1
|
Bonnefond A, Florez JC, Loos RJF, Froguel P. Dissection of type 2 diabetes: a genetic perspective. Lancet Diabetes Endocrinol 2025; 13:149-164. [PMID: 39818223 DOI: 10.1016/s2213-8587(24)00339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 01/18/2025]
Abstract
Diabetes is a leading cause of global mortality and disability, and its economic burden is substantial. This Review focuses on type 2 diabetes, which makes up 90-95% of all diabetes cases. Type 2 diabetes involves a progressive loss of insulin secretion often alongside insulin resistance and metabolic syndrome. Although obesity and a sedentary lifestyle are considerable contributors, research over the last 25 years has shown that type 2 diabetes develops on a predisposing genetic background, with family and twin studies indicating considerable heritability (ie, 31-72%). This Review explores type 2 diabetes from a genetic perspective, highlighting insights into its pathophysiology and the implications for precision medicine. More specifically, the traditional understanding of type 2 diabetes genetics has focused on a dichotomy between monogenic and polygenic forms. However, emerging evidence suggests a continuum that includes monogenic, oligogenic, and polygenic contributions, revealing their complementary roles in type 2 diabetes pathophysiology. Recent genetic studies provide deeper insights into disease mechanisms and pave the way for precision medicine approaches that could transform type 2 diabetes management. Additionally, the effect of environmental factors on type 2 diabetes, particularly from epigenetic modifications, adds another layer of complexity to understanding and addressing this multifaceted disease.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK.
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philippe Froguel
- Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK.
| |
Collapse
|
2
|
Dzhemileva LU, Zakharova EN, Goncharenko AO, Vorontsova MV, Rumyantsev SA, Mokrysheva NG, Loguinova MY, Chekhonin VP. Current views on etiology, diagnosis, epidemiology and gene therapy of maturity onset diabetes in the young. Front Endocrinol (Lausanne) 2025; 15:1497298. [PMID: 39902162 PMCID: PMC11788143 DOI: 10.3389/fendo.2024.1497298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025] Open
Abstract
MODY, or maturity-onset diabetes of the young, is a group of monogenic diseases characterized by autosomal dominant inheritance of a non-insulin-dependent form of diabetes that classically manifests in adolescence or in young adults under 25 years of age. MODY is a rare cause of diabetes, accounting for 1% of all cases, and is often misdiagnosed as type 1 or type 2 diabetes. It is of great importance to accurately diagnose MODY, as this allows for the most appropriate treatment of patients and facilitates early diagnosis for them and their families. This disease has a high degree of phenotypic and genetic polymorphism. The most prevalent forms of the disease are attributed to mutations in three genes: GCK (MODY 2) and (HNF)1A/4A (MODY 3 and MODY 1). The remaining MODY subtypes, which are less prevalent, have been identified by next generation sequencing (NGS) in the last decade. Mutations in the GCK gene result in asymptomatic, stable fasting hyperglycemia, which does not require specific treatment. Mutations in the HNF1A and HNF4A genes result in pancreatic β-cell dysfunction, which in turn causes hyperglycemia. This often leads to diabetic angiopathy. The most commonly prescribed drugs for the treatment of hyperglycemia are sulfonylurea derivatives. Nevertheless, with advancing age, some patients may require insulin therapy due to the development of resistance to sulfonylurea drugs. The strategy of gene therapy for monogenic forms of MODY is still an experimental approach, and it is unlikely to be widely used in the clinic due to the peculiarities of MODY structure and the high genetic polymorphism and clinical variability even within the same form of the disease. Furthermore, there is a lack of clear gene-phenotypic correlations, and there is quite satisfactory curability in the majority of patients. This review presents the main clinical and genetic characteristics and mutation spectrum of common and rarer forms of MODY, with a detailed analysis of the field of application of AVV vectors in the correction of hyperglycemia and insulin resistance.
Collapse
|
3
|
Nemiroff S, Goulden P. Tailoring an antihyperglycaemic regimen to a monogenic diabetes variant. BMJ Case Rep 2024; 17:e260703. [PMID: 39306338 DOI: 10.1136/bcr-2024-260703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Monogenic diabetes mellitus (MDM) is an under-recognised entity that can be effectively treated with personalised therapies tailored to specific variants. Current guidelines suggest considering MDM in antibody-negative, C peptide-retaining patients with impaired glucose metabolism, particularly those with a significant family history and healthy body mass index. Here, we present a case of a patient with an MDM phenotype, treated with otherwise typical escalations in therapy but with adverse side effects and ultimately inadequate glycaemic control. He was subsequently found to have a unique heterozygous genotypic variant, guiding management decisions that have resulted in a now-stable medication regimen with excellent glycaemic control over the ensuing 3 years. Given that MDM has been predicted to account for up to 5% of all diabetes cases, it is important for clinicians to be cognisant of specific presentation features and available screening modalities in order to confirm and treat this diagnosis with the greatest efficacy.
Collapse
Affiliation(s)
- Samuel Nemiroff
- Internal Medicine, Mount Sinai Morningside & West, New York, New York, USA
| | - Peter Goulden
- Internal Medicine, Mount Sinai Morningside & West, New York, New York, USA
| |
Collapse
|
4
|
Peixoto-Barbosa R, Calliari LE, Crispim F, Moisés RS, Dib SA, Reis AF, Giuffrida FMA. Clinical screening for GCK-MODY in 2,989 patients from the Brazilian Monogenic Diabetes Study Group (BRASMOD) and the Brazilian Type 1 Diabetes Study Group (BrazDiab1SG). ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230314. [PMID: 39420902 PMCID: PMC11326741 DOI: 10.20945/2359-4292-2023-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/03/2024] [Indexed: 10/19/2024]
Abstract
Objectives To evaluate the accuracy of routinely available parameters in screening for GCK maturity-onset diabetes of the young (MODY), leveraging data from two large cohorts - one of patients with GCK-MODY and the other of patients with type 1 diabetes (T1D). Materials and methods The study included 2,687 patients with T1D, 202 patients with clinical features of MODY but without associated genetic variants (NoVar), and 100 patients with GCK-MODY (GCK). Area under the receiver-operating characteristic curve (ROC-AUC) analyses were used to assess the performance of each parameter - both alone and incorporated into regression models - in discriminating between groups. Results The best parameter discriminating between GCK-MODY and T1D was a multivariable model comprising glycated hemoglobin (HbA1c), fasting plasma glucose, age at diagnosis, hypertension, microvascular complications, previous diabetic ketoacidosis, and family history of diabetes. This model had a ROC-AUC value of 0.980 (95% confidence interval [CI] 0.974-0.985) and positive (PPV) and negative (NPV) predictive values of 43.74% and 100%, respectively. The best model discriminating between GCK and NoVar included HbA1c, age at diagnosis, hypertension, and triglycerides and had a ROC-AUC value of 0.850 (95% CI 0.783-0.916), PPV of 88.36%, and NPV of 97.7%; however, this model was not significantly different from the others. A novel GCK variant was also described in one individual with MODY (7-44192948-T-C, p.Ser54Gly), which showed evidence of pathogenicity on in silico prediction tools. Conclusions This study identified a highly accurate (98%) composite model for differentiating GCK-MODY and T1D. This model may help clinicians select patients for genetic evaluation of monogenic diabetes, enabling them to implement correct treatment without overusing limited resources.
Collapse
Affiliation(s)
- Renata Peixoto-Barbosa
- Universidade Federal de São PauloSão PauloSPBrasil Disciplina de Endocrinologia, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
- Departamento de Ciências da VidaUniversidade do Estado da BahiaSalvadorBABrasil Departamento de Ciências da Vida, Universidade do Estado da Bahia (Uneb), Salvador, BA, Brasil
| | - Luis Eduardo Calliari
- Departamento de PediatriaFaculdade de Ciências MédicasSanta Casa de Misericórdia de São PauloSão PauloSPBrasil Departamento de Pediatria, Faculdade de Ciências Médicas da Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brasil
| | - Felipe Crispim
- Universidade Federal de São PauloSão PauloSPBrasil Disciplina de Endocrinologia, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - Regina S. Moisés
- Universidade Federal de São PauloSão PauloSPBrasil Disciplina de Endocrinologia, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - Sergio A. Dib
- Universidade Federal de São PauloSão PauloSPBrasil Disciplina de Endocrinologia, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - André F. Reis
- Universidade Federal de São PauloSão PauloSPBrasil Disciplina de Endocrinologia, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - Fernando M. A. Giuffrida
- Universidade Federal de São PauloSão PauloSPBrasil Disciplina de Endocrinologia, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
- Departamento de Ciências da VidaUniversidade do Estado da BahiaSalvadorBABrasil Departamento de Ciências da Vida, Universidade do Estado da Bahia (Uneb), Salvador, BA, Brasil
| |
Collapse
|
5
|
Zečević K, Volčanšek Š, Katsiki N, Rizzo M, Milardović TM, Stoian AP, Banach M, Muzurović E. Maturity-onset diabetes of the young (MODY) - in search of ideal diagnostic criteria and precise treatment. Prog Cardiovasc Dis 2024; 85:14-25. [PMID: 38513726 DOI: 10.1016/j.pcad.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Maturity-onset diabetes of the young (MODY) is a spectrum of clinically heterogenous forms of monogenic diabetes mellitus characterized by autosomal dominant inheritance, onset at a young age, and absence of pancreatic islets autoimmunity. This rare form of hyperglycemia, with clinical features overlapping with type 1 and type 2 diabetes mellitus, has 14 subtypes with differences in prevalence and complications occurrence which tailor therapeutic approach. MODY phenotypes differ based on the gene involved, gene penetrance and expressivity. While MODY 2 rarely leads to diabetic complications and is easily managed with lifestyle interventions alone, more severe subtypes, such as MODY 1, 3, and 6, require an individualized treatment approach to maintain a patient's quality of life and prevention of complications. This review summarizes current evidence on the presentation, diagnosis, and management of MODY, an example of a genetic cause of hyperglycemia that calls for a precision medicine approach.
Collapse
Affiliation(s)
- Ksenija Zečević
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia; Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Tanja Miličević Milardović
- Internal Medicine Department, Endocrinology, Diabetology, and Metabolism Division, University Hospital of Split, Split, Croatia; University of Split School of Medicine, Split, Croatia
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Łódź, Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland; Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emir Muzurović
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro; Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Podgorica, Montenegro.
| |
Collapse
|
6
|
Bhattacharya S, Pappachan JM. Monogenic diabetes in children: An underdiagnosed and poorly managed clinical dilemma. World J Diabetes 2024; 15:1051-1059. [PMID: 38983823 PMCID: PMC11229976 DOI: 10.4239/wjd.v15.i6.1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
Monogenic diabetes, constituting 1%-2% of global diabetes cases, arises from single gene defects with distinctive inheritance patterns. Despite over 50 ass-ociated genetic disorders, accurate diagnoses and management of monogenic diabetes remain inadequate, underscoring insufficient clinician awareness. The disease spectrum encompasses maturity-onset diabetes of the young (MODY), characterized by distinct genetic mutations affecting insulin secretion, and neonatal diabetes mellitus (NDM) - a heterogeneous group of severe hyperglycemic disorders in infants. Mitochondrial diabetes, autoimmune monogenic diabetes, genetic insulin resistance and lipodystrophy syndromes further diversify the monogenic diabetes landscape. A tailored approach based on phenotypic and biochemical factors to identify candidates for genetic screening is recommended for suspected cases of MODY. NDM diagnosis warrants immediate molecular genetic testing for infants under six months. Identifying these genetic defects presents a unique opportunity for precision medicine. Ongoing research aimed to develop cost-effective genetic testing methods and gene-based therapy can facilitate appropriate identification and optimize clinical outcomes. Identification and study of new genes offer a valuable opportunity to gain deeper insights into pancreatic cell biology and the pathogenic mechanisms underlying common forms of diabetes. The clinical review published in the recent issue of World Journal of Diabetes is such an attempt to fill-in our knowledge gap about this enigmatic disease.
