1
|
Della Pepa G, Salamone D, Testa R, Bozzetto L, Costabile G. Intrapancreatic fat deposition and nutritional treatment: the role of various dietary approaches. Nutr Rev 2024; 82:1820-1834. [PMID: 38153345 DOI: 10.1093/nutrit/nuad159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Ectopic fat accumulation in various organs and tissues, such as the liver, muscle, kidney, heart, and pancreas, is related to impaired capacity of adipose tissue to accumulate triglycerides, as a consequence of overnutrition and an unhealthy lifestyle. Ectopic fat promotes organ dysfunction and is a key factor in the development and progression of cardiometabolic diseases. Interest in intrapancreatic fat deposition (IPFD) has developed in the last few years, particularly in relation to improvement in methodological techniques for detection of fat in the pancreas, and to growing evidence for the role that IPFD might have in glucose metabolism disorders and cardiometabolic disease. Body weight reduction represents the main option for reducing fat, and the evidence consistently shows that hypocaloric diets are effective in reducing IPFD. Changes in diet composition, independently of changes in energy intake, might offer a more feasible and safe alternative treatment to energy restriction. This current narrative review focused particularly on the possible beneficial role of the diet and its nutrient content, in hypocaloric and isocaloric conditions, in reducing IPFD in individuals with high cardiometabolic risk, highlighting the possible effects of differences in calorie quantity and calorie quality. This review also describes plausible mechanisms by which the various dietary approaches could modulate IPFD.
Collapse
Affiliation(s)
- Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy
| | - Dominic Salamone
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Roberta Testa
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|
2
|
Sun Y, Zhang L, Huang JQ, Su J, Cui LG. Non-invasive diagnosis of pancreatic steatosis with ultrasound images using deep learning network. Heliyon 2024; 10:e37580. [PMID: 39296003 PMCID: PMC11409133 DOI: 10.1016/j.heliyon.2024.e37580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Objective This study aimed to verify whether pancreatic steatosis (PS) is an independent risk factor for type 2 diabetes mellitus (T2DM). We also developed and validated a deep learning model for the diagnosis of PS using ultrasonography (US) images based on histological classifications. Methods In this retrospective study, we analysed data from 139 patients who underwent US imaging of the pancreas followed by pancreatic resection at our medical institution. Logistic regression analysis was employed to ascertain the independent predictors of T2DM. The diagnostic efficacy of the deep learning model for PS was assessed using receiver operating characteristic curve analysis and compared with traditional visual assessment methodology in US imaging. Results The incidence rate of PS in the study cohort was 64.7 %. Logistic regression analysis revealed that age (P = 0.003) and the presence of PS (P = 0.048) were independent factors associated with T2DM. The deep learning model demonstrated robust diagnostic capabilities for PS, with areas under the curve of 0.901 and 0.837, sensitivities of 0.895 and 0.920, specificities of 0.700 and 0.765, accuracies of 0.814 and 0.857, and F1-scores of 0.850 and 0.885 for the training and validation cohorts, respectively. These metrics significantly outperformed those of conventional US imaging (P < 0.001 and P = 0.045, respectively). Conclusion The deep learning model significantly enhanced the diagnostic accuracy of conventional ultrasound for PS detection. Its high sensitivity could facilitate widespread screening for PS in large populations, aiding in the early identification of individuals at an elevated risk for T2DM in routine clinical practice.
Collapse
Affiliation(s)
- Yang Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Li Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Jian-Qiu Huang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Jing Su
- Department of Pathology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Li-Gang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Wu WJ. Diabetes remission and nonalcoholic fatty pancreas disease. World J Diabetes 2024; 15:1390-1393. [PMID: 39099818 PMCID: PMC11292330 DOI: 10.4239/wjd.v15.i7.1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 07/08/2024] Open
Abstract
This editorial focuses on the relationship between nonalcoholic fatty pancreas disease (NAFPD) and the development and remission of type 2 diabetes (T2D). NAFPD is characterized by intrapancreatic fatty deposition associated with obesity and not associated with alcohol abuse, viral infections, and other factors. Ectopic fat deposition in the pancreas is associated with the development of T2D, and the underlying mechanism is lipotoxic β-cell dysfunction. However, the results on the relationship between intrapancreatic fat deposition (IPFD) and β-cell function are conflicting. Regardless of the therapeutic approach, weight loss improves IPFD, glycemia, and β-cell function. Pancreatic imaging is valuable for clinically monitoring and evaluating the management of T2D.
Collapse
Affiliation(s)
- Wen-Jun Wu
- Department of Endocrinology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai 201500, China
| |
Collapse
|
4
|
Dong X, Zhu Q, Yuan C, Wang Y, Ma X, Shi X, Chen W, Dong Z, Chen L, Shen Q, Xu H, Ding Y, Gong W, Xiao W, Wang S, Li W, Lu G. Associations of Intrapancreatic Fat Deposition With Incident Diseases of the Exocrine and Endocrine Pancreas: A UK Biobank Prospective Cohort Study. Am J Gastroenterol 2024; 119:1158-1166. [PMID: 38587286 PMCID: PMC11142652 DOI: 10.14309/ajg.0000000000002792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION To investigate whether increased intrapancreatic fat deposition (IPFD) heightens the risk of diseases of the exocrine and endocrine pancreas. METHODS A prospective cohort study was conducted using data from the UK Biobank. IPFD was quantified using MRI and a deep learning-based framework called nnUNet. The prevalence of fatty change of the pancreas (FP) was determined using sex- and age-specific thresholds. Associations between IPFD and pancreatic diseases were assessed with multivariate Cox-proportional hazard model adjusted for age, sex, ethnicity, body mass index, smoking and drinking status, central obesity, hypertension, dyslipidemia, liver fat content, and spleen fat content. RESULTS Of the 42,599 participants included in the analysis, the prevalence of FP was 17.86%. Elevated IPFD levels were associated with an increased risk of acute pancreatitis (hazard ratio [HR] per 1 quintile change 1.513, 95% confidence interval [CI] 1.179-1.941), pancreatic cancer (HR per 1 quintile change 1.365, 95% CI 1.058-1.762) and diabetes mellitus (HR per 1 quintile change 1.221, 95% CI 1.132-1.318). FP was also associated with a higher risk of acute pancreatitis (HR 3.982, 95% CI 2.192-7.234), pancreatic cancer (HR 1.976, 95% CI 1.054-3.704), and diabetes mellitus (HR 1.337, 95% CI 1.122-1.593, P = 0.001). DISCUSSION FP is a common pancreatic disorder. Fat in the pancreas is an independent risk factor for diseases of both the exocrine pancreas and endocrine pancreas.
Collapse
Affiliation(s)
- Xiaowu Dong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yaodong Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou Key Laboratory of Integrated Traditional Chinese and Western Medicine of Digestive Diseases, Kunshan Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Xiaojie Ma
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaolei Shi
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weiwei Chen
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhao Dong
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lin Chen
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qinhao Shen
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hongwei Xu
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou Key Laboratory of Integrated Traditional Chinese and Western Medicine of Digestive Diseases, Kunshan Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Shengfeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Weiqin Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Candemir B, Kisip K, Akın Ş, Tuba Sanal H, Taşar M, Altunkaynak B, Ersöz Gülçelik N. Pancreatosteatosis in patients with adrenal incidentaloma: A risk factor for impaired glucose metabolism. Diabetes Res Clin Pract 2024; 208:111099. [PMID: 38246510 DOI: 10.1016/j.diabres.2024.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
AIMS Patients with adrenal incidentaloma (AI) are at increased risk of impaired glucose metabolism, which is known to be associated with pancreatosteatosis (PS). We aimed to investigate the risk of developing dysglycemia for patients with non-functioning AI (NFAI) versus those without, and whether the presence of PS predicts future dysglycemia in patients with NFAI. METHOD In 80 patients with NFAI and 127 controls matched for age, sex, and body mass index, changes in fasting plasma glucose (FPG) and hemoglobin A1c(HbA1c) were evaluated at 2 years. PS was evaluated with data obtained from non-contrast abdominal computed tomography (CT) performed at the initial evaluation. RESULTS Mean FPG levels increased significantly after 2 years in both groups (P < 0.001, for both), albeit significantly higher among patients than the controls (P = 0.002). The increases in HbA1c and FPG levels were significantly higher among patients with PS than without PS, in the adenoma group (p < 0.001, P = 0.00, respectively). The change in Hba1c levels was associated with the presence of PS in patients with NFAI (p < 0.001). CONCLUSIONS Our findings suggest that the presence of PS may provide significant information in predicting newly developed dysglycemia in patients with NFAI.
Collapse
Affiliation(s)
- Burcu Candemir
- University of Health Sciences, Gulhane Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey.
| | - Kadir Kisip
- University of Health Sciences, Gulhane Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | - Şafak Akın
- University of Health Sciences, Gulhane Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Hatice Tuba Sanal
- University of Health Sciences, Gulhane Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | - Mustafa Taşar
- University of Health Sciences, Gulhane Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | - Bülent Altunkaynak
- Gazi University, Faculty of Science, Department of Statistics, Ankara, Turkey
| | - Neşe Ersöz Gülçelik
- University of Health Sciences, Gulhane Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| |
Collapse
|
6
|
Pagkali A, Makris A, Brofidi K, Agouridis AP, Filippatos TD. Pathophysiological Mechanisms and Clinical Associations of Non-Alcoholic Fatty Pancreas Disease. Diabetes Metab Syndr Obes 2024; 17:283-294. [PMID: 38283640 PMCID: PMC10813232 DOI: 10.2147/dmso.s397643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Non-Alcoholic Fatty Pancreas disease (NAFPD), characterized by fat accumulation in pancreatic tissue, is an emerging clinical entity. However, the clinical associations, the underlying molecular drivers, and the pathophysiological mechanisms of NAFPD have not yet been characterized in detail. The NAFPD spectrum not only includes infiltration and accumulation of fat within and between pancreatic cells but also involves several inflammatory processes, dysregulation of physiological metabolic pathways, and hormonal defects. A deeper understanding of the underlying molecular mechanisms is key to correlate NAFPD with clinical entities including non-alcoholic fatty liver disease, metabolic syndrome, diabetes mellitus, atherosclerosis, as well as pancreatic cancer and pancreatitis. The aim of this review is to examine the pathophysiological mechanisms of NAFPD and to assess the possible causative/predictive risk factors of NAFPD-related clinical syndromes.
Collapse
Affiliation(s)
- Antonia Pagkali
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Makris
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliopi Brofidi
- Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Aris P Agouridis
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Internal Medicine, German Oncology Center, Limassol, Cyprus
| | | |
Collapse
|
7
|
Li X, Ren H, Xu H, Han X, Lu J, Yang Z. Behind BMI: The Potential Indicative Role of Abdominal Ectopic Fat on Glucose Metabolism. Obes Facts 2024; 17:158-168. [PMID: 38246158 PMCID: PMC10987183 DOI: 10.1159/000536160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION The purpose of this study was to compare the difference in abdominal fat distribution between different metabolic groups and find the ectopic fat with the most risk significance. METHODS A total of 98 subjects were enrolled; there were 53 cases in the normal glucose metabolism group and 45 cases in the abnormal glucose metabolism group. Chemical shift-encoded magnetic resonance imaging was applied for quantification of pancreatic fat fraction (PFF) and hepatic fat fraction (HFF), subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT). The correlation and the difference of fat distribution between different metabolism groups were analyzed. The receiver operating characteristic (ROC) curve was used to analyze the suggestive effect of different body fat fraction. RESULTS Correlation analysis showed that body mass index (BMI) had the strongest correlation with fasting insulin (r = 0.473, p < 0.001), HOMA-IR (r = 0.363, p < 0.001), and C-reactive protein (r = 0.245, p < 0.05). Pancreatic fat has a good correlation with fasting blood glucose (r = 0.247, p < 0.05) and HbA1c (r = 0.363, p < 0.001). With the increase of BMI, PFF, VAT, and SAT showed a clear upward trend, but liver fat was distributed relatively more randomly. The pancreatic fat content in the abnormal glucose metabolism group is significantly higher than that in the normal group, and pancreatic fat is also a reliable indicator of abnormal glucose metabolism, especially in the normal and overweight groups (the area under the curve was 0.859 and 0.864, respectively). CONCLUSION MR-based fat quantification techniques can provide additional information on fat distribution. There are differences in fat distribution among people with different metabolic status. People with more severe pancreatic fat deposition have a higher risk of glucose metabolism disorders.
