1
|
Kou G, Yao S, Ullah A, Fang S, Guo E, Bo Y. Polystyrene microplastics impair brown and beige adipocyte function via the gut microbiota-adipose tissue crosstalk in high-fat diet mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138225. [PMID: 40220396 DOI: 10.1016/j.jhazmat.2025.138225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Microplastics (MPs) are pervasive in the environment and food. The potential health hazards of this emerging pollutant have raised significant concerns in recent years. However, the underlying mechanism by which MPs have any impact on brown and beige adipocytes in the context of obesity is yet to be investigated. METHODS The C57BL/6 J mice were randomly assigned to the HFD and HFD+MPs group for 12 weeks of exposure to explore the differences in brown and beige adipocyte function. The gut microbiota analysis, fecal microbiota transplantation and metabolomic profiling were carried out to further determine its potential mechanism. RESULTS The present work demonstrated that high-fat diet mice accumulate lipids and have reduced energy expenditure after three months of oral administration of MPs. In addition to escalating intestinal dysbiosis, exposing HFD mice to MPs induces thermogenic dysfunction in inguinal white adipose tissue and brown adipose tissue. Following the fecal microbiota transplantation, the accumulation of lipids and dysfunction in energy expenditure within the microbiota of recipient mice further elucidated the inhibitory effect of MPs. CONCLUSIONS Our results suggest that MPs induced the thermogenic dysfunction of BAT and iWAT by affecting gut microbiota composition. The present study highlights the mechanisms by which MPs produce thermogenic dysfunction in BAT and iWAT and disruption in the gastrointestinal microbiota.
Collapse
Affiliation(s)
- Guangning Kou
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China; Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Yao
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Amin Ullah
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuhao Fang
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Erni Guo
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Yacong Bo
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Winn NC, Schleh MW, Garcia JN, Lantier L, McGuinness OP, Blair JA, Hasty AH, Wasserman DH. Insulin at the intersection of thermoregulation and glucose homeostasis. Mol Metab 2024; 81:101901. [PMID: 38354854 PMCID: PMC10877958 DOI: 10.1016/j.molmet.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
Mammals are protected from changes in environmental temperature by altering energetic processes that modify heat production. Insulin is the dominant stimulus of glucose uptake and metabolism, which are fundamental for thermogenic processes. The purpose of this work was to determine the interaction of ambient temperature induced changes in energy expenditure (EE) on the insulin sensitivity of glucose fluxes. Short-term and adaptive responses to thermoneutral temperature (TN, ∼28 °C) and room (laboratory) temperature (RT, ∼22 °C) were studied in mice. This range of temperature does not cause detectable changes in circulating catecholamines or shivering and postabsorptive glucose homeostasis is maintained. We tested the hypothesis that a decrease in EE that occurs with TN causes insulin resistance and that this reduction in insulin action and EE is reversed upon short term (<12h) transition to RT. Insulin-stimulated glucose disposal (Rd) and tissue-specific glucose metabolic index were assessed combining isotopic tracers with hyperinsulinemic-euglycemic clamps. EE and insulin-stimulated Rd are both decreased (∼50%) in TN-adapted vs RT-adapted mice. When RT-adapted mice are switched to TN, EE rapidly decreases and Rd is reduced by ∼50%. TN-adapted mice switched to RT exhibit a rapid increase in EE, but whole-body insulin-stimulated Rd remains at the low rates of TN-adapted mice. In contrast, whole body glycolytic flux rose with EE. This higher EE occurs without increasing glucose uptake from the blood, but rather by diverting glucose from glucose storage to glycolysis. In addition to adaptations in insulin action, 'insulin-independent' glucose uptake in brown fat is exquisitely sensitive to thermoregulation. These results show that insulin action adjusts to non-stressful changes in ambient temperature to contribute to the support of body temperature homeostasis without compromising glucose homeostasis.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Michael W Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jamie N Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Joslin A Blair
