechanisms and ultimately improving the treatment strategies are, thus, of great interest. To achieve this, identification of genetic variation predisposing to T2D is important. A large number of variants have been identified in large outbred populations, mainly from Europe and Asia. However, to elucidate additional variation, isolated populations have a number of advantageous properties, including increased amounts of linkage disequilibrium, and increased probability for presence of high frequency disease-associated variants due to genetic drift. Collectively, this increases the statistical power to detect association signals in isolated populations compared to large outbred populations. In this review, we elaborate on why isolated populations are a powerful resource for the identification of complex disease variants and describe their contributions to the understanding of the genetics of T2D.
Collapse
Affiliation(s)
- Mette Korre Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
| | - Casper-Emil Tingskov Pedersen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 19, 3, 5000, Odense, Denmark
| | - Anders Albrechtsen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark.
| |
Collapse
|
44
|
Yang Y, Chan L. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocr Rev 2016; 37:190-222. [PMID: 27035557 PMCID: PMC4890265 DOI: 10.1210/er.2015-1116] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 30 genes have been linked to monogenic diabetes. Candidate gene and genome-wide association studies have identified > 50 susceptibility loci for common type 1 diabetes (T1D) and approximately 100 susceptibility loci for type 2 diabetes (T2D). About 1-5% of all cases of diabetes result from single-gene mutations and are called monogenic diabetes. Here, we review the pathophysiological basis of the role of monogenic diabetes genes that have also been found to be associated with common T1D and/or T2D. Variants of approximately one-third of monogenic diabetes genes are associated with T2D, but not T1D. Two of the T2D-associated monogenic diabetes genes-potassium inward-rectifying channel, subfamily J, member 11 (KCNJ11), which controls glucose-stimulated insulin secretion in the β-cell; and peroxisome proliferator-activated receptor γ (PPARG), which impacts multiple tissue targets in relation to inflammation and insulin sensitivity-have been developed as major antidiabetic drug targets. Another monogenic diabetes gene, the preproinsulin gene (INS), is unique in that INS mutations can cause hyperinsulinemia, hyperproinsulinemia, neonatal diabetes mellitus, one type of maturity-onset diabetes of the young (MODY10), and autoantibody-negative T1D. Dominant heterozygous INS mutations are the second most common cause of permanent neonatal diabetes. Moreover, INS gene variants are strongly associated with common T1D (type 1a), but inconsistently with T2D. Variants of the monogenic diabetes gene Gli-similar 3 (GLIS3) are associated with both T1D and T2D. GLIS3 is a key transcription factor in insulin production and β-cell differentiation during embryonic development, which perturbation forms the basis of monogenic diabetes as well as its association with T1D. GLIS3 is also required for compensatory β-cell proliferation in adults; impairment of this function predisposes to T2D. Thus, monogenic forms of diabetes are invaluable "human models" that have contributed to our understanding of the pathophysiological basis of common T1D and T2D.
Collapse
Affiliation(s)
- Yisheng Yang
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Lawrence Chan
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
45
|
Nair AK, Baier LJ. Complex Genetics of Type 2 Diabetes and Effect Size: What have We Learned from Isolated Populations? Rev Diabet Stud 2016; 12:299-319. [PMID: 27111117 DOI: 10.1900/rds.2015.12.299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genetic studies in large outbred populations have documented a complex, highly polygenic basis for type 2 diabetes (T2D). Most of the variants currently known to be associated with T2D risk have been identified in large studies that included tens of thousands of individuals who are representative of a single major ethnic group such as European, Asian, or African. However, most of these variants have only modest effects on the risk for T2D; identification of definitive 'causal variant' or 'causative loci' is typically lacking. Studies in isolated populations offer several advantages over outbred populations despite being, on average, much smaller in sample size. For example, reduced genetic variability, enrichment of rare variants, and a more uniform environment and lifestyle, which are hallmarks of isolated populations, can reduce the complexity of identifying disease-associated genes. To date, studies in isolated populations have provided valuable insight into the genetic basis of T2D by providing both a deeper understanding of previously identified T2D-associated variants (e.g. demonstrating that variants in KCNQ1 have a strong parent-of-origin effect) or providing novel variants (e.g. ABCC8 in Pima Indians, TBC1D4 in the Greenlandic population, HNF1A in Canadian Oji-Cree). This review summarizes advancements in genetic studies of T2D in outbred and isolated populations, and provides information on whether the difference in the prevalence of T2D in different populations (Pima Indians vs. non-Hispanic Whites and non-Hispanic Whites vs. non-Hispanic Blacks) can be explained by the difference in risk allele frequencies of established T2D variants.
Collapse
Affiliation(s)
- Anup K Nair
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85004, USA
| | - Leslie J Baier
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85004, USA
| |
Collapse
|