Collapse
Affiliation(s)
- Xiaoyang Li
- Beijing Friendship Hospital, Capital Medical University, Beijing, China,
| | - Hao Ren
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Xu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinjun Han
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jun Lu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Thomas P, Gallagher MT, Da Silva Xavier G. Beta cell lipotoxicity in the development of type 2 diabetes: the need for species-specific understanding. Front Endocrinol (Lausanne) 2023; 14:1275835. [PMID: 38144558 PMCID: PMC10739424 DOI: 10.3389/fendo.2023.1275835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
The propensity to develop type 2 diabetes (T2D) is known to have both environmental and hereditary components. In those with a genetic predisposition to T2D, it is widely believed that elevated concentrations of circulatory long-chain fatty acids (LC-FFA) significantly contribute towards the demise of insulin-producing pancreatic β-cells - the fundamental feature of the development of T2D. Over 25 years of research support that LC-FFA are deleterious to β-cells, through a process termed lipotoxicity. However, the work underpinning the theory of β-cell lipotoxicity is mostly based on rodent studies. Doubts have been raised as to whether lipotoxicity also occurs in humans. In this review, we examine the evidence, both in vivo and in vitro, for the pathogenic effects of LC-FFA on β-cell viability and function in humans, highlighting key species differences. In this way, we aim to uncover the role of lipotoxicity in the human pathogenesis of T2D and motivate the need for species-specific understanding.
Collapse
Affiliation(s)
- Patricia Thomas
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Gabriela Da Silva Xavier
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Caldart F, de Pretis N, Luchini C, Ciccocioppo R, Frulloni L. Pancreatic steatosis and metabolic pancreatic disease: a new entity? Intern Emerg Med 2023; 18:2199-2208. [PMID: 37462859 PMCID: PMC10635967 DOI: 10.1007/s11739-023-03364-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023]
Abstract
Overweight and obesity are some of the most important health challenges. Many diseases are related to these metabolic disorders, and, among them, the pancreatic fat accumulation, also called "pancreatic steatosis" or "nonalcoholic fatty pancreas", seems to have an emerging role in different conditions. There are different method to evaluate the fat content in the pancreas, such as histology, different imaging techniques and endoscopic ultrasound, but there is no gold standard for the correct diagnosis and for the identification of "inter/intralobular" and "intra-acinar" pancreatic fat. However, the fat storage in the pancreas is linked to chronic inflammation and to several conditions, such as acute and chronic pancreatitis, type 2 diabetes mellitus and pancreatic cancer. In addition, pancreatic fat accumulation has also been demonstrated to play a role in surgical outcome after pancreatectomy, in particular for the development of postoperative pancreatic fistula. Different possible therapeutic approaches have been proposed, but there is still a lack of evidence. The aim of this review is to report the current evidence about the relationship between the obesity, the pancreatic fat accumulation and its potential role in pancreatic diseases.
Collapse
Affiliation(s)
- Federico Caldart
- Gastroenterology B Unit, University of Verona-Verona Hospital, Verona, Italy.
| | - Nicolò de Pretis
- Gastroenterology B Unit, University of Verona-Verona Hospital, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Rachele Ciccocioppo
- Gastroenterology B Unit, University of Verona-Verona Hospital, Verona, Italy
| | - Luca Frulloni
- Gastroenterology B Unit, University of Verona-Verona Hospital, Verona, Italy
| |
Collapse
|
10
|
Mitsushio K, Baden MY, Kato S, Niki A, Ozawa H, Motoda S, Ishibashi C, Hosokawa Y, Fujita Y, Tokunaga A, Nammo T, Kozawa J, Shimomura I. Relationships between intra-pancreatic fat deposition and lifestyle factors: a cross-sectional study. Front Endocrinol (Lausanne) 2023; 14:1219579. [PMID: 37576958 PMCID: PMC10415674 DOI: 10.3389/fendo.2023.1219579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Aims The excess deposition of intra-pancreatic fat deposition (IPFD) has been reported to be associated with type 2 diabetes, chronic pancreatitis, and pancreatic ductal adenocarcinoma. In the current study, we aimed to identify a relationship between lifestyle factors and IPFD. Materials and methods 99 patients admitted to the Osaka University Hospital who had undergone abdominal computed tomography were selected. We evaluated the mean computed tomography values of the pancreas and spleen and then calculated IPFD score. Multiple regression analyses were used to assess the associations between IPFD score and lifestyle factors. Results Fast eating speed, late-night eating, and early morning awakening were significantly associated with a high IPFD score after adjusting for age, sex, diabetes status and Body Mass Index (p=0.04, 0.01, 0.01, respectively). Conclusion The current study has elucidated the significant associations of fast eating speed, late-night eating, and early morning awakening with IPFD.
Collapse
Affiliation(s)
- Kento Mitsushio
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Megu Y. Baden
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Lifestyle Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sarasa Kato
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akiko Niki
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Harutoshi Ozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Lifestyle Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Saori Motoda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Chisaki Ishibashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshiya Hosokawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukari Fujita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ayumi Tokunaga
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Junji Kozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Kashiwagi-Takayama R, Kozawa J, Hosokawa Y, Kato S, Kawata S, Ozawa H, Mineo R, Ishibashi C, Baden MY, Iwamoto R, Saisho K, Fujita Y, Tamba S, Sugiyama T, Nishizawa H, Maeda N, Yamamoto K, Higashi M, Yamada Y, Sakata Y, Matsuzawa Y, Shimomura I. Myocardial fat accumulation is associated with cardiac dysfunction in patients with type 2 diabetes, especially in elderly or female patients: a retrospective observational study. Cardiovasc Diabetol 2023; 22:48. [PMID: 36882731 PMCID: PMC9993532 DOI: 10.1186/s12933-023-01782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Ectopic fat is fat that accumulates in or around specific organs or compartments of the body including myocardium. The clinical features of type 2 diabetes patients with high fat accumulation in the myocardium remain unknown. Moreover, little is known about the influence of myocardial fat accumulation in type 2 diabetes on coronary artery disease and cardiac dysfunction. We aimed to clarify the clinical features, including cardiac functions, of type 2 diabetes patients with myocardial fat accumulation. METHODS We retrospectively enrolled type 2 diabetes patients who underwent ECG-gated coronary computed tomography angiography (CCTA) and abdominal computed tomography (CT) scan examinations within 1 year of CCTA from January 2000 to March 2021. High fat accumulation in the myocardium was defined as the low mean myocardial CT value of three regions of interest, and the associations between CT values and clinical characteristics or cardiac functions were assessed. RESULTS In total, 124 patients were enrolled (72 males and 52 females). The mean age was 66.6 years, the mean BMI was 26.2 kg/m2, the mean ejection fraction (EF) was 67.6%, and the mean myocardial CT value was 47.7 Hounsfield unit. A significant positive correlation was found between myocardial CT value and EF (r = 0.3644, p = 0.0004). The multiple regression analyses also showed that myocardial CT value was independently associated with EF (estimate, 0.304; 95% confidence interval (CI) 0.092 to 0.517; p = 0.0056). Myocardial CT value showed significant negative correlations with BMI, visceral fat area and subcutaneous fat area (r = - 0.1923, - 0.2654, and -0.3569, respectively, p < 0.05). In patients who were ≥ 65 years or female, myocardial CT value showed significant positive correlations with not only EF (r = 0.3542 and 0.4085, respectively, p < 0.01) but also early lateral annular tissue Doppler velocity (Lat e') (r = 0.5148 and 0.5361, respectively, p < 0.05). The multiple regression analyses showed that myocardial CT value was independently associated with EF and Lat e' in these subgroups (p < 0.05). CONCLUSIONS Patients with type 2 diabetes, especially in elderly or female patients, who had more myocardial fat had more severe left ventricular systolic and diastolic dysfunctions. Reducing myocardial fat accumulation may be a therapeutic target for type 2 diabetes patients.
Collapse
Affiliation(s)
- Risa Kashiwagi-Takayama
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Junji Kozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan. .,Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Yoshiya Hosokawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sarasa Kato
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Satoshi Kawata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Harutoshi Ozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Lifestyle Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryohei Mineo
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Chisaki Ishibashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Megu Y Baden
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Lifestyle Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryuya Iwamoto
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Kenji Saisho
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Yukari Fujita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sachiko Tamba
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Takuya Sugiyama
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Koji Yamamoto
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Masahiro Higashi
- Department of Radiology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yuya Yamada
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Yasushi Sakata
- Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuji Matsuzawa
- Department of Endocrinology and Metabolism, Sumitomo Hospital, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
12
|
Mukherjee S, Maheshwari D, Pal R, Sachdeva N. Pancreatic fat in type 2 diabetes: Causal or coincidental? World J Meta-Anal 2023; 11:68-78. [DOI: 10.13105/wjma.v11.i3.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/27/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
|
13
|
Pancreatic Steatosis Evaluated by Automated Volumetric CT Fat Fraction of the Pancreas: Association with Severity in COVID-19 Pneumonia. Tomography 2022; 8:2806-2814. [PMID: 36548526 PMCID: PMC9784887 DOI: 10.3390/tomography8060234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
This study investigated the relationship between the severity of pneumonia based on chest CT findings and that of pancreatic steatosis assessed using an automated volumetric measurement of the CT fat volume fraction (CT-FVF) of the pancreas, using unenhanced three-dimensional CT in polymerase chain reaction (PCR)-confirmed COVID-19 patients. The study population consisted of 128 patients with PCR-confirmed COVID-19 infection who underwent CT examinations. The CT-FVF of the pancreas was calculated using a histogram analysis for the isolation of fat-containing voxels in the pancreas. The CT-FVF (%) of the pancreas had a significantly positive correlation with the lung severity score on CT (ρ = 0.549, p < 0.01). CT-FVF (%) of the pancreas in the severe pneumonia group was significantly higher than that of the non-severe pneumonia group (21.7% vs. 7.8%, p < 0.01). The area under the curve of CT-FVF (%) of the pancreas in predicting the severity of pneumonia on CT was calculated to be 0.82, with a sensitivity of 88% and a specificity of 68% at a threshold for the severity score of 12.3. The automated volumetric measurement of the CT-FVF of the pancreas using unenhanced CT can help estimate disease severity in patients with COVID-19 pneumonia based on chest CT findings.
