1
|
Magazova A, Ashirbekov Y, Abaildayev A, Satken K, Utegenova G, Belkozhayev A, Balmukhanova A, Dzhumatayeva Z, Beissova A, Shargorodska I, Balmukhanova A, Sharipov K. Circulating microRNAs demonstrate limited diagnostic potential for diabetic retinopathy in the population of Kazakhstan. PeerJ 2025; 13:e19259. [PMID: 40231069 PMCID: PMC11995893 DOI: 10.7717/peerj.19259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Background Diabetic retinopathy (DR) is the most common complication of diabetes, leading to blindness. The asymptomatic onset and the existing difficulties in diagnosing warrant the search for biomarkers that can facilitate the early diagnosis of DR. The aim of this study was to evaluate the potential of plasma microRNAs (miRNAs), which have previously been shown to be involved in the pathogenesis of DR and differentially expressed in plasma/serum of patients, as biomarkers for DR in the Kazakhstani population. Materials and Methods Using quantitative RT-PCR, we compared the levels of ten candidate miRNAs in plasma among three groups: type 2 diabetes mellitus (T2DM) patients with DR (DR patients, N = 100), T2DM patients without DR (noDR patients, N = 98), and healthy controls (N = 30). Results Level of miR-423-3p was significantly reduced in DR patients compared to noDR patients (pFDR = 5.4 × 10-3). Levels of miR-423-3p and miR-221-3p were significantly reduced in DR patients compared to controls (pFDR = 5.4 × 10-3 and 0.024, respectively ), level of miR-23a-3p was significantly reduced in noDR patients compared to controls (pFDR = 0.047), levels of miR-221-3p and miR-23a-3p were significantly reduced in T2DM patients (combined group) compared to controls (pFDR = 0.047, and 0.049, respectively). Also, there were several significant differences between groups formed based on clinical-pathological characteristics, but none of these results remained significant after adjustment for multiple comparisons. Correlation analysis revealed weak associations between the levels of miR-423 and miR-221-3p and DR staging (pFDR = 1.3 × 10-3 and 0.026, respectively), and fair associations between the levels of miR-29b-3p and miR-328-3p and diabetes duration in noDR patients (pFDR = 8.8 × 10-3 and 0.016, respectively). According to receiver operating characteristic (ROC) analysis, only miR-23a-3p can be considered a potential biomarker with moderate informativeness for diagnosing proliferative DR (PDR); however, a larger sample size is needed to verify this finding. Furthermore, the small magnitude of observed changes in miRNA levels between groups significantly complicates classification. Conclusions Due to the low specificity and small magnitude of deviations from the norm, the studied miRNAs have low potential in the diagnosis of DR.
Collapse
Affiliation(s)
- Aizhan Magazova
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Almaty Multidisciplinary Clinical Hospital, Almaty, Kazakhstan
- Department of Ophthalmology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Yeldar Ashirbekov
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Arman Abaildayev
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Kantemir Satken
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Gulzhakhan Utegenova
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Department of Biology, South Kazakhstan Pedagogical University named after Ozbekali Zhanibekov, Shymkent, Kazakhstan
| | - Ayaz Belkozhayev
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute named after K. Turyssov, Satbayev University, Almaty, Kazakhstan
| | - Altynay Balmukhanova
- Department of Health Policy and Organization, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Zaure Dzhumatayeva
- Kazakh Scientific Research Institute of Eye Diseases, Almaty, Kazakhstan
| | - Ainagul Beissova
- Department of Public Health, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Iryna Shargorodska
- Ophthalmology and Optometry department of Postgraduate Education, Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Kamalidin Sharipov
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Department of Biochemistry, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| |
Collapse
|
2
|
Lee SJV, Goh YQ, Rojas-Carabali W, Cifuentes-González C, Cheung CY, Arora A, de-la-Torre A, Gupta V, Agrawal R. Association between retinal vessels caliber and systemic health: A comprehensive review. Surv Ophthalmol 2025; 70:184-199. [PMID: 39557345 DOI: 10.1016/j.survophthal.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
The unique nature of the retinal microvasculature that permits non-invasive visualization has garnered interest as a potential method for detecting microvascular alterations indicative of systemic diseases. This concept, supported by advancements in imaging technologies, has been increasingly validated by studies linking retinal microvasculature with systemic conditions such as diabetes, hypertension, and cerebrovascular disease. Structural changes in the retinal microvasculature are associated with cardiovascular risk factors, metabolic diseases, and are significant predictors of systemic hypertensive damage and mortality. Given that most systemic diseases present life-long burdens and complications if undetected or untreated, the development of diagnostic tools like retinal vascular imaging becomes important for early detection, monitoring of disease progression, and facilitating timely interventions. Technological advancements have enabled objective and accurate quantification of retinal microvascular characteristics. We consolidate current literature on retinal vascular changes across various systemic health conditions, including metabolic diseases, cerebrovascular diseases, pregnancy complications, systemic inflammatory conditions, leukemia, human immunodeficiency virus infection, and COVID-19. We also emphasizes the need for dynamic parameters, an understanding of 3-dimensional vascular architecture, and larger-scale longitudinal studies to elucidate the temporal relationship between retinal vascular changes and systemic diseases, helping shape future diagnostic and monitoring approaches.
Collapse
Affiliation(s)
- Si Jin Vanessa Lee
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Ying Qi Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - William Rojas-Carabali
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Programme for Ocular Inflammation and Infection Translational Research (PROTON), Singapore
| | - Carlos Cifuentes-González
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Programme for Ocular Inflammation and Infection Translational Research (PROTON), Singapore
| | - Carol Y Cheung
- Programme for Ocular Inflammation and Infection Translational Research (PROTON), Singapore; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Atul Arora
- Department of Ophthalmology, Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Alejandra de-la-Torre
- Programme for Ocular Inflammation and Infection Translational Research (PROTON), Singapore; Ophthalmology Interest Group, Neuroscience (NEUROS) Research Group,Neurovitae Research Center, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia; Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Vishali Gupta
- Programme for Ocular Inflammation and Infection Translational Research (PROTON), Singapore; Ophthalmology Interest Group, Neuroscience (NEUROS) Research Group,Neurovitae Research Center, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia; Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Rupesh Agrawal
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Programme for Ocular Inflammation and Infection Translational Research (PROTON), Singapore; Singapore Eye Research Institute, Singapore; Duke NUS Medical School, Singapore.
| |
Collapse
|
3
|
Kang M, Son K, Hwang YC, Lee S, Sang H, Kim S, Yon DK, Rhee SY, Lim H. Identification of Metabolic Patterns in Korean Patients With Type 2 Diabetes and Their Association With Diabetes-Related Complications. Diabetes 2025; 74:199-211. [PMID: 39546744 DOI: 10.2337/db23-0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
ARTICLE HIGHLIGHTS Identifying patterns of metabolic heterogeneity in type 2 diabetes (T2D) can help in the development of optimal treatment strategies. We aimed to identify metabolic patterns in patients with T2D in the Republic of Korea and analyze the risk of developing diabetes-related complications according to patterns. We identified three distinct metabolic patterns and observed that each pattern was associated with a heightened risk of developing various cardiovascular diseases. These findings highlight the necessity of devising treatment strategies based on these patterns to prevent diabetes-related complications.
Collapse
Affiliation(s)
- Minji Kang
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Kumhee Son
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - You-Cheol Hwang
- Division of Endocrinology and Metabolism, Department of Medicine, Kyung Hee University Hospital at Gangdong,Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Sihoon Lee
- Laboratory of Genomics and Translational Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Hyunji Sang
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Sunyoung Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea
- Department of Family Medicine, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Shah HS, DeSalvo MN, Haidar A, Jangolla SVT, Yu MG, Roque RS, Hayes A, Gauthier J, Ziemniak N, Viebranz E, Wu IH, Park K, Fickweiler W, Chokshi TJ, Billah T, Ning L, Adam A, Sun JK, Aiello LP, Rathi Y, Feany MB, King GL. Characterization of cognitive decline in long-duration type 1 diabetes by cognitive, neuroimaging, and pathological examinations. JCI Insight 2025; 10:e180226. [PMID: 39883521 PMCID: PMC11949075 DOI: 10.1172/jci.insight.180226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUNDWe aimed to characterize factors associated with the under-studied complication of cognitive decline in aging people with long-duration type 1 diabetes (T1D).METHODSJoslin "Medalists" (n = 222; T1D ≥ 50 years) underwent cognitive testing. Medalists (n = 52) and age-matched nondiabetic controls (n = 20) underwent neuro- and retinal imaging. Brain pathology (n = 26) was examined. Relationships among clinical, cognitive, and neuroimaging parameters were evaluated.RESULTSCompared with controls, Medalists had worse psychomotor function and recall, which associated with female sex, lower visual acuity, reduced physical activity, longer diabetes duration, and higher inflammatory cytokines. On neuroimaging, compared with controls, Medalists had significantly lower total and regional brain volumes, equivalent to 9 years of accelerated aging, but small vessel disease markers did not differ. Reduced brain volumes associated with female sex, reduced psychomotor function, worse visual acuity, longer diabetes duration, and higher inflammation, but not with glycemic control. Worse cognitive function, lower brain volumes, and diabetic retinopathy correlated with thinning of the outer retinal nuclear layer. Worse baseline visual acuity associated with declining psychomotor function in longitudinal analysis. Brain volume mediated the association between visual acuity and psychomotor function by 57%. Brain pathologies showed decreased volumes, but predominantly mild vascular or Alzheimer's-related pathology.CONCLUSION To our knowledge, this is the first comprehensive study of cognitive function, neuroimaging, and pathology in aging T1D individuals demonstrated that cognitive decline was related to parenchymal rather than neurovascular abnormalities, unlike type 2 diabetes, suggestive of accelerated aging in T1D. Improving visual acuity could perhaps be an important preventive measure against cognitive decline in people with T1D.FUNDINGThe Beatson Foundation, NIH/NIDDK grants 3P30DK036836-34S1 and P30DK036836-37, and Mary Iacocca fellowships.
Collapse
Affiliation(s)
- Hetal S. Shah
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Anastasia Haidar
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Surya Vishva Teja Jangolla
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marc Gregory Yu
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca S. Roque
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Amanda Hayes
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - John Gauthier
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Nolan Ziemniak
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Elizabeth Viebranz
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - I-Hsien Wu
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Kyoungmin Park
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ward Fickweiler
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanvi J. Chokshi
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Tashrif Billah
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Lipeng Ning
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Atif Adam
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer K. Sun
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lloyd Paul Aiello
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Department of Radiology, and
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - George L. King
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Emerzian SR, Chow J, Behzad R, Unal M, Brooks DJ, Wu IH, Gauthier J, Jangolla SVT, Yu MG, Shah HS, King GL, Johannesdottir F, Karim L, Yu EW, Bouxsein ML. Long-duration type 1 diabetes is associated with deficient cortical bone mechanical behavior and altered matrix composition in human femoral bone. J Bone Miner Res 2024; 40:87-99. [PMID: 39561104 PMCID: PMC11700620 DOI: 10.1093/jbmr/zjae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Type 1 diabetes (T1D) is associated with an increased risk of hip fracture beyond what can be explained by reduced bone mineral density, possibly due to changes in bone material from accumulation of advanced glycation end-products (AGEs) and altered matrix composition, though data from human cortical bone in T1D are limited. The objective of this study was to evaluate cortical bone material behavior in T1D by examining specimens from cadaveric femora from older adults with long-duration T1D (≥50 yr; n = 20) and age- and sex-matched nondiabetic controls (n = 14). Cortical bone was assessed by mechanical testing (4-point bending, cyclic reference point indentation, impact microindentation), AGE quantification [total fluorescent AGEs, pentosidine, carboxymethyl lysine (CML)], and matrix composition via Raman spectroscopy. Cortical bone from older adults with T1D had diminished postyield toughness to fracture (-30%, p = .036), elevated levels of AGEs (pentosidine, +17%, p = .039), lower mineral crystallinity (-1.4%, p = .010), greater proline hydroxylation (+1.9%, p = .009), and reduced glycosaminoglycan (GAG) content (-1.3%, p < .03) compared to nondiabetics. In multiple regression models to predict cortical bone toughness, cortical tissue mineral density, CML, and Raman spectroscopic measures of enzymatic collagen crosslinks and GAG content remained highly significant predictors of toughness, while diabetic status was no longer significant (adjusted R2 > 0.60, p < .001). Thus, the impairment of cortical bone to absorb energy following long-duration T1D is well explained by AGE accumulation and modifications to the bone matrix. These results provide novel insight into the pathogenesis of skeletal fragility in individuals with T1D.