Collapse
Affiliation(s)
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Balogun WO, Naylor R, Adedokun BO, Ogunniyi A, Olopade OI, Dagogo-Jack SE, Bell GI, Philipson LH. Implementing genetic testing in diabetes: Knowledge, perceptions of healthcare professionals, and barriers in a developing country. POPULATION MEDICINE 2024; 6:9. [PMID: 38681897 PMCID: PMC11052599 DOI: 10.18332/popmed/184210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/17/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION Maturity-Onset Diabetes of the Young (MODY) is an unusual type of diabetes often missed in clinical practice, especially in Africa. Treatment decisions for MODY depend on a precise diagnosis, only made by genetic testing. We aimed to determine MODY knowledge among Nigerian healthcare professionals (HCPs), their perceptions, and barriers to the implementation of genetic testing in diabetes patients. METHODS A cross-sectional survey was conducted among doctors and nurses in three levels of public and private healthcare institutions in Ibadan, Nigeria, from December 2018 to June 2019. In all, 70% and 30% of a total 415 participants were recruited from public and private centers, respectively. HCPs were recruited in a 60:40% ratio, respectively. A 51-item instrument was used to assess MODY knowledge, perceptions of HCPs, and barriers to the implementation of genetic testing in diabetes patients. RESULTS In the survey, 43.4% self-rated their current MODY knowledge to be at least moderate. About 68%, 73% and 86%, respectively, correctly answered 3 of 5 questions on basic genetics' knowledge. However, only 1 of 7 MODY-specific questions was answered correctly by 72.7% of the respondents. The mean basic genetics and MODY-specific knowledge scores were 2.6/5 (SD=1.0) and 1.8/9 (SD=1.3), respectively. Multiple linear regression showed higher mean scores among those aged 30-49 years, those with degrees and fellowships (except PhD), and general practitioners; 360 (80.0%) perceived that genetic testing plays a central role in diabetes care. Barriers to genetic testing were lack of access to testing facilities, guidance on the use of and updates/educational materials on genetic testing (82.7%, 62.1% and 50.3%, respectively). CONCLUSIONS The level of MODY awareness and knowledge among Nigerian HCPs is unacceptably low with a lack of access to genetic testing facilities. These can hinder the implementation of precision diabetes medicine. Increased awareness, provision of decision support aids, and genetic testing facilities are urgently needed.
Collapse
Affiliation(s)
- Williams O. Balogun
- Department of Medicine, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Rochelle Naylor
- Departments of Medicine and Pediatrics, Kovler Diabetes Center, University of Chicago, Chicago, Illinois, United States of America
| | - Babatunde O. Adedokun
- Department of Epidemiology and Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adesola Ogunniyi
- Department of Medicine, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Olufunmilayo I. Olopade
- Center for Clinical Cancer Genetics and Global Health and Section of Haematology Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Samuel E. Dagogo-Jack
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Division of Endocrinology and Metabolism, University of Tennessee Health Science Center, Tennessee, United States of America
| | - Graeme I. Bell
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Loui H. Philipson
- Departments of Medicine and Pediatrics, Kovler Diabetes Center, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
8
|
Mancera-Rincón P, Luna-España MC, Rincon O, Guzmán I, Alvarez M. Maturity-onset Diabetes of the Young Type 7 (MODY7) and the Krüppellike Factor 11 Mutation (KLF11). A Review. Curr Diabetes Rev 2024; 20:e210323214817. [PMID: 36944622 DOI: 10.2174/1573399819666230321114456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Maturity-onset diabetes of the young (MODY) is a rare disease due to a single gene mutation that affects several family members in most cases. The Krüppel-like factor 11 (KLF11) gene mutation is associated with decreased insulin sensitivity to high glucose levels. KLF 11 has been implicated in the pathogenesis of MODY type 7 but given its low prevalence, prolonged subclinical period, and the emergence of new information, doubts are raised about its association. METHODS A literature search of the PubMed, Scopus, and EBSCO databases was performed. The terms "Diabetes Mellitus, Type 2/genetics", "Mason-Type Diabetes" , "Maturity-Onset diabetes of the young", "KLF11 protein, human", and "Maturity-Onset Diabetes of the Young, Type 7" were used"., "Diagnosis" The search selection was not standardized. RESULTS The KLF1 mutation is rare and represents <1% of the mutations associated with monogenic diabetes. Its isolation in European family lines in the first studies and the emergence of new variants pose new diagnostic challenges. This article reviews the definition, epidemiology, pathophysiology, diagnosis, and treatment of MODY type 7. CONCLUSION MODY type 7 diabetes represents a rare form of monogenic diabetes with incomplete penetrance. Given its rarity, its association with impaired glucose metabolism has been questioned. Strict evaluation of glycemic control and the appearance of microvascular complications are key areas in the follow-up of patients diagnosed with MODY 7. More studies will be required to characterize the population with KLF11 mutation and clarify its correlation with MODY.
Collapse
Affiliation(s)
| | | | - Oswaldo Rincon
- Endocronology Department, Hospital Militar Central, Bogota, Colombia
| | - Issac Guzmán
- Endocronology Department, Hospital Militar Central, Bogota, Colombia
| | - Mauricio Alvarez
- Endocronology Department, Hospital Militar Central, Bogota, Colombia
| |
Collapse
|
9
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
10
|
Adadey SM, Mensah JA, Acquah KS, Abugri J, Osei-Yeboah R. Early-onset diabetes in Africa: A mini-review of the current genetic profile. Eur J Med Genet 2023; 66:104887. [PMID: 37995864 DOI: 10.1016/j.ejmg.2023.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Early-onset diabetes is poorly diagnosed partly due to its heterogeneity and variable presentations. Although several genes have been associated with the disease, these genes are not well studied in Africa. We sought to identify the major neonatal, early childhood, juvenile, or early-onset diabetes genes in Africa; and evaluate the available molecular methods used for investigating these gene variants. A literature search was conducted on PubMed, Scopus, Africa-Wide Information, and Web of Science databases. The retrieved records were screened and analyzed to identify genetic variants associated with early-onset diabetes. Although 319 records were retrieved, 32 were considered for the current review. Most of these records (22/32) were from North Africa. The disease condition was genetically heterogenous with most cases possessing unique gene variants. We identified 22 genes associated with early-onset diabetes, 9 of which had variants (n = 19) classified as pathogenic or likely pathogenic (PLP). Among the PLP variants, IER3IP1: p.(Leu78Pro) was the variant with the highest number of cases. There was limited data from West Africa, hence the contribution of genetic variability to early-onset diabetes in Africa could not be comprehensively evaluated. It is worth mentioning that most studies were focused on natural products as antidiabetics and only a few studies reported on the genetics of the disease. ABCC8 and KCNJ11 were implicated as major contributors to early-onset diabetes gene networks. Gene ontology analysis of the network associated ion channels, impaired glucose tolerance, and decreased insulin secretions to the disease. Our review highlights 9 genes from which PLP variants have been identified and can be considered for the development of an African diagnostic panel. There is a gap in early-onset diabetes genetic research from sub-Saharan Africa which is much needed to develop a comprehensive, efficient, and cost-effective genetic panel that will be useful in clinical practice on the continent and among the African diasporas.
Collapse
Affiliation(s)
- Samuel Mawuli Adadey
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana; School of Medicine and Health Science, University for Development Studies, Tamale, Ghana.
| | | | - Kojo Sekyi Acquah
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - James Abugri
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C.K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana.
| | - Richard Osei-Yeboah
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
11
|
Murphy R, Colclough K, Pollin TI, Ikle JM, Svalastoga P, Maloney KA, Saint-Martin C, Molnes J, Misra S, Aukrust I, de Franco E, Flanagan SE, Njølstad PR, Billings LK, Owen KR, Gloyn AL. The use of precision diagnostics for monogenic diabetes: a systematic review and expert opinion. COMMUNICATIONS MEDICINE 2023; 3:136. [PMID: 37794142 PMCID: PMC10550998 DOI: 10.1038/s43856-023-00369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Monogenic diabetes presents opportunities for precision medicine but is underdiagnosed. This review systematically assessed the evidence for (1) clinical criteria and (2) methods for genetic testing for monogenic diabetes, summarized resources for (3) considering a gene or (4) variant as causal for monogenic diabetes, provided expert recommendations for (5) reporting of results; and reviewed (6) next steps after monogenic diabetes diagnosis and (7) challenges in precision medicine field. METHODS Pubmed and Embase databases were searched (1990-2022) using inclusion/exclusion criteria for studies that sequenced one or more monogenic diabetes genes in at least 100 probands (Question 1), evaluated a non-obsolete genetic testing method to diagnose monogenic diabetes (Question 2). The risk of bias was assessed using the revised QUADAS-2 tool. Existing guidelines were summarized for questions 3-5, and review of studies for questions 6-7, supplemented by expert recommendations. Results were summarized in tables and informed recommendations for clinical practice. RESULTS There are 100, 32, 36, and 14 studies included for questions 1, 2, 6, and 7 respectively. On this basis, four recommendations for who to test and five on how to test for monogenic diabetes are provided. Existing guidelines for variant curation and gene-disease validity curation are summarized. Reporting by gene names is recommended as an alternative to the term MODY. Key steps after making a genetic diagnosis and major gaps in our current knowledge are highlighted. CONCLUSIONS We provide a synthesis of current evidence and expert opinion on how to use precision diagnostics to identify individuals with monogenic diabetes.
Collapse
Affiliation(s)
- Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
- Auckland Diabetes Centre, Te Whatu Ora Health New Zealand, Te Tokai Tumai, Auckland, New Zealand.
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Toni I Pollin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer M Ikle
- Department of Pediatrics, Division of Endocrinology & Diabetes, Stanford School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA
| | - Pernille Svalastoga
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin A Maloney
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cécile Saint-Martin
- Department of Medical Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Elisa de Franco
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Pål R Njølstad
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Liana K Billings
- Division of Endocrinology, NorthShore University HealthSystem, Skokie, IL, USA
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Katharine R Owen
- Oxford Center for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Stanford School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Kovács G, Nagy D, Szilberhorn L, Zelei T, Gaál Z, Vellekoop H, Huygens S, Versteegh M, Mölken MRV, Koleva-Kolarova R, Tsiachristas A, Wordsworth S, Nagy B. Cost-effectiveness of genetic-based screening strategies for maturity-onset diabetes of the young. Per Med 2023; 20:375-385. [PMID: 37694384 DOI: 10.2217/pme-2023-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Maturity-onset diabetes of the young (MODY) is often misdiagnosed as Type I or II diabetes. This study was designed to assess the cost-effectiveness of MODY screening strategies in Hungary, which included a recent genetic test compared with no routine screening for MODY. A simulation model that combined a decision tree and an individual-level Markov model was constructed to assess the costs per quality-adjusted life year of screening strategies. Stratifying patients based on age and insulin treatment followed by a risk assessment questionnaire, a laboratory test and genetic testing was the most cost-effective strategy, saving EUR 12 and generating 0.0047 quality-adjusted life years gained per screened patient. This screening strategy could be considered for reimbursement, especially in countries with limited resources.