Collapse
|
14
|
Leiu KH, Poppitt SD, Miles-Chan JL, Sequeira IR. Fatty Pancreas and Cardiometabolic Risk: Response of Ectopic Fat to Lifestyle and Surgical Interventions. Nutrients 2022; 14:nu14224873. [PMID: 36432559 PMCID: PMC9693202 DOI: 10.3390/nu14224873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Ectopic fat accumulation in non-adipose organs, such as the pancreas and liver, is associated with an increased risk of cardiometabolic disease. While clinical trials have focused on interventions to decrease body weight and liver fat, ameliorating pancreatic fat can be crucial but successful intervention strategies are not yet defined. We identified twenty-two published studies which quantified pancreatic fat during dietary, physical activity, and/or bariatric surgery interventions targeted at body weight and adipose mass loss alongside their subsequent effect on metabolic outcomes. Thirteen studies reported a significant decrease in body weight, utilising weight-loss diets (n = 2), very low-energy diets (VLED) (n = 2), isocaloric diets (n = 1), a combination of diet and physical activity (n = 2), and bariatric surgery (n = 5) including a comparison with VLED (n = 1). Surgical intervention achieved the largest decrease in pancreatic fat (range: -18.2% to -67.2%) vs. a combination of weight-loss diets, isocaloric diets, and/or VLED (range: -10.2% to -42.3%) vs. diet and physical activity combined (range: -0.6% to -3.9%), with a concurrent decrease in metabolic outcomes. While surgical intervention purportedly is the most effective strategy to decrease pancreas fat content and improve cardiometabolic health, the procedure is invasive and may not be accessible to most individuals. Given that dietary intervention is the cornerstone for the prevention of adverse metabolic health, the alternative approaches appear to be the use of weight-loss diets or VLED meal replacements, which are shown to decrease pancreatic fat and associated cardiometabolic risk.
Collapse
Affiliation(s)
- Kok Hong Leiu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
| | - Sally D. Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
- Riddet Centre of Research Excellence (CoRE) for Food and Nutrition, Palmerston North 4442, New Zealand
| | - Jennifer L. Miles-Chan
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
- Riddet Centre of Research Excellence (CoRE) for Food and Nutrition, Palmerston North 4442, New Zealand
| | - Ivana R. Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
- Correspondence: ; Tel.: +64-09-6301162
| |
Collapse
|
15
|
Chan TT, Tse YK, Lui RNS, Wong GLH, Chim AML, Kong APS, Woo J, Yeung DKW, Abrigo JM, Chu WCW, Wong VWS, Tang RSY. Fatty Pancreas Is Independently Associated With Subsequent Diabetes Mellitus Development: A 10-Year Prospective Cohort Study. Clin Gastroenterol Hepatol 2022; 20:2014-2022.e4. [PMID: 34571257 DOI: 10.1016/j.cgh.2021.09.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Although the association between fatty pancreas and metabolic syndrome has been suggested in retrospective studies, long-term prospective data on the effect of fatty pancreas on various metabolic outcomes are lacking. We aimed to prospectively investigate the association between fatty pancreas and the development of major metabolic outcomes. METHODS A total of 631 subjects from a population study using fat-water magnetic resonance imaging to quantify pancreatic and liver fat content during 2008 to 2010 were followed up prospectively until December 2020 (mean follow-up time, 11.1 ± 1.1 y). Subjects with significant alcohol intake and diabetes mellitus (DM) at baseline were excluded. Incidence of newly diagnosed DM, hypertension, dyslipidemia, ischemic heart disease, cardiovascular accidents, pancreatic cancer, and mortality were evaluated. RESULTS Among the 631 subjects (mean age, 48 ± 11 y), 93 (14.7%) had fatty pancreas. The fatty pancreas group had a higher incidence of DM (33.3% vs 10.4%; P < .001), hypertension (37.7% vs 22.7%; P = .003), and dyslipidemia (37.7% vs 14.6%; P < .001) during long-term follow-up evaluation. Individuals with both fatty liver and pancreas had the highest DM incidence, followed by fatty liver only and fatty pancreas only groups (P < .001). Fatty pancreas was associated independently with DM (adjusted hazard ratio, 1.81; 95% CI, 1.10-3.00; P = .020), but not hypertension or dyslipidemia on multivariate analysis. Each percentage increase of pancreatic fat increased the risk of incident DM by 7% (adjusted hazard ratio, 1.07; 95% CI, 1.01-1.13; P = .016). No participants developed pancreatic cancer during the follow-up period. CONCLUSIONS Fatty pancreas is associated independently with subsequent DM development, but not hypertension or dyslipidemia.
Collapse
Affiliation(s)
- Ting Ting Chan
- Department of Medicine and Therapeutics, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, Hong Kong Special Administrative Region, China
| | - Yee Kit Tse
- Department of Medicine and Therapeutics, Hong Kong Special Administrative Region, China; Medical Data Analytic Centre, Hong Kong Special Administrative Region, China
| | - Rashid Nok-Shun Lui
- Department of Medicine and Therapeutics, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, Hong Kong Special Administrative Region, China
| | - Grace Lai-Hung Wong
- Department of Medicine and Therapeutics, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, Hong Kong Special Administrative Region, China; Medical Data Analytic Centre, Hong Kong Special Administrative Region, China
| | - Angel Mei-Ling Chim
- Department of Medicine and Therapeutics, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, Hong Kong Special Administrative Region, China
| | - Alice Pik-Shan Kong
- Department of Medicine and Therapeutics, Hong Kong Special Administrative Region, China
| | - Jean Woo
- Department of Medicine and Therapeutics, Hong Kong Special Administrative Region, China
| | - David Ka-Wai Yeung
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jill M Abrigo
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, Hong Kong Special Administrative Region, China; Medical Data Analytic Centre, Hong Kong Special Administrative Region, China.
| | - Raymond Shing-Yan Tang
- Department of Medicine and Therapeutics, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, Hong Kong Special Administrative Region, China.
| |
Collapse
|
16
|
Niki A, Baden MY, Kato S, Mitsushio K, Horii T, Ozawa H, Ishibashi C, Fujita S, Kimura T, Fujita Y, Tokunaga A, Nammo T, Fukui K, Kozawa J, Shimomura I. Consumption of two meals per day is associated with increased intrapancreatic fat deposition in patients with type 2 diabetes: a retrospective study. BMJ Open Diabetes Res Care 2022; 10:10/5/e002926. [PMID: 36126992 PMCID: PMC9490586 DOI: 10.1136/bmjdrc-2022-002926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION This study aimed to identify the associations between lifestyle factors and intrapancreatic fat deposition in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS The participants were 185 patients with type 2 diabetes who were hospitalized at Osaka University Hospital between 2008 and 2020 and underwent abdominal CT during hospitalization. Information regarding lifestyle factors, including the number of meals consumed per day, snacking habits, exercise habits, exercise at work, smoking habits, alcohol intake, insomnia, sleep apnea syndrome, and night-shift working, was acquired from self-administered questionnaires or medical records. We measured the mean CT values for the pancreas (P), liver (L), and spleen (S), and the visceral fat area (VFA), and quantified intrapancreatic and liver ectopic fat accumulation as P-S and L-S, respectively. RESULTS After adjustment for age, sex, hemoglobin A1c, and body mass index (BMI), participants who consumed two meals per day had significantly lower P-S (higher intrapancreatic fat deposition, p=0.02) than those who consumed three meals per day. There were no significant associations between the number of meals consumed and liver ectopic fat accumulation and VFA (p=0.73 and p=0.67, respectively). CONCLUSIONS Patients with diabetes who consumed two meals per day showed greater intrapancreatic fat deposition than those who consumed three meals per day, even after adjustment for BMI. These findings support the current guideline for diabetes treatment that skipping meals should be avoided.
Collapse
Affiliation(s)
- Akiko Niki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Megu Y Baden
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Lifestyle Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sarasa Kato
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kento Mitsushio
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomomi Horii
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Harutoshi Ozawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Lifestyle Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chisaki Ishibashi
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shingo Fujita
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takekazu Kimura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukari Fujita
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Community Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ayumi Tokunaga
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenji Fukui
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Junji Kozawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
17
|
Bi Y, Lin HY, Li ML, Zhou J, Sun XL. The Association Between Pancreatic Steatosis and Metabolic Syndrome: A 5-Year Follow-up Study Among a General Chinese Population. Pancreas 2022; 51:1000-1006. [PMID: 36607946 DOI: 10.1097/mpa.0000000000002138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To date, the complete natural history of pancreatic steatosis is unknown. This study aimed to investigate the association of fatty pancreas (FP) in the incidence of metabolic syndrome and its components among Chinese patients with a 5-year follow-up. METHODS Three independent cross-sectional surveys were carried out in 2013, 2015, and 2018. Fatty pancreas was diagnosed via transabdominal sonography. Logistic regression analysis was used to estimate the correlation between FP and metabolic syndrome. New cases of metabolic syndrome and its components were estimated by Cox proportional hazards models. RESULTS At baseline, 12,551 individuals classified into FP (n = 1010) and non-FP (n = 11,541) groups were finally enrolled. In cross-sectional analyses, odds ratio of FP was 2.378 (95% confidence interval [CI], 2.085-2.713; P < 0.001). In longitudinal analyses, FP was associated with the occurrence of metabolic syndrome (hazard ratio [HR], 3.179; 95% CI, 2.197-4.6; P < 0.001), type 2 diabetes mellitus (HR, 13.99; 95% CI, 7.865-24.883; P < 0.001), nonalcoholic fatty liver disease (HR, 31.843; 95% CI, 7.73-131.171; P < 0.001), and hypertension (HR, 12.801; 95% CI, 7.323-22.38; P < 0.001). CONCLUSIONS Pancreatic steatosis is strongly associated with the occurrence of metabolic syndrome and its components such as hypertension and diabetes.
Collapse
Affiliation(s)
- Ye Bi
- From the Department of Geriatric Endocrinology
| | - Hai-Yan Lin
- Physical Examination Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | | | - Jie Zhou
- From the Department of Geriatric Endocrinology
| | | |
Collapse
|
18
|
Salman AA, Salman MA, Said M, El Sherbiny M, Elkassar H, Hassan MB, Marwan A, Morad MA, Ashoush O, Labib S, Aon MH, Awad A, Sayed M, Taha AE, Moustafa A, Shaaban HED, Khater A, Elewa A, Khalaf AM, Mostafa AA, Matter M, Youssef A. Improvement of Pancreatic Steatosis and Indices of Insulin Resistance After Metabolic Surgery. Front Med (Lausanne) 2022; 9:894465. [PMID: 35733870 PMCID: PMC9207952 DOI: 10.3389/fmed.2022.894465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Obesity is associated with fat accumulation in ectopic sites such as the pancreas, the so-called pancreatic steatosis (PS). Bariatric surgery has been shown to be associated with reducing pancreatic fat. This study investigated the effect of laparoscopic sleeve gastrectomy (LSG) on pancreatic volume and its fat content and glucose homeostasis. METHODS The study enrolled 54 patients subjected to LSG. Metabolic variables and pancreatic exocrine function were assessed immediately before surgery and 12 months after. MRI of the abdomen was performed to measure pancreatic fat content and its total volume and visceral adipose tissue (VAT). RESULTS Surgery resulted in a significant reduction in body weight and BMI. HbA1c, fasting insulin, C-peptide levels, HOMA-IR, and Hs-CRP levels decreased significantly. Surgery resulted in significant improvement in lipid profile except for HDL-cholesterol and liver function tests. Total VAT volume decreased significantly. Total pancreas volume decreased by a mean of 9.0 cm3 (95% CI: 6.6-11.3). The median change of pancreatic fat was -26.1% (range: -55.6 to 58.3%). Pancreatic lipase decreased significantly (P < 0.001). There was a positive correlation between the percentage of total weight loss and decrease in pancreatic fat volume (r = 0.295, P = 0.030). CONCLUSION Weight loss after LSG is associated with a reduction of total VAT volume, total pancreatic volume, and pancreatic fat content. These changes are associated with improved glucose homeostasis, reduced systemic inflammation, and decreased pancreatic lipase secretion.