Collapse
Affiliation(s)
- Shannon R Emerzian
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Jarred Chow
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Ramina Behzad
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, United States
| | - Mustafa Unal
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman 70100, Türkiye
| | - Daniel J Brooks
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - I-Hsien Wu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
| | - John Gauthier
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
| | | | - Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Internal Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Hetal S Shah
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Internal Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - George L King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Internal Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, United States
| | - Elaine W Yu
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
6
|
An YA. Recent advances in diabetic retinopathy onset in glucose-well-controlled patients: From biomarker to treatment. Sci Bull (Beijing) 2024; 69:1799-1801. [PMID: 38637229 DOI: 10.1016/j.scib.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Affiliation(s)
- Yu A An
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, Houston TX 77030, USA; Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston TX 77030, USA; Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston TX 77030, USA.
| |
Collapse
|
7
|
Delle C, Wang X, Giannetto M, Newbold E, Peng W, Gomolka RS, Ladrón-de-Guevara A, Cankar N, Schiøler Nielsen E, Kjaerby C, Weikop P, Mori Y, Nedergaard M. Transient but not chronic hyperglycemia accelerates ocular glymphatic transport. Fluids Barriers CNS 2024; 21:26. [PMID: 38475818 DOI: 10.1186/s12987-024-00524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Glymphatic transport is vital for the physiological homeostasis of the retina and optic nerve. Pathological alterations of ocular glymphatic fluid transport and enlarged perivascular spaces have been described in glaucomatous mice. It remains to be established how diabetic retinopathy, which impairs vision in about 50% of diabetes patients, impacts ocular glymphatic fluid transport. Here, we examined ocular glymphatic transport in chronic hyperglycemic diabetic mice as well as in healthy mice experiencing a daily transient increase in blood glucose. Mice suffering from severe diabetes for two and four months, induced by streptozotocin, exhibited no alterations in ocular glymphatic fluid transport in the optic nerve compared to age-matched, non-diabetic controls. In contrast, transient increases in blood glucose induced by repeated daily glucose injections in healthy, awake, non-diabetic mice accelerated antero- and retrograde ocular glymphatic transport. Structural analysis showed enlarged perivascular spaces in the optic nerves of glucose-treated mice, which were absent in diabetic mice. Thus, transient repeated hyperglycemic events, but not constant hyperglycemia, ultimately enlarge perivascular spaces in the murine optic nerve. These findings indicate that fluid transport in the mouse eye is vulnerable to fluctuating glycemic levels rather than constant hyperglycemia, suggesting that poor glycemic control drives glymphatic malfunction and perivascular enlargement in the optic nerve.
Collapse
Affiliation(s)
- Christine Delle
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Xiaowei Wang
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, 14642, Rochester, NY, USA
- School of Medicine, University of California, San Francisco, 10 Koret Way, 94117, San Francisco, CA, USA
| | - Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, 14642, Rochester, NY, USA
| | - Evan Newbold
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, 14642, Rochester, NY, USA
| | - Weiguo Peng
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, 14642, Rochester, NY, USA
| | - Ryszard Stefan Gomolka
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, 14642, Rochester, NY, USA
| | - Neža Cankar
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Elise Schiøler Nielsen
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, 14642, Rochester, NY, USA.
| |
Collapse
|
8
|
Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr Rev 2024; 45:227-252. [PMID: 37638875 PMCID: PMC10911956 DOI: 10.1210/endrev/bnad030] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Chronic complications of diabetes are due to myriad disorders of numerous metabolic pathways that are responsible for most of the morbidity and mortality associated with the disease. Traditionally, diabetes complications are divided into those of microvascular and macrovascular origin. We suggest revising this antiquated classification into diabetes complications of vascular, parenchymal, and hybrid (both vascular and parenchymal) tissue origin, since the profile of diabetes complications ranges from those involving only vascular tissues to those involving mostly parenchymal organs. A major paradigm shift has occurred in recent years regarding the pathogenesis of diabetes complications, in which the focus has shifted from studies on risks to those on the interplay between risk and protective factors. While risk factors are clearly important for the development of chronic complications in diabetes, recent studies have established that protective factors are equally significant in modulating the development and severity of diabetes complications. These protective responses may help explain the differential severity of complications, and even the lack of pathologies, in some tissues. Nevertheless, despite the growing number of studies on this field, comprehensive reviews on protective factors and their mechanisms of action are not available. This review thus focused on the clinical, biochemical, and molecular mechanisms that support the idea of endogenous protective factors, and their roles in the initiation and progression of chronic complications in diabetes. In addition, this review also aimed to identify the main needs of this field for future studies.
Collapse
Affiliation(s)
- Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Gordin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Stenbäckinkatu 9, FI-00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jialin Fu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - George Liang King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
9
|
Lanctôt SO, Lovblom LE, Lewis EJH, Morris M, Cardinez N, Scarr D, Bakhsh A, Abuabat MI, Lovshin JA, Lytvyn Y, Boulet G, Bussières A, Brent MH, Paul N, Bril V, Cherney DZI, Perkins BA. Fasted C-Peptide Distribution and Associated Clinical Factors in Adults With Longstanding Type 1 Diabetes: Analysis of the Canadian Study of Longevity in Type 1 Diabetes. Can J Diabetes 2024; 48:89-96. [PMID: 37944665 DOI: 10.1016/j.jcjd.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Although insulin production is reportedly retained in many people with longstanding type 1 diabetes (T1D), the magnitude and relevance of connecting peptide (C-peptide) production are uncertain. In this study, we aimed to define fasted C-peptide distributions and associated clinical factors. METHODS In a cross-sectional analysis of the Canadian Study of Longevity, fasted serum and urinary C-peptide was measured in 74 patients with longstanding T1D (duration ≥50 years) and 75 age- and sex-matched controls. Extensive phenotyping for complications was performed and patient-reported variables were included. C-peptide distributions were analyzed, and multivariable logistic regression was used to assess the variable association in participants with T1D. RESULTS The 74 participants with T1D had a mean age of 66±8 years, a disease duration of 54 (interquartile range 52 to 58) years, and a glycated hemoglobin (A1C) of 7.4%±0.8% (56.8±9.15 mmol/mol). The 75 controls had a mean age of 65±8 years and an A1C of 5.7%±0.4% (38.4±4.05 mmol/mol). Participants with T1D had lower fasted serum C-peptide than controls (0.013±0.022 vs 1.595±1.099 nmol/L, p<0.001). Of the participants with T1D, C-peptide was detectable in 30 of 73 (41%) serum samples, 32 of 74 (43%) urine samples, and 48 of 74 (65%) for either serum or urine. The variables independently associated with detectable serum or urinary C-peptide were lower total daily insulin requirement (odds ratio 2.351 [for 1 lower unit/kg], p=0.013) and lower hypoglycemia worry score (odds ratio 1.059 [for 1 point lower on the worry subscore of the Hypoglycemia Fear Survey], p=0.030). CONCLUSIONS Although detectable C-peptide in longstanding diabetes was common, the magnitude of concentration was extremely low when compared with age- and sex-matched controls. Despite minimal detectability, its presence is validated by lower insulin requirements and strongly associated with lower hypoglycemia worry.
Collapse
Affiliation(s)
- Sebastien O Lanctôt
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Leif Erik Lovblom
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Evan J H Lewis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Michelle Morris
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Nancy Cardinez
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Daniel Scarr
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Abdulmohsen Bakhsh
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada; Kidney & Pancreas Health Centre, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Mohammad I Abuabat
- Internal Medicine and Critical Care Department, King Abdullah bin Abdulaziz University Hospital, Princess Norah University, Riyadh, Saudi Arabia
| | - Julie A Lovshin
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yuliya Lytvyn
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Geneviève Boulet
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Alexandra Bussières
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Michael H Brent
- Faculty of Medicine, Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Narinder Paul
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Vera Bril
- Division of Neurology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Kour V, Swain J, Singh J, Singh H, Kour H. A Review on Diabetic Retinopathy. Curr Diabetes Rev 2024; 20:e201023222418. [PMID: 37867267 DOI: 10.2174/0115733998253672231011161400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/08/2023] [Accepted: 08/23/2023] [Indexed: 10/24/2023]
Abstract
Diabetic retinopathy is a well-recognised microvascular complication of diabetes and is among the leading cause of blindness all over the world. Over the last decade, there have been advances in the diagnosis of diabetic retinopathy and diabetic macular edema. At the same time, newer therapies for the management of diabetic retinopathy have evolved. As a result of these advances, a decline in severe vision loss due to diabetes has been witnessed in some developing countries. However, there is a steady increase in the number of people affected with diabetes, and is expected to rise further in the coming years. Therefore, it is prudent to identify diabetic retinopathy, and timely intervention is needed to decrease the burden of severe vision loss. An effort has been made to review all the existing knowledge regarding diabetic retinopathy in this article and summarize the present treatment options for diabetic retinopathy.
Collapse
Affiliation(s)
- Vijender Kour
- Consultant Ophthalmology, Department of Ophthalmology, Sub District Hospital, Tral, Pulwama, India
| | - Jayshree Swain
- Department of Endocrinology, IMS and Sum Hospital, Siksha O Anusandhan (SOA) University, Bhubaneswar, India
| | - Jaspreet Singh
- Department of Endocrinology, IMS and Sum Hospital, Siksha O Anusandhan (SOA) University, Bhubaneswar, India
| | - Hershdeep Singh
- Consultant Neurosurgeon, Department of Neurosurgery, Fortis Ludhiana, Bhubaneswar, India
| | | |
Collapse
|
11
|
Fanaro GB, Marques MR, Calaza KDC, Brito R, Pessoni AM, Mendonça HR, Lemos DEDA, de Brito Alves JL, de Souza EL, Cavalcanti Neto MP. New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1237. [PMID: 37371967 PMCID: PMC10295526 DOI: 10.3390/antiox12061237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.
Collapse
Affiliation(s)
- Gustavo Bernardes Fanaro
- Institute of Health and Biotechnology, Federal University of Amazonas, Manaus 69460000, Amazonas, Brazil;
| | | | - Karin da Costa Calaza
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | - Rafael Brito
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | | | - Henrique Rocha Mendonça
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Marinaldo Pacífico Cavalcanti Neto
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| |
Collapse
|
12
|
Gabbay MAL, Crispim F, Dib SA. Residual β-cell function in Brazilian Type 1 diabetes after 3 years of diagnosis: prevalence and association with low presence of nephropathy. Diabetol Metab Syndr 2023; 15:51. [PMID: 36935525 PMCID: PMC10026390 DOI: 10.1186/s13098-023-01014-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/04/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Persistence of β cell-function in Type 1 diabetes (T1D) is associated with glycaemia stability and lower prevalence of microvascular complications. We aimed to assess the prevalence of residual C- peptide secretion in long-term Brazilian childhood onset T1D receiving usual diabetes care and its association to clinical, metabolic variables and microvascular complications. METHODS A cross-sectional observational study with 138 T1D adults with ≥ 3 years from the diagnosis by routine diabetes care. Clinical, metabolic variables and microvascular complications were compared between positive ultra-sensitive fasting serum C-peptide (FCP +) and negative (FCP-) participants. RESULTS T1D studied had ≥ 3 yrs. of diagnosis and 60% had FCP > 1.15 pmol/L. FCP + T1D were older at diagnosis (10 vs 8 y.o; p = 0.03) and had less duration of diabetes (11 vs 15 y.o; p = 0.002). There was no association between the FCP + and other clinical and metabolic variable but there was inversely association with microalbuminuria (28.6% vs 13.4%, p = 0.03), regardless of HbA1c. FCP > 47 pmol/L were associated with nephropathy protection but were not related to others microvascular complications. CONCLUSION Residual insulin secretion is present in 60% of T1D with ≥ 3 years of diagnosis in routine diabetes care. FCP + was positively associated with age of diagnosis and negatively with duration of disease and microalbuminuria, regardless of HbA1c.
Collapse
Affiliation(s)
- Monica A L Gabbay
- Centre for Diabetes, Endocrinology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
- Molecular Biology Laboratory, Endocrinology Division, Department of Medicine Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Felipe Crispim
- Molecular Biology Laboratory, Endocrinology Division, Department of Medicine Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio A Dib
- Centre for Diabetes, Endocrinology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022; 10:biomedicines10092274. [PMID: 36140374 PMCID: PMC9496134 DOI: 10.3390/biomedicines10092274] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic patients are frequently affected by coronary microvascular dysfunction (CMD), a condition consisting of a combination of altered vasomotion and long-term structural change to coronary arterioles leading to impaired regulation of blood flow in response to changing cardiomyocyte oxygen requirements. The pathogenesis of this microvascular complication is complex and not completely known, involving several alterations among which hyperglycemia and insulin resistance play particularly central roles leading to oxidative stress, inflammatory activation and altered barrier function of endothelium. CMD significantly contributes to cardiac events such as angina or infarction without obstructive coronary artery disease, as well as heart failure, especially the phenotype associated with preserved ejection fraction, which greatly impact cardiovascular (CV) prognosis. To date, no treatments specifically target this vascular damage, but recent experimental studies and some clinical investigations have produced data in favor of potential beneficial effects on coronary micro vessels caused by two classes of glucose-lowering drugs: glucagon-like peptide 1 (GLP-1)-based therapy and inhibitors of sodium-glucose cotransporter-2 (SGLT2). The purpose of this review is to describe pathophysiological mechanisms, clinical manifestations of CMD with particular reference to diabetes, and to summarize the protective effects of antidiabetic drugs on the myocardial microvascular compartment.