Collapse
Affiliation(s)
- Gábor Kovács
- Syreon Research Institute, Budapest, 1142, Hungary
| | - Dávid Nagy
- Syreon Research Institute, Budapest, 1142, Hungary
| | | | - Tamás Zelei
- Syreon Research Institute, Budapest, 1142, Hungary
| | - Zsolt Gaál
- Fourth Department of Medicine, Jósa András Teaching Hospital, Nyíregyháza, 4400, Hungary
| | - Heleen Vellekoop
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Simone Huygens
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Matthijs Versteegh
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Maureen Rutten-van Mölken
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
- Erasmus School of Health Policy & Management, Erasmus University Rotterdam, P.O. Box 17383000 DR, Rotterdam, The Netherlands
| | | | | | - Sarah Wordsworth
- Health Economics Research Centre, University of Oxford, Oxford, OX3 7LF, UK
| | - Balázs Nagy
- Syreon Research Institute, Budapest, 1142, Hungary
- Center for Health Technology Assessment, Semmelweis University, Budapest, 1091, Hungary
| |
Collapse
|
13
|
Thuesen ACB, Jensen RT, Maagensen H, Kristiansen MR, Sørensen HT, Vaag A, Beck-Nielsen H, Pedersen OB, Grarup N, Nielsen JS, Rungby J, Gjesing AP, Storgaard H, Vilsbøll T, Hansen T. Identification of pathogenic GCK variants in patients with common type 2 diabetes can lead to discontinuation of pharmacological treatment. Mol Genet Metab Rep 2023; 35:100972. [PMID: 37008541 PMCID: PMC10063379 DOI: 10.1016/j.ymgmr.2023.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Background Functionally disruptive variants in the glucokinase gene (GCK) cause a form of mild non-progressive hyperglycemia, which does not require pharmacological treatment. A substantial proportion of patients with type 2 diabetes (T2D) carry GCK variants. We aimed to investigate whether carriers of rare GCK variants diagnosed with T2D have a glycemic phenotype and treatment response consistent with GCK-diabetes. Methods Eight patients diagnosed with T2D from the Danish DD2 cohort who had previously undergone sequencing of GCK participated. Clinical examinations at baseline included an oral glucose tolerance test and continuous glucose monitoring. Carriers with a glycemic phenotype consistent with GCK-diabetes took part in a three-month treatment withdrawal. Results Carriers of pathogenic and likely pathogenic variants had lower median fasting glucose and C-peptide levels compared to carriers of variants of uncertain significance and benign variants (median fasting glucose: 7.3 (interquartile range: 0.4) mmol/l vs. 9.5 (1.6) mmol/l, p = 0.04; median fasting C-peptide 902 (85) pmol/l vs. 1535 (295) pmol/l, p = 0.03). Four participants who discontinued metformin treatment and one diet-treated participant were reevaluated after three months. There was no deterioration of HbA1c or fasting glucose (median baseline HbA1c: 49 (3) vs. 51 (6) mmol/mol after three months, p = 0.4; median baseline fasting glucose: 7.3 (0.4) mmol/l vs. 7.0 (0.6) mmol/l after three months, p = 0.5). Participants did not consistently fulfill best practice guidelines for GCK screening nor clinical criteria for monogenic diabetes. Discussion Carriers of pathogenic or likely pathogenic GCK variants identified by unselected screening in T2D should be reported, as they have a glycemic phenotype and treatment response consistent with GCK-diabetes. Variants of uncertain significance should be interpreted with care. Systematic genetic screening of patients with common T2D receiving routine care can lead to the identification and precise care of patients with misclassified GCK-diabetes who are not identifiable through common genetic screening criteria.
Collapse
Affiliation(s)
- Anne Cathrine Baun Thuesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Rasmus Tanderup Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Maagensen
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Maja Refshauge Kristiansen
- Steno Diabetes Center Odense, the Danish Centre for Strategic Research in Type 2 Diabetes (DD2), Odense University Hospital, Odense, Denmark
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Allan Vaag
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department for Translational Type 2 Diabetes Research, Lund University Diabetes Center, Lund University, Sweden
| | - Henning Beck-Nielsen
- Steno Diabetes Center Odense, the Danish Centre for Strategic Research in Type 2 Diabetes (DD2), Odense University Hospital, Odense, Denmark
| | - Oluf B. Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Steen Nielsen
- Steno Diabetes Center Odense, the Danish Centre for Strategic Research in Type 2 Diabetes (DD2), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jørgen Rungby
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anette Prior Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heidi Storgaard
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Corresponding author at: Blegdamsvej 3B, 07-8, 2200 København N, Denmark.
| |
Collapse
|
14
|
Samadli S, Zhou Q, Zheng B, Gu W, Zhang A. From glucose sensing to exocytosis: takes from maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2023; 14:1188301. [PMID: 37255971 PMCID: PMC10226665 DOI: 10.3389/fendo.2023.1188301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Monogenic diabetes gave us simplified models of complex molecular processes occurring within β-cells, which allowed to explore the roles of numerous proteins from single protein perspective. Constellation of characteristic phenotypic features and wide application of genetic sequencing techniques to clinical practice, made the major form of monogenic diabetes - the Maturity Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as neonatal diabetes mellitus and understanding underlying molecular events for each type of MODY contributed to the advancements of antidiabetic therapy and stem cell research tremendously. The functional analysis of MODY-causing proteins in diabetes development, not only provided better care for patients suffering from diabetes, but also enriched our comprehension regarding the universal cellular processes including transcriptional and translational regulation, behavior of ion channels and transporters, cargo trafficking, exocytosis. In this review, we will overview structure and function of MODY-causing proteins, alterations in a particular protein arising from the deleterious mutations to the corresponding gene and their consequences, and translation of this knowledge into new treatment strategies.
Collapse
Affiliation(s)
- Sama Samadli
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Pediatric Diseases II, Azerbaijan Medical University, Baku, Azerbaijan
| | - Qiaoli Zhou
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Abstract
Monogenic diabetes includes several clinical conditions generally characterized by early-onset diabetes, such as neonatal diabetes, maturity-onset diabetes of the young (MODY) and various diabetes-associated syndromes. However, patients with apparent type 2 diabetes mellitus may actually have monogenic diabetes. Indeed, the same monogenic diabetes gene can contribute to different forms of diabetes with early or late onset, depending on the functional impact of the variant, and the same pathogenic variant can produce variable diabetes phenotypes, even in the same family. Monogenic diabetes is mostly caused by impaired function or development of pancreatic islets, with defective insulin secretion in the absence of obesity. The most prevalent form of monogenic diabetes is MODY, which may account for 0.5-5% of patients diagnosed with non-autoimmune diabetes but is probably underdiagnosed owing to insufficient genetic testing. Most patients with neonatal diabetes or MODY have autosomal dominant diabetes. More than 40 subtypes of monogenic diabetes have been identified to date, the most prevalent being deficiencies of GCK and HNF1A. Precision medicine approaches (including specific treatments for hyperglycaemia, monitoring associated extra-pancreatic phenotypes and/or following up clinical trajectories, especially during pregnancy) are available for some forms of monogenic diabetes (including GCK- and HNF1A-diabetes) and increase patients' quality of life. Next-generation sequencing has made genetic diagnosis affordable, enabling effective genomic medicine in monogenic diabetes.
Collapse
|
16
|
Harsunen M, Kettunen JLT, Härkönen T, Dwivedi O, Lehtovirta M, Vähäsalo P, Veijola R, Ilonen J, Miettinen PJ, Knip M, Tuomi T. Identification of monogenic variants in more than ten per cent of children without type 1 diabetes-related autoantibodies at diagnosis in the Finnish Pediatric Diabetes Register. Diabetologia 2023; 66:438-449. [PMID: 36418577 PMCID: PMC9892083 DOI: 10.1007/s00125-022-05834-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Monogenic forms of diabetes (MODY, neonatal diabetes mellitus and syndromic forms) are rare, and affected individuals may be misclassified and treated suboptimally. The prevalence of type 1 diabetes is high in Finnish children but systematic screening for monogenic diabetes has not been conducted. We assessed the prevalence and clinical manifestations of monogenic diabetes in children initially registered with type 1 diabetes in the Finnish Pediatric Diabetes Register (FPDR) but who had no type 1 diabetes-related autoantibodies (AABs) or had only low-titre islet cell autoantibodies (ICAs) at diagnosis. METHODS The FPDR, covering approximately 90% of newly diagnosed diabetic individuals aged ≤15 years in Finland starting from 2002, includes data on diabetes-associated HLA genotypes and AAB data (ICA, and autoantibodies against insulin, GAD, islet antigen 2 and zinc transporter 8) at diagnosis. A next generation sequencing gene panel including 42 genes was used to identify monogenic diabetes. We interpreted the variants in HNF1A by using the gene-specific standardised criteria and reported pathogenic and likely pathogenic findings only. For other genes, we also reported variants of unknown significance if an individual's phenotype suggested monogenic diabetes. RESULTS Out of 6482 participants, we sequenced DNA for 152 (2.3%) testing negative for all AABs and 49 (0.8%) positive only for low-titre ICAs (ICAlow). A monogenic form of diabetes was revealed in 19 (12.5%) of the AAB-negative patients (14 [9.2%] had pathogenic or likely pathogenic variants) and two (4.1%) of the ICAlow group. None had ketoacidosis at diagnosis or carried HLA genotypes conferring high risk for type 1 diabetes. The affected genes were GCK, HNF1A, HNF4A, HNF1B, INS, KCNJ11, RFX6, LMNA and WFS1. A switch from insulin to oral medication was successful in four of five patients with variants in HNF1A, HNF4A or KCNJ11. CONCLUSIONS/INTERPRETATION More than 10% of AAB-negative children with newly diagnosed diabetes had a genetic finding associated with monogenic diabetes. Because the genetic diagnosis can lead to major changes in treatment, we recommend referring all AAB-negative paediatric patients with diabetes for genetic testing. Low-titre ICAs in the absence of other AABs does not always indicate a diagnosis of type 1 diabetes.
Collapse
Affiliation(s)
- Minna Harsunen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
| | - Jarno L T Kettunen
- Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
- Abdominal Centre, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland.
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Om Dwivedi
- Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Lehtovirta
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Paula Vähäsalo
- Department of Pediatrics, PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Päivi J Miettinen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Tiinamaija Tuomi
- Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Abdominal Centre, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
17
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Gabbay RA, on behalf of the American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S19-S40. [PMID: 36507649 PMCID: PMC9810477 DOI: 10.2337/dc23-s002] [Citation(s) in RCA: 1196] [Impact Index Per Article: 598.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
18
|
Harrington F, Greenslade M, Colclough K, Paul R, Jefferies C, Murphy R. Monogenic diabetes in New Zealand - An audit based revision of the monogenic diabetes genetic testing pathway in New Zealand. Front Endocrinol (Lausanne) 2023; 14:1116880. [PMID: 37033247 PMCID: PMC10080040 DOI: 10.3389/fendo.2023.1116880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
AIMS To evaluate (a) the diagnostic yield of genetic testing for monogenic diabetes when using single gene and gene panel-based testing approaches in the New Zealand (NZ) population, (b) whether the MODY (Maturity Onset Diabetes of the Young) pre-test probability calculator can be used to guide referrals for testing in NZ, (c) the number of referrals for testing for Māori/Pacific ethnicities compared to NZ European, and (d) the volume of proband vs cascade tests being requested. METHODS A retrospective audit of 495 referrals, from NZ, for testing of monogenic diabetes genes was performed. Referrals sent to LabPlus (Auckland) laboratory for single gene testing or small multi-gene panel testing, or to the Exeter Genomics Laboratory, UK, for a large gene panel, received from January 2014 - December 2021 were included. Detection rates of single gene, small multi-gene and large gene panels (neonatal and non-neonatal), and cascade testing were analysed. Pre-test probability was calculated using the Exeter MODY probability calculator and ethnicity data was also collected. RESULTS The diagnostic detection rate varied across genes, from 32% in GCK, to 2% in HNF4A, with single gene or small gene panel testing averaging a 12% detection rate. Detection rate by type of panel was 9% for small gene panel, 23% for non-neonatal monogenic diabetes large gene panel and 40% for neonatal monogenic diabetes large gene panel. 45% (67/147) of patients aged 1-35 years at diabetes diagnosis scored <20% on MODY pre-test probability, of whom 3 had class 4/5 variants in HNF1A, HNF4A or HNF1B. Ethnicity data of those selected for genetic testing correlated with population diabetes prevalence for Māori (15% vs 16%), but Pacific People appeared under-represented (8% vs 14%). Only 1 in 6 probands generated a cascade test. CONCLUSIONS A new monogenic diabetes testing algorithm for NZ is proposed, which directs clinicians to choose a large gene panel in patients without syndromic features who score a pre-test MODY probability of above 20%.