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| |
Collapse
|
3
|
Fuller KNZ, Allen J, Kumari R, Akakpo JY, Ruebel M, Shankar K, Thyfault JP. Pre- and Post-Sexual Maturity Liver-specific ERα Knockout Does Not Impact Hepatic Mitochondrial Function. J Endocr Soc 2023; 7:bvad053. [PMID: 37197409 PMCID: PMC10184454 DOI: 10.1210/jendso/bvad053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 05/19/2023] Open
Abstract
Compared with males, premenopausal women and female rodents are protected against hepatic steatosis and present with higher functioning mitochondria (greater hepatic mitochondrial respiration and reduced H2O2 emission). Despite evidence that estrogen action mediates female protection against steatosis, mechanisms remain unknown. Here we validated a mouse model with inducible reduction of liver estrogen receptor alpha (ERα) (LERKO) via adeno-associated virus (AAV) Cre. We phenotyped the liver health and mitochondrial function of LERKO mice (n = 10-12 per group) on a short-term high-fat diet (HFD), and then tested whether timing of LERKO induction at 2 timepoints (sexually immature: 4 weeks old [n = 11 per group] vs sexually mature: 8-10 weeks old [n = 8 per group]) would impact HFD-induced outcomes. We opted for an inducible LERKO model due to known estrogen-mediated developmental programming, and we reported both receptor and tissue specificity with our model. Control mice were ERαfl/fl receiving AAV with green fluorescent protein (GFP) only. Results show that there were no differences in body weight/composition or hepatic steatosis in LERKO mice with either short-term (4-week) or chronic (8-week) high-fat feeding. Similarly, LERKO genotype nor timing of LERKO induction (pre vs post sexual maturity) did not alter hepatic mitochondrial O2 and H2O2 flux, coupling, or OXPHOS protein. Transcriptomic analysis showed that hepatic gene expression in LERKO was significantly influenced by developmental stage. Together, these studies suggest that hepatic ERα is not required in female protection against HFD-induced hepatic steatosis nor does it mediate sexual dimorphism in liver mitochondria function.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
| | - Julie Allen
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
| | - Roshan Kumari
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
| | - Jephte Y Akakpo
- Department of Pharmacology and Toxicology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Meghan Ruebel
- USDA-ARS, Southeast Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Kartik Shankar
- USDA-ARS, Southeast Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
- KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Children’s Healthy Lifestyles and Nutrition, Kansas City, MO 64108, USA
| |
Collapse
|
4
|
Winn NC, Wolf EM, Garcia JN, Hasty AH. Exon 2-mediated deletion of Trem2 does not worsen metabolic function in diet-induced obese mice. J Physiol 2022; 600:4485-4501. [PMID: 36044273 PMCID: PMC9588740 DOI: 10.1113/jp283684] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (Trem2) is highly expressed on myeloid cells and is involved in cellular lipid homeostasis and inflammatory processes. Trem2 deletion in mice (Trem2-/- ) evokes adipose tissue dysfunction, but its role in worsening obesity-induced metabolic dysfunction has not been resolved. Here we aimed to determine the causal role of Trem2 in regulating glucose homeostasis and insulin sensitivity in mice. Nine-week-old male and female littermate wild-type (WT) and Trem2-/- mice were fed a low- or high-fat diet for 18 weeks and phenotyped for metabolic function. Diet-induced weight gain was similar between genotypes, irrespective of sex. Consistent with previous reports, we find that loss of Trem2 causes massive adipocyte hypertrophy and an attenuation in the lipid-associated macrophage transcriptional response to obesity. In contrast to published data, we find that loss of Trem2 does not worsen metabolic function in obese mice. No differences in intraperitoneal glucose tolerance (ipGTT), oral GTT or mixed meal substrate control, including postprandial glucose, non-esterified fatty acids, insulin or triglycerides, were found between WT and Trem2-/- animals. Similarly, no phenotypic differences existed when animals were challenged with stressors on metabolic demand (i.e. acute exercise or environmental temperature modulation). Collectively, we report a disassociation between adipose tissue remodelling caused by loss of Trem2 and whole-body metabolic homeostasis in obese mice. The complementary nature of experiments conducted gives credence to the conclusion that loss of Trem2 is unlikely to worsen glucose homeostasis in mice.