Collapse
|
14
|
Fickweiler W, Park H, Park K, Mitzner MG, Chokshi T, Boumenna T, Gautier J, Zaitsu Y, Wu IH, Cavallerano J, Aiello LP, Sun JK, King GL. Elevated Retinol Binding Protein 3 Concentrations Are Associated With Decreased Vitreous Inflammatory Cytokines, VEGF, and Progression of Diabetic Retinopathy. Diabetes Care 2022; 45:2159-2162. [PMID: 35852358 PMCID: PMC9472483 DOI: 10.2337/dc22-0165] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/10/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To correlate inflammatory cytokines and vascular endothelial growth factor (VEGF) in vitreous and plasma with vitreous retinol binding protein 3 (RBP3), diabetic retinopathy (DR) severity, and DR worsening in a population with type 1 and type 2 diabetes. RESEARCH DESIGN AND METHODS RBP3, VEGF, and inflammatory cytokines were measured in plasma and vitreous samples (n = 205) from subjects of the Joslin Medalist Study and Beetham Eye Institute. RESULTS Higher vitreous RBP3 concentrations were associated with less severe DR (P < 0.0001) and a reduced risk of developing proliferative DR (PDR) (P < 0.0001). Higher RBP3 correlated with increased photoreceptor segment thickness and lower vitreous interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α), and TNF-β (P < 0.05). PDR was associated with lower vitreous interferon-γ and IL-10 and higher VEGF, IL-6, and IL-15 (P < 0.05), but was not associated with their plasma concentrations. CONCLUSIONS Higher vitreous RBP3 concentrations are associated with less severe DR and slower rates of progression to PDR, supporting its potential as a biomarker and therapeutic agent for preventing DR worsening, possibly by lowering retinal VEGF and inflammatory cytokines.
Collapse
Affiliation(s)
- Ward Fickweiler
- Research Division, Joslin Diabetes Center, Boston, MA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Hyunseok Park
- Research Division, Joslin Diabetes Center, Boston, MA
| | | | - Margalit G. Mitzner
- Research Division, Joslin Diabetes Center, Boston, MA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA
| | - Tanvi Chokshi
- Research Division, Joslin Diabetes Center, Boston, MA
| | | | - John Gautier
- Research Division, Joslin Diabetes Center, Boston, MA
| | - Yumi Zaitsu
- Research Division, Joslin Diabetes Center, Boston, MA
| | - I-Hsien Wu
- Research Division, Joslin Diabetes Center, Boston, MA
| | - Jerry Cavallerano
- Research Division, Joslin Diabetes Center, Boston, MA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Lloyd P. Aiello
- Research Division, Joslin Diabetes Center, Boston, MA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Jennifer K. Sun
- Research Division, Joslin Diabetes Center, Boston, MA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - George L. King
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Methylglyoxal and glyoxalase 1-a metabolic stress pathway-linking hyperglycemia to the unfolded protein response and vascular complications of diabetes. Clin Sci (Lond) 2022; 136:819-824. [PMID: 35635155 PMCID: PMC9152679 DOI: 10.1042/cs20220099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
The study of the glyoxalase system by Thornalley and co-workers in clinical diabetes mellitus and correlation with diabetic complications revealed increased exposure of patients with diabetes to the reactive, dicarbonyl metabolite methylglyoxal (MG). Twenty-eight years later, extended and built on by Thornalley and co-workers and others, the glyoxalase system is an important pathway contributing to the development of insulin resistance and vascular complications of diabetes. Other related advances have been: characterization of a new kind of metabolic stress—‘dicarbonyl stress’; identification of the major physiological advanced glycation endproduct (AGE), MG-H1; physiological substrates of the unfolded protein response (UPR); new therapeutic agents—‘glyoxalase 1 (Glo1) inducers’; and a refined mechanism underlying the link of dysglycemia to the development of insulin resistance and vascular complications of diabetes.
Collapse
|
16
|
Forga L, López-Andrés N, Tamayo I, Fernández-Celis A, García-Mouriz M, Goñi MJ. Relationship between soluble protein ST2 (sST2) levels and microvascular complications in a cohort of patients with type 1 diabetes. ENDOCRINOL DIAB NUTR 2022; 69:322-330. [PMID: 35697466 DOI: 10.1016/j.endien.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/18/2021] [Indexed: 06/15/2023]
Abstract
AIM To determine the association and the prognostic value of soluble ST2 (sST2) levels in the development of diabetic retinopathy (DR), diabetic macular oedema (DMO) or diabetic nephropathy (DN), in a cohort of patients with type 1 diabetes (T1D). METHODS A total of 269 individuals with T1D (154 males and 115 females) were recruited. The overall mean age was 43.2±14.9 years, and the diabetes duration was 17.1±12.1 years. Levels of sST2 in serum were evaluated, and the presence as well as the degree of DR, DMO and DN was recorded. Additionally, other clinical and analytical parameters including demographic variables were recovered from patients' electronic health record. Ten years later, the presence and stage of DR, DMO and DN were again recorded under the same criteria. The association between previously mentioned parameters with DR and DN was analysed by univariate and multivariate logistic regression. The variables in the final multivariate models were adjusted from complete models via backward elimination and maintained only when significant. RESULTS An increase of 10ng/ml in the levels of sST2 was associated with a 1.50 (1.02-2.19) and 1.48 (1.05-2.08) prevalence odds ratio (OR) in DMO and DR, respectively. There was no association between sST2 levels and DN. Meanwhile, sST2 levels did not display a prognostic effect in any of the microangiopathic diabetic complications studied. CONCLUSIONS Levels of sST2 are associated with the presence of DR and DMO, they do not seem to be predictive for the development or deterioration of DR, DMO or DN.
Collapse
Affiliation(s)
- Luis Forga
- Servicio de Endocrinología y Nutrición, Complejo hospitalario de Navarra, Servicio Navarro de Salud-Osasunbidea, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Pamplona, Spain
| | - Ibai Tamayo
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Red de Investigación en servicios de Salud en Enfermedades Crónicas (REDISSEC), Pamplona, Spain
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Pamplona, Spain
| | - Marta García-Mouriz
- Servicio de Endocrinología y Nutrición, Complejo hospitalario de Navarra, Servicio Navarro de Salud-Osasunbidea, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María José Goñi
- Servicio de Endocrinología y Nutrición, Complejo hospitalario de Navarra, Servicio Navarro de Salud-Osasunbidea, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
17
|
Yang J, Liu D, Liu Z. Integration of Metabolomics and Proteomics in Exploring the Endothelial Dysfunction Mechanism Induced by Serum Exosomes From Diabetic Retinopathy and Diabetic Nephropathy Patients. Front Endocrinol (Lausanne) 2022; 13:830466. [PMID: 35399949 PMCID: PMC8991685 DOI: 10.3389/fendo.2022.830466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Background The prevalence of diabetic microvascular diseases has increased significantly worldwide, the most common of which are diabetic nephropathy (DN) and diabetic retinopathy (DR). Microvascular endothelial cells are thought to be major targets of hyperglycemic damage, while the underlying mechanism of diffuse endothelial dysfunction in multiple organs needs to be further investigated. Aim The aim of this study is to explore the endothelial dysfunction mechanisms of serum exosomes (SExos) extracted from DR and DN (DRDN) patients. Methods In this study, human glomerular endothelial cells (HGECs) were used as the cell model. Metabolomics ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and proteomics tandem mass tag (TMT)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) together with bioinformatics, the correlation analysis, and the joint pathway analysis were employed to discover the underlying mechanisms of endothelial dysfunction caused by patient's SExos. Results It can be assumed that serum exosomes extracted by DRDN patients might cause endothelial dysfunction mainly by upregulating alpha subunit of the coagulation factor fibrinogen (FIBA) and downregulating 1-methylhistidine (1-MH). Bioinformatics analysis pointed to an important role in reducing excess cysteine and methionine metabolism. Conclusion FIBA overexpression and 1-MH loss may be linked to the pathogenicity of diabetic endothelial dysfunction in DR/DN, implying that a cohort study is needed to further investigate the role of FIBA and 1-MH in the development of DN and DR, as well as the related pathways between the two proteins.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Moreno-Fernandez J, Sastre J, Pinés P, Del Val F, Calderon-Vicente D, Quiroga I, Herranz S, Lopez Gallardo G, Gonzalez J, Muñoz-Rodriguez JR. "Clinical status and mortality in older adults with type 1 diabetes: Results from a public health system". Diabetes Res Clin Pract 2022; 185:109221. [PMID: 35101455 DOI: 10.1016/j.diabres.2022.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
Abstract
AIM To evaluate clinical status and mortality in older adults with long-standing type 1 diabetes mellitus (T1D). METHODS Cross-sectional analysis of all patients with T1D for 50 years or more from a cohort followed since 2010 at Castilla-La Mancha Public Health Service (Spain). Primary outcome was HbA1c change during the follow-up (2010-2020 period). Secondary outcomes included evaluation of insulin and continuous glucose monitoring (CGM) use, cardiovascular risk factors (CVRF), diabetes chronic complications and mortality. RESULTS A total of fifty-five T1D patients were analysed. Mean age was 69.5 ± 8.3 yrs. and T1D duration of 54.7 ± 4.7 yrs. We detected a HbA1c reduction of -0.5% (-6 mmol/mol) [95% CI -0.1, -0.9 (-2, -10); P = 0.016]. CGM was used by 26% of the patients. More patients suffered from hypertension and obesity in 2020 (66% vs. 78%, P = 0.016; and 26% vs. 31%, P = 0.016; respectively). An increase of diabetic polyneuropathy was detected (45% vs. 67%, P = 0.008). Rate of mortality was higher among patients with long-standing T1D (26% vs. 3.5%, P < 0.001), due to cardiovascular disease (57%). CONCLUSIONS Older adults with long-standing T1D patients improved glycemic control although a worsening of CVRF and higher mortality rateweredetected.
Collapse
Affiliation(s)
- Jesus Moreno-Fernandez
- Service of Endocrinology and Nutrition, Ciudad Real General University Hospital, Ciudad Real, Spain.
| | - Julia Sastre
- Service of Endocrinology and Nutrition, Virgen de la Salud Hospital, Toledo, Spain.
| | - Pedro Pinés
- Service of Endocrinology and Nutrition, Albacete University Hospital, Albacete, Spain.
| | - Florentino Del Val
- Service of Endocrinology and Nutrition, La Mancha-Centro Hospital, Alcazar de San Juan, Ciudad Real, Spain.
| | | | - Ivan Quiroga
- Service of Endocrinology and Nutrition, Nuestra Señora del Prado Hospital, Talavera de la Reina (Toledo), Spain.
| | - Sandra Herranz
- Service of Endocrinology and Nutrition, Guadalajara University Hospital, Guadalajara, Spain.
| | - Gema Lopez Gallardo
- Service of Endocrinology and Nutrition, Santa Barbara Hospital, Puertollano (Ciudad Real), Spain.
| | - Javier Gonzalez
- Service of Endocrinology and Nutrition, Virgen de la Luz Hospital, Cuenca, Spain.
| | | |
Collapse
|
19
|
Triebel J, Bertsch T, Clapp C. Prolactin and vasoinhibin are endogenous players in diabetic retinopathy revisited. Front Endocrinol (Lausanne) 2022; 13:994898. [PMID: 36157442 PMCID: PMC9500238 DOI: 10.3389/fendo.2022.994898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR) and diabetic macular edema (DME) are major causes for visual loss in adults. Nearly half of the world's population with diabetes has some degree of DR, and DME is a major cause of visual impairment in these patients. Severe vision loss occurs because of tractional retinal detachment due to retinal neovascularization, but the most common cause of moderate vision loss occurs in DME where excessive vascular permeability leads to the exudation and accumulation of extracellular fluid and proteins in the macula. Metabolic control stands as an effective mean for controlling retinal vascular alterations in some but not all patients with diabetes, and the search of other modifiable factors affecting the risk for diabetic microvascular complications is warranted. Prolactin (PRL) and its proteolytic fragment, vasoinhibin, have emerged as endogenous regulators of retinal blood vessels. PRL acquires antiangiogenic and anti-vasopermeability properties after undergoing proteolytic cleavage to vasoinhibin, which helps restrict the vascularization of ocular organs and, upon disruption, promotes retinal vascular alterations characteristic of DR and DME. Evidence is linking PRL (and other pituitary hormones) and vasoinhibin to DR and recent preclinical and clinical evidence supports their translation into novel therapeutic approaches.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel,
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| |
Collapse
|
20
|
Zhao Y, Li X, Li S, Dong M, Yu H, Zhang M, Chen W, Li P, Yu Q, Liu X, Gao Z. Using Machine Learning Techniques to Develop Risk Prediction Models for the Risk of Incident Diabetic Retinopathy Among Patients With Type 2 Diabetes Mellitus: A Cohort Study. Front Endocrinol (Lausanne) 2022; 13:876559. [PMID: 35655800 PMCID: PMC9152028 DOI: 10.3389/fendo.2022.876559] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To construct and validate prediction models for the risk of diabetic retinopathy (DR) in patients with type 2 diabetes mellitus. METHODS Patients with type 2 diabetes mellitus hospitalized over the period between January 2010 and September 2018 were retrospectively collected. Eighteen baseline demographic and clinical characteristics were used as predictors to train five machine-learning models. The model that showed favorable predictive efficacy was evaluated at annual follow-ups. Multi-point data of the patients in the test set were utilized to further evaluate the model's performance. We also assessed the relative prognostic importance of the selected risk factors for DR outcomes. RESULTS Of 7943 collected patients, 1692 (21.30%) developed DR during follow-up. Among the five models, the XGBoost model achieved the highest predictive performance with an AUC, accuracy, sensitivity, and specificity of 0.803, 88.9%, 74.0%, and 81.1%, respectively. The XGBoost model's AUCs in the different follow-up periods were 0.834 to 0.966. In addition to the classical risk factors of DR, serum uric acid (SUA), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), estimated glomerular filtration rate (eGFR), and triglyceride (TG) were also identified to be important and strong predictors for the disease. Compared with the clinical diagnosis method of DR, the XGBoost model achieved an average of 2.895 years prior to the first diagnosis. CONCLUSION The proposed model achieved high performance in predicting the risk of DR among patients with type 2 diabetes mellitus at each time point. This study established the potential of the XGBoost model to facilitate clinicians in identifying high-risk patients and making type 2 diabetes management-related decisions.