Collapse
Affiliation(s)
- Francesca Harrington
- Diagnostic Genetics, Department of Pathology and Laboratory Medicine, Te Whatu Ora – Health New Zealand, Te Toka Tumai Auckland, Auckland, New Zealand
- *Correspondence: Francesca Harrington, ; Rinki Murphy,
| | - Mark Greenslade
- Diagnostic Genetics, Department of Pathology and Laboratory Medicine, Te Whatu Ora – Health New Zealand, Te Toka Tumai Auckland, Auckland, New Zealand
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon University Healthcare National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - Ryan Paul
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
| | - Craig Jefferies
- Starship Children’s Health, Te Whatu Ora – Health New Zealand, Te Toka Tumai Auckland, Auckland, New Zealand
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Department of Medicine, University of Auckland, Auckland, New Zealand
- *Correspondence: Francesca Harrington, ; Rinki Murphy,
| |
Collapse
|
19
|
Nakasato Y, Terashita S, Kusabiraki S, Horie S, Wada T, Nakabayashi M, Nakamura M, Yorifuji T. Glucokinase maturity-onset diabetes of the young as a mimicker of stress hyperglycemia: a case report. Clin Pediatr Endocrinol 2023; 32:72-75. [PMID: 36761491 PMCID: PMC9887293 DOI: 10.1297/cpe.2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Febrile seizures are frequently accompanied by stress-induced hyperglycemia. Herein, we report the case of a 1.5-yr-old girl with hyperglycemia during febrile seizures who was subsequently diagnosed with glucokinase (GCK) maturity-onset diabetes of the young (MODY), considering its distinction from stress hyperglycemia. Following the development of febrile seizures owing to adenovirus infection, the patient presented a casual blood glucose level was 185 mg/dL. She had a multigenerational family history of diabetes and a hemoglobin A1c (HbA1c) level of 6.4%. Owing to the persistent glucose intolerance until the age of 5 years, genetic testing was performed, which revealed a heterozygous mutation in GCK, and the patient was diagnosed with GCK-MODY. Precise diagnosis of GCK-MODY individuals is important to avoid administering unnecessary antidiabetic medications. Even during hyperglycemia under stress, multigenerational diabetes and mildly elevated HbA1c levels can suggest GCK-MODY.
Collapse
Affiliation(s)
| | | | | | - Sadashi Horie
- Department of Pediatrics, Toyama University Hospital, Toyama,
Japan
| | - Takuya Wada
- Department of Pediatrics, Toyama City Hospital, Toyama,
Japan
| | | | | | - Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism,
Children’s Medical Center, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
20
|
Kaser S, Hofer SE, Kazemi-Shirazi L, Festa A, Winhofer Y, Sourij H, Brath H, Riedl M, Resl M, Clodi M, Stulnig T, Ress C, Luger A. [Other specific types of diabetes and exocrine pancreatic insufficiency (update 2023)]. Wien Klin Wochenschr 2023; 135:18-31. [PMID: 37101022 PMCID: PMC10133035 DOI: 10.1007/s00508-022-02123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 04/28/2023]
Abstract
The heterogenous category "specific types of diabetes due to other causes" encompasses disturbances in glucose metabolism due to other endocrine disorders such as acromegaly or hypercortisolism, drug-induced diabetes (e.g. antipsychotic medications, glucocorticoids, immunosuppressive agents, highly active antiretroviral therapy (HAART), checkpoint inhibitors), genetic forms of diabetes (e.g. Maturity Onset Diabetes of the Young (MODY), neonatal diabetes, Down‑, Klinefelter- and Turner Syndrome), pancreatogenic diabetes (e.g. postoperatively, pancreatitis, pancreatic cancer, haemochromatosis, cystic fibrosis), and some rare autoimmune or infectious forms of diabetes. Diagnosis of specific diabetes types might influence therapeutic considerations. Exocrine pancreatic insufficiency is not only found in patients with pancreatogenic diabetes but is also frequently seen in type 1 and long-standing type 2 diabetes.
Collapse
Affiliation(s)
- Susanne Kaser
- Universitätsklinik für Innere Medizin 1, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich.
| | - Sabine E Hofer
- Universitätsklinik für Pädiatrie 1, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Lili Kazemi-Shirazi
- Klinische Abteilung für Gastroenterologie und Hepatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Andreas Festa
- Abteilung für Innere Medizin I, LK Stockerau, Stockerau, Österreich
| | - Yvonne Winhofer
- Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Harald Sourij
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Österreich
| | - Helmut Brath
- Mein Gesundheitszentrum Favoriten, Österreichische Gesundheitskasse, Wien, Österreich
| | - Michaela Riedl
- Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Michael Resl
- Abteilung für Innere Medizin, Konventhospital der Barmherzigen Brüder Linz, Linz, Österreich
| | - Martin Clodi
- Abteilung für Innere Medizin, Konventhospital der Barmherzigen Brüder Linz, Linz, Österreich
- ICMR - Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Österreich
| | - Thomas Stulnig
- 3. Medizinische Abteilung und Karl Landsteiner Institut für Stoffwechselerkrankungen und Nephrologie, Klinik Hietzing, Wien, Österreich
| | - Claudia Ress
- Universitätsklinik für Innere Medizin 1, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - Anton Luger
- Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| |
Collapse
|
21
|
Cao B, Liu M, Zhang Y, Chen J, Li X, Su C, Yang W, Liu M, Wu D, Li W, Liang X, Wang Q, Wei H, Gong C. An effective preselection criterion for MODY with an increasingly positive genetic testing rate by NGS: results from two cohorts of Chinese children. Am J Physiol Endocrinol Metab 2022; 323:E529-E534. [PMID: 36383636 DOI: 10.1152/ajpendo.00171.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to determine the frequency of maturity-onset diabetes of the young (MODY) in two selected cohorts of Chinese children with diabetes and clinically suspected MODY, using next-generation sequencing (NGS). Ninety-three children who met the comprehensive criteria of suspected MODY were enrolled in two cohorts. A custom NGS panel or a whole exon group was used for sequencing. We identified 55/93 (59.1%) children with pathogenic and likely pathogenic MODY variants. Forty-two (76.3%) were confirmed to have the GCK (MODY2) mutation. Additionally, five had the HNF1A (MODY3), two the HNF1B (MODY5), one the 17q12 microdeletion (MODY5), two the HNF4A (MODY1), two the ABCC8 (MODY12), and one the PDX1 mutation (MODY4). Of these, 13 novel variants were detected in different genes. By comparing the gene-positive with gene-negative children, we found that discriminatory factors for MODY at diagnosis included lower HbA1c [7.4% vs. 10.2% (53 vs. 86 mmol/mol); P = 0.002], lower body mass index z score (0.2 vs. 1.0; P = 0.01), lower onset age (8.1 vs. 11.2 years; P = 0.001), and lower C-peptide (1.4 vs. 2.5 ng/mL; P = 0.02). In conclusion, the criteria used in this study for screening MODY are effective, and MODY2 is the most common subtype (76%), followed by MODY3 and MODY5. Some rare MODY subtypes have been reported in Chinese children.NEW & NOTEWORTHY We proved the clinical suspicion of maturity-onset diabetes of the young (MODY) according to the comprehensive criterion for next-generation sequencing testing, which helps to identify both common and rare MODYs, leading to accurate diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Bingyan Cao
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Meijuan Liu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yingxian Zhang
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Jiajia Chen
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoqiao Li
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wei Yang
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Min Liu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Di Wu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenjing Li
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xuejun Liang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qiao Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Haiyan Wei
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
22
|
Florez JC, Pearson ER. A roadmap to achieve pharmacological precision medicine in diabetes. Diabetologia 2022; 65:1830-1838. [PMID: 35748917 PMCID: PMC9522818 DOI: 10.1007/s00125-022-05732-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Current pharmacological treatment of diabetes is largely algorithmic. Other than for cardiovascular disease or renal disease, where sodium-glucose cotransporter 2 inhibitors and/or glucagon-like peptide-1 receptor agonists are indicated, the choice of treatment is based upon overall risks of harm or side effect and cost, and not on probable benefit. Here we argue that a more precise approach to treatment choice is necessary to maximise benefit and minimise harm from existing diabetes therapies. We propose a roadmap to achieve precision medicine as standard of care, to discuss current progress in relation to monogenic diabetes and type 2 diabetes, and to determine what additional work is required. The first step is to identify robust and reliable genetic predictors of response, recognising that genotype is static over time and provides the skeleton upon which modifiers such as clinical phenotype and metabolic biomarkers can be overlaid. The second step is to identify these metabolic biomarkers (e.g. beta cell function, insulin sensitivity, BMI, liver fat, metabolite profile), which capture the metabolic state at the point of prescribing and may have a large impact on drug response. Third, we need to show that predictions that utilise these genetic and metabolic biomarkers improve therapeutic outcomes for patients, and fourth, that this is cost-effective. Finally, these biomarkers and prediction models need to be embedded in clinical care systems to enable effective and equitable clinical implementation. Whilst this roadmap is largely complete for monogenic diabetes, we still have considerable work to do to implement this for type 2 diabetes. Increasing collaborations, including with industry, and access to clinical trial data should enable progress to implementation of precision treatment in type 2 diabetes in the near future.
Collapse
Affiliation(s)
- Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard & MIT, Cambridge, MA, USA.
| | - Ewan R Pearson
- Department of Population Health & Genomics, School of Medicine, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
23
|
Bonnefond A, Semple RK. Achievements, prospects and challenges in precision care for monogenic insulin-deficient and insulin-resistant diabetes. Diabetologia 2022; 65:1782-1795. [PMID: 35618782 PMCID: PMC9522735 DOI: 10.1007/s00125-022-05720-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 01/19/2023]
Abstract
Integration of genomic and other data has begun to stratify type 2 diabetes in prognostically meaningful ways, but this has yet to impact on mainstream diabetes practice. The subgroup of diabetes caused by single gene defects thus provides the best example to date of the vision of 'precision diabetes'. Monogenic diabetes may be divided into primary pancreatic beta cell failure, and primary insulin resistance. In both groups, clear examples of genotype-selective responses to therapy have been advanced. The benign trajectory of diabetes due to pathogenic GCK mutations, and the sulfonylurea-hyperresponsiveness conferred by activating KCNJ11 or ABCC8 mutations, or loss-of-function HNF1A or HNF4A mutations, often decisively guide clinical management. In monogenic insulin-resistant diabetes, subcutaneous leptin therapy is beneficial in some severe lipodystrophy. Increasing evidence also supports use of 'obesity therapies' in lipodystrophic people even without obesity. In beta cell diabetes the main challenge is now implementation of the precision diabetes vision at scale. In monogenic insulin-resistant diabetes genotype-specific benefits are proven in far fewer patients to date, although further genotype-targeted therapies are being evaluated. The conceptual paradigm established by the insulin-resistant subgroup with 'adipose failure' may have a wider influence on precision therapy for common type 2 diabetes, however. For all forms of monogenic diabetes, population-wide genome sequencing is currently forcing reappraisal of the importance assigned to pathogenic mutations when gene sequencing is uncoupled from prior suspicion of monogenic diabetes.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Université de Lille, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
24
|
Colclough K, Patel K. How do I diagnose Maturity Onset Diabetes of the Young in my patients? Clin Endocrinol (Oxf) 2022; 97:436-447. [PMID: 35445424 PMCID: PMC9544561 DOI: 10.1111/cen.14744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/21/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Maturity Onset Diabetes of the Young (MODY) is a monogenic form of diabetes diagnosed in young individuals that lack the typical features of type 1 and type 2 diabetes. The genetic subtype of MODY determines the most effective treatment and this is the driver for MODY genetic testing in diabetes populations. Despite the obvious clinical and health economic benefits, MODY is significantly underdiagnosed with the majority of patients being inappropriately managed as having type 1 or type 2 diabetes. Low detection rates result from the difficulty in identifying patients with a likely diagnosis of MODY from the high background population of young onset type 1 and type 2 diabetes, compounded by the lack of MODY awareness and education in diabetes care physicians. MODY diagnosis can be improved through (1) access to education and training, (2) the use of sensitive and specific selection criteria based on accurate prediction models and biomarkers to identify patients for testing, (3) the development and mainstream implementation of simple criteria-based selection pathways applicable across a range of healthcare settings and ethnicities to select the most appropriate patients for genetic testing and (4) the correct use of next generation sequencing technology to provide accurate and comprehensive testing of all known MODY and monogenic diabetes genes. The creation and public sharing of educational materials, clinical and scientific best practice guidelines and genetic variants will help identify the missing patients so they can benefit from the more effective clinical care that a genetic diagnosis brings.