Collapse
Affiliation(s)
| | | | - Mostafa Said
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammad El Sherbiny
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hesham Elkassar
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Badr Hassan
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Marwan
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Omar Ashoush
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Safa Labib
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed H. Aon
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Abeer Awad
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Sayed
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed E. Taha
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Moustafa
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam El-Din Shaaban
- Tropical and Gastroenterology Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Amir Khater
- Tropical and Gastroenterology Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Ahmed Elewa
- General Surgery Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Adel M. Khalaf
- Department of General Surgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Mostafa
- Department of General Surgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed Matter
- Radiodiagnosis Department, Faculty of Medicine, Alazhar University, Cairo, Egypt
| | - Ahmed Youssef
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Martin S, Sorokin EP, Thomas EL, Sattar N, Cule M, Bell JD, Yaghootkar H. Estimating the Effect of Liver and Pancreas Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study. Diabetes Care 2022; 45:460-468. [PMID: 34983059 DOI: 10.2337/dc21-1262] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Fat content and volume of liver and pancreas are associated with risk of diabetes in observational studies; whether these associations are causal is unknown. We conducted a Mendelian randomization (MR) study to examine causality of such associations. RESEARCH DESIGN AND METHODS We used genetic variants associated (P < 5 × 10-8) with the exposures (liver and pancreas volume and fat content) using MRI scans of UK Biobank participants (n = 32,859). We obtained summary-level data for risk of type 1 (9,358 cases) and type 2 (55,005 cases) diabetes from the largest available genome-wide association studies. We performed inverse-variance weighted MR as main analysis and several sensitivity analyses to assess pleiotropy and to exclude variants with potential pleiotropic effects. RESULTS Observationally, liver fat and volume were associated with type 2 diabetes (odds ratio per 1 SD higher exposure 2.16 [2.02, 2.31] and 2.11 [1.96, 2.27], respectively). Pancreatic fat was associated with type 2 diabetes (1.42 [1.34, 1.51]) but not type 1 diabetes, and pancreas volume was negatively associated with type 1 diabetes (0.42 [0.36, 0.48]) and type 2 diabetes (0.73 [0.68, 0.78]). MR analysis provided evidence only for a causal role of liver fat and pancreas volume in risk of type 2 diabetes (1.27 [1.08, 1.49] or 27% increased risk and 0.76 [0.62, 0.94] or 24% decreased risk per 1SD, respectively) and no causal associations with type 1 diabetes. CONCLUSIONS Our findings assist in understanding the causal role of ectopic fat in the liver and pancreas and of organ volume in the pathophysiology of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Susan Martin
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | | | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | | | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K.,Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K.,Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, Brunel University London, London, U.K
| |
Collapse
|
20
|
Wagner R, Eckstein SS, Yamazaki H, Gerst F, Machann J, Jaghutriz BA, Schürmann A, Solimena M, Singer S, Königsrainer A, Birkenfeld AL, Häring HU, Fritsche A, Ullrich S, Heni M. Metabolic implications of pancreatic fat accumulation. Nat Rev Endocrinol 2022; 18:43-54. [PMID: 34671102 DOI: 10.1038/s41574-021-00573-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Fat accumulation outside subcutaneous adipose tissue often has unfavourable effects on systemic metabolism. In addition to non-alcoholic fatty liver disease, which has received considerable attention, pancreatic fat has become an important area of research throughout the past 10 years. While a number of diagnostic approaches are available to quantify pancreatic fat, multi-echo Dixon MRI is currently the most developed method. Initial studies have shown associations between pancreatic fat and the metabolic syndrome, impaired glucose metabolism and type 2 diabetes mellitus. Pancreatic fat is linked to reduced insulin secretion, at least under specific circumstances such as prediabetes, low BMI and increased genetic risk of type 2 diabetes mellitus. This Review summarizes the possible causes and metabolic consequences of pancreatic fat accumulation. In addition, potential therapeutic approaches for addressing pancreatic fat accumulation are discussed.
Collapse
Affiliation(s)
- Robert Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabine S Eckstein
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Felicia Gerst
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Section of Experimental Radiology, Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Benjamin Assad Jaghutriz
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Michele Solimena
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stephan Singer
- Institute of Pathology, University of Tübingen, Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral, and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Susanne Ullrich
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
21
|
Filippatos TD, Alexakis K, Mavrikaki V, Mikhailidis DP. Nonalcoholic Fatty Pancreas Disease: Role in Metabolic Syndrome, "Prediabetes," Diabetes and Atherosclerosis. Dig Dis Sci 2022; 67:26-41. [PMID: 33469809 DOI: 10.1007/s10620-021-06824-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Fat accumulation in the pancreas associated with obesity and the metabolic syndrome (MetS) has been defined as "non-alcoholic fatty pancreas disease" (NAFPD). The aim of this review is to describe the association of NAFPD with obesity, MetS, type 2 diabetes mellitus (T2DM) and atherosclerosis and also increase awareness regarding NAFPD. Various methods are used for the detection and quantification of pancreatic fat accumulation that may play a significant role in the differences that have been observed in the prevalence of NAFPD. Endoscopic ultrasound provides detailed images of the pancreas and its use is expected to increase in the future. Obesity and MetS have been recognized as NAFPD risk factors. NAFPD is strongly associated with non-alcoholic fatty liver disease (NAFLD) and it seems that the presence of both may be related with aggravation of NAFLD. A role of NAFPD in the development of "prediabetes" and T2DM has also been suggested by most human studies. Accumulation of fat in pancreatic tissue possibly initiates a vicious cycle of beta-cell deterioration and further pancreatic fat accumulation. Additionally, some evidence indicates a correlation between NAFPD and atherosclerotic markers (e.g., carotid intima-media thickness). Weight loss and bariatric surgery decreases pancreatic triglyceride content but pharmacologic treatments for NAFPD have not been evaluated in specifically designed studies. Hence, NAFPD is a marker of local fat accumulation possibly associated with beta-cell function impairment, carbohydrate metabolism disorders and atherosclerosis.
Collapse
Affiliation(s)
- T D Filippatos
- Metabolic Diseases Research Unit, Internal Medicine Laboratory, School of Medicine, Faculty of Medicine, University of Crete, P.O. Box 2208, Heraklion, Crete, Greece.
| | - K Alexakis
- Metabolic Diseases Research Unit, Internal Medicine Laboratory, School of Medicine, Faculty of Medicine, University of Crete, P.O. Box 2208, Heraklion, Crete, Greece
| | - V Mavrikaki
- Metabolic Diseases Research Unit, Internal Medicine Laboratory, School of Medicine, Faculty of Medicine, University of Crete, P.O. Box 2208, Heraklion, Crete, Greece
| | - D P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, NW3 2QG, UK.,Mohammed Bin Rashid University (MBRU) of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
22
|
Lee EH, Kim JY, Yang HR. Association between ectopic pancreatic and hepatic fat and metabolic risk factors in children with non-alcoholic fatty liver disease. Pediatr Obes 2021; 16:e12793. [PMID: 33942524 DOI: 10.1111/ijpo.12793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/03/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Few studies have reported an association between ectopic pancreatic and hepatic fat and metabolic factors in children with non-alcoholic fatty liver disease (NAFLD). OBJECTIVES We investigated this association and also the factors associated with pancreatic and hepatic fat deposition in children with NAFLD. METHODS This cross-sectional study investigated 65 children with NAFLD (49 boys, 13.0 ± 3.2 years, mean body mass index z-score 2.5 ± 1.2), who underwent liver biopsy and magnetic resonance imaging-based proton density fat fraction, as well as anthropometry, laboratory tests, body composition analysis, and hepatic fat fraction (HFF) and pancreatic fat fraction (PFF) measurements. RESULTS HFF and PFF were 4.2%-49.9% (median 24.3) and 0.4%-26.9% (median 3.8), respectively. HFF was not significantly correlated with PFF. HFF was correlated with total body fat% (r = 0.329, p = 0.010) and γ-glutamyl transpeptidase (GGT) (r = 0.260, p = 0.040), while PFF was correlated with the diastolic blood pressure (r = 0.253, p = 0.045), GGT (r = 0.335, p = 0.007) and fasting plasma glucose (r = 0.417, p = 0.001). Multiple linear regression analysis showed that HFF was significantly associated with sex, age, body fat% and GGT, whereas PFF was associated with hypertension and fasting plasma glucose levels but not insulin resistance. CONCLUSIONS HFF was associated with sex, age and body fat in children with NAFLD, while PFF was associated with hypertension and increased fasting plasma glucose, which suggests that the pathophysiology of ectopic fat accumulation varies across organs in children with NAFLD.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Pediatrics, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, South Korea.,Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Young Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hye Ran Yang
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
23
|
Chin SO, Hwang YC, Cho IJ, Jeong IK, Ahn KJ, Chung HY. Pancreatic fat accumulation is associated with decreased β-cell function and deterioration in glucose tolerance in Korean adults. Diabetes Metab Res Rev 2021; 37:e3425. [PMID: 33258260 DOI: 10.1002/dmrr.3425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 08/09/2020] [Accepted: 11/04/2020] [Indexed: 01/02/2023]
Abstract
AIMS This study was designed to investigate the association between pancreatic fat content (PFC) and insulin secretory capacity as well as glucose tolerance in Korean adults. MATERIALS A total of 39 participants (mean age 49.9 years, 53% males) without a previous history of diabetes, or those previously diagnosed as having diabetes but with less than 10 years of disease duration and no medication history were included. They were stratified according to the results of the oral glucose tolerance test (OGTT): normal glucose tolerance, prediabetes, and diabetes. METHODS All participants underwent the proton magnetic resonance spectroscopy (1 H-MRS) to assess PFC. Insulin sensitivity and β-cell function were measured by the frequently sampled intravenous glucose tolerance tests (FSIVGTT) and OGTT-derived indices. RESULTS As glucose tolerance deteriorated, parameters such as Stumvoll index, oral glucose insulin sensitivity index, homeostatic model assessment (HOMA)-β, insulinogenic index and oral disposition index from the OGTT, and acute insulin response to glucose (AIR) and disposition index (DI) from the FSIVGTT were decreased. PFC increased with deterioration in glucose tolerance (NGT: 12.0%, prediabetes: 23.7%, and diabetes: 31.9%). Correlation analysis indicated that glucose levels at 60 and 120 min during the OGTT were positively correlated with PFC. Also, there was a significant negative correlation between PFC and DI as well as AIR derived from the FSIVGTT. CONCLUSIONS PFC evaluated by 1 H-MRS in Korean adults was higher in those diagnosed with diabetes than those with normal glucose tolerance status. PFC also showed a significant negative correlation with indices reflecting beta cell function.
Collapse
Affiliation(s)
- Sang Ouk Chin
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - You-Cheol Hwang
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - In-Jin Cho
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - In-Kyung Jeong
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Kyu Jeung Ahn
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Ho Yeon Chung
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| |
Collapse
|
24
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
25
|
Zhang CL, Wang JJ, Li JN, Yang Y. Nonalcoholic fatty pancreas disease: An emerging clinical challenge. World J Clin Cases 2021; 9:6624-6638. [PMID: 34447810 PMCID: PMC8362510 DOI: 10.12998/wjcc.v9.i23.6624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty pancreas disease (NAFPD) is an emerging disease that has gained an increasing amount of attention in recent years. It describes fat accumulation in the pancreas with insignificant alcohol consumption, but the pathogenesis is largely unknown. A wide range of terms have been used to describe the phenomenon of pancreatic fat accumulation, but NAFPD remains an under-recognized and non-independent disorder. Obesity, age, sex, race, and unhealthy lifestyle are established independent risk factors for NAFPD, which is strongly associated with metabolic syndrome, type 2 diabetes, pancreatitis, pancreatic fistula, pancreatic cancer, and nonalcoholic fatty liver disease. At present, imaging techniques are common diagnostic aids, but uniform criteria and consensus are lacking. Therapeutically, healthy diet, weight loss, and exercise are the mainstays to reduce pancreatic fat accumulation. It can be seen that there is a limited understanding of NAFPD at this stage and further exploration is needed. Previous studies have revealed that NAFPD may directly affect diagnosis and clinical decision-making. Therefore, exploring the pathophysiological mechanism and clinical associations of NAFPD is a major challenge for researchers and clinicians.