Collapse
Affiliation(s)
- Yuedong Zhao
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China
| | - Xinyu Li
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China
| | - Shen Li
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China
| | | | - Han Yu
- Graduate School of Art and Science, Yale University, New Haven, CT, United States
| | - Mengxian Zhang
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China
| | - Weidao Chen
- Infervision Institute of Research, Beijing, China
| | - Peihua Li
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China
| | - Qing Yu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China
| | - Xuhan Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China
- *Correspondence: Xuhan Liu, ; Zhengnan Gao,
| | - Zhengnan Gao
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China
- *Correspondence: Xuhan Liu, ; Zhengnan Gao,
| |
Collapse
|
21
|
Naik G, Hafeez M, Achar P, Neeralagi M. Correlation between Diabetic Retinopathy and Diabetic Peripheral Neuropathy in Patients with Type II Diabetes Mellitus. J Pharm Bioallied Sci 2022; 14:S658-S661. [PMID: 36110646 PMCID: PMC9469228 DOI: 10.4103/jpbs.jpbs_138_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background and Objectives: The two most common complications of diabetes mellitus are retinopathy and neuropathy which are dealt by two different medical departments. Early detection and management are therefore necessary to prevent progression of these two diseases and will give a knowledgeable idea regarding the both. Thus, this study was done to know the association of diabetic peripheral neuropathy and diabetic retinopathy. Methods: This was a cross sectional study comprised of 200 cases of type 2 diabetes mellitus selected from the ophthalmology department and referred cases from other departments. A thorough history and examination was done in both departments, that is, complete ophthalmic and neurological examination respectively. Relevant investigations, if needed, were done and diabetic retinopathy was classified according to ETDRS classification. Results: Of the 200 patients having type 2 diabetes for more than 5 years, 28% of cases had diabetic retinopathy and 59% of cases had peripheral neuropathy. Peripheral neuropathy was twice more common than retinopathy. 33.1% had retinopathy and 65.46% had peripheral neuropathy among the uncontrolled diabetics. The prevalence of retinopathy increased 1.3 times in patients with neuropathy (16%) than in patients without peripheral neuropathy (12%). Conclusion: As there was higher incidence of peripheral neuropathy, it is important as ophthalmologists to look for peripheral neuropathy in diabetics which will help in reducing diabetes-related morbidities.
Collapse
|
22
|
He S, Gu C, Su T, Qiu Q. Research Progress of circRNAs in Inflammatory Mechanisms of Diabetic Retinopathy: An Emerging Star with Potential Therapeutic Targets. Curr Eye Res 2021; 47:165-178. [PMID: 34963381 DOI: 10.1080/02713683.2021.1995002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE We summarized the existing studies to elaborate the biogenesis and function of circRNAs, the effect of aberrant circRNAs expression in the mechanism of inflammation and diabetic retinopathy (DR) respectively and further explored the vital roles of circRNAs in inflammation involved in DR. Methods: We conducted a systematical literature search of abundant electronic databases (PubMed, GeneMedical and MEDLINE) up to August 2021. Results: In this review, we exhibited the biogenesis and function of circRNAs and highlighted the components of inflammatory mediators implicated in DR. Numerous circRNAs, such as circHIPK3, circZNF609, circRNA_0084043, circ_0002570, circ_0041795, circEhmt1 and circ-ITCH were discovered to play vital roles in inflammation involved in DR, which provided new ideas for diagnosis and treatment of DR. Moreover, we proposed not only the epigenetic functions of circRNAs but also novel forms of the inflammatory response, including pyroptosis, to inspire further exploration and creative research in this field. Conclusion: CircRNAs were implicated in the progression and development of inflammation in DR via aberrant expression and modulation of gene expression, serving as an emerging star with potential therapeutic targets.
Collapse
Affiliation(s)
- Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Department of Ophthalmology, Shanghai, PR China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Department of Ophthalmology, Shanghai, PR China
| | - Tong Su
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Department of Ophthalmology, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Department of Ophthalmology, Shanghai, PR China.,Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Xizang, PR China
| |
Collapse
|
23
|
Mima A. Hypoxia-inducible factor-prolyl hydroxylase inhibitors for renal anemia in chronic kidney disease: Advantages and disadvantages. Eur J Pharmacol 2021; 912:174583. [PMID: 34678238 DOI: 10.1016/j.ejphar.2021.174583] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Anemia is a common feature and complication of chronic kidney disease (CKD). Erythropoiesis-stimulating agents (ESAs) and recombinant human erythropoietin have been used widely in renal anemia treatment. Recently, hypoxia-inducible factor-prolyl hydroxylase domain inhibitors (HIF-PHIs) that may improve the treatment of renal anemia patients were launched. Previous studies indicated that HIF-PHIs may decrease hepcidin levels and modulate iron metabolism, thereby increasing total iron-binding capacity and reducing the need for iron supplementation. Furthermore, HIF-PHIs can reduce inflammation and oxidative stress in CKD. Recombinant erythropoietin has become a routine treatment for patients with CKD and end-stage renal disease with relatively few adverse effects. However, higher doses of recombinant erythropoietin have been demonstrated to be an independent predictor of mortality in patients under hemodialysis. Phase III clinical trials of HIF-PHIs in patients with anemia and dialysis-dependent CKD have shown their efficacy and safety in both non-dialysis and dialysis CKD patients. However, HIFα binds to specific hypoxia-response elements in the vascular endothelial growth factor or retinoic acid-related orphan receptor gamma t (RORγt) promoter, which may be involved in the progression of cancer, psoriasis, and rheumatoid arthritis. In this paper, we have summarized the mechanism, clinical application, and clinical trials of HIF-PHIs in the treatment of renal anemia and aimed to provide an overview of the new drugs in clinical practice, as well as reconsider the advantages and disadvantages of HIF-PHIs and ESAs. Presently, there are not enough clinical studies examining the effects of long-term administration of HIF-PHIs. Therefore, further studies will be needed.
Collapse
Affiliation(s)
- Akira Mima
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| |
Collapse
|
24
|
Mychaleckyj JC, Valo E, Ichimura T, Ahluwalia TS, Dina C, Miller RG, Shabalin IG, Gyorgy B, Cao J, Onengut-Gumuscu S, Satake E, Smiles AM, Haukka JK, Tregouet DA, Costacou T, O’Neil K, Paterson AD, Forsblom C, Keenan HA, Pezzolesi MG, Pragnell M, Galecki A, Rich SS, Sandholm N, Klein R, Klein BE, Susztak K, Orchard TJ, Korstanje R, King GL, Hadjadj S, Rossing P, Bonventre JV, Groop PH, Warram JH, Krolewski AS. Association of Coding Variants in Hydroxysteroid 17-beta Dehydrogenase 14 ( HSD17B14) with Reduced Progression to End Stage Kidney Disease in Type 1 Diabetes. J Am Soc Nephrol 2021; 32:2634-2651. [PMID: 34261756 PMCID: PMC8722802 DOI: 10.1681/asn.2020101457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/27/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Rare variants in gene coding regions likely have a greater impact on disease-related phenotypes than common variants through disruption of their encoded protein. We searched for rare variants associated with onset of ESKD in individuals with type 1 diabetes at advanced kidney disease stage. METHODS Gene-based exome array analyses of 15,449 genes in five large incidence cohorts of individuals with type 1 diabetes and proteinuria were analyzed for survival time to ESKD, testing the top gene in a sixth cohort (n=2372/1115 events all cohorts) and replicating in two retrospective case-control studies (n=1072 cases, 752 controls). Deep resequencing of the top associated gene in five cohorts confirmed the findings. We performed immunohistochemistry and gene expression experiments in human control and diseased cells, and in mouse ischemia reperfusion and aristolochic acid nephropathy models. RESULTS Protein coding variants in the hydroxysteroid 17-β dehydrogenase 14 gene (HSD17B14), predicted to affect protein structure, had a net protective effect against development of ESKD at exome-wide significance (n=4196; P value=3.3 × 10-7). The HSD17B14 gene and encoded enzyme were robustly expressed in healthy human kidney, maximally in proximal tubular cells. Paradoxically, gene and protein expression were attenuated in human diabetic proximal tubules and in mouse kidney injury models. Expressed HSD17B14 gene and protein levels remained low without recovery after 21 days in a murine ischemic reperfusion injury model. Decreased gene expression was found in other CKD-associated renal pathologies. CONCLUSIONS HSD17B14 gene is mechanistically involved in diabetic kidney disease. The encoded sex steroid enzyme is a druggable target, potentially opening a new avenue for therapeutic development.
Collapse
Affiliation(s)
- Josyf C. Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Takaharu Ichimura
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Christian Dina
- Université de Nantes, CNRS INSERM, L’institut du thorax, Nantes, France
| | - Rachel G. Miller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Beata Gyorgy
- INSERM UMRS1166, Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - JingJing Cao
- Genetics & Genome Biology Research Institute, SickKids Hospital, Toronto, Ontario, Canada
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Eiichiro Satake
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Adam M. Smiles
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
| | - Jani K. Haukka
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - David-Alexandre Tregouet
- INSERM UMRS1166, Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
- Université de Bordeaux, INSERM, Bordeaux Population Health, Bordeaux U1219, France
| | - Tina Costacou
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kristina O’Neil
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
| | - Andrew D. Paterson
- Genetics & Genome Biology Research Institute, SickKids Hospital, Toronto, Ontario, Canada
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Hillary A. Keenan
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Marcus G. Pezzolesi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | | | - Andrzej Galecki
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Barbara E. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Katalin Susztak
- Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Trevor J. Orchard
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - George L. King
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Samy Hadjadj
- INSERM CIC 1402 and U 1082, Poitiers, France
- Department of Endocrinology, L’institut du thorax, INSERM, CNRS, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Copenhagen, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Joseph V. Bonventre
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - James H. Warram
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
| | - Andrzej S. Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Stach K, Stach W, Augoff K. Vitamin B6 in Health and Disease. Nutrients 2021; 13:3229. [PMID: 34579110 PMCID: PMC8467949 DOI: 10.3390/nu13093229] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 02/06/2023] Open
Abstract
Vitamin B6 is a fascinating molecule involved in the vast majority of changes in the human body because it is a coenzyme involved in over 150 biochemical reactions. It is active in the metabolism of carbohydrates, lipids, amino acids, and nucleic acids, and participates in cellular signaling. It is an antioxidant and a compound with the ability to lower the advanced glycation end products (AGE) level. In this review, we briefly summarize its involvement in biochemical pathways and consider whether its deficiency may be associated with various diseases such as diabetes, heart disease, cancer, or the prognosis of COVID-19.