Collapse
Affiliation(s)
- Kevin Colclough
- Exeter Genomics LaboratoryRoyal Devon & Exeter NHS Foundation TrustExeterUK
| | - Kashyap Patel
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
25
|
Martikainen J, Lehtimäki AV, Jalkanen K, Lavikainen P, Paajanen T, Marjonen H, Kristiansson K, Lindström J, Perola M. Economic evaluation of using polygenic risk score to guide risk screening and interventions for the prevention of type 2 diabetes in individuals with high overall baseline risk. Front Genet 2022; 13:880799. [PMID: 36186460 PMCID: PMC9520240 DOI: 10.3389/fgene.2022.880799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes (T2D) with increasing prevalence is a significant global public health challenge. Obesity, unhealthy diet, and low physical activity are one of the major determinants of the rise in T2D prevalence. In addition, family history and genetic risk of diabetes also play a role in the process of developing T2D. Therefore, solutions for the early identification of individuals at high risk for T2D for early targeted detection of T2D, prevention, and intervention are highly preferred. Recently, novel genomic-based polygenic risk scores (PRSs) have been suggested to improve the accuracy of risk prediction supporting the targeting of preventive interventions to those at highest risk for T2D. Therefore, the aim of the present study was to assess the cost-utility of an additional PRS testing information (as a part of overall risk assessment) followed by a lifestyle intervention and an additional medical therapy when estimated 10-year overall risk for T2D exceeded 20% among Finnish individuals screened as at the high-risk category (i.e., 10%–20% 10-year overall risk of T2D) based on traditional risk factors only. For a cost-utility analysis, an individual-level state-transition model with probabilistic sensitivity analysis was constructed. A 1-year cycle length and a lifetime time horizon were applied in the base-case. A 3% discount rate was used for costs and QALYs. Cost-effectiveness acceptability curve (CEAC) and estimates for the expected value of perfect information (EVPI) were calculated to assist decision makers. The use of the targeted PRS strategy reclassified 12.4 percentage points of individuals to be very high-risk individuals who would have been originally classified as high risk using the usual strategy only. Over a lifetime horizon, the targeted PRS was a dominant strategy (i.e., less costly, more effective). One-way and scenario sensitivity analyses showed that results remained dominant in almost all simulations. However, there is uncertainty, since the probability (EVPI) of cost-effectiveness at a WTP of 0€/QALY was 63.0% (243€) indicating the probability that the PRS strategy is a dominant option. In conclusion, the results demonstrated that the PRS provides moderate additional value in Finnish population in risk screening leading to potential cost savings and better quality of life when compared with the current screening methods for T2D risk.
Collapse
Affiliation(s)
- Janne Martikainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- *Correspondence: Janne Martikainen,
| | | | - Kari Jalkanen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Piia Lavikainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Teemu Paajanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heidi Marjonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kati Kristiansson
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaana Lindström
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
da Silva Santos T, Fonseca L, Santos Monteiro S, Borges Duarte D, Martins Lopes A, Couto de Carvalho A, Oliveira MJ, Borges T, Laranjeira F, Couce ML, Cardoso MH. MODY probability calculator utility in individuals' selection for genetic testing: Its accuracy and performance. Endocrinol Diabetes Metab 2022; 5:e00332. [PMID: 35822264 PMCID: PMC9471596 DOI: 10.1002/edm2.332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction MODY probability calculator (MPC) represents an easy‐to‐use tool developed by Exeter University to help clinicians prioritize which individuals should be oriented to genetic testing. We aimed to assess the utility of MPC in a Portuguese cohort with early‐onset monogenic diabetes. Methods This single‐centre retrospective study enrolled 132 participants submitted to genetic testing between 2015 and 2020. Automatic sequencing and, in case of initial negative results, generation sequencing were performed. MODY probability was calculated using the probability calculator available online. Positive and negative predictive values (PPV and NPV, respectively), accuracy, sensitivity and specificity of the calculator were determined for this cohort. Results Seventy‐three individuals were included according to inclusion criteria: 20 glucokinase (GCK‐MODY); 16 hepatocyte nuclear factor 1A (HNF1A‐MODY); 2 hepatocyte nuclear factor 4A (HNF4A‐MODY) and 35 DM individuals with no monogenic mutations found. The median probability score of MODY was significantly higher in monogenic diabetes‐positive subgroup (75.5% vs. 24.2%, p < .001). The discriminative accuracy of the calculator, as expressed by area under the curve, was 75% (95% CI: 64%–85%). In our cohort, the best cut‐off value for the MODY calculator was found to be 36%, with a PPV of 74.4%, NPV of 73.5% and corresponding sensitivity and specificity of 76.2% and 71.4%, respectively. Conclusions In a highly pre‐selected group of probands qualified for genetic testing, the Exeter MODY probability calculator provided a useful tool in individuals' selection for genetic testing, with good discrimination ability under an optimal probability cut‐off of 36%. Further geographical and population adjustments are warranted for general use.
Collapse
Affiliation(s)
- Tiago da Silva Santos
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Liliana Fonseca
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Sílvia Santos Monteiro
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Diana Borges Duarte
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Ana Martins Lopes
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - André Couto de Carvalho
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Maria João Oliveira
- Division of Pediatric Endocrinology Department of Pediatrics Centro Materno‐Infantil do Norte – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Teresa Borges
- Division of Pediatric Endocrinology Department of Pediatrics Centro Materno‐Infantil do Norte – Centro Hospitalar e Universitário do Porto Porto Portugal
| | | | - María Luz Couce
- University Clinical Hospital of Santiago de Compostela, IDIS CIBERER MetabERN Santiago de Compostela Spain
| | - Maria Helena Cardoso
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| |
Collapse
|
27
|
Menon S, Refaey A, Guffey D, Balasubramanyam A, Redondo MJ, Tosur M. Optimizing maturity-onset diabetes of the young detection in a pediatric diabetes population. Pediatr Diabetes 2022; 23:447-456. [PMID: 35218126 DOI: 10.1111/pedi.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Maturity-onset diabetes of the young (MODY) is often misdiagnosed as type 1/type 2 diabetes. We aimed to define patient characteristics to guide the decision to test for MODY in youth with diabetes. RESEARCH DESIGN AND METHODS Of 4750 patients enrolled in the Diabetes Registry at Texas Children's Hospital between July 2016 and July 2019, we selected ("Study Cohort", n = 350) those with: (1) diabetes diagnosis <25 years, (2) family history of diabetes in three consecutive generations, and (3) absent islet autoantibodies except for GAD65. We retrospectively studied their clinical and biochemical characteristics and available MODY testing results. Cluster analysis was then performed to identify the cluster with highest rate of MODY diagnosis. RESULTS Patients in the Study Cohort were 3.5 times more likely to have been diagnosed with MODY than in the overall Diabetes Registry (4.6% vs. 1.3%, p < 0.001). The cluster (n = 16) with the highest rate of clinician-diagnosed MODY (25%, n = 4/16) had the lowest age (10.9 ± 2.5 year), BMI-z score (0.5 ± 0.9), C-peptide level (1.5 ± 1.2 ng/ml) and acanthosis nigricans frequency (12.5%) at diabetes diagnosis (all p < 0.05). In this cluster, three out of five patients who underwent MODY genetic testing had a pathogenic variant. CONCLUSIONS Using a stepwise approach, we identified that younger age, lower BMI, lower C-peptide, and absence of acanthosis nigricans increase likelihood of MODY in racially/ethnically diverse children with diabetes who have a multigenerational family history of diabetes and negative islet autoantibodies, and can be used by clinicians to select patients for MODY testing.
Collapse
Affiliation(s)
- Sruthi Menon
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | | | - Danielle Guffey
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Maria J Redondo
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Mustafa Tosur
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
28
|
Verma M, Stone SI. Identification of a novel hepatocyte nuclear factor-1 alpha (HNF1A) variant in maturity onset diabetes of the young type 3 (HNF1A-MODY). Endocrinol Diabetes Metab Case Rep 2022; 2022:21-0118. [PMID: 35466084 PMCID: PMC9066565 DOI: 10.1530/edm-21-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Summary We identified an adolescent young woman with new-onset diabetes. Due to suspicious family history, she underwent genetic testing for common monogenic diabetes (MODY) genes. We discovered that she and her father carry a novel variant of uncertain significance in the HNF1A gene. She was successfully transitioned from insulin to a sulfonylurea with excellent glycemic control. Based on her family history and successful response to sulfonylurea, we propose that this is a novel pathogenic variant in HNF1A. This case highlights the utility of genetic testing for MODY, which has the potential to help affected patients control their diabetes without insulin. Learning points HNF1A mutations are a common cause of monogenic diabetes in patients presenting with early-onset diabetes and significant family history. Genetic testing in suspected patients allows for the identification of mutations causing monogenic diabetes. First-degree relatives of the affected individual should be considered for genetic testing. The use of sulfonylurea agents in patients with HNF1A-MODY can reduce dependence on insulin therapy and provide successful glycemic control.
Collapse
Affiliation(s)
- Megha Verma
- Department of Pediatrics, Endocrinology and Diabetes, Washington University School of Medicine, St. Louis, Missouri, USA
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Stephen I Stone
- Department of Pediatrics, Endocrinology and Diabetes, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Pace NP, Grech CA, Vella B, Caruana R, Vassallo J. Frequency and spectrum of glucokinase mutations in an adult Maltese population. Acta Diabetol 2022; 59:339-348. [PMID: 34677673 DOI: 10.1007/s00592-021-01814-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022]
Abstract
AIM To investigate the frequency and spectrum of glucokinase (GCK) mutations in a cohort of adults from an island population having a high prevalence of diabetes mellitus (DM). METHODS A single-centre cohort study was conducted, including 145 non-obese adults of Maltese-Caucasian ethnicity with impaired fasting glycaemia (IFG) or non-autoimmune diabetes diagnosed before the age of 40 years. Bidirectional sequencing of the GCK coding regions was performed. Genotype-phenotype associations and familial segregation were explored and the effects of missense variants on protein structure were evaluated using computational analysis. RESULTS Three probands with pathogenic/likely pathogenic GCK variants in the heterozygous state having clinical features consistent with GCK-diabetes were detected. The missense variants have structurally destabilising effects on protein structure. GCK variant carriers exhibited a significantly lower body mass index and serum triglyceride levels when compared to GCK variant non-carriers. CONCLUSIONS The frequency of GCK-diabetes is approximately 2% in non-obese Maltese adults with diabetes or prediabetes. This study broadens the mutational spectrum of GCK and highlights clinical features that could be useful in discriminating GCK-DM from type 2 DM or prediabetes. It reinforces the need for increased molecular testing in young adults with diabetes having a suspected monogenic aetiology.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Nikolai Paul Pace, Room 325, Msida, 2080, MSD, Malta.
| | - Celine Ann Grech
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Nikolai Paul Pace, Room 325, Msida, 2080, MSD, Malta
| | - Barbara Vella
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Nikolai Paul Pace, Room 325, Msida, 2080, MSD, Malta
| | - Ruth Caruana
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| |
Collapse
|
30
|
Johnson K, Saylor KW, Guynn I, Hicklin K, Berg JS, Lich KH. A systematic review of the methodological quality of economic evaluations in genetic screening and testing for monogenic disorders. Genet Med 2022; 24:262-288. [PMID: 34906467 PMCID: PMC8900524 DOI: 10.1016/j.gim.2021.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Understanding the value of genetic screening and testing for monogenic disorders requires high-quality, methodologically robust economic evaluations. This systematic review sought to assess the methodological quality among such studies and examined opportunities for improvement. METHODS We searched PubMed, Cochrane, Embase, and Web of Science for economic evaluations of genetic screening/testing (2013-2019). Methodological rigor and adherence to best practices were systematically assessed using the British Medical Journal checklist. RESULTS Across the 47 identified studies, there were substantial variations in modeling approaches, reporting detail, and sophistication. Models ranged from simple decision trees to individual-level microsimulations that compared between 2 and >20 alternative interventions. Many studies failed to report sufficient detail to enable replication or did not justify modeling assumptions, especially for costing methods and utility values. Meta-analyses, systematic reviews, or calibration were rarely used to derive parameter estimates. Nearly all studies conducted some sensitivity analysis, and more sophisticated studies implemented probabilistic sensitivity/uncertainty analysis, threshold analysis, and value of information analysis. CONCLUSION We describe a heterogeneous body of work and present recommendations and exemplar studies across the methodological domains of (1) perspective, scope, and parameter selection; (2) use of uncertainty/sensitivity analyses; and (3) reporting transparency for improvement in the economic evaluation of genetic screening/testing.