Collapse
Affiliation(s)
- Cheng-Lei Zhang
- Department of Clinical Laboratory, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- The Institute of Endocrinology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jing-Jiao Wang
- Department of Stomatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Ning Li
- The Institute of Endocrinology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- The Institute of Endocrinology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
26
|
Martin S, Cule M, Basty N, Tyrrell J, Beaumont RN, Wood AR, Frayling TM, Sorokin E, Whitcher B, Liu Y, Bell JD, Thomas EL, Yaghootkar H. Genetic Evidence for Different Adiposity Phenotypes and Their Opposing Influences on Ectopic Fat and Risk of Cardiometabolic Disease. Diabetes 2021; 70:1843-1856. [PMID: 33980691 DOI: 10.2337/db21-0129] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022]
Abstract
To understand the causal role of adiposity and ectopic fat in type 2 diabetes and cardiometabolic diseases, we aimed to identify two clusters of adiposity genetic variants: one with "adverse" metabolic effects (UFA) and the other with, paradoxically, "favorable" metabolic effects (FA). We performed a multivariate genome-wide association study using body fat percentage and metabolic biomarkers from UK Biobank and identified 38 UFA and 36 FA variants. Adiposity-increasing alleles were associated with an adverse metabolic profile, higher risk of disease, higher CRP, and higher fat in subcutaneous and visceral adipose tissue, liver, and pancreas for UFA and a favorable metabolic profile, lower risk of disease, higher CRP and higher subcutaneous adipose tissue but lower liver fat for FA. We detected no sexual dimorphism. The Mendelian randomization studies provided evidence for a risk-increasing effect of UFA and protective effect of FA for type 2 diabetes, heart disease, hypertension, stroke, nonalcoholic fatty liver disease, and polycystic ovary syndrome. FA is distinct from UFA by its association with lower liver fat and protection from cardiometabolic diseases; it was not associated with visceral or pancreatic fat. Understanding the difference in FA and UFA may lead to new insights in preventing, predicting, and treating cardiometabolic diseases.
Collapse
Affiliation(s)
- Susan Martin
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | | | - Nicolas Basty
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Jessica Tyrrell
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | - Robin N Beaumont
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | | | - Brandon Whitcher
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Yi Liu
- Calico Life Sciences LLC, South San Francisco, CA
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K.
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| |
Collapse
|
27
|
Kim J, Albakheet SS, Han K, Yoon H, Lee MJ, Koh H, Kim S, Suh J, Han SJ, Ihn K, Shin HJ. Quantitative MRI Assessment of Pancreatic Steatosis Using Proton Density Fat Fraction in Pediatric Obesity. Korean J Radiol 2021; 22:1886-1893. [PMID: 34269534 PMCID: PMC8546128 DOI: 10.3348/kjr.2020.1343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/14/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Objective To assess the feasibility of quantitatively assessing pancreatic steatosis using magnetic resonance imaging (MRI) and its correlation with obesity and metabolic risk factors in pediatric patients. Materials and Methods Pediatric patients (≤ 18 years) who underwent liver fat quantification MRI between January 2016 and June 2019 were retrospectively included and divided into the obesity and control groups. Pancreatic proton density fat fraction (P-PDFF) was measured as the average value for three circular regions of interest (ROIs) drawn in the pancreatic head, body, and tail. Age, weight, laboratory results, and mean liver MRI values including liver PDFF (L-PDFF), stiffness on MR elastography, and T2* values were assessed for their correlation with P-PDFF using linear regression analysis. The associations between P-PDFF and metabolic risk factors, including obesity, hypertension, diabetes mellitus (DM), and dyslipidemia, were assessed using logistic regression analysis. Results A total of 172 patients (male:female = 125:47; mean ± standard deviation [SD], 13.2 ± 3.1 years) were included. The mean P-PDFF was significantly higher in the obesity group than in the control group (mean ± SD, 4.2 ± 2.5% vs. 3.4 ± 2.4%; p = 0.037). L-PDFF and liver stiffness values showed no significant correlation with P-PDFF (p = 0.235 and p = 0.567, respectively). P-PDFF was significantly associated with obesity (odds ratio 1.146, 95% confidence interval 1.006–1.307, p = 0.041), but there was no significant association with hypertension, DM, and dyslipidemia. Conclusion MRI can be used to quantitatively measure pancreatic steatosis in children. P-PDFF is significantly associated with obesity in pediatric patients.
Collapse
Affiliation(s)
- Jisoo Kim
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Salman S Albakheet
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Radiology, King Faisal General Hospital, Al-Hofuf, Saudi Arabia
| | - Kyunghwa Han
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Haesung Yoon
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.,Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Jung Lee
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.,Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hong Koh
- Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Pediatric Gastroenterology, Hepatology and Nutrition, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Kim
- Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Pediatric Gastroenterology, Hepatology and Nutrition, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Junghwan Suh
- Department of Pediatric Endocrinology, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Joo Han
- Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Pediatric Surgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyong Ihn
- Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Pediatric Surgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Joo Shin
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.,Severance Pediatric Liver Disease Research Group, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea.
| |
Collapse
|
28
|
Yamazaki H, Wang J, Tauchi S, Dohke M, Hanawa N, Katanuma A, Saisho Y, Kamitani T, Fukuhara S, Yamamoto Y. Inverse Association Between Fatty Liver at Baseline Ultrasonography and Remission of Type 2 Diabetes Over a 2-Year Follow-up Period. Clin Gastroenterol Hepatol 2021; 19:556-564.e5. [PMID: 32565288 DOI: 10.1016/j.cgh.2020.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Improvement of fatty liver may be required for remission of type-2 diabetes. However, there is no longitudinal evidence on whether fatty liver reduces the chances for remission of type-2 diabetes. We investigated the association between fatty liver and remission of type-2 diabetes (the primary analysis), and also the association between improvement of fatty liver and remission of type-2 diabetes (the secondary analysis). METHODS We collected data from 66961 people who underwent screening for type-2 diabetes from 2008 through 2016 at a single center in Japan. The primary analysis included 2567 patients with type-2 diabetes without chronic renal failure or a history of hemodialysis who underwent ultrasonography to detect fatty liver, all of whom had follow-up testing, including blood testing, for a median 24.5 months after the baseline ultrasonography. The secondary analysis included 1833 participants with fatty liver at baseline who underwent a second ultrasonography, and participants who had fatty liver at baseline but not at the second visit were considered to have had improvement of fatty liver. Remission of type-2 diabetes was defined as a fasting plasma glucose level below 126 mg/dL and an HbA1c level below 6.5% for more than 6 months without anti-diabetic drugs. Odds ratios (ORs) of remission of type-2 diabetes were estimated using logistic-regression models. RESULTS A lower proportion of patients who had fatty liver detected by ultrasonography at baseline (8.7%, 167/1910) had remission of type-2 diabetes during the follow-up period than patients without fatty liver (13.1%, 86/657). Fatty liver at baseline was associated with a lower odds of remission of type-2 diabetes (multivariable-adjusted OR, 0.51; 95% CI, 0.37-0.72). A higher proportion of patients who had improvement of fatty liver had remission of type-2 diabetes (21.1%, 32/152) than patients with no improvement of fatty liver (7.7%, 129/1681). Improvement of fatty liver was associated with a higher odds of remission of type-2 diabetes (multivariable-adjusted OR, 3.08; 95% CI, 1.94-4.88). CONCLUSIONS Over a follow-up period of approximate 2 years, remission of type-2 diabetes was less common in people with fatty liver detected by ultrasonography, and improvement of fatty liver was independently associated with type-2 diabetes remission.
Collapse
Affiliation(s)
- Hajime Yamazaki
- Department of Healthcare Epidemiology, School of Public Health, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Jui Wang
- Department of Healthcare Epidemiology, School of Public Health, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shinichi Tauchi
- Department of Radiology, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Mitsuru Dohke
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Nagisa Hanawa
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Yoshifumi Saisho
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tsukasa Kamitani
- Department of Healthcare Epidemiology, School of Public Health, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunichi Fukuhara
- Department of Healthcare Epidemiology, School of Public Health, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Yamamoto
- Department of Healthcare Epidemiology, School of Public Health, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Wagner R, Jaghutriz BA, Gerst F, Barroso Oquendo M, Machann J, Schick F, Löffler MW, Nadalin S, Fend F, Königsrainer A, Peter A, Siegel-Axel D, Ullrich S, Häring HU, Fritsche A, Heni M. Pancreatic Steatosis Associates With Impaired Insulin Secretion in Genetically Predisposed Individuals. J Clin Endocrinol Metab 2020; 105:dgaa435. [PMID: 32725157 PMCID: PMC7497818 DOI: 10.1210/clinem/dgaa435] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Pancreatic steatosis leading to beta-cell failure might be involved in type 2 diabetes (T2D) pathogenesis. OBJECTIVE We hypothesized that the genetic background modulates the effect of pancreatic fat on beta-cell function and investigated genotype × pancreatic fat interactions on insulin secretion. DESIGN Two observational studies. SETTING University hospital. PATIENTS OR PARTICIPANTS A total of 360 nondiabetic individuals with elevated risk for T2D (Tuebingen Family Study [TUEF]), and 64 patients undergoing pancreatectomy (Pancreas Biobank [PB], HbA1c <9%, no insulin therapy). MAIN OUTCOME MEASURES Insulin secretion calculated from 5-point oral glucose tolerance test (TUEF) and fasting blood collection before surgery (PB). A genome-wide polygenic score for T2D was computed from 484,788 genotyped variants. The interaction of magnetic resonance imaging-measured and histologically quantified pancreatic fat with the polygenic score was investigated. Partitioned risk scores using genome-wide significant variants were also computed to gain insight into potential mechanisms. RESULTS Pancreatic steatosis interacted with genome-wide polygenic score on insulin secretion (P = 0.003), which was similar in the replication cohort with histological measurements (P = 0.03). There was a negative association between pancreatic fat and insulin secretion in participants with high genetic risk, whereas individuals with low genetic risk showed a positive correlation between pancreatic fat and insulin secretion. Consistent interactions were found with insulin resistance-specific and a liver/lipid-specific polygenic scores. CONCLUSIONS The associations suggest that pancreatic steatosis only impairs beta-cell function in subjects at high genetic risk for diabetes. Genetically determined insulin resistance specifically renders pancreatic fat deleterious for insulin secretion.
Collapse
Affiliation(s)
- Róbert Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.)
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Assad Jaghutriz
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.)
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Felicia Gerst
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.)
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Morgana Barroso Oquendo
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.)
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.)
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Fritz Schick
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.)
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Markus W Löffler
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Silvio Nadalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.)
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Dorothea Siegel-Axel
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.)
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Ullrich
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.)
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.)
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.)
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.)