Collapse
Affiliation(s)
- Nathan C. Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Elysa M. Wolf
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jamie N. Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Dani V, Yao X, Dani C. Transplantation of fat tissues and iPSC-derived energy expenditure adipocytes to counteract obesity-driven metabolic disorders: Current strategies and future perspectives. Rev Endocr Metab Disord 2022; 23:103-110. [PMID: 33751363 PMCID: PMC7982512 DOI: 10.1007/s11154-021-09632-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/25/2022]
Abstract
Several therapeutic options have been developed to address the obesity epidemic and treat associated metabolic diseases. Despite the beneficial effects of surgery and drugs, effective therapeutic solutions have been held back by the poor long-term efficiency and detrimental side effects. The development of alternative approaches is thus urgently required. Fat transplantation is common practice in many surgical procedures, including aesthetic and reconstructive surgery, and is a budding future direction for treating obesity-related metabolic defects. This review focuses on adipose tissue transplantation and the recent development of cell-based therapies to boost the mass of energy-expenditure cells. Brown adipocyte transplantation is a promising novel therapy to manage obesity and associated metabolic disorders, but the need to have an abundant and relevant source of brown fat tissue or brown adipocytes for transplantation is a major hurdle to overcome. Current studies have focused on the rodent model to obtain a proof of concept of a tissue-transplantation strategy able to achieve effective long-term effects to reverse metabolic defects in obese patients. Future perspectives and opportunities to develop innovative human fat tissue models and 3D engineered hiPSC-adipocytes are discussed.
Collapse
Affiliation(s)
- Vincent Dani
- Université Côte d'Azur, INSERM, CNRS, Nice, iBV, France
| | - Xi Yao
- Université Côte d'Azur, INSERM, CNRS, Nice, iBV, France
| | - Christian Dani
- Université Côte d'Azur, INSERM, CNRS, Nice, iBV, France.
| |
Collapse
|
6
|
Liu X, Zhang Z, Song Y, Xie H, Dong M. An update on brown adipose tissue and obesity intervention: Function, regulation and therapeutic implications. Front Endocrinol (Lausanne) 2022; 13:1065263. [PMID: 36714578 PMCID: PMC9874101 DOI: 10.3389/fendo.2022.1065263] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Overweight and obesity have become a world-wide problem. However, effective intervention approaches are limited. Brown adipose tissue, which helps maintain body temperature and contributes to thermogenesis, is dependent on uncoupling protein1. Over the last decade, an in-creasing number of studies have found that activating brown adipose tissue and browning of white adipose tissue can protect against obesity and obesity-related metabolic disease. Brown adipose tissue has gradually become an appealing therapeutic target for the prevention and re-versal of obesity. However, some important issues remain unresolved. It is not certain whether increasing brown adipose tissue activity is the cause or effect of body weight loss or what the risks might be for sympathetic nervous system-dependent non-shivering thermogenesis. In this review, we comprehensively summarize approaches to activating brown adipose tissue and/or browning white adipose tissue, such as cold exposure, exercise, and small-molecule treatment. We highlight the functional mechanisms of small-molecule treatment and brown adipose tissue transplantation using batokine, sympathetic nervous system and/or gut microbiome. Finally, we discuss the causality between body weight loss induced by bariatric surgery, exercise, and brown adipose tissue activity.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhi Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yajie Song
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Hengchang Xie
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- *Correspondence: Meng Dong, ; Hengchang Xie,
| | - Meng Dong
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Meng Dong, ; Hengchang Xie,
| |
Collapse
|
7
|
Acín-Perez R, Petcherski A, Veliova M, Benador IY, Assali EA, Colleluori G, Cinti S, Brownstein AJ, Baghdasarian S, Livhits MJ, Yeh MW, Krishnan KC, Vergnes L, Winn NC, Padilla J, Liesa M, Sacks HS, Shirihai OS. Recruitment and remodeling of peridroplet mitochondria in human adipose tissue. Redox Biol 2021; 46:102087. [PMID: 34411987 PMCID: PMC8377484 DOI: 10.1016/j.redox.2021.102087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/31/2023] Open
Abstract
Beige adipocyte mitochondria contribute to thermogenesis by uncoupling and by ATP-consuming futile cycles. Since uncoupling may inhibit ATP synthesis, it is expected that expenditure through ATP synthesis is segregated to a disparate population of mitochondria. Recent studies in mouse brown adipocytes identified peridroplet mitochondria (PDM) as having greater ATP synthesis and pyruvate oxidation capacities, while cytoplasmic mitochondria have increased fatty acid oxidation and uncoupling capacities. However, the occurrence of PDM in humans and the processes that result in their expansion have not been elucidated. Here, we describe a novel high-throughput assay to quantify PDM that is successfully applied to white adipose tissue from mice and humans. Using this approach, we found that PDM content varies between white and brown fat in both species. We used adipose tissue from pheochromocytoma (Pheo) patients as a model of white adipose tissue browning, which is characterized by an increase in the capacity for energy expenditure. In contrast with control subjects, PDM content was robustly increased in the periadrenal fat of Pheo patients. Remarkably, bioenergetic changes associated with browning were primarily localized to PDM compared to cytoplasmic mitochondria (CM). PDM isolated from periadrenal fat of Pheo patients had increased ATP-linked respiration, Complex IV content and activity, and maximal respiratory capacity. We found similar changes in a mouse model of re-browning where PDM content in whitened brown adipose tissue was increased upon re-browning induced by decreased housing temperature. Taken together, this study demonstrates the existence of PDM as a separate functional entity in humans and that browning in both mice and humans is associated with a robust expansion of peri-droplet mitochondria characterized by increased ATP synthesis linked respiration.