Collapse
Affiliation(s)
- Karl Johnson
- Department of Health Policy and Management, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Katherine W Saylor
- Department of Public Policy, College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Isabella Guynn
- Department of Health Policy and Management, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Karen Hicklin
- Department of Health Policy and Management, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jonathan S Berg
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kristen Hassmiller Lich
- Department of Health Policy and Management, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
31
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc22-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc22-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
32
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
33
|
Tangjittipokin W, Borrisut N, Rujirawan P. Prediction, diagnosis, prevention and treatment: genetic-led care of patients with diabetes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1970526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity (Sicore-do), Faculty of Medicine Siriraj, Mahidol University, Bangkoknoi, Bangkok, Thailand
| | - Nutsakol Borrisut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
| | - Patcharapong Rujirawan
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
| |
Collapse
|
34
|
Todd JN, Kleinberger JW, Zhang H, Srinivasan S, Tollefsen SE, Levitsky LL, Levitt Katz LE, Tryggestad JB, Bacha F, Imperatore G, Lawrence JM, Pihoker C, Divers J, Flannick J, Dabelea D, Florez JC, Pollin TI. Monogenic Diabetes in Youth With Presumed Type 2 Diabetes: Results From the Progress in Diabetes Genetics in Youth (ProDiGY) Collaboration. Diabetes Care 2021; 44:dc210491. [PMID: 34362814 PMCID: PMC8929184 DOI: 10.2337/dc21-0491] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/01/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Maturity-onset diabetes of the young (MODY) is frequently misdiagnosed as type 1 or type 2 diabetes. Correct diagnosis may result in a change in clinical treatment and impacts prediction of complications and familial risk. In this study, we aimed to assess the prevalence of MODY in multiethnic youth under age 20 years with a clinical diagnosis of type 2 diabetes. RESEARCH DESIGN AND METHODS We evaluated whole-exome sequence data of youth with a clinical diagnosis of type 2 diabetes. We considered participants to have MODY if they carried a MODY gene variant classified as likely pathogenic (LP) or pathogenic (P) according to current guidelines. RESULTS Of 3,333 participants, 93 (2.8%) carried an LP/P variant in HNF4A (16 participants), GCK (23), HNF1A (44), PDX1 (5), INS (4), and CEL (1). Compared with those with no LP/P variants, youth with MODY had a younger age at diagnosis (12.9 ± 2.5 vs. 13.6 ± 2.3 years, P = 0.002) and lower fasting C-peptide levels (3.0 ± 1.7 vs. 4.7 ± 3.5 ng/mL, P < 0.0001). Youth with MODY were less likely to have hypertension (6.9% vs. 19.5%, P = 0.007) and had higher HDL cholesterol (43.8 vs. 39.7 mg/dL, P = 0.006). CONCLUSIONS By comprehensively sequencing the coding regions of all MODY genes, we identified MODY in 2.8% of youth with clinically diagnosed type 2 diabetes; importantly, in 89% (n = 83) the specific diagnosis would have changed clinical management. No clinical criterion reliably separated the two groups. New tools are needed to find ideal criteria for selection of individuals for genetic testing.
Collapse
Affiliation(s)
- Jennifer N Todd
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Vermont, Burlington, VT
- Department of Pediatrics, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Jeffrey W Kleinberger
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Haichen Zhang
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Shylaja Srinivasan
- Division of Pediatric Endocrinology, University of California, San Francisco, San Francisco, CA
| | - Sherida E Tollefsen
- Department of Pediatrics, Saint Louis University Health Sciences Center, St. Louis, MO
| | - Lynne L Levitsky
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lorraine E Levitt Katz
- Children's Hospital of Philadelphia, Perelman School of Medicine of University of Pennsylvania, Philadelphia, PA
| | - Jeanie B Tryggestad
- Section of Diabetes & Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Fida Bacha
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | | | - Jean M Lawrence
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| | | | - Jasmin Divers
- New York University Langone Medical Center, New York, NY
| | - Jason Flannick
- Department of Pediatrics, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity & Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jose C Florez
- Program in Medical and Population Genetics, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Research Center, Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Toni I Pollin
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
35
|
Fu J, Ping F, Wang T, Liu Y, Wang X, Yu J, Deng M, Liu J, Zhang Q, Yu M, Li M, Li Y, Xiao X. A Clinical Prediction Model to Distinguish Maturity-Onset Diabetes of the Young From Type 1 and Type 2 Diabetes in the Chinese Population. Endocr Pract 2021; 27:776-782. [PMID: 33991656 DOI: 10.1016/j.eprac.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/03/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Genetic detection for the diagnosis of maturity-onset diabetes of the young (MODY) in China has low sensitivity and specificity. Better gene detection is urgently needed to distinguish testing subjects. We proposed to use numerous and weighted clinical traits as key indicators for reasonable genetic testing to predict the probability of MODY in the Chinese population. METHODS We created a prediction model based on data from 306 patients, including 140 patients with MODY, 84 patients with type 1 diabetes (T1D), and 82 patients with type 2 diabetes (T2D). This model was evaluated using receiver operating characteristic curves. RESULTS Compared with patients with T1D, patients with MODY had higher C-peptide levels and negative antibodies, and most patients with MODY had a family history of diabetes. Different from T2D, MODY was characterized by lower body mass index and younger diagnostic age. A clinical prediction model was established to define the comprehensive probability of MODY by a weighted consolidation of the most distinguishing features, and the model showed excellent discrimination (areas under the curve of 0.916 in MODY vs T1D and 0.942 in MODY vs T2D). Further, high-sensitivity C-reactive protein, glycated hemoglobin A1c, 2-h postprandial glucose, and triglyceride were used as indicators for glucokinase-MODY, while triglyceride, high-sensitivity C-reactive protein, and hepatocellular adenoma were used as indicators for hepatocyte nuclear factor 1-α MODY. CONCLUSION We developed a practical prediction model that could predict the probability of MODY and provide information to identify glucokinase-MODY and hepatocyte nuclear factor 1-α MODY. These results provide an advanced and more reasonable process to identify the most appropriate patients for genetic testing.
Collapse
Affiliation(s)
- Junling Fu
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China; Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fan Ping
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Tong Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yiwen Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Xiaojing Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Jie Yu
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Mingqun Deng
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Jieying Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Miao Yu
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Ming Li
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yuxiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
36
|
Zhang H, Colclough K, Gloyn AL, Pollin TI. Monogenic diabetes: a gateway to precision medicine in diabetes. J Clin Invest 2021; 131:142244. [PMID: 33529164 PMCID: PMC7843214 DOI: 10.1172/jci142244] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Monogenic diabetes refers to diabetes mellitus (DM) caused by a mutation in a single gene and accounts for approximately 1%-5% of diabetes. Correct diagnosis is clinically critical for certain types of monogenic diabetes, since the appropriate treatment is determined by the etiology of the disease (e.g., oral sulfonylurea treatment of HNF1A/HNF4A-diabetes vs. insulin injections in type 1 diabetes). However, achieving a correct diagnosis requires genetic testing, and the overlapping of the clinical features of monogenic diabetes with those of type 1 and type 2 diabetes has frequently led to misdiagnosis. Improvements in sequencing technology are increasing opportunities to diagnose monogenic diabetes, but challenges remain. In this Review, we describe the types of monogenic diabetes, including common and uncommon types of maturity-onset diabetes of the young, multiple causes of neonatal DM, and syndromic diabetes such as Wolfram syndrome and lipodystrophy. We also review methods of prioritizing patients undergoing genetic testing, and highlight existing challenges facing sequence data interpretation that can be addressed by forming collaborations of expertise and by pooling cases.
Collapse
Affiliation(s)
- Haichen Zhang
- University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Anna L. Gloyn
- Department of Pediatrics, Division of Endocrinology, and,Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, California, USA
| | - Toni I. Pollin
- University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Li J, Shu M, Wang X, Deng A, Wen C, Wang J, Jin S, Zhang H. Precision Therapy for a Chinese Family With Maturity-Onset Diabetes of the Young. Front Endocrinol (Lausanne) 2021; 12:700342. [PMID: 34421822 PMCID: PMC8374143 DOI: 10.3389/fendo.2021.700342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To determine the pathogenic gene and explore the clinical characteristics of maturity-onset diabetes of the young type 2 (MODY2) pedigree caused by a mutation in the glucokinase (GCK) gene. METHODS Using whole-exome sequencing (WES), the pathogenic gene was detected in the proband-a 20-year-old young man who was accidentally found with hyperglycemia, no ketosis tendency, and a family history of diabetes. The family members of the proband were examined. In addition, relevant clinical data were obtained and genomic DNA from peripheral blood was obtained. Pathologic variants of the candidate were verified by Sanger sequencing technology, and cosegregation tests were conducted among other family members and non-related healthy controls. After adjusting the treatment plan based on the results of genetic testing, changes in biochemical parameters, such as blood glucose levels and HAblc levels were determined. RESULTS In the GCK gene (NM_000162) in exon 9, a heterozygous missense mutation c.1160C > T (p.Ala387Val) was found in the proband, his father, uncle, and grandmother. Thus mutation, which was found to co-segregate with diabetes, was the first discovery of such a mutation in the Asian population. After stopping hypoglycemic drug treatment, good glycemic control was achieved with diet and exercise therapy. CONCLUSION GCK gene mutation c.1160C > T (p.Ala387Val) is the pathogenic gene in the GCK-MODY pedigree. Formulating an optimized and personalized treatment strategy can reduce unnecessary excessive medical treatment and adverse drug reactions, and maintain a good HbA1c compliance rate.
Collapse
Affiliation(s)
- Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufang Wang
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chong Wen
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Si Jin, ; Hongmei Zhang,
| | - Hongmei Zhang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Si Jin, ; Hongmei Zhang,
| |
Collapse
|
38
|
Sayed S, Nabi AHMN. Diabetes and Genetics: A Relationship Between Genetic Risk Alleles, Clinical Phenotypes and Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:457-498. [PMID: 32314317 DOI: 10.1007/5584_2020_518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unveiling human genome through successful completion of Human Genome Project and International HapMap Projects with the advent of state of art technologies has shed light on diseases associated genetic determinants. Identification of mutational landscapes such as copy number variation, single nucleotide polymorphisms or variants in different genes and loci have revealed not only genetic risk factors responsible for diseases but also region(s) playing protective roles. Diabetes is a global health concern with two major types - type 1 diabetes (T1D) and type 2 diabetes (T2D). Great progress in understanding the underlying genetic predisposition to T1D and T2D have been made by candidate gene studies, genetic linkage studies, genome wide association studies with substantial number of samples. Genetic information has importance in predicting clinical outcomes. In this review, we focus on recent advancement regarding candidate gene(s) associated with these two traits along with their clinical parameters as well as therapeutic approaches perceived. Understanding genetic architecture of these disease traits relating clinical phenotypes would certainly facilitate population stratification in diagnosing and treating T1D/T2D considering the doses and toxicity of specific drugs.