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Yamazaki H, Tauchi S, Wang J, Dohke M, Hanawa N, Kodama Y, Katanuma A, Saisho Y, Kamitani T, Fukuhara S, Yamamoto Y. Longitudinal association of fatty pancreas with the incidence of type-2 diabetes in lean individuals: a 6-year computed tomography-based cohort study. J Gastroenterol 2020; 55:712-721. [PMID: 32246380 DOI: 10.1007/s00535-020-01683-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Only a few studies have longitudinally evaluated whether fatty pancreas increases the risk of type-2 diabetes (T2D), and their results were inconsistent. Fatty pancreas is closely linked to overweight and obesity, but previous studies did not exclude overweight or obese individuals. Therefore, in this cohort study, we investigated the association between fatty pancreas and T2D incidence in lean individuals. METHODS Between 2008 and 2013, 1478 nondiabetic lean individuals (i.e. body-mass index < 25 kg/m2) underwent health examinations including computed tomography (CT) and were followed for a median of 6.19 years. Fatty pancreas was evaluated by a histologically-validated method using pancreas attenuation (Hounsfield units [HU]) on CT at baseline; lower pancreas attenuation indicates more pancreatic fat. To detect incident T2D, we used fasting plasma glucose, HbA1c, and self-reports of prescribed anti-diabetes medications. Odds ratios (OR) for the association between pancreas attenuation and incident T2D were estimated using logistic regression models adjusted for likely confounders. RESULTS T2D occurred in 61 participants (4.13%) during the follow-up period. Lower pancreas attenuation (i.e. more pancreatic fat) at baseline was associated with incident T2D (unadjusted OR per 10 HU lower attenuation: 1.56 [95% CI 1.28-1.91], p < 0.001). The multivariable-adjusted analysis revealed a similar association (adjusted OR per 10 HU lower attenuation: 1.32 [95% CI 1.06-1.63], p = 0.012). CONCLUSIONS T2D was likely to develop in lean individuals with the fatty pancreas. Among people who are neither obese nor overweight, the fatty pancreas can be used to define a group at high risk for T2D.
Collapse
Affiliation(s)
- Hajime Yamazaki
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Syogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shinichi Tauchi
- Department of Radiology, Keijinkai Maruyama Clinic, 3-16, Odori Nishi 26-chome, Chuo-ku, Sapporo, 064-0820, Japan
| | - Jui Wang
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Room 517, No. 17, Xu-Zhou Road, Taipei, 100, Taiwan
| | - Mitsuru Dohke
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, 3-16, Odori Nishi 26-chome, Chuo-ku, Sapporo, 064-0820, Japan
| | - Nagisa Hanawa
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, 3-16, Odori Nishi 26-chome, Chuo-ku, Sapporo, 064-0820, Japan
| | - Yoshihisa Kodama
- Department of Radiology, Teine Keijinkai Hospital, 1-40, 1-jo 12-chome, Maeda, Teine-ku, Sapporo, 006-8555, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine Keijinkai Hospital, 1-40, 1-jo 12-chome, Maeda, Teine-ku, Sapporo, 006-8555, Japan
| | - Yoshifumi Saisho
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tsukasa Kamitani
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shunichi Fukuhara
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yosuke Yamamoto
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
31
|
Tremmel DM, Feeney AK, Mitchell SA, Chlebeck PJ, Raglin S, Fernandez LA, Odorico JS, Sackett SD. Hypertension, but not body mass index, is predictive of increased pancreatic lipid content and islet dysfunction. Am J Transplant 2020; 20:1105-1115. [PMID: 31715064 PMCID: PMC7103563 DOI: 10.1111/ajt.15698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023]
Abstract
Pancreatic steatosis is thought to be a negative risk factor for pancreas transplant outcomes. Despite considering donor body mass index (BMI) and the visualization of intercalated fat as indicators of donor pancreas lipid content, transplant surgeons do not use a quantitative method to directly measure steatosis when deciding to transplant a pancreas. In this study, we used nondiabetic human pancreata donated for research to measure the pancreatic and islet-specific lipid content to determine which clinical markers correlate best with lipid content. Interestingly, we found that BMI and age correlate with increased pancreatic lipid content (Panc-LC) in men, but not women. Our findings further suggest that total Panc-LC correlates with an increase in islet lipid content for both men and women. We noted that pancreata donated from individuals with a history of hypertension have increased Panc-LC independent of donor BMI or sex. Moreover, we identify hypertension as a risk factor for reduced islet function after islet isolation. Together, our findings emphasize differences in pancreas graft quality related to pancreatic and islet lipid content, which may not be predicted by assessing BMI alone but may be influenced by a donor history of hypertension.
Collapse
Affiliation(s)
- Daniel M. Tremmel
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA.,Co-first authors
| | - Austin K. Feeney
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA.,Co-first authors
| | - Samantha A. Mitchell
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Peter J. Chlebeck
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Sierra Raglin
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Luis A. Fernandez
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Jon S. Odorico
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Sara D. Sackett
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| |
Collapse
|
32
|
Fuse K, Kadota A, Kondo K, Morino K, Fujiyoshi A, Hisamatsu T, Kadowaki S, Miyazawa I, Ugi S, Maegawa H, Miura K, Ueshima H. Liver fat accumulation assessed by computed tomography is an independent risk factor for diabetes mellitus in a population-based study: SESSA (Shiga Epidemiological Study of Subclinical Atherosclerosis). Diabetes Res Clin Pract 2020; 160:108002. [PMID: 31904446 DOI: 10.1016/j.diabres.2020.108002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 12/31/2022]
Abstract
AIMS Ectopic fat accumulation is related to insulin resistance and diabetes mellitus (DM). However, the effect of fatty liver on DM in non-obese individuals has not been clarified. We investigated whether liver fat accumulation assessed by computed tomography (CT) is associated with the incidence of DM. METHODS In a prospective population-based study, 640 Japanese men were followed up for 5 years. The liver to spleen (L/S) ratio of the CT attenuation value was used as the liver fat accumulation index. We calculated the odds ratio (OR) and 95% confidence interval (CI) for the DM incidence of per 1 standard deviation (SD) lower L/S and those of L/S < 1.0 compared with L/S ≥ 1.0, using logistic regression models. RESULTS Both per 1 SD lower L/S and L/S < 1.0 were significantly associated with a risk for DM incidence (1 SD lower L/S: OR = 1.57, 95%CI = 1.14-2.16; L/S < 1.0: OR = 2.27, 95%CI = 1.00-5.14). The relationship between L/S and incidence of DM was consistent in the obese and non-obese groups, with thresholds of BMI 25 kg/m2, waist circumference 85 cm, or visceral adipose tissue 100 cm2. CONCLUSIONS Liver fat accumulation assessed by CT was associated with the incidence of DM.
Collapse
Affiliation(s)
- Keiko Fuse
- Department of Medicine, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan; Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan.
| | - Aya Kadota
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan; Department of Public Health, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan.
| | - Keiko Kondo
- Department of Public Health, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan.
| | - Katsutaro Morino
- Department of Medicine, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan.
| | - Akira Fujiyoshi
- Department of Hygiene, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan.
| | - Takashi Hisamatsu
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Sayaka Kadowaki
- Department of Public Health, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan.
| | - Itsuko Miyazawa
- Department of Medicine, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan.
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan.
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan.
| | - Katsuyuki Miura
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan; Department of Public Health, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan.
| | - Hirotsugu Ueshima
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan; Department of Public Health, Shiga University of Medical Science, Seta, Tsukinowa, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|
33
|
Pieńkowska J, Brzeska B, Kaszubowski M, Kozak O, Jankowska A, Szurowska E. The correlation between the MRI-evaluated ectopic fat accumulation and the incidence of diabetes mellitus and hypertension depends on body mass index and waist circumference ratio. PLoS One 2020; 15:e0226889. [PMID: 31986155 PMCID: PMC6984689 DOI: 10.1371/journal.pone.0226889] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 12/07/2019] [Indexed: 12/19/2022] Open
Abstract
The widespread presence of overweight and obesity increases with every decade, and the number of people with body mass index (BMI) >30 kg/m2 has doubled in the last 30 years. The aim of the study is to assess the correlation between MRI-evaluated ectopic fat accumulation in pancreas, skeletal muscles and liver and the incidence of type 2 diabetes and hypertension, depending on BMI and waist circumference ratio. This prospective study included 267 consecutive patients who were referred to abdominal MRI and underwent a standard clinical assessment with BMI and waist circumference ratio calculation. Ectopic fat accumulation in pancreas, skeletal muscles and liver was evaluated in magnetic resonance imaging using the fat-water separated Dixon imaging. There were statistically significant differences in mean steatosis of all assessed organs in the group of patients with type 2 diabetes or hypertension in comparison to the non-diabetic group as well as to the group without hypertension. It has been observed that pancreas and skeletal muscles are more susceptible to fat accumulation than liver. According to our results, there is a relation between the fat content in muscles, pancreas and liver, the incidence of type 2 diabetes and hypertension and also body mass index and waist circumference ratio. We believe that future studies should aim to determine whether the use of fat content measurement in certain organs could be used as a biomarker that can enable early detection of reversible metabolic changes, as well as their subsequent monitoring.
Collapse
Affiliation(s)
- Joanna Pieńkowska
- II Department of Radiology – Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
- * E-mail:
| | - Beata Brzeska
- II Department of Radiology – Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
- Department of Human Physiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Kaszubowski
- Institute of Statistics, Department of Economic Sciences, Faculty of Management and Economics, Gdansk University of Technology, Gdansk, Poland
| | - Oliwia Kozak
- I Department of Radiology – Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Anna Jankowska
- Department of Radiology, University Clinical Centre in Gdansk, Gdansk, Poland
| | - Edyta Szurowska
- II Department of Radiology – Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
34
|
Ishibashi C, Kozawa J, Hosakawa Y, Yoneda S, Kimura T, Fujita Y, Fukui K, Iwahashi H, Shimomura I. Pancreatic fat is related to the longitudinal decrease in the increment of C-peptide in glucagon stimulation test in type 2 diabetes patients. J Diabetes Investig 2020; 11:80-87. [PMID: 31240874 PMCID: PMC6944841 DOI: 10.1111/jdi.13108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/11/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION The relationship between pancreatic fatty infiltration and diabetes is widely known, whereas the causal relationship is not clear. Furthermore, it is uncertain whether pathogenesis of pancreatic fat is similar to that of liver fat. We aimed to clarify the contribution of this type of fat to glucose metabolism in type 2 diabetes patients by cross-sectional and longitudinal analyses. MATERIAL AND METHODS A total of 56 patients with type 2 diabetes who had been hospitalized twice were analyzed. We evaluated the mean computed tomography values of the pancreas (P), liver (L) and spleen (S). Lower computed tomography values indicate a greater fat content. We defined indices of pancreatic or liver fat content as the differences between P or L and S. We assessed the associations among fat content for the two organs (P-S, L-S) and clinical parameters at the first hospitalization, and then analyzed the associations between these fat contents and changes in glycometabolic markers (the second data values minus the first). RESULTS In the cross-sectional study, P-S negatively correlated with the increment of C-peptide in the glucagon stimulation test (r = -0.71, P < 0.0001) and body mass index (r = -0.28, P = 0.034). L-S negatively correlated with homeostasis model assessment of insulin resistance (r = -0.73, P < 0.0001), body mass index (r = -0.62, P < 0.0001) and some other obesity-related indicators, but not with the increment of C-peptide in the glucagon stimulation test. In the longitudinal study, P-S positively correlated with the change of the increment of C-peptide in the glucagon stimulation test (r = 0.49, P = 0.021). CONCLUSIONS In type 2 diabetes patients, pancreatic fat was less associated with obesity-related indicators than liver fat, but was more strongly associated with the longitudinal decrease in endogenous insulin-secreting capacity.