Collapse
Affiliation(s)
- Rebeca Acín-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Anton Petcherski
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Michaela Veliova
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Ilan Y Benador
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Essam A Assali
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Department of Clinical Biochemistry, School of Medicine, Ben Gurion University of The Negev, Beer-Sheva, Israel
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, 60020, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, 60020, Italy
| | - Alexandra J Brownstein
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Molecular Cellular Integrative Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Siyouneh Baghdasarian
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Masha J Livhits
- Section of Endocrine Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Michael W Yeh
- Section of Endocrine Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Karthickeyan Chella Krishnan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, OH, USA
| | - Laurent Vergnes
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Nathan C Winn
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA; Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; Molecular Cellular Integrative Physiology, University of California, Los Angeles, CA, 90095, USA.
| | - Harold S Sacks
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Endocrine and Diabetes Division, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02118, USA; Molecular Cellular Integrative Physiology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Ramirez-Perez FI, Woodford ML, Morales-Quinones M, Grunewald ZI, Cabral-Amador FJ, Yoshida T, Brenner DA, Manrique-Acevedo C, Martinez-Lemus LA, Chandrasekar B, Padilla J. Mutation of the 5'-untranslated region stem-loop mRNA structure reduces type I collagen deposition and arterial stiffness in male obese mice. Am J Physiol Heart Circ Physiol 2021; 321:H435-H445. [PMID: 34242094 PMCID: PMC8526337 DOI: 10.1152/ajpheart.00076.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arterial stiffening, a characteristic feature of obesity and type 2 diabetes, contributes to the development and progression of cardiovascular diseases (CVD). Currently, no effective prophylaxis or therapeutics is available to prevent or treat arterial stiffening. A better understanding of the molecular mechanisms underlying arterial stiffening is vital to identify newer targets and strategies to reduce CVD burden. A major contributor to arterial stiffening is increased collagen deposition. In the 5'-untranslated regions of mRNAs encoding for type I collagen, an evolutionally conserved stem-loop (SL) structure plays an essential role in its stability and post-transcriptional regulation. Here, we show that feeding a high-fat/high-sucrose (HFHS) diet for 28 wk increases adiposity, insulin resistance, and blood pressure in male wild-type littermates. Moreover, arterial stiffness, assessed in vivo via aortic pulse wave velocity, and ex vivo using atomic force microscopy in aortic explants or pressure myography in isolated femoral and mesenteric arteries, was also increased in those mice. Notably, all these indices of arterial stiffness, along with collagen type I levels in the vasculature, were reduced in HFHS-fed mice harboring a mutation in the 5'SL structure, relative to wild-type littermates. This protective vascular phenotype in 5'SL-mutant mice did not associate with a reduction in insulin resistance or blood pressure. These findings implicate the 5'SL structure as a putative therapeutic target to prevent or reverse arterial stiffening and CVD associated with obesity and type 2 diabetes.NEW & NOTEWORTHY In the 5'-untranslated (UTR) regions of mRNAs encoding for type I collagen, an evolutionally conserved SL structure plays an essential role in its stability and posttranscriptional regulation. We demonstrate that a mutation of the SL mRNA structure in the 5'-UTR decreases collagen type I deposition and arterial stiffness in obese mice. Targeting this evolutionarily conserved SL structure may hold promise in the management of arterial stiffening and CVD associated with obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Zachary I Grunewald