Collapse
Affiliation(s)
- Shomoita Sayed
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
39
|
Broome DT, Pantalone KM, Kashyap SR, Philipson LH. Approach to the Patient with MODY-Monogenic Diabetes. J Clin Endocrinol Metab 2021; 106:237-250. [PMID: 33034350 PMCID: PMC7765647 DOI: 10.1210/clinem/dgaa710] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
UNLABELLED Maturity-onset diabetes of the young, or MODY-monogenic diabetes, is a not-so-rare collection of inherited disorders of non-autoimmune diabetes mellitus that remains insufficiently diagnosed despite increasing awareness. These cases are important to efficiently and accurately diagnose, given the clinical implications of syndromic features, cost-effective treatment regimen, and the potential impact on multiple family members. Proper recognition of the clinical manifestations, family history, and cost-effective lab and genetic testing provide the diagnosis. All patients must undergo a thorough history, physical examination, multigenerational family history, lab evaluation (glycated hemoglobin A1c [HbA1c], glutamic acid decarboxylase antibodies [GADA], islet antigen 2 antibodies [IA-2A], and zinc transporter 8 [ZnT8] antibodies). The presence of clinical features with 3 (or more) negative antibodies may be indicative of MODY-monogenic diabetes, and is followed by genetic testing. Molecular genetic testing should be performed before attempting specific treatments in most cases. Additional testing that is helpful in determining the risk of MODY-monogenic diabetes is the MODY clinical risk calculator (>25% post-test probability in patients not treated with insulin within 6 months of diagnosis should trigger genetic testing) and 2-hour postprandial (after largest meal of day) urinary C-peptide to creatinine ratio (with a ≥0.2 nmol/mmol to distinguish HNF1A- or 4A-MODY from type 1 diabetes). Treatment, as well as monitoring for microvascular and macrovascular complications, is determined by the specific variant that is identified. In addition to the diagnostic approach, this article will highlight recent therapeutic advancements when patients no longer respond to first-line therapy (historically sulfonylurea treatment in many variants). LEARNING OBJECTIVES Upon completion of this educational activity, participants should be able to. TARGET AUDIENCE This continuing medical education activity should be of substantial interest to endocrinologists and all health care professionals who care for people with diabetes mellitus.
Collapse
Affiliation(s)
- David T Broome
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
- Correspondence and Reprint Requests: David T. Broome, MD, Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, 9500 Euclid Avenue, Mail code: F-20, Cleveland, OH 44195, USA. E-mail:
| | - Kevin M Pantalone
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Sangeeta R Kashyap
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Louis H Philipson
- Kovler Diabetes Center, Departments of Medicine and Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc21-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc21-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
41
|
Vaxillaire M, Bonnefond A, Liatis S, Ben Salem Hachmi L, Jotic A, Boissel M, Gaget S, Durand E, Vaillant E, Derhourhi M, Canouil M, Larcher N, Allegaert F, Medlej R, Chadli A, Belhadj A, Chaieb M, Raposo JF, Ilkova H, Loizou D, Lalic N, Vassallo J, Marre M, Froguel P. Monogenic diabetes characteristics in a transnational multicenter study from Mediterranean countries. Diabetes Res Clin Pract 2021; 171:108553. [PMID: 33242514 DOI: 10.1016/j.diabres.2020.108553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diagnosis of monogenic diabetes has important clinical implications for treatment and health expenditure. However, its prevalence remains to be specified in many countries, particularly from South Europe, North Africa and Middle-East, where non-autoimmune diabetes in young adults is increasing dramatically. AIMS To identify cases of monogenic diabetes in young adults from Mediterranean countries and assess the specificities between countries. METHODS We conducted a transnational multicenter study based on exome sequencing in 204 unrelated patients with diabetes (age-at-diagnosis: 26.1 ± 9.1 years). Rare coding variants in 35 targeted genes were evaluated for pathogenicity. Data were analyzed using one-way ANOVA, chi-squared test and factor analysis of mixed data. RESULTS Forty pathogenic or likely pathogenic variants, 14 of which novel, were identified in 36 patients yielding a genetic diagnosis rate of 17.6%. The majority of cases were due to GCK, HNF1A, ABCC8 and HNF4A variants. We observed highly variable diagnosis rates according to countries, with association to genetic ancestry. Lower body mass index and HbA1c at study inclusion, and less frequent insulin treatment were hallmarks of pathogenic variant carriers. Treatment changes following genetic diagnosis have been made in several patients. CONCLUSIONS Our data from patients in several Mediterranean countries highlight a broad clinical and genetic spectrum of diabetes, showing the relevance of wide genetic testing for personalized care of early-onset diabetes.
Collapse
Affiliation(s)
- Martine Vaxillaire
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France.
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France; Department of Metabolism, Section of Genomics of Common Disease, Imperial College London, London, United Kingdom.
| | - Stavros Liatis
- First Department of Propaedeutic Medicine, National and Kapodistrian University of Athens Medical School, Diabetes Center, Laiko General Hospital, Athens, Greece
| | - Leila Ben Salem Hachmi
- Department of Endocrinology and Metabolic Diseases, National Institut of Nutrition, Tunis, Tunisia
| | - Aleksandra Jotic
- Department of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mathilde Boissel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Stefan Gaget
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Emmanuelle Durand
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Mickaël Canouil
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Nicolas Larcher
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Frédéric Allegaert
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | | | - Asma Chadli
- Department of Endocrinology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Azzedine Belhadj
- Department of Internal Medicine, CHU Dr Ben Badis University Hospital, Constantine, Algeria
| | - Molka Chaieb
- Department of Endocrinology, Farhat Hached Hospital, Sousse, Tunisia
| | | | - Hasan Ilkova
- Department of Endocrinology, School of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Nebojsa Lalic
- Department of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Josanne Vassallo
- Division of Endocrinology and University of Malta Medical School, Mater Dei Hospital; Centre of Molecular Medicine and Biobanking, University of Malta, Malta
| | - Michel Marre
- Department of Diabetology-Endocrinology-Nutrition, Hôpital Bichat, DHU FIRE, Assistance Publique Hôpitaux de Paris, Paris, France; Inserm U1138, Centre de Recherche des Cordeliers, Paris, France; UFR de Médecine, University Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France; Department of Metabolism, Section of Genomics of Common Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
42
|
Trischitta V, Prudente S, Doria A. Disentangling the heterogeneity of adulthood-onset non-autoimmune diabetes: a little closer but lot more to do. Curr Opin Pharmacol 2020; 55:157-164. [PMID: 33271410 DOI: 10.1016/j.coph.2020.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Diabetes diagnosed in adults is a highly heterogeneous disorder. It mostly consists of what is referred to as type 2 diabetes but also comprises other entities (i.e. different diseases), including latent autoimmune diabetes, late onset forms of monogenic diabetes and familial diabetes of the adulthood, which has recently been the source of new diabetogenes discovery. Notably, type 2 diabetes is itself heterogeneous as it includes subtypes with onset at the extremes of age and/or weight distributions characterized by different degree of hyperglycemia and cardiovascular risk as compared to common forms of type 2 diabetes occurring in middle-aged, overweight/obese individuals. Understanding whether these are different presentations of one, highly heterogeneous disease or separate nosological entities with different clinical trajectories and requiring different treatments is essential to effectively pursue the path of precision medicine.
Collapse
Affiliation(s)
- Vincenzo Trischitta
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Department of Experimental Medicine, Sapienza University, Rome, Italy.
| | - Sabrina Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Riddle MC, Philipson LH, Rich SS, Carlsson A, Franks PW, Greeley SAW, Nolan JJ, Pearson ER, Zeitler PS, Hattersley AT. Monogenic Diabetes: From Genetic Insights to Population-Based Precision in Care. Reflections From a Diabetes Care Editors' Expert Forum. Diabetes Care 2020; 43:3117-3128. [PMID: 33560999 PMCID: PMC8162450 DOI: 10.2337/dci20-0065] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Individualization of therapy based on a person's specific type of diabetes is one key element of a "precision medicine" approach to diabetes care. However, applying such an approach remains difficult because of barriers such as disease heterogeneity, difficulties in accurately diagnosing different types of diabetes, multiple genetic influences, incomplete understanding of pathophysiology, limitations of current therapies, and environmental, social, and psychological factors. Monogenic diabetes, for which single gene mutations are causal, is the category most suited to a precision approach. The pathophysiological mechanisms of monogenic diabetes are understood better than those of any other form of diabetes. Thus, this category offers the advantage of accurate diagnosis of nonoverlapping etiological subgroups for which specific interventions can be applied. Although representing a small proportion of all diabetes cases, monogenic forms present an opportunity to demonstrate the feasibility of precision medicine strategies. In June 2019, the editors of Diabetes Care convened a panel of experts to discuss this opportunity. This article summarizes the major themes that arose at that forum. It presents an overview of the common causes of monogenic diabetes, describes some challenges in identifying and treating these disorders, and reports experience with various approaches to screening, diagnosis, and management. This article complements a larger American Diabetes Association effort supporting implementation of precision medicine for monogenic diabetes, which could serve as a platform for a broader initiative to apply more precise tactics to treating the more common forms of diabetes.
Collapse
Affiliation(s)
- Matthew C Riddle
- Division of Endocrinology, Diabetes, & Clinical Nutrition, Oregon Health & Science University, Portland, OR
| | - Louis H Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Annelie Carlsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Lund, Sweden
| | - Paul W Franks
- Harvard T.H. Chan School of Public Health, Boston, MA.,Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - John J Nolan
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Philip S Zeitler
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
44
|
Bonnefond A, Boissel M, Bolze A, Durand E, Toussaint B, Vaillant E, Gaget S, Graeve FD, Dechaume A, Allegaert F, Guilcher DL, Yengo L, Dhennin V, Borys JM, Lu JT, Cirulli ET, Elhanan G, Roussel R, Balkau B, Marre M, Franc S, Charpentier G, Vaxillaire M, Canouil M, Washington NL, Grzymski JJ, Froguel P. Pathogenic variants in actionable MODY genes are associated with type 2 diabetes. Nat Metab 2020; 2:1126-1134. [PMID: 33046911 DOI: 10.1038/s42255-020-00294-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies have identified 240 independent loci associated with type 2 diabetes (T2D) risk, but this knowledge has not advanced precision medicine. In contrast, the genetic diagnosis of monogenic forms of diabetes (including maturity-onset diabetes of the young (MODY)) are textbook cases of genomic medicine. Recent studies trying to bridge the gap between monogenic diabetes and T2D have been inconclusive. Here, we show a significant burden of pathogenic variants in genes linked with monogenic diabetes among people with common T2D, particularly in actionable MODY genes, thus implying that there should be a substantial change in care for carriers with T2D. We show that, among 74,629 individuals, this burden is probably driven by the pathogenic variants found in GCK, and to a lesser extent in HNF4A, KCNJ11, HNF1B and ABCC8. The carriers with T2D are leaner, which evidences a functional metabolic effect of these mutations. Pathogenic variants in actionable MODY genes are more frequent than was previously expected in common T2D. These results open avenues for future interventions assessing the clinical interest of these pathogenic mutations in precision medicine.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| | - Mathilde Boissel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | | | - Emmanuelle Durand
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Bénédicte Toussaint
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Stefan Gaget
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Franck De Graeve
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Aurélie Dechaume
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Frédéric Allegaert
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - David Le Guilcher
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Loïc Yengo
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Australia
| | - Véronique Dhennin
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | | | | | | | - Gai Elhanan
- Desert Research Institute, Reno, NV, USA
- Renown Institute of Health Innovation, Reno, NV, USA
| | - Ronan Roussel
- Department of Diabetology Endocrinology Nutrition, Hôpital Bichat, DHU FIRE, Assistance Publique Hôpitaux de Paris, Paris, France
- Inserm U1138, Centre de Recherche des Cordeliers, Paris, France
- UFR de Médecine, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Beverley Balkau
- Inserm U1018, Institut Gustave Roussy, Center for Research in Epidemiology and Population Health, Villejuif, France
- University Paris-Saclay, University Paris-Sud, Villejuif, France
| | - Michel Marre
- Inserm U1138, Centre de Recherche des Cordeliers, Paris, France
- CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Sylvia Franc
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
- Department of Diabetes, Sud-Francilien Hospital, University Paris-Sud, Orsay, Corbeil-Essonnes, France
| | - Guillaume Charpentier
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
| | - Martine Vaxillaire
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Mickaël Canouil
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | | | - Joseph J Grzymski
- Desert Research Institute, Reno, NV, USA
- Renown Institute of Health Innovation, Reno, NV, USA
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| |
Collapse
|
45
|
Delvecchio M, Pastore C, Giordano P. Treatment Options for MODY Patients: A Systematic Review of Literature. Diabetes Ther 2020; 11:1667-1685. [PMID: 32583173 PMCID: PMC7376807 DOI: 10.1007/s13300-020-00864-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is an unusual form of diabetes with specific features that distinguish it from type 1 and type 2 diabetes. There are 14 known subtypes of MODY, and mutations in three genes (HNF1A, HNF4A, GCK) account for about 95% of all MODY cases. Diagnosis usually occurs before the age of 25 years, although less frequent forms may occur more often-but not necessarily-later in life. The molecular diagnosis may tailor the choice of the most appropriate treatment, with the aim to optimize blood glucose control, reduce the risk of hypoglycemic events and long-term complications, and enable proper genetic counseling. Treatment is usually unnecessary for patients with mutations in the GCK gene, while oral hypoglycemic agents (generally sulphonylureas) are recommended for patients with mutations in the HNF4A and HNF1A genes. More recent data show that other glucose-lowering agents can be effective in the latter patients, and additional and alternative therapies have been proposed. Proper management guidelines during pregnancy have been developed for carriers of GCK gene mutations, but such guidelines are still a subject of debate in other cases, although some recommendations are available. The other subtypes of MODY are even more rare, and very little data are available in the literature. In this review we summarize the most pertinent findings and recommendations on the treatment of patients with the different subtypes of MODY. Our aim is to provide the reader with an easy-to-read update that can be used to drive the clinician's therapeutical approach to these patients after the molecular diagnosis.