Collapse
Affiliation(s)
- Chisaki Ishibashi
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Junji Kozawa
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Yoshiya Hosakawa
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Sho Yoneda
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Takekazu Kimura
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Yukari Fujita
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
- Department of Community MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Kenji Fukui
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Hiromi Iwahashi
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
- Department of Diabetes Care MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Iichiro Shimomura
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| |
Collapse
|
35
|
Pinte L, Balaban DV, Băicuş C, Jinga M. Non-alcoholic fatty pancreas disease - practices for clinicians. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2019; 57:209-219. [PMID: 30901317 DOI: 10.2478/rjim-2019-0005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a growing health burden worldwide, increasing the risk for several diseases featuring the metabolic syndrome - type 2 diabetes mellitus, dyslipidemia, non-alcoholic fatty liver disease and cardiovascular diseases. With the increasing epidemic of obesity, a new pathologic condition has emerged as a component of the metabolic syndrome - that of non-alcoholic fatty pancreas disease (NAFPD). Similar to non-alcoholic fatty liver disease (NAFLD), NAFPD comprises a wide spectrum of disease - from deposition of fat in the pancreas - fatty pancreas, to pancreatic inflammation and possibly pancreatic fibrosis. In contrast with NAFLD, diagnostic evaluation of NAFPD is less standardized, consisting mostly in imaging methods. Also the natural evolution of NAFPD and its association with pancreatic cancer is much less studied. Not least, the clinical consequences of NAFPD remain largely presumptions and knowledge about its metabolic impact is limited. This review will cover epidemiology, pathogenesis, diagnostic evaluation tools and treatment options for NAFPD, with focus on practices for clinicians.
Collapse
Affiliation(s)
- Larisa Pinte
- "Colentina" Clinical Hospital, Bucharest, Romania
| | - Daniel Vasile Balaban
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Cristian Băicuş
- "Colentina" Clinical Hospital, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mariana Jinga
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| |
Collapse
|
36
|
Nonalcoholic fatty pancreas disease is related independently to the severity of acute pancreatitis. Eur J Gastroenterol Hepatol 2019; 31:973-978. [PMID: 31233410 DOI: 10.1097/meg.0000000000001477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND This study aimed to investigate the association between nonalcoholic fatty pancreas disease and the severity of acute pancreatitis (AP). PATIENTS AND METHODS Among the 1662 AP patients admitted between August 2010 and August 2017, 82 eligible patients with moderately severe acute pancreatitis (SAP) and SAP were selected. Meanwhile, 164 mild AP patients were age-matched, sex-matched, and BMI-matched at a ratio of 1 : 2. Nonalcoholic fatty pancreas disease was estimated by mean pancreas attenuation by unenhanced computed tomography. Finally, 1662 patients were screened and 246 patients were analyzed. RESULTS For the 246 patients, the mean pancreatic attenuation and pancreas-to-spleen attenuation ratio (P/S ratio) were significantly lower in the moderately SAP and SAP groups compared with those in the mild AP group (both, P<0.001). Pancreatic attenuation decreased with an increase in the rate of ICU transfer, AP severity, systemic complications, and prognostic factors of AP (Acute Physiology and Chronic Health Evaluation II score≥8; P<0.001). A decreased P/S ratio was correlated positively with the increased mortality of patients with AP (hazard ratio: 0.000; 95% confidence interval: 0.000-0.012; P<0.001), as determined by Cox proportional regression analysis adjusted for creatinine, calcium, and albumin levels. CONCLUSION The pancreatic attenuation level and P/S ratio are correlated independently to severity, mortality, and systemic complications in patients with AP.
Collapse
|
37
|
Quiclet C, Dittberner N, Gässler A, Stadion M, Gerst F, Helms A, Baumeier C, Schulz TJ, Schürmann A. Pancreatic adipocytes mediate hypersecretion of insulin in diabetes-susceptible mice. Metabolism 2019; 97:9-17. [PMID: 31108105 DOI: 10.1016/j.metabol.2019.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Ectopic fat accumulation in the pancreas in response to obesity and its implication on the onset of type 2 diabetes remain poorly understood. Intermittent fasting (IF) is known to improve glucose homeostasis and insulinresistance. However, the effects of IF on fat in the pancreas and β-cell function remain largely unknown. Our aim was to evaluate the impact of IF on pancreatic fat accumulation and its effects on islet function. METHODS New Zealand Obese (NZO) mice were fed a high-fat diet ad libitum (NZO-AL) or fasted every other day (intermittent fasting, NZO-IF) and pancreatic fat accumulation, glucose homoeostasis, insulin sensitivity, and islet function were determined and compared to ad libitum-fed B6.V-Lepob/ob (ob/ob) mice. To investigate the crosstalk of pancreatic adipocytes and islets, co-culture experiments were performed. RESULTS NZO-IF mice displayed better glucose homeostasis and lower fat accumulation in both the pancreas (-32%) and the liver (-35%) than NZO-AL mice. Ob/ob animals were insulin-resistant and had low fat in the pancreas but high fat in the liver. NZO-AL mice showed increased fat accumulation in both organs and exhibited an impaired islet function. Co-culture experiments demonstrated that pancreatic adipocytes induced a hypersecretion of insulin and released higher levels of free fatty acids than adipocytes of inguinal white adipose tissue. CONCLUSIONS These results suggest that pancreatic fat participates in diabetes development, but can be prevented byIF.
Collapse
Affiliation(s)
- Charline Quiclet
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany
| | - Nicole Dittberner
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany.
| | - Anneke Gässler
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany.
| | - Felicia Gerst
- German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| | - Anett Helms
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany.
| | - Christian Baumeier
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany
| | - Tim J Schulz
- German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany; Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| |
Collapse
|
38
|
Bi Y, Wang JL, Li ML, Zhou J, Sun XL. The association between pancreas steatosis and metabolic syndrome: A systematic review and meta-analysis. Diabetes Metab Res Rev 2019; 35:e3142. [PMID: 30767421 DOI: 10.1002/dmrr.3142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/23/2019] [Accepted: 02/09/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Pancreas steatosis is the description of fat accumulation in the pancreatic gland. The prevalence and development mechanisms of pancreatic steatosis in patients with metabolic disorders still remain unclear. The aim of this study is to systematically review the association between pancreatic steatosis and metabolic co-morbidities. METHODS We performed a systematic search strategy using three electronic databases (MEDLINE, Scopus, and Embase) for relevant studies concerning the associations of pancreatic steatosis with metabolic syndrome (MetS) and its clinical relevance from inception until 30 September 2018. RESULTS One thousand three hundred fifty one references were identified in the initial search, and a total of 13 studies involving 49 329 subjects were included. This analyses elucidated the presence of non-alcoholic fatty pancreas disease (NAFPD) and was associated with a significant increased risk of metabolic syndrome (RR = 2.25; 95% CI, 2.00-2.53; P < 0.0001; I2 = 42.8%; eight studies included), hypertension (RR = 1.43; 95% CI, 1.08-1.90; P = 0.013; I2 = 94.7%; nine studies included), non-alcoholic fatty liver disease (NAFLD) (RR = 2.49; 95% CI, 2.06-3.02; P < 0.0001; I2 = 96.9%; nine studies included), diabetes mellitus (RR = 1.99; 95% CI, 1.18-3.35; P = 0.01; I2 = 97.6%; 10 studies included), and central obesity (RR = 1.91; 95% CI, 1.67-2.19; P < 0.0001; I2 = 95.9%; six studies included). The association between NAFPD and hyperlipidaemia was not statistically significant (RR = 1.33; 95% CI, 0.82-2.17; P = 0.249; I2 = 97%; five studies included). CONCLUSIONS The existing evidence indicates that NAFPD is significantly associated with an increased risk of metabolic syndrome and its components. Well-designed prospective cohort studies between pancreatic steatosis and MetS are needed to elaborate the causality in the future.
Collapse
Affiliation(s)
- Ye Bi
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ji-Lan Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ming-Long Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jie Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiang-Lan Sun
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
39
|
Wang M, Luo Y, Cai H, Xu L, Huang M, Li C, Dong Z, Li ZP, Feng ST. Prediction of type 2 diabetes mellitus using noninvasive MRI quantitation of visceral abdominal adiposity tissue volume. Quant Imaging Med Surg 2019; 9:1076-1086. [PMID: 31367561 DOI: 10.21037/qims.2019.06.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background The correlation between visceral adipose tissue volume (VATV), hepatic proton-density fat fraction (PDFF), and pancreatic PDFF has been previously studied to predict the presence of type 2 diabetes mellitus (T2DM). This study investigated VATV quantitation in patients with T2DM, prediabetes, and normal glucose tolerance (NGT) using MRI to assess the roles of VATV, hepatic, and pancreatic PDFF in predicting the presence of T2DM. Methods Forty-eight patients with a new clinical diagnosis of T2DM (n=15), prediabetes (n=17), or NGT (n=16) were included and underwent abdominal magnetic resonance imaging (MRI) scanning with the iterative decomposition of water and fat with echo asymmetry and least square estimation image quantification (IDEAL-IQ) sequencing. VATV was obtained at the level of the 2nd and 3rd lumbar vertebral bodies (VATV L2 and VATV L3) where the sum of VATV L2 and VATV L3 (total VATV) were computed, respectively. Also, pancreatic and hepatic fat content was quantified by measuring the PDFF. The receiver operating characteristic (ROC) curve and binary logistics regression model analysis were employed to evaluate their ability to predict the presence of T2DM. Results The VATV L2, VATV L3, and total VATV values of the T2DM group were significantly higher than the prediabetes and NGT groups (P<0.05). There was no statistically significant difference between the values of VATV L2, VATV L3, and total VATV between the prediabetes and NGT groups (P>0.05). The ROC curve showed the areas under the curve for VATV L2, VATV L3, total VATV, hepatic PDFF, and pancreatic PDFF were 0.76, 0.80, 0.80, 0.79, and 0.75, respectively, in predicting the presence of T2DM (P<0.01). The ROC curves of VATV L2, VATV L3, total VATV, hepatic PDFF, and pancreatic PDFF failed to predict the presence of prediabetes and NGT (P>0.05). The binary logistics regression model analysis revealed that only VATV L3 was independently associated with the incidence of T2DM (P=0.01 and OR =1.01). The sensitivity, specificity, and total accuracy were 80.00%, 88.20%, and 84.40%, respectively. Conclusions Compared with hepatic PDFF, pancreatic PDFF, VAVT L2, and total VATV, VAVT L3 was the better predictor of T2DM.