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Tadashi Yoshida
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - David A Brenner
- School of Medicine, University of California-San Diego, La Jolla, California
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri.,Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Bysani Chandrasekar
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
9
|
McKie GL, Wright DC. The confounding effects of sub-thermoneutral housing temperatures on aerobic exercise-induced adaptations in mouse subcutaneous white adipose tissue. Biol Lett 2021; 17:20210171. [PMID: 34186002 DOI: 10.1098/rsbl.2021.0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mice are the most commonly used model organism for human biology, and failure to acknowledge fundamental differences in thermal biology between these species has confounded the study of adipose tissue metabolism in mice and its translational relevance to humans. Here, using exercise biochemistry as an example, we highlight the subtle yet detrimental effects sub-thermoneutral housing temperatures can have on the study of adipose tissue metabolism in mice. We encourage academics and publishers to consider ambient housing temperature as a key determinant in the methodological conception and reporting of all research on rodent white adipose tissue metabolism.
Collapse
Affiliation(s)
- Greg L McKie
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
10
|
Porter JW, Pettit-Mee RJ, Emerson TS, McCrae CS, Lastra G, Vieira-Potter VJ, Parks EJ, Kanaley JA. Modest sleep restriction does not influence steps, physical activity intensity or glucose tolerance in obese adults. J Sleep Res 2021; 30:e13381. [PMID: 33949729 DOI: 10.1111/jsr.13381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
Sleep restriction (SR) (<6 h) and physical activity (PA) are risk factors for obesity, but little work has examined the inter-related influences of both risk factors. In a free-living environment, 13 overweight/obese adults were sleep restricted for five nights to 6 h time-in-bed each night, with and without regular exercise (45 min/65% VO2 max; counterbalanced design). Two days of recovery sleep followed SR. Subjects were measured during a mixed meal tolerance test (MMT), resting metabolic rate, cognitive testing and fat biopsy (n=8). SR increased peak glucose response (+7.3 mg/dl, p = .04), elevated fasting non-esterified fatty acid (NEFA) concentrations (+0.1 mmol/L, p = .001) and enhanced fat oxidation (p < .001) without modifying step counts or PA intensity. Inclusion of daily exercise increased step count (+4,700 steps/day, p < .001) and decreased the insulin response to a meal (p = .01) but did not prevent the increased peak glucose response or elevated NEFA levels. The weekend recovery period improved fasting glucose (p = .02), insulin (p = .02), NEFA concentrations (p = .001) and HOMA-IR (p < .01) despite reduced steps (p < .01) and increased sedentary time (p < .01). Abdominal adipose tissue (AT) samples, obtained after baseline, SR and exercise, did not differ in lipolytic capacity following SR. Fatty acid synthase protein content tended to increase following SR (p = .07), but not following exercise. In a free-living setting, SR adversely affected circulating NEFAs, fuel oxidation and peak glucose response but did not directly affect glucose tolerance or AT lipolysis. SR-associated metabolic impairments were not mitigated by exercise, yet recovery sleep completely rescued its adverse effects on glucose metabolism.