Collapse
Affiliation(s)
- Kamilla Stach
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Wojciech Stach
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Katarzyna Augoff
- Department of Surgical Education, Wroclaw Medical University, 50-668 Wroclaw, Poland;
| |
Collapse
|
26
|
Tota Ł, Matejko B, Morawska-Tota M, Pilch W, Mrozińska S, Pałka T, Klupa T, Malecki MT. Changes in Oxidative and Nitrosative Stress Indicators and Vascular Endothelial Growth Factor After Maximum-Intensity Exercise Assessing Aerobic Capacity in Males With Type 1 Diabetes Mellitus. Front Physiol 2021; 12:672403. [PMID: 34426731 PMCID: PMC8379017 DOI: 10.3389/fphys.2021.672403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/06/2021] [Indexed: 10/26/2022] Open
Abstract
In type 1 diabetes mellitus (T1DM), chronic hyperglycemia causes reactive oxygen and nitrogen species production. Exercise alters the oxidant-antioxidant balance. We evaluated the aerobic capacity and oxidant-antioxidant balance changes after maximum-intensity exercise in T1DM patients. The study involved 30 T1DM participants and 23 controls. The patients' average age was 23.4 ± 5.1 years, with a body mass index of 24.3 ± 3.1 kg m-2 and with satisfactory glycemic control. Among the controls, the respective values equaled 24.7 ± 2.9 years and 22.9 ± 2.1 kg m-2. Aerobic capacity was assessed with a treadmill test. Peak minute oxygen uptake was significantly lower in T1DM compared with the controls (44.7 ± 5.7 vs. 56.0 ± 7.3 mL kg-1 min-1). The total oxidant capacity measured by total oxidative status/total oxidative capacity (TOS/TOC) equaled 321.5 ± 151 μmol L-1 before and 380.1 ± 153 μmol L-1 after exercise in T1DM, and 164.1 ± 75 and 216.6 ± 75 μmol L-1 in the controls (p < 0.05 for all comparisons). A significant difference in the ratio of total antioxidant status/total antioxidant capacity (TAS/TAC) between the groups after the treadmill test was observed (p < 0.05). Nitrosative stress indicators where significantly higher in the T1DM group both before and after the exercise. In conclusion, diabetic patients demonstrated a lower aerobic capacity. The TOS/TOC and nitrosative stress indicators were significantly higher in T1DM before and after the test.
Collapse
Affiliation(s)
- Łukasz Tota
- Department of Physiology and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Bartłomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital in Krakow, Krakow, Poland
| | - Małgorzata Morawska-Tota
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Krakow, Krakow, Poland
| | - Wanda Pilch
- Institute of Basic Research, Department of Chemistry and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Sandra Mrozińska
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital in Krakow, Krakow, Poland
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Tomasz Klupa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital in Krakow, Krakow, Poland
| | - Maciej T. Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital in Krakow, Krakow, Poland
| |
Collapse
|
27
|
Miller RG, Orchard TJ, Onengut-Gumuscu S, Chen WM, Rich SS, Costacou T. Heterogeneous long-term trajectories of glycaemic control in type 1 diabetes. Diabet Med 2021; 38:e14545. [PMID: 33605492 PMCID: PMC8295176 DOI: 10.1111/dme.14545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 12/30/2022]
Abstract
AIMS We aimed to identify long-term HbA1c trajectories and examine associated characteristics in an observational, childhood-onset (<17 years) type 1 diabetes cohort. METHODS Data are from the Epidemiology of Diabetes Complications study, comprising 405 participants with ≥2 of seven possible HbA1c measurements over follow-up (1988-2013) and available DNA (baseline mean diabetes duration 21 years, 53% men). HbA1c trajectories were estimated using latent class growth models. Baseline and change in participant characteristics were compared across trajectories. RESULTS Five HbA1c trajectories were identified: low (51%), intermediate stable (22%), improved (19%), high stable (6%), and worsened (2%; not included in analyses). Age, diabetes duration, diabetes onset age, and sex did not differ across trajectories. Characteristics did not differ significantly between intermediate stable and low trajectories at baseline, though albumin excretion rate (AER, p = 0.0002) and estimated glomerular filtration rate (eGFR, p = 0.001) worsened slightly more in intermediate stable over time. Improved and high stable trajectories had higher baseline LDL-c (p = 0.002 and 0.003, respectively). Improved trajectory increased median self-monitoring of blood glucose from <1 to 3.5 times/day (p < 0.0001) and had larger LDL-c improvement (p = 0.004) but greater worsening of AER (p < 0.0001) and eGFR (p < 0.0001) than low. The A allele of rs12970134 (near MC4R) was associated with improved (p = 0.0003) or high stable (p = 0.001) HbA1c trajectory, both patterns with high baseline HbA1c. CONCLUSIONS Long-term HbA1c trajectories were primarily associated with modifiable factors in this type 1 diabetes cohort. The intermediate stable pattern had a risk factor profile that suggests some protection against adverse metabolic effects of chronic hyperglycaemia, warranting further study.
Collapse
Affiliation(s)
- Rachel G. Miller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - Trevor J. Orchard
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | | | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Tina Costacou
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
28
|
Liu K, Zhu T, Yao L, Zhang Z, Li H, Ye J, Li P. Noninvasive OCT angiography-based blood attenuation measurements correlate with blood glucose level in the mouse retina. BIOMEDICAL OPTICS EXPRESS 2021; 12:4680-4688. [PMID: 34513217 PMCID: PMC8407843 DOI: 10.1364/boe.430104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 05/02/2023]
Abstract
In this study, we investigated the correlation of the blood optical attenuation coefficient (OAC) and the blood glucose concentration (BGC). The blood OAC was measured in mouse retina in vivo by analyzing the depth attenuation of backscattered light under the guidance of OCT angiography (OCTA) vascular mapping, and then its correlation to the BGC was further investigated. The optical attenuation of the blood components presented a more reliable correlation to BGC than that of the background tissues. The arteries and veins presented a blood OAC change of ∼0.05-0.07 mm-1 per 10 mg/dl and a significant (P < 0.001) elevation of blood OAC in diabetic mice was observed. Furthermore, different kinds of vessels also presented different performances. The veins had a higher correlation coefficient (R=0.86) between the measured blood OAC and BGC than that of the arteries (R=0.73). Besides, the blood OAC changes of the specific vessels occur without any obvious change in the vascular morphology in the retina. The blood OAC-BGC correlation suggests a concept of non-invasive OCTA-based glucometry, allowing a fast assessment of the blood glucose of specific vessels with superior motion immunity. A direct glucometry of the retina would be helpful for accurately monitoring the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Kaiyuan Liu
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Tiepei Zhu
- Eye Center of the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Lin Yao
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ziyi Zhang
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Huakun Li
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Juan Ye
- Eye Center of the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Peng Li
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, Hebei 066004, China
- International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
29
|
Forga L, López-Andrés N, Tamayo I, Fernández-Celis A, García-Mouriz M, Goñi MJ. Relationship between soluble protein ST2 (sST2) levels and microvascular complications in a cohort of patients with type 1 diabetes. ENDOCRINOL DIAB NUTR 2021; 69:S2530-0164(21)00160-9. [PMID: 34274305 DOI: 10.1016/j.endinu.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 10/20/2022]
Abstract
AIM To determine the association and the prognostic value of soluble ST2 (sST2) levels in the development of diabetic retinopathy (DR), diabetic macular oedema (DMO) or diabetic nephropathy (DN), in a cohort of patients with type 1 diabetes (T1D). METHODS A total of 269 individuals with T1D (154 males and 115 females) were recruited. The overall mean age was 43.2±14.9 years, and the diabetes duration was 17.1±12.1 years. Levels of sST2 in serum were evaluated, and the presence as well as the degree of DR, DMO and DN was recorded. Additionally, other clinical and analytical parameters including demographic variables were recovered from patients' electronic health record. Ten years later, the presence and stage of DR, DMO and DN were again recorded under the same criteria. The association between previously mentioned parameters with DR and DN was analysed by univariate and multivariate logistic regression. The variables in the final multivariate models were adjusted from complete models via backward elimination and maintained only when significant. RESULTS An increase of 10ng/ml in the levels of sST2 was associated with a 1.50 (1.02-2.19) and 1.48 (1.05-2.08) prevalence odds ratio (OR) in DMO and DR, respectively. There was no association between sST2 levels and DN. Meanwhile, sST2 levels did not display a prognostic effect in any of the microangiopathic diabetic complications studied. CONCLUSIONS Levels of sST2 are associated with the presence of DR and DMO, they do not seem to be predictive for the development or deterioration of DR, DMO or DN.
Collapse
Affiliation(s)
- Luis Forga
- Servicio de Endocrinología y Nutrición, Complejo hospitalario de Navarra, Servicio Navarro de Salud-Osasunbidea, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Pamplona, Spain
| | - Ibai Tamayo
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Red de Investigación en servicios de Salud en Enfermedades Crónicas (REDISSEC), Pamplona, Spain
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Pamplona, Spain
| | - Marta García-Mouriz
- Servicio de Endocrinología y Nutrición, Complejo hospitalario de Navarra, Servicio Navarro de Salud-Osasunbidea, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María José Goñi
- Servicio de Endocrinología y Nutrición, Complejo hospitalario de Navarra, Servicio Navarro de Salud-Osasunbidea, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
30
|
Lin K, Yang X, Wu Y, Chen S, Zeng Q. Residual β-Cell Function in Type 1 Diabetes Followed for 2 Years after 3C Study. J Diabetes Res 2021; 2021:9946874. [PMID: 34258294 PMCID: PMC8261175 DOI: 10.1155/2021/9946874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/13/2021] [Accepted: 06/20/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To investigate the natural history and related factors of the pancreatic β-cell function in Chinese type 1 diabetic patients from 3C study Shantou center. METHOD Stimulated C-peptide levels from follow-up data of 201 individuals in 3C study Shantou subgroup starting in 2012 were used. Residual β-cell function was defined as stimulated C - peptide level ≥ 0.2 pmol/mL, on the basis of cut-points derived from the Diabetes Control and Complications Trial (DCCT). RESULTS 36.8% of patients had residual β-cell function, and the percentage was 68.2% in newly diagnosed diabetic patients. COX regression analysis indicated that the age of diagnosis, HbA1C level, and duration were independent factors of residual β-cell function in individuals with ≤5 years duration, but in those with duration ≥5 years, only the age of diagnosis was a predictor. The pancreatic β-cell function mainly declined in the first 5 years of the duration, and the rate of decline was correlated negatively with the duration and age of diagnosis. Receiver operating characteristic (ROC) analysis indicated that the cut-off point of stimulated C-peptide was 0.615 pmol/mL in patients with <5 years duration to have 7% HbA1c. CONCLUSION Age at diagnosis was the strongest predictor for residual C-peptide. There was a more rapid decline of stimulated C-peptide in duration ≤5 years and younger patients. Therefore, intervention therapies of β-cells should start from the early stage, and the recommended target goal of stimulated C-peptide is 0.615 pmol/mL or above.
Collapse
Affiliation(s)
- Kun Lin
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoping Yang
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yixi Wu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shuru Chen
- Shenzhen Huada Gene Technology Service Co., Ltd, Shenzhen, China
| | - Qiong Zeng
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
31
|
Lee J. Diagnosis and management of pediatric type 1 diabetes mellitus. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.6.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: In contrast to type 2 diabetes, type 1 diabetes mellitus (T1DM) requires insulin treatment to control blood glucose. As the incidence and prevalence of T1DM have steadily increased; therefore, T1DM is increasingly being diagnosed not only in children and adolescents, but also in adults. Therefore, the importance of accurate diagnosis and optimal management of T1DM is being recognized in clinical practice.Current Concepts: T1DM is caused by insulin deficiency, following the destruction of insulin-producing pancreatic β-cells. Diagnosis of diabetes is based on the following criteria: fasting blood glucose levels ≥126 mg/dL, random blood glucose levels ≥200 mg/dL accompanied by symptoms of hyperglycemia, an abnormal 2-hour oral glucose tolerance test, or glycated hemoglobin ≥6.5%. Accurate diagnosis of T1DM based on patients’ clinical characteristics, serum C-peptide levels, and detection of autoantibodies against β-cell autoantigens is important for optimum care and to avoid complications. A target glycated hemoglobin level is recommended in children, adolescents, and young adults with access to comprehensive care. The availability of insulin analogues and mechanical technologies (insulin pumps and continuous glucose monitors) has improved the management of T1DM, and these are useful for the prevention of microvascular complications. Screening for microvascular complications should commence at puberty or 5 years after diagnosis of T1DM.Discussion and Conclusion: Effective cooperation and coordination between patient, parents, and healthcare providers are necessary to achieve a successful transition from pediatric to adult care in patients with T1DM. Diabetic management for T1DM should be individualized based on patients’ lifestyle, as well as psychosocial, and medical circumstances.