Collapse
Affiliation(s)
- Maurizio Delvecchio
- Metabolic Disorders and Diabetes Unit, "Giovanni XXIII" Children's Hospital, A.O.U. Policlinico di Bari, Bari, Italy.
| | - Carmela Pastore
- Pediatric Unit, Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Giordano
- Pediatric Unit, Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
46
|
Dusatkova P, Pavlikova M, Spirkova A, Elblova L, Zdarska DJ, Rozenkova K, Hron J, Sumnik Z, Cinek O, Lebl J, Pruhova S. Quality of Life and Treatment Satisfaction in Participants with Maturity-Onset Diabetes of the Young: A Comparison to Other Major Forms of Diabetes. Exp Clin Endocrinol Diabetes 2020; 130:85-93. [PMID: 32722819 DOI: 10.1055/a-1200-1482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIMS We investigated the quality of life (QoL), treatment satisfaction and perception of genetic results in participants with Maturity-Onset Diabetes of the Young (MODY) and compared the results with those of subjects with type 1 (T1D) or type 2 (T2D) diabetes. METHODS A total of 162 adults with GCK-MODY, 62 with HNF1A-MODY and 29 with HNF4A-MODY answered the questionnaire Audit of Diabetes Dependent Quality of Life, the Diabetes Treatment Satisfaction Questionnaire and non-validated instrument examining the respondent's perception of the genetic results. Data from GCK-MODY patients were compared with 84 participants with T2D and HNF-MODY subjects were compared with 81 participants having T1D. RESULTS Higher age (p=0.004), higher haemoglobin A1c (p=0.026) and medication (p=0.019) were associated with lower general QoL in GCK-MODY patients. In HNF-MODY patients, lower general QoL was associated with a longer time since diagnosis (p=0.005), worse haemoglobin bA1c (p=0.006) and insulin treatment (p=0.019). Similar numbers of participants with GCK- and HNF-MODY considered the genetic diagnosis of MODY to be positive, negative and without significance. The patient with GCK-MODY did not differ from those with T2D in terms of their QoL, but they were less satisfied with their treatment (p<0.001). QoL was better in patients with HNF-MODY compared with patients with T1D (p=0.006), and they did not differ in terms of treatment satisfaction. CONCLUSIONS QoL was affected in both GCK-MODY and HNF-MODY subjects. Apprehension of genetic diagnosis was not single-valued in MODY respondents.
Collapse
Affiliation(s)
- Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Alena Spirkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Denisa Janickova Zdarska
- Department of Internal Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Klara Rozenkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ondrej Cinek
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
47
|
Yahaya TO, Ufuoma SB. Genetics and Pathophysiology of Maturity-onset Diabetes of the Young (MODY): A Review of Current Trends. Oman Med J 2020; 35:e126. [PMID: 32489678 PMCID: PMC7254248 DOI: 10.5001/omj.2020.44] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
Single gene mutations have been implicated in the pathogenesis of a form of diabetes mellitus (DM) known as the maturity-onset diabetes of the young (MODY). However, there are diverse opinions on the suspect genes and pathophysiology, necessitating the need to review and communicate the genes to raise public awareness. We used the Google search engine to retrieve relevant information from reputable sources such as PubMed and Google Scholar. We identified 14 classified MODY genes as well as three new and unclassified genes linked with MODY. These genes are fundamentally embedded in the beta cells, the most common of which are HNF1A, HNF4A, HNF1B, and GCK genes. Mutations in these genes cause β-cell dysfunction, resulting in decreased insulin production and hyperglycemia. MODY genes have distinct mechanisms of action and phenotypic presentations compared with type 1 and type 2 DM and other forms of DM. Healthcare professionals are therefore advised to formulate drugs and treatment based on the causal genes rather than the current generalized treatment for all types of DM. This will increase the effectiveness of diabetes drugs and treatment and reduce the burden of the disease.
Collapse
Affiliation(s)
- Tajudeen O. Yahaya
- Department of Biology, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | - Shemishere B. Ufuoma
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Kebbi State, Nigeria
| |
Collapse
|
48
|
Peters JL, Anderson R, Shields B, King S, Hudson M, Shepherd M, McDonald TJ, Pearson E, Hattersley A, Hyde C. Strategies to identify individuals with monogenic diabetes: results of an economic evaluation. BMJ Open 2020; 10:e034716. [PMID: 32193268 PMCID: PMC7150598 DOI: 10.1136/bmjopen-2019-034716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To evaluate and compare the lifetime costs associated with strategies to identify individuals with monogenic diabetes and change their treatment to more appropriate therapy. DESIGN A decision analytical model from the perspective of the National Health Service (NHS) in England and Wales was developed and analysed. The model was informed by the literature, routinely collected data and a clinical study conducted in parallel with the modelling. SETTING Secondary care in the UK. PARTICIPANTS Simulations based on characteristics of patients diagnosed with diabetes <30 years old. INTERVENTIONS Four test-treatment strategies to identify individuals with monogenic diabetes in a prevalent cohort of diabetics diagnosed under the age of 30 years were modelled: clinician-based genetic test referral, targeted genetic testing based on clinical prediction models, targeted genetic testing based on biomarkers, and blanket genetic testing. The results of the test-treatment strategies were compared with a strategy of no genetic testing. PRIMARY AND SECONDARY OUTCOME MEASURES Discounted lifetime costs, proportion of cases of monogenic diabetes identified. RESULTS Based on current evidence, strategies using clinical characteristics or biomarkers were estimated to save approximately £100-£200 per person with diabetes over a lifetime compared with no testing. Sensitivity analyses indicated that the prevalence of monogenic diabetes, the uptake of testing, and the frequency of home blood glucose monitoring had the largest impact on the results (ranging from savings of £400-£50 per person), but did not change the overall findings. The model is limited by many model inputs being based on very few individuals, and some long-term data informed by clinical opinion. CONCLUSIONS Costs to the NHS could be saved with targeted genetic testing based on clinical characteristics or biomarkers. More research should focus on the economic case for the use of such strategies closer to the time of diabetes diagnosis. TRIAL REGISTRATION NUMBER NCT01238380.
Collapse
Affiliation(s)
- Jaime L Peters
- Exeter Test Group, University of Exeter Medical School, Exeter, Devon, UK
- Collaboration for Leadership in Applied Health Research and Care South West Peninsula (NIHR CLAHRC South West Peninsula), University of Exeter Medical School, Exeter, UK
| | - Rob Anderson
- ESMI (Evidence Synthesis & Modelling for Health Improvement), University of Exeter, Exeter, Devon, UK
| | - Beverley Shields
- NIHR Clinical Research Facility, University of Exeter Medical School, Exeter, UK
| | - Sophie King
- NIHR Clinical Research Facility, University of Exeter Medical School, Exeter, UK
| | - Michelle Hudson
- NIHR Clinical Research Facility, University of Exeter Medical School, Exeter, UK
| | - Maggie Shepherd
- NIHR Clinical Research Facility, University of Exeter Medical School, Exeter, UK
| | - Timothy James McDonald
- NIHR Clinical Research Facility, University of Exeter Medical School, Exeter, UK
- Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK
| | - Ewan Pearson
- Division of Molecular & Clinical Medicine, University of Dundee, Dundee, UK
| | - Andrew Hattersley
- NIHR Clinical Research Facility, University of Exeter Medical School, Exeter, UK
| | - Chris Hyde
- Exeter Test Group, University of Exeter Medical School, Exeter, Devon, UK
| |
Collapse
|
49
|
Affiliation(s)
- Miriam S Udler
- From the Departments of Medicine (M.S.U., C.E.P.) and Pathology (C.A.A.-T.), Massachusetts General Hospital, and the Departments of Medicine (M.S.U., C.E.P.) and Pathology (C.A.A.-T.), Harvard Medical School - both in Boston
| | - Camille E Powe
- From the Departments of Medicine (M.S.U., C.E.P.) and Pathology (C.A.A.-T.), Massachusetts General Hospital, and the Departments of Medicine (M.S.U., C.E.P.) and Pathology (C.A.A.-T.), Harvard Medical School - both in Boston
| | - Christina A Austin-Tse
- From the Departments of Medicine (M.S.U., C.E.P.) and Pathology (C.A.A.-T.), Massachusetts General Hospital, and the Departments of Medicine (M.S.U., C.E.P.) and Pathology (C.A.A.-T.), Harvard Medical School - both in Boston
| |
Collapse
|
50
|
Baldacchino I, Pace NP, Vassallo J. Screening for monogenic diabetes in primary care. Prim Care Diabetes 2020; 14:1-11. [PMID: 31253563 DOI: 10.1016/j.pcd.2019.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
AIMS Updates on the latest diagnostic methods and features of MODY (Maturity Onset Diabetes of the Young) and promotion of education and awareness on the subject are discussed. METHOD Previous recommendations were identified using PubMed and using combinations of terms including "MODY" "monogenic diabetes" "mature onset diabetes" "MODY case review". The diabetesgenes.org website and the US Monogenic Diabetes Registry (University of Colorado) were directly referenced. The remaining referenced papers were taken from peer-reviewed journals. The initial literature search occurred in January 2017 and the final search occurred in September 2018. RESULTS A diagnosis of MODY has implications for treatment, quality of life, management in pregnancy and research. The threshold for referral and testing varies among different ethnic groups, and depends on body mass index, family history of diabetes and associated syndromes. Novel causative genetic variations are still being discovered however testing is currently limited by low referral rates. Educational material is currently being promoted in the UK in an effort to raise awareness. CONCLUSIONS The benefits and implications of life altering treatment such as termination of insulin administration are significant but little can be done without appropriate identification and referral.
Collapse
Affiliation(s)
- Ian Baldacchino
- Specialist Training Programme in Family Medicine, Birkirkara Health Centre, Birkirkara, Malta.
| | - Nikolai Paul Pace
- Faculty of Medicine & Surgery, Biomedical Sciences Building, University of Malta, Msida, Malta.
| | - Josanne Vassallo
- Division of Diabetes and Endocrinology, University of Malta Medical School, Mater Dei Hospital, Msida, Malta.
| |
Collapse
|