Collapse
Affiliation(s)
- Jay W Porter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Ryan J Pettit-Mee
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Travis S Emerson
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Christina S McCrae
- Department of Health Psychology, University of Missouri, Columbia, MO, USA
| | - Guido Lastra
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri School of Medicine, Columbia, MO, USA
| | | | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Fuller KNZ, Thyfault JP. Barriers in translating preclinical rodent exercise metabolism findings to human health. J Appl Physiol (1985) 2021; 130:182-192. [PMID: 33180643 PMCID: PMC7944931 DOI: 10.1152/japplphysiol.00683.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 01/03/2023] Open
Abstract
Physical inactivity and low aerobic capacity are primary drivers of chronic disease pathophysiology and are independently associated with all-cause mortality. Conversely, increased physical activity and exercise are central to metabolic disease prevention and longevity. Although these relationships are well characterized in the literature, what remains incompletely understood are the mechanisms by which physical activity/exercise prevents disease. Given methodological constraints of clinical research, investigators must often rely on preclinical rodent models to investigate these potential underlying mechanisms. However, there are several key barriers to applying exercise metabolism findings from rodent models to human health. These barriers include housing temperature, nutrient metabolism, exercise modality, exercise testing, and sex differences. Increased awareness and understanding of these barriers will enhance the ability to impact human health through more appropriate experimental design and interpretation of data within the context of these factors.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Research Service Kansas City Veterans Affairs Medical Center, Kansas City, Kansas
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri
| |
Collapse
|
12
|
Acin-Perez R, Benador IY, Petcherski A, Veliova M, Benavides GA, Lagarrigue S, Caudal A, Vergnes L, Murphy AN, Karamanlidis G, Tian R, Reue K, Wanagat J, Sacks H, Amati F, Darley-Usmar VM, Liesa M, Divakaruni AS, Stiles L, Shirihai OS. A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J 2020; 39:e104073. [PMID: 32432379 PMCID: PMC7327496 DOI: 10.15252/embj.2019104073] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 11/10/2022] Open
Abstract
Respirometry is the gold standard measurement of mitochondrial oxidative function, as it reflects the activity of the electron transport chain complexes working together. However, the requirement for freshly isolated mitochondria hinders the feasibility of respirometry in multi‐site clinical studies and retrospective studies. Here, we describe a novel respirometry approach suited for frozen samples by restoring electron transfer components lost during freeze/thaw and correcting for variable permeabilization of mitochondrial membranes. This approach preserves 90–95% of the maximal respiratory capacity in frozen samples and can be applied to isolated mitochondria, permeabilized cells, and tissue homogenates with high sensitivity. We find that primary changes in mitochondrial function, detected in fresh tissue, are preserved in frozen samples years after collection. This approach will enable analysis of the integrated function of mitochondrial Complexes I to IV in one measurement, collected at remote sites or retrospectively in samples residing in tissue biobanks.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ilan Y Benador
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA
| | - Anton Petcherski
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michaela Veliova
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Gloria A Benavides
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sylviane Lagarrigue
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Arianne Caudal
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA, USA
| | - Laurent Vergnes
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, CA, USA
| | | | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA, USA
| | - Karen Reue
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jonathan Wanagat
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Medicine, Division of Geriatrics, University of California, Los Angeles, CA, USA
| | - Harold Sacks
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Francesca Amati
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Victor M Darley-Usmar
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Ajit S Divakaruni
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
13
|
Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab 2020; 34:27-42. [PMID: 32180558 PMCID: PMC6997501 DOI: 10.1016/j.molmet.2019.12.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The diminished glucose lowering effect of insulin in obesity, called "insulin resistance," is associated with glucose intolerance, type 2 diabetes, and other serious maladies. Many publications on this topic have suggested numerous hypotheses on the molecular and cellular disruptions that contribute to the syndrome. However, significant uncertainty remains on the mechanisms of its initiation and long-term maintenance. SCOPE OF REVIEW To simplify insulin resistance analysis, this review focuses on the unifying concept that adipose tissue is a central regulator of systemic glucose homeostasis by controlling liver and skeletal muscle metabolism. Key aspects of adipose function related to insulin resistance reviewed are: 1) the modes by which specific adipose tissues control hepatic glucose output and systemic glucose disposal, 2) recently acquired understanding of the underlying mechanisms of these modes of regulation, and 3) the steps in these pathways adversely affected by obesity that cause insulin resistance. MAJOR CONCLUSIONS Adipocyte heterogeneity is required to mediate the multiple pathways that control systemic glucose tolerance. White adipocytes specialize in sequestering triglycerides away from the liver, muscle, and other tissues to limit toxicity. In contrast, brown/beige adipocytes are very active in directly taking up glucose in response to β adrenergic signaling and insulin and enhancing energy expenditure. Nonetheless, white, beige, and brown adipocytes all share the common feature of secreting factors and possibly exosomes that act on distant tissues to control glucose homeostasis. Obesity exerts deleterious effects on each of these adipocyte functions to cause insulin resistance.
Collapse
Affiliation(s)
- Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|