Collapse
|
32
|
Perkins BA, Lovblom LE, Lanctôt SO, Lamb K, Cherney DZI. Discoveries from the study of longstanding type 1 diabetes. Diabetologia 2021; 64:1189-1200. [PMID: 33661335 DOI: 10.1007/s00125-021-05403-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
Award programmes that acknowledge the remarkable accomplishments of long-term survivors with type 1 diabetes have naturally evolved into research programmes to determine the factors associated with survivorship and resistance to chronic complications. In this review, we present an overview of the methodological sources of selection bias inherent in survivorship research (selection of those with early-onset diabetes, incidence-prevalence bias and bias from losses to follow-up in cohort studies) and the breadth and depth of literature focusing on this special study population. We focus on the learnings from the study of longstanding type 1 diabetes on discoveries about the natural history of insulin production loss and microvascular complications, and mechanisms associated with them that may in future offer therapeutic targets. We detail descriptive findings about the prevalence of preserved insulin production and resistance to complications, and the putative mechanisms associated with such resistance. To date, findings imply that the following mechanisms exist: strategies to maintain or recover beta cells and their function; activation of specific glycolytic enzymes such as pyruvate kinase M2; modification of AGE production and processing; novel mechanisms for modification of renin-angiotensin-aldosterone system activation, in particular those that may normalise afferent rather than efferent renal arteriolar resistance; and activation and modification of processes such as retinol binding and DNA damage checkpoint proteins. Among the many clinical and public health insights, research into this special study population has identified putative mechanisms that may in future serve as therapeutic targets, knowledge that likely could not have been gained without studying long-term survivors.
Collapse
Affiliation(s)
- Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Leif Erik Lovblom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sebastien O Lanctôt
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krista Lamb
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Fickweiler W, Wolfson EA, Paniagua SM, Yu MG, Adam A, Bahnam V, Sampani K, Wu IH, Musen G, Aiello LP, Shah H, Sun JK, King GL. Association of Cognitive Function and Retinal Neural and Vascular Structure in Type 1 Diabetes. J Clin Endocrinol Metab 2021; 106:1139-1149. [PMID: 33378459 PMCID: PMC7993575 DOI: 10.1210/clinem/dgaa921] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Cognitive dysfunction is a growing and understudied public health issue in the aging type 1 diabetic population and is difficult and time-consuming to diagnose. Studies in long duration type 1 diabetes have reported the presence of proliferative diabetic retinopathy was associated with cognitive dysfunction. OBJECTIVE This study assessed whether structural and vascular abnormalities of the retina, representing an extension of the central nervous system, are associated with cognitive impairment and other complications of type 1 diabetes. METHODS An observational cross-sectional study of individuals with 50 or more years of type 1 diabetes (Joslin Medalist Study) was conducted at a university hospital in the United States. The study included 129 participants with complete cognitive testing. Validated cognitive testing measures included psychomotor speed, and immediate, and delayed memory. Optical coherence tomography (OCT) and OCT angiography (OCTA) were performed to obtain neural retinal layer thicknesses and vascular density for superficial (SCP) and deep retinal capillary plexus (DCP). Multivariable modeling was adjusted for potential confounders associated with outcomes in unadjusted analyses. RESULTS Decreased vessel density of the SCP and DCP was associated with worse delayed memory (DCP: P = .002) and dominant hand psychomotor speed (SCP: P = .01). Thinning of the retinal outer nuclear layer was associated with worse psychomotor speed both in nondominant and dominant hands (P = .01 and P = .05, respectively). Outer plexiform layer thickness was associated with delayed memory (P = .04). CONCLUSION These findings suggest that noninvasive retinal imaging using OCT and OCTA may assist in estimating the risks for cognitive dysfunction in people with type 1 diabetes.
Collapse
Affiliation(s)
- Ward Fickweiler
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Emily A Wolfson
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | | | - Marc Gregory Yu
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Atif Adam
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Vanessa Bahnam
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Konstantina Sampani
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - I-Hsien Wu
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Gail Musen
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Lloyd P Aiello
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hetal Shah
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer K Sun
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - George L King
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Trotta MC, Gesualdo C, Platania CBM, De Robertis D, Giordano M, Simonelli F, D'Amico M, Drago F, Bucolo C, Rossi S. Circulating miRNAs in diabetic retinopathy patients: Prognostic markers or pharmacological targets? Biochem Pharmacol 2021; 186:114473. [PMID: 33607073 DOI: 10.1016/j.bcp.2021.114473] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
In this study we analyzed the expression of circulating miRNAs, in the serum of diabetic retinopathy (DR) patients. Five miRNAs (hsa-miR-195-5p, hsa-miR-20a-5p, hsa-miR-20b-5p, hsa-miR-27b-3p and hsa-miR-451a) were validated as biomarkers for stratification of DR stages, from the early non-proliferative (NPDR) to the late proliferative (PDR) phase. Furthermore, circulating levels of these miRNAs correlated with retinal hyper-reflective spots (HRS), assessed by optical coherence tomography (OCT). The number of HRS increased with worsening of DR stages. On the contrary, no significant vascular density differences between NPDR and PDR patients were detected by angio-OCT (OCTA). A post-hoc bioinformatics analysis associated these five miRNAs to target genes belonging to the "Tumor Necrosis Factor alfa signaling" pathway, and several molecules were predicted to modify miRNAs expression. In conclusion, correlation between specific circulating miRNAs and intraretinal hyper-reflective spots was demonstrated, confirming that these miRNAs were validated as prognostic biomarkers, and also as potential pharmacological targets, warranting further clinical evaluation to explore novel therapeutics for diabetic retinopathy.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Domenico De Robertis
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology, CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology, CERFO, University of Catania, Catania, Italy.
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
35
|
Chen J, Fleming T, Katz S, Dewenter M, Hofmann K, Saadatmand A, Kronlage M, Werner MP, Pokrandt B, Schreiter F, Lin J, Katz D, Morgenstern J, Elwakiel A, Sinn P, Gröne HJ, Hammes HP, Nawroth PP, Isermann B, Sticht C, Brügger B, Katus HA, Hagenmueller M, Backs J. CaM Kinase II-δ Is Required for Diabetic Hyperglycemia and Retinopathy but Not Nephropathy. Diabetes 2021; 70:616-626. [PMID: 33239449 DOI: 10.2337/db19-0659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/17/2020] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes has become a pandemic and leads to late diabetic complications of organs, including kidney and eye. Lowering hyperglycemia is the typical therapeutic goal in clinical medicine. However, hyperglycemia may only be a symptom of diabetes but not the sole cause of late diabetic complications; instead, other diabetes-related alterations could be causative. Here, we studied the role of CaM kinase II-δ (CaMKIIδ), which is known to be activated through diabetic metabolism. CaMKIIδ is expressed ubiquitously and might therefore affect several different organ systems. We crossed diabetic leptin receptor-mutant mice to mice lacking CaMKIIδ globally. Remarkably, CaMKIIδ-deficient diabetic mice did not develop hyperglycemia. As potential underlying mechanisms, we provide evidence for improved insulin sensing with increased glucose transport into skeletal muscle and also reduced hepatic glucose production. Despite normoglycemia, CaMKIIδ-deficient diabetic mice developed the full picture of diabetic nephropathy, but diabetic retinopathy was prevented. We also unmasked a retina-specific gene expression signature that might contribute to CaMKII-dependent retinal diabetic complications. These data challenge the clinical concept of normalizing hyperglycemia in diabetes as a causative treatment strategy for late diabetic complications and call for a more detailed analysis of intracellular metabolic signals in different diabetic organs.
Collapse
Affiliation(s)
- Jessy Chen
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Sylvia Katz
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Matthias Dewenter
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Kai Hofmann
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Alireza Saadatmand
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Mariya Kronlage
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Moritz P Werner
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Bianca Pokrandt
- Heidelberg University Biochemistry Center, INF 328, Heidelberg, Germany
| | - Friederike Schreiter
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniel Katz
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics (ILM), University of Leipzig, Leipzig, Germany
| | - Peter Sinn
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
- Institute of Pathology, University of Marburg, Marburg, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC) Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Neuherberg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics (ILM), University of Leipzig, Leipzig, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, INF 328, Heidelberg, Germany
| | - Hugo A Katus
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Marco Hagenmueller
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) continues to be the primary cause of chronic kidney disease in the USA and around the world. The numbers of people with DKD also continue to rise despite current treatments. Certain newer hypoglycemic drugs offer a promise of slowing progression, but it remains to be seen how effective these will be over time. Thus, continued exploration of the mechanisms underlying the development and progression of DKD is essential in order to discover new treatments. Hyperglycemia is the main cause of the cellular damage seen in DKD. But, exactly how hyperglycemia leads to the activation of processes that are ultimately deleterious is incompletely understood. RECENT FINDINGS Studies primarily over the past 10 years have provided novel insights into the interplay of hyperglycemia, glucose metabolic pathways, mitochondrial function, and the potential importance of what has been called the Warburg effect on the development and progression of DKD. This review will provide a brief overview of glucose metabolism and the hypotheses concerning the pathogenesis of DKD and then discuss in more detail the supporting data that indicate a role for the interplay of glucose metabolic pathways and mitochondrial function.
Collapse
Affiliation(s)
- Robert C Stanton
- Kidney and Hypertension Section, Joslin Diabetes Center; Beth Israel Deaconess Medical Center, and Harvard Medical School; Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.
| |
Collapse
|
37
|
Azmi S, Ferdousi M, Kalteniece A, Petropoulos IN, Ponirakis G, Alam U, Asghar O, Marshall A, Sankar A, Boulton AJM, Soran H, Efron N, Malik RA. Protection from neuropathy in extreme duration type 1 diabetes. J Peripher Nerv Syst 2020; 26:49-54. [PMID: 33236478 PMCID: PMC7983958 DOI: 10.1111/jns.12423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
A proportion of individuals with type 1 diabetes mellitus for more than 50 years (medallists) may be protected from developing nephropathy, retinopathy and neuropathy. Detailed neuropathy phenotyping was undertaken in a cohort of 33 medallists aged 63.7 ± 1.4 years with diabetes for 58.5 ± 0.8 years and HbA1c of 65.9 ± 2.1 mmol/mmol. Medallists had a significantly higher HbA1c (P < .001), lower estimated glomerular filtration rate (eGFR) (P = .005) and higher albumin creatinine excretion ratio (ACR) (P = .01), but a lower total cholesterol (P < .001), triacylglycerols (P = .001), low density lipoprotein‐cholesterol (P < .001) and higher high density lipoprotein‐cholesterol (P = .03), compared to controls. Twenty‐four percent of participants were identified as “escapers” without confirmed diabetic neuropathy. They had a lower neuropathy symptom profile (P = .002), vibration perception threshold (P = .02), warm threshold (P = .05), higher peroneal amplitude (P = .005), nerve conduction velocity (P = .03), heart rate variability (P = .001), corneal nerve fibre density (P = 0.001), branch density (P < .001) and length (P = .001), compared to medallists with diabetic neuropathy. Escapers had a shorter duration of diabetes (P = .006), lower alcohol consumption (P = .04), lower total cholesterol (P = .04) and LDL (P = .02), higher eGFR (P = .001) and lower ACR (P < .001). Patients with extreme duration diabetes without diabetic neuropathy have a comparable HbA1c, blood pressure and body mass index, but a more favourable lipid profile and consume less alcohol compared to those with diabetic neuropathy.
Collapse
Affiliation(s)
- Shazli Azmi
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | | | | | - Uazman Alam
- Diabetes & Endocrinology Research, Institute of Cardiovascular and Metabolic Medicine and The Pain Research Institute, University of Liverpool and Liverpool University NHS Hospital Trust, Liverpool, UK
| | - Omar Asghar
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Andrew Marshall
- Institute of Life course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Adhithya Sankar
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Andrew J M Boulton
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Rayaz A Malik
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK.,Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
38
|
An X, Jin D, Duan L, Zhao S, Zhou R, Lian F, Tong X. Direct and indirect therapeutic effect of traditional Chinese medicine as an add-on for non-proliferative diabetic retinopathy: a systematic review and meta-analysis. Chin Med 2020; 15:99. [PMID: 32963587 PMCID: PMC7499984 DOI: 10.1186/s13020-020-00380-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022] Open
Abstract
Background Diabetic retinopathy (DR) is the leading cause of blindness in many countries. The current treatment for non-proliferative DR (NPDR) using Western medicine (WM) alone is insufficient. At present, the combination of NPDR treatment with traditional Chinese medicine (TCM) and WM is universally applied. We aimed to evaluate the effectiveness and safety of TCM as an add-on for NPDR using a systematic review and meta-analysis. Method Data from randomized controlled trials (RCTs) of TCM for NPDR treatment along with WM before July 6, 2019, were collected from the China National Knowledge Infrastructure, Wanfang Database, China Biomedical Database, Pubmed, Embase, and Cochrane Library. Relevant data were extracted by two reviewers. I2 statistics was adopted to appraise heterogeneity. If I2 < 50% the fixed-effects model was employed, otherwise a random-effect model was employed. (PROSPERO: CRD42019134947) Result Eighteen RCTs (1522 patients) were included based on the inclusion and exclusion criteria. The results showed that compared with WM alone, TCM (including Compound Xueshuantong Capsule, Qiming Granule, and others) combined with WM for NPDR could improve the overall effiicacy [n = 1686, RR 1.24 (1.18,1.30), P < 0.00001, I2 = 0%], and reduce the influence of risk factors related to NPDR, such as glycated hemoglobin level [n = 360, MD − 0.85 (− 1.28, − 0.41), P = 0.0001, I2 = 72%], triglyceride (P < 0.00001), and total cholesterol (P = 0.0008). Moreover, no serious adverse events were reported. Conclusion Compared with WM alone, TCM + WM could significantly improve NPDR and also reduce the correlation levels of risk factors, such as hyperglycemia, dyslipidemia. However, the small sample included in the study might lead to a publication bias, and therefore, our results should be treated with caution.
Collapse
Affiliation(s)
- Xuedong An
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China.,China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China.,China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - LiYun Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China.,China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shenghui Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China.,Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Rongrong Zhou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China.,China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| |
Collapse
|
39
|
Vitamin D Protects against Oxidative Stress and Inflammation in Human Retinal Cells. Antioxidants (Basel) 2020; 9:antiox9090838. [PMID: 32911690 PMCID: PMC7555517 DOI: 10.3390/antiox9090838] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy is a vision-threatening microvascular complication of diabetes and is one of the leading causes of blindness. Oxidative stress and inflammation play a major role in its pathogenesis, and new therapies counteracting these contributors could be of great interest. In the current study, we investigated the role of vitamin D against oxidative stress and inflammation in human retinal pigment epithelium (RPE) and human retinal endothelial cell lines. We demonstrate that vitamin D effectively counteracts the oxidative stress induced by hydrogen peroxide (H2O2). In addition, the increased levels of proinflammatory proteins such as Interleukin (IL)-6, IL-8, Monocyte chemoattractant protein (MCP)-1, Interferon (IFN)-γ, and tumor necrosis factor (TNF)-α triggered by lipopolysaccharide (LPS) exposure were significantly decreased by vitamin D addition. Interestingly, the increased IL-18 only decreased by vitamin D addition in endothelial cells but not in RPE cells, suggesting a main antiangiogenic role under inflammatory conditions. Moreover, H2O2 and LPS induced the alteration and morphological damage of tight junctions in adult retinal pigment epithelium (ARPE-19) cells that were restored under oxidative and inflammatory conditions by the addition of vitamin D to the media. In conclusion, our data suggest that vitamin D could protect the retina by enhancing antioxidant defense and through exhibiting anti-inflammatory properties.
Collapse
|
40
|
Nowak N. Protective factors as biomarkers and targets for prevention and treatment of diabetic nephropathy: From current human evidence to future possibilities. J Diabetes Investig 2020; 11:1085-1096. [PMID: 32196975 PMCID: PMC7477513 DOI: 10.1111/jdi.13257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Although hyperglycemia, high blood pressure and aging increase the risk of developing kidney complications, some diabetes patients exposed to these risk factors do not develop kidney disease, suggesting the presence of endogenous protective factors. There is a growing need to understand these factors determining protection of the kidney in order to improve the design of preventive strategies and to enhance the processes responsible for renoprotection. The aim of this review was to present the existing molecular and epidemiological data on factors showing protective effects in diabetic kidney disease, and to summarize the evidence regarding their potential in the area of future clinical diagnostics, therapeutics and early preventive strategies. These include transcriptomic and proteomic studies regarding the anti-inflammatory, anti-fibrotic and regenerative factors that were associated with slower progression of renal function loss. Another focus is the new evidence regarding the evaluation of alterations in the regulatory epigenome and its involvement in the risk of diabetic kidney disease. Further effort is required to validate and extend these findings, and to define their potential for clinical implementation in the future.
Collapse
Affiliation(s)
- Natalia Nowak
- Faculty of MedicineCenter for Bioinformatics and Data AnalysisMedical University of BialystokBialystokPoland
| |
Collapse
|
41
|
Gerdes C, Werner C, Kloos C, Lehmann T, Wolf G, Müller UA, Müller N. Progression of Diabetic Complications in Subgroups of People with Long Term Diabetes Type 1 According to Clinical Course. Exp Clin Endocrinol Diabetes 2020; 130:101-109. [PMID: 32777840 DOI: 10.1055/a-1192-3761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIMS Prevention and prediction of microvascular complications are important aims of medical care in people with type 1 diabetes. Since the course of the disease is heterogenous, we tried to identify subgroups with specific risk profiles for microvascular complications. METHODS Retrospective analysis of a cohort of 285 people (22637 consultations) with >10 years of type 1 diabetes. Persons were grouped into slow (<15 years), fast (>15 years) and non progressors according to the average onset of microvascular complications. Generalized estimating equations for binary outcomes were applied and pseudo coefficients of determination were calculated. RESULTS Progression to microvascular disease was associated with age (OR: 1.034 [1.001-1.068]; p=0.04), diabetes duration (OR: 1.057 [1.021-1.094]; p=0.002), HbA1c (OR: 1.035 [1.011-1.060]; p=0.005), BMI (OR: 0.928 [0.866-0.994]; p=0.034) and the social strata index (OR: 0.910 [0.830-0.998]; p=0.046). Generalized estimating equations predicted 31.02% and exclusion of HbA1c marginally reduced the value to 28.88%. The proportion of patients with LADA was higher in fast than slow progressors [13 (26.5%) vs. 14 (11.9%); p=0.019]. A generalized estimating equation comparing slow to fast progressors revealed no significant markers. CONCLUSION In our analysis, we were able to confirm known risk factors for microvascular disease in people with type 1 diabetes. Overall, prediction of individual risk was difficult, the effect of individual markers minor and we could not find differences regarding slow or fast progression. We therefore emphasis the need for additional markers to predict individual risk for microvascular disease.
Collapse
Affiliation(s)
- Christian Gerdes
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Christoph Werner
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Christof Kloos
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Thomas Lehmann
- Department of Medical Statistics, Jena University Hospital, Information and Documentation, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Ulrich Alfons Müller
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany.,Practice for Endocrinology and Diabetes, Centre for Ambulatory Medicine, Jena University Hospital, Jena, Germany
| | - Nicolle Müller
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| |
Collapse
|
42
|
Yokomizo H, Maeda Y, Park K, Clermont AC, Hernandez SL, Fickweiler W, Li Q, Wang CH, Paniagua SM, Simao F, Ishikado A, Sun B, Wu IH, Katagiri S, Pober DM, Tinsley LJ, Avery RL, Feener EP, Kern TS, Keenan HA, Aiello LP, Sun JK, King GL. Retinol binding protein 3 is increased in the retina of patients with diabetes resistant to diabetic retinopathy. Sci Transl Med 2020; 11:11/499/eaau6627. [PMID: 31270273 DOI: 10.1126/scitranslmed.aau6627] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/18/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
The Joslin Medalist Study characterized people affected with type 1 diabetes for 50 years or longer. More than 35% of these individuals exhibit no to mild diabetic retinopathy (DR), independent of glycemic control, suggesting the presence of endogenous protective factors against DR in a subpopulation of patients. Proteomic analysis of retina and vitreous identified retinol binding protein 3 (RBP3), a retinol transport protein secreted mainly by the photoreceptors, as elevated in Medalist patients protected from advanced DR. Mass spectrometry and protein expression analysis identified an inverse association between vitreous RBP3 concentration and DR severity. Intravitreal injection and photoreceptor-specific overexpression of RBP3 in rodents inhibited the detrimental effects of vascular endothelial growth factor (VEGF). Mechanistically, our results showed that recombinant RBP3 exerted the therapeutic effects by binding and inhibiting VEGF receptor tyrosine phosphorylation. In addition, by binding to glucose transporter 1 (GLUT1) and decreasing glucose uptake, RBP3 blocked the detrimental effects of hyperglycemia in inducing inflammatory cytokines in retinal endothelial and Müller cells. Elevated expression of photoreceptor-secreted RBP3 may have a role in protection against the progression of DR due to hyperglycemia by inhibiting glucose uptake via GLUT1 and decreasing the expression of inflammatory cytokines and VEGF.
Collapse
Affiliation(s)
- Hisashi Yokomizo
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Yasutaka Maeda
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Allen C Clermont
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | - Ward Fickweiler
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Chih-Hao Wang
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | - Fabricio Simao
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Atsushi Ishikado
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Bei Sun
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - I-Hsien Wu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Sayaka Katagiri
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - David M Pober
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Liane J Tinsley
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Robert L Avery
- California Retina Consultants, Santa Barbara, CA 93103, USA
| | - Edward P Feener
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy S Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Irvine, CA 92697, USA
| | - Hillary A Keenan
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Lloyd Paul Aiello
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Jennifer K Sun
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - George L King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA. .,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
43
|
Abikoye TM, Oluleye TS, Aribaba OT, Musa KO, Idowu OO, Onakoya AO. Is primary open-angle glaucoma a risk factor for diabetic retinopathy? Int Ophthalmol 2020; 40:3233-3240. [PMID: 32696101 DOI: 10.1007/s10792-020-01507-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/06/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE To compare the prevalences of diabetic retinopathy in diabetes mellitus patients, with and without primary open-angle glaucoma, with a view to determine if glaucoma is a risk factor for the development of diabetic retinopathy. METHODS Cross-sectional, comparative study consisting of 86 diabetic patients with glaucoma matched with 86 diabetic patients without glaucoma. The two groups were matched by age, sex and duration of diabetes mellitus. Demographic data were obtained via patient medical records and self-administered questionnaires. Participants underwent a standardized examination protocol including blood pressure measurement and ocular examination. Main outcome measure was the presence of diabetic retinopathy. RESULTS Two hundred and ninety-two eyes (144 glaucomatous eyes and 148 non-glaucomatous eyes) of 172 participants with diabetes mellitus were assessed. The prevalence of diabetic retinopathy among 86 participants with glaucoma comorbidity was 23.6%, while the prevalence among 86 non-glaucomatous participants was 33.8% (p = 0.06). After the regression analysis, controlling for systemic and ocular risk factors for diabetic retinopathy, the odds of developing diabetic retinopathy were significantly higher in the glaucomatous eyes compared with eyes without glaucoma (OR: 2.75; p = 0.03; 95% CI: 1.10-6.87). CONCLUSION This study demonstrated that glaucomatous diabetic eyes were almost three times more likely to develop diabetic retinopathy compared to non-glaucomatous diabetic eyes. Prospective studies may be required to establish a risk-cause relationship. Ocular perfusion pressure control should be considered in patients with diabetes mellitus and glaucoma.
Collapse
Affiliation(s)
- Temiloluwa M Abikoye
- Department of Ophthalmology, Guinness Eye Center, Lagos University Teaching Hospital, P.M.B 12003, Idi-Araba, Lagos, Nigeria.
| | - Tunji S Oluleye
- Department of Ophthalmology, University College Hospital, Ibadan, Nigeria
| | - Olufisayo T Aribaba
- Department of Ophthalmology, Guinness Eye Center, Lagos University Teaching Hospital, P.M.B 12003, Idi-Araba, Lagos, Nigeria.,Department of Ophthalmology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Kareem O Musa
- Department of Ophthalmology, Guinness Eye Center, Lagos University Teaching Hospital, P.M.B 12003, Idi-Araba, Lagos, Nigeria.,Department of Ophthalmology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Oluwatobi O Idowu
- Department of Ophthalmology, University of California, San Francisco, USA
| | - Adeola O Onakoya
- Department of Ophthalmology, Guinness Eye Center, Lagos University Teaching Hospital, P.M.B 12003, Idi-Araba, Lagos, Nigeria.,Department of Ophthalmology, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
44
|
Błaszkowska M, Shalimova A, Wolnik B, Orłowska-Kunikowska E, Graff B, Hoffmann M, Nilsson P, Wolf J, Narkiewicz K. Subclinical macroangiopathic target organ damage in type 1 diabetes mellitus patients. Blood Press 2020; 29:344-356. [PMID: 32460564 DOI: 10.1080/08037051.2020.1770054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We have summarized key studies regarding the assessment of subclinical macroangiopathic target organ damage (TOD) in type 1 diabetes mellitus (T1DM). RESULTS Although chronic complications resulting from hyperglycemia, in particular macroangiopathies, are still the first cause of death in T1DM, there has been growing recognition of the role of hypoglycemia in cardiovascular morbidity and mortality. Subclinical TOD diagnosis ensures early implementation of the complex management aiming at either partial reversal of these complications or at least its downturn. To better identify patients with early TODs, several non-invasive diagnostic techniques are employed, including the ultrasonographic assessment of the intima-media thickness (IMT), computed tomography (CT) for coronary artery calcium (CAC) scores, and pulse wave velocity (PWV) measurement for arterial stiffness evaluation. Various studies reported that T1DM patients present an increased IMT. An increasing IMT fairly correlates with the cardiovascular (CV) events risk even after the adjustment to age, diabetes duration, quality of glucose control as well as the presence of hypertension, and chronic complications. Another, well established marker of the organ damage - CAC score is recommended by ACC/AHA guidelines to assess the overall CV risk in T1DM. Also, the arterial stiffness evaluation with PWV may further improve CV risk prediction, which has been reported in multiple studies including the Framingham Heart Study. CONCLUSIONS There is shortage of data from prospective studies which could confirm the benefits of early treatment initiation based on the presence of the subclinical organ damage in T1DM. Most evidence comes from T2DM trials, where effective preventive measures were identified i.e.: smoking cessation, reasonable blood glucose control, efficacious hypertension treatment, and dyslipidemia management, as well as renoprotection. There is still a field for further research to see if routine assessment of asymptomatic vascular damage and early implementation of aggressive treatment would reduce mortality excess from CVD in T1DM.
Collapse
Affiliation(s)
- Magdalena Błaszkowska
- Department of Hypertension and Diabetology, Medical University of Gdansk, Faculty of Medicine, Gdansk, Poland
| | - Anna Shalimova
- Department of Hypertension and Diabetology, Medical University of Gdansk, Faculty of Medicine, Gdansk, Poland.,Department of Internal Medicine N1, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Bogumił Wolnik
- Department of Hypertension and Diabetology, Medical University of Gdansk, Faculty of Medicine, Gdansk, Poland
| | | | - Beata Graff
- Department of Hypertension and Diabetology, Medical University of Gdansk, Faculty of Medicine, Gdansk, Poland
| | - Michał Hoffmann
- Department of Hypertension and Diabetology, Medical University of Gdansk, Faculty of Medicine, Gdansk, Poland
| | - Peter Nilsson
- Department of Clinical Sciences, Lund University, Skane University Hospital, Malmö, Sweden
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Medical University of Gdansk, Faculty of Medicine, Gdansk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, Faculty of Medicine, Gdansk, Poland
| |
Collapse
|
45
|
Bharathi Devi SR, Coral K, Gayathree K, Bharathselvi M, Sivasankar S, Biswas J, Rishi P, Natarajan S, Badrinath SS, Angayarkanni N. Case report on two diabetic donor eyes with no retinopathy: Clinicopathological and molecular studies. Indian J Ophthalmol 2020; 67:1762-1765. [PMID: 31546558 PMCID: PMC6786156 DOI: 10.4103/ijo.ijo_400_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We were intrigued to analyze donor eyes of two individuals without retinopathy even after 40 years of type 2 diabetes mellitus. Targeted molecular factors associated with angiogenesis and the key antioxidant enzymes in retinal tissue were analyzed. Accordingly PEDF, Adiponectin and Paraoxonase 2 showed augmented mRNA expression in both the retina with no significant change in VEGF expression. Vitreous showed increased PEDF protein in donor 1 and Adiponectin in donor 2 with no change in VEGF protein. This study highlights the profile of specific molecular factors that contribute to the non-development of diabetic retinopathy changes in these individuals.
Collapse
Affiliation(s)
| | - Karunakaran Coral
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
| | - Karthikeyan Gayathree
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
| | - Muthuvel Bharathselvi
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
| | - Shanmuganathan Sivasankar
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
| | - Jyotirmoy Biswas
- Department of Uveitis, Medical Research Foundation, Chennai, India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Chennai, India
| | | | | | - Narayanasamy Angayarkanni
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
| |
Collapse
|
46
|
Hernández C, Porta M, Bandello F, Grauslund J, Harding SP, Aldington SJ, Egan C, Frydkjaer-Olsen U, García-Arumí J, Gibson J, Lang GE, Lattanzio R, Massin P, Midena E, Ponsati B, Ribeiro L, Scanlon P, Cunha-Vaz J, Simó R. The Usefulness of Serum Biomarkers in the Early Stages of Diabetic Retinopathy: Results of the EUROCONDOR Clinical Trial. J Clin Med 2020; 9:jcm9041233. [PMID: 32344735 PMCID: PMC7231127 DOI: 10.3390/jcm9041233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022] Open
Abstract
The main aim of this study was to evaluate the ability of serum biomarkers to predict the worsening of retinal neurodysfunction in subjects with type 2 diabetes. For this purpose, we measured selected molecules (N-epsilon-carboxy methyl lysine (CML), laminin P1 (Lam-P1), and asymmetric dimethylarginine (ADMA)) in the serum of 341 participants of the EUROCONDOR study at baseline, 24, and 48 weeks. Retinal neurodysfunction was assessed by measuring implicit time (IT) using multifocal electroretinography, and structural changes were examined by spectral domain–optical coherence tomography. The values of IT at baseline were directly correlated with baseline serum concentrations of CML (r = 0.135, p = 0.013). Furthermore, in the placebo group, increase in CML concentration throughout follow-up correlated with the IT (r = 0.20; p = 0.03). Baseline serum levels of CML also correlated with macular retinal thickness (RT) (r = 0.231; p < 0.001). Baseline Lam-P1 levels correlated with the increase of the RT at the end of follow-up in the placebo group (r = 0.22; p = 0.016). We provide evidence that CML may be a biomarker of both retinal neurodysfunction and RT, whereas Lam-P1 was associated with RT only. Therefore, circulating levels of these molecules could provide a complementary tool for monitoring the early changes of diabetic retinopathy (DR).
Collapse
Affiliation(s)
- Cristina Hernández
- Diabetes and Metabolism Research Unit and CIBERDEM, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
- Correspondence:
| | - Massimo Porta
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele, University Vita-Salute, 20132 Milano, Italy; (F.B.); (R.L.)
| | - Jakob Grauslund
- Research Unit of Ophthalmology, Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark; (J.G.); (U.F.-O.)
| | - Simon P. Harding
- Department of Eye & Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, and St. Pauls’ Eye Unit. Liverpool University Hospitals, members of Liverpool Health Partners, Liverpool L69 7ZX, UK;
| | - Stephen J. Aldington
- Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham GL53 7AG, UK; (S.J.A.); (P.S.)
| | - Catherine Egan
- Moorfields Eye Hospital National Health Service Foundation Trust, Institute of Ophthalmology/University College London, London EC1V 2PD, UK;
| | - Ulrik Frydkjaer-Olsen
- Research Unit of Ophthalmology, Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark; (J.G.); (U.F.-O.)
| | - José García-Arumí
- Department of Ophthalmology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Jonathan Gibson
- Department of Vision Sciences, Aston University, Birmingham B4 7ET, UK;
| | - Gabriele E. Lang
- Department of Ophthalmology, University of Ulm, 89081 Ulm, Germany;
| | - Rosangela Lattanzio
- Department of Ophthalmology, Scientific Institute San Raffaele, University Vita-Salute, 20132 Milano, Italy; (F.B.); (R.L.)
| | - Pascale Massin
- Department of Ophthalmology, Lariboisière Hospital, 75004 Paris, France;
| | - Edoardo Midena
- Department of Ophthalmology, University of Padova, 35122 Padova, Italy;
| | | | - Luísa Ribeiro
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal; (L.R.); (J.C.-V.)
| | - Peter Scanlon
- Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham GL53 7AG, UK; (S.J.A.); (P.S.)
| | - José Cunha-Vaz
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal; (L.R.); (J.C.-V.)
| | - Rafael Simó
- Diabetes and Metabolism Research Unit and CIBERDEM, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| |
Collapse
|
47
|
Abstract
BackgroundAlthough many studies explore the experiences of persons with type 1 diabetes, most examine the experience of children, adolescents, or persons in transition to adulthood. Few studies focus on the person living long term with type 1 diabetes.PurposeThe purpose of this study was to explore the facilitators and barriers for people living well with type 1 diabetes over the long term.MethodsAn inductive interpretive description approach was used to explore living with type 1 diabetes for a duration of 40 years or more. Qualitative semistructured interviews with a convenience sample (n = 8) were conducted.ResultsFour dialectic themes were identified: accommodating and battling the disease, convenience and constraint of technology and treatment, self-reliance and reliance on others, and external and personal knowledge.ConclusionsRecommendations for the health-care team emphasize person-centered care with acknowledgment of the person as expert and as more than their condition. Further research with this population would strengthen the implications for practice. Specifically, research is needed on diabetes distress, losses experienced due to diabetes, how to meet their educational needs, and how to tap into their expertise for the benefit of those with type 1 following them.
Collapse
Affiliation(s)
- Donna Epp
- Faculty of Health Studies, Brandon University, Brandon, Manitoba, Canada
| | - Sonya Grypma
- School of Nursing, Trinity Western University, Langley, British Columbia, Canada
| | - Barbara Astle
- School of Nursing, Trinity Western University, Langley, British Columbia, Canada
| |
Collapse
|
48
|
Liu W, Wang Y, Han X, Cai X, Zhu Y, Zhang M, Gong S, Li J, Ji L. Factors associated with resistance to complications in long-standing type 1 diabetes in China. Endocr Connect 2020; 9:187-193. [PMID: 31961796 PMCID: PMC7040859 DOI: 10.1530/ec-19-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/20/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Type 1 diabetes (T1DM) is associated with a higher risk of premature death, but there are factors in certain patients with T1DM that protect them from complications and premature death. These factors had not been identified in non-Caucasian populations, so we aimed to identify factors that protect against the development of diabetic nephropathy (DN) and diabetic retinopathy (DR) in long-standing T1DM in China METHODS Ninety-five T1DM patients with >30 years’ duration of diabetes were enrolled in this nationwide study. Differences between groups of patients with and without complications were compared, and multivariable regression analysis was used to evaluate the relationships between candidate protective factors and the development of DN or DR. RESULTS Thirty of the participants did not have DN and the same amount did not have DR. 6/52 of participants without DN were from a rural area, whereas 11/28 of participants with DN had been born in a rural area (P = 0.005). Systolic blood pressure (SBP) was higher in participants with DN (135 ± 26 mmHg vs 121 ± 13 mmHg; P = 0.002). In participants without DR, 27/30 were married or cohabitating, and only 3/30 were single, never married, or widowed, but for those with proliferative DR (PDR), 13/26 had been married (P = 0.003). A rural or urban origin and SBP were associated with DN in the multivariable analysis. CONCLUSION we have shown that higher socioeconomic status, indicated by birth in an urban area, and being married or cohabitating, are accompanied by better blood pressure control and a lower risk of microvascular complications in Chinese patients with long-standing T1DM. These findings illustrate the importance of improving care for patients with T1DM in China.
Collapse
Affiliation(s)
- W Liu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Y Wang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - X Han
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - X Cai
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Y Zhu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - M Zhang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - S Gong
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - J Li
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - L Ji
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
- Correspondence should be addressed to L Ji:
| |
Collapse
|
49
|
Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action. Life Sci 2020; 245:117350. [PMID: 31982401 DOI: 10.1016/j.lfs.2020.117350] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Resveratrol is an important phenolic phytochemical from the therapeutic perspective. It has therapeutic impacts over wide range of diseases, especially the ones related to oxidative stress. Resveratrol, being primarily a potent anti-oxidant phytochemical, has significant impact against major diseases as inflammatory disorders, diabetes, and cancer. In the current review article, we intend to highlight the molecular aspects of the mechanism of action of resveratrol against major diabetic implications, namely, retinopathy and neuropathy. Both these diabetic implications are among the first fallouts of chronic hyperglycaemia. Resveratrol, via multiple molecular pathways, tend to attenuate and reverse these deformity and other disease-causing implications.
Collapse
|
50
|
Sacconi R, Lamanna F, Borrelli E, Mulinacci G, Casaluci M, Gelormini F, Carnevali A, Querques L, Zerbini G, Bandello F, Querques G. Morphofunctional analysis of the retina in patients with type 1 diabetes without complications after 30 years of disease. Sci Rep 2020; 10:206. [PMID: 31937811 PMCID: PMC6959306 DOI: 10.1038/s41598-019-57034-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 12/20/2019] [Indexed: 11/09/2022] Open
Abstract
There is a lack of studies evaluating the sub-clinical retinal changes in patients with long-term type 1 diabetes mellitus (T1DM) and without history of systemic/ocular complications. The aim of this cross-sectional study was to investigate sub-clinical structural and/or vascular retinal changes in patients with long-term (≥30 years) T1DM and without systemic/ocular complications ("happy few" patients) using structural optical coherence tomography (OCT), OCT-angiography and microperimetry. Twelve eyes of 12 consecutive T1DM patients (mean age 52 ± 12 years, mean duration of disease 35 ± 3 years, mean HbA1c level 7.3 ± 2.8%), without micro/macrovascular complications associated with long-standing T1DM, and twelve healthy subjects were consecutively included. No statistically significant differences were disclosed comparing patients and controls for age, sex, best-corrected visual acuity, central macular thickness, and choroidal thickness. Using OCT-angiography, we did not find any significant difference in foveal avascular zone area, perfusion density, vessel length density, and tortuosity. Moreover, no significant differences were disclosed in retinal nerve fiber layer and ganglion cell complex thickness using structural OCT. No differences were disclosed in retinal sensitivity by microperimetry. New diagnostic tools are able to confirm the presence of a particular population of patients with type 1 diabetes who have been completely spared from diabetic retinal complications. The finding of these "happy few" patients could help us to better understand and target future treatments for diabetes.
Collapse
Affiliation(s)
- Riccardo Sacconi
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Lamanna
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Enrico Borrelli
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giacomo Mulinacci
- Complications of Diabetes Unit, Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Casaluci
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Gelormini
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Adriano Carnevali
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lea Querques
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giuseppe Querques
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|