Collapse
Affiliation(s)
- Meng Wang
- Department of Radiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanji Luo
- Department of Radiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huasong Cai
- Department of Radiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ling Xu
- Faculty of Medicine and Dentistry, University of Western Australia, Perth, Australia
| | - Mengqi Huang
- Department of Radiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chang Li
- Department of Radiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhi Dong
- Department of Radiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zi-Ping Li
- Department of Radiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shi-Ting Feng
- Department of Radiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
40
|
Singh RG, Cervantes A, Kim JU, Nguyen NN, DeSouza SV, Dokpuang D, Lu J, Petrov MS. Intrapancreatic fat deposition and visceral fat volume are associated with the presence of diabetes after acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2019; 316:G806-G815. [PMID: 30920289 DOI: 10.1152/ajpgi.00385.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ectopic fat and abdominal adiposity phenotypes have never been studied holistically in individuals after acute pancreatitis (AP). The aim of the study was to investigate phenotypical differences in ectopic fat and abdominal fat between individuals after AP (with and without diabetes) and to determine the role of pancreatitis-related factors. Eighty-four individuals were studied cross-sectionally after a median of 21.5 mo since last episode of AP and were categorized into "diabetes" and "no diabetes" groups. Twenty-eight healthy volunteers were also recruited. With the use of magnetic resonance imaging, intrapancreatic fat percentage, liver fat percentage, visceral fat volume (VFV), subcutaneous fat volume, and visceral-to-subcutaneous (V/S) fat volume ratio were quantified. Analysis of variance was used to investigate the differences in these phenotypes between the groups. All analyses were adjusted for age and sex. Linear regression analysis was used to investigate the association between pancreatitis-related factors and the studied phenotypes. Intrapancreatic fat percentage was significantly higher in the diabetes group (10.2 ± 1.2%) compared with the no diabetes (9.2 ± 1.7%) and healthy volunteers (7.9 ± 1.9%) groups (P < 0.001). VFV was significantly higher in the diabetes (2,715.3 ±1,077.6 cm3) compared with no diabetes (1,983.2 ± 1,092.4 cm3) and healthy volunteer (1,126.2 ± 740.4 cm3) groups (P < 0.001). V/S fat volume ratio was significantly higher in the diabetes (0.97 ± 0.27) compared with no diabetes (0.68 ± 0.42) and healthy volunteer (0.52 ± 0.34) groups (P = 0.001). Biliary AP was associated with significantly higher intrapancreatic fat percentage (β = 0.67; 95% CI, 0.01, 1.33; P = 0.047). C-reactive protein levels during hospitalization for AP were associated with significantly higher VFV (β = 3.32; 95% CI, 1.68, 4.96; P < 0.001). In conclusion, individuals with diabetes after AP have higher intrapancreatic fat percentage, VFV, and V/S fat volume ratio. Levels of C-reactive protein during AP are significantly associated with VFV, whereas biliary AP is significantly associated with intrapancreatic fat percentage. NEW & NOTEWORTHY Individuals with diabetes after acute pancreatitis have significantly higher intrapancreatic fat percentage and visceral fat volume compared with individuals without diabetes after acute pancreatitis and healthy controls. C-reactive protein levels during hospitalization for acute pancreatitis and biliary etiology of acute pancreatitis are associated with significantly larger visceral fat and pancreatic fat depots, respectively.
Collapse
Affiliation(s)
- Ruma G Singh
- School of Medicine, University of Auckland , Auckland , New Zealand
| | - Aya Cervantes
- School of Medicine, University of Auckland , Auckland , New Zealand
| | - Jin Uk Kim
- School of Medicine, University of Auckland , Auckland , New Zealand
| | - Ngoc Nhu Nguyen
- School of Medicine, University of Auckland , Auckland , New Zealand
| | - Steve V DeSouza
- School of Medicine, University of Auckland , Auckland , New Zealand
| | - Dech Dokpuang
- School of Science and School of Interprofessional Health Studies, Auckland University of Technology , Auckland , New Zealand
| | - Jun Lu
- School of Science and School of Interprofessional Health Studies, Auckland University of Technology , Auckland , New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland , Auckland , New Zealand
| |
Collapse
|
41
|
Jaghutriz BA, Wagner R, Heni M, Lehmann R, Machann J, Stefan N, Häring HU, Fritsche A. Metabolomic Characteristics of Fatty Pancreas. Exp Clin Endocrinol Diabetes 2019; 128:804-810. [DOI: 10.1055/a-0896-8671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Objective Pancreatic steatosis is associated with impaired beta cell function in patients with prediabetes. The pathomechanisms underlying this association still remain to be elucidated. Recent data show that adipocytes are situated within the pancreatic parenchyma and therefore give raise to hypothesize that pancreatic fat together with known and unknown metabolites such as hepatokines affect insulin secretion. Applying a targeted metabolomic approach we investigated possible circulating markers of pancreatic fat in order to better understand its role in the pathophysiology of impaired beta cell function.
Methods We included 361 Caucasians, at increased risk of type 2 diabetes, from the Tübingen Family Study. All participants underwent a frequently sampled oral glucose tolerance test to assess insulin secretion and a magnetic resonance imaging to quantify pancreatic fat content, total body fat and visceral fat. Among the 152 subjects with prediabetes (IFG and/or IGT), two groups each with 20 individuals, having the lowest and highest pancreatic fat content were selected. The groups were matched for sex, age, BMI, total fat content, visceral fat content, liver fat content and insulin sensitivity. Metabolites were analyzed using the AbsoluteIDQ® p400 HR Kit by Biocrates.
Results Pancreatic fat content of all 152 subjects with prediabetes was negatively associated with insulin secretion represented by AUCC-peptide 0–120/AUCGlucose 0–120 (p=0.04; β=− 3.24). Furthermore, pancreatic fat content was positively associated with BMI, total body and visceral fat (all p<0.005). Levels of aminoacids, biogenic amines and monosaccharides were similar between the groups with high/low pancreatic fat content (p>0.90). Also, levels of polar lipids such as lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides did not differ significantly between the groups (p>0.90). Investigating the levels of neutral lipids such as aclycarnitines, diglycerides, triglycerides and cholesteryl esters also revealed no differences between the groups (p>0.90).
Conclusion The amount of pancreatic fat is not associated with the metabolomic pattern in individuals with prediabetes. This might be due to the relatively low pancreatic fat content compared to the total amount of fat stored in other depots. The impact of pancreatic steatosis on insulin secretion might be mediated by paracrine effects which cannot be detected in the circulation.
Collapse
Affiliation(s)
- Benjamin Assad Jaghutriz
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Róbert Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Rainer Lehmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Section on Experimental Radiology, Department of Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
Pieńkowska J, Brzeska B, Kaszubowski M, Kozak O, Jankowska A, Szurowska E. MRI assessment of ectopic fat accumulation in pancreas, liver and skeletal muscle in patients with obesity, overweight and normal BMI in correlation with the presence of central obesity and metabolic syndrome. Diabetes Metab Syndr Obes 2019; 12:623-636. [PMID: 31118724 PMCID: PMC6506015 DOI: 10.2147/dmso.s194690] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose: Obesity, defined as a body mass index (BMI) exceeding 30 kg/m2, is a serious health problem, which can be called an epidemic on a global scale and is one of the most important causes of preventable death. The aim of this study was to assess ectopic fat accumulation in pancreas, liver and skeletal muscle in patients with obesity, overweight and normal BMI in correlation with metabolic syndrome (MetS). Patients and methods: The study included 267 consecutive patients who underwent a standard clinical assessment with BMI calculation. Ectopic fat accumulation in pancreas, liver, and skeletal muscle was evaluated by magnetic resonance imaging (MRI) using fat-water separated Dixon imaging. MetS was defined according to the criteria modified by the National Cholesterol Education Program Adult Treatment Panel III Guidelines. Central obesity was defined using gender and ethnic-specific values for waist circumference. Results: There was a statistically significant correlation between the degree of steatosis of the assessed organs and BMI value as well as waist circumference ratio, that determined the degree of central obesity. It was found that the most rapid relative fat accumulation was in muscle, then in pancreas and then in liver. Higher steatosis of pancreas, liver, and muscle was demonstrated depending on the number of the satisfied MetS criteria. Conclusion: Knowing that pancreatic fatty disease is a risk factor for MetS, it seems that assessment and monitoring of ectopic fat accumulation may have important clinical implications and may be used in the prediction of metabolic risk and its early prevention.
Collapse
Affiliation(s)
- Joanna Pieńkowska
- II Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
- Correspondence: Joanna PieńkowskaII Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Mariana Smoluchowskiego 17, Gdansk80-214, PolandTel +4 858 349 3680Fax +4 858 349 3690Email
| | - Beata Brzeska
- II Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
- Department of Human Physiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Kaszubowski
- Institute of Statistics, Department of Economic Sciences, Faculty of Management and Economics, Gdansk University of Technology, Gdansk, Poland
| | - Oliwia Kozak
- I Department of Radiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Anna Jankowska
- Department of Radiology, University Clinical Centre in Gdansk, Gdansk, Poland
| | - Edyta Szurowska
- II Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
43
|
Yamazaki H, Tauchi S, Kimachi M, Dohke M, Hanawa N, Kodama Y, Katanuma A, Yamamoto Y, Fukuma S, Fukuhara S. Association between pancreatic fat and incidence of metabolic syndrome: a 5-year Japanese cohort study. J Gastroenterol Hepatol 2018; 33:2048-2054. [PMID: 29697157 DOI: 10.1111/jgh.14266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/07/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Previous cross-sectional studies showed that pancreatic fat was associated with metabolic syndrome. However, no longitudinal study has evaluated whether people with high pancreatic fat are likely to develop future metabolic syndrome. This study investigated the association between baseline pancreatic fat and metabolic syndrome incidence. METHODS In 2008-2009, 320 participants without metabolic syndrome underwent health checks, which included unenhanced computed tomography, and were followed up annually for 4-5 years. Baseline pancreatic fat amounts were evaluated using a histologically validated method that measured differences between pancreas and spleen attenuations on computed tomography. The participants were divided into low (reference), intermediate, and high pancreatic fat groups based on pancreas and spleen attenuation tertiles. Metabolic syndrome incidence was evaluated annually over a median follow-up period of 4.99 (interquartile range, 4.88-5.05) years, in accordance with the 2009 harmonized criteria. Risk ratios (RRs) for the association between baseline pancreatic fat amounts and metabolic syndrome incidence were estimated using Poisson regression models adjusted for age, sex, body mass index, liver fat, pre-metabolic syndrome, cigarette use, alcohol use, and physical activity. RESULTS Metabolic syndrome incidence was 30.6% (98/320). Pancreatic fat was associated with an increased incidence of metabolic syndrome, based on a univariate analysis (RRs [95% confidence interval], 3.14 [1.74-5.67] and 3.96 [2.23-7.03] in the intermediate and high pancreatic fat groups, respectively). The association remained statistically significant in the multivariate analysis (RR [95% confidence interval], 2.04 [1.14-3.64] and 2.30 [1.28-4.14] for the same groups, respectively). CONCLUSIONS Pancreatic fat predicts the future risk of metabolic syndrome.
Collapse
Affiliation(s)
- Hajime Yamazaki
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Tauchi
- Department of Radiology, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Miho Kimachi
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuru Dohke
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Nagisa Hanawa
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Yoshihisa Kodama
- Department of Radiology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Yosuke Yamamoto
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shingo Fukuma
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunichi Fukuhara
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
Independent association between prediabetes and future pancreatic fat accumulation: a 5-year Japanese cohort study. J Gastroenterol 2018; 53:873-882. [PMID: 29238876 DOI: 10.1007/s00535-017-1422-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND The association between pancreatic fat and glucose dysmetabolism has been reported in several cross-sectional studies; however, a recent longitudinal study showed that baseline pancreatic fat did not cause subsequent diabetes mellitus. We hypothesized that pancreatic fat is not a cause but a manifestation of glucose dysmetabolism and aimed to investigate the association between baseline prediabetes and future pancreatic fat accumulation. METHODS Between 2008 and 2015, 198 nondiabetic participants, who underwent a health check-up via unenhanced computed tomography (CT) twice with CT intervals ≥ 5 years, were enrolled as prediabetes (n = 48) and non-prediabetes participants (n = 150). Prediabetes was defined as fasting plasma glucose of 100-125 mg/dl or hemoglobin A1c of 5.7-6.4%. Pancreatic fat was evaluated using a histologically validated method to measure the difference between pancreas and spleen attenuations (P-S) on CT. Pancreatic fat accumulation during follow-up was measured as P-S change from baseline. Multiple linear regression was used to evaluate the association between baseline prediabetes and future pancreatic fat accumulation with adjustment for age, sex, body mass index, physical activity, and liver fat at baseline. RESULTS Mean pancreatic fat accumulation was 0.30 (SD, 5.8) Hounsfield units during follow-up. On univariate analysis, baseline prediabetes was associated with future pancreatic fat accumulation (β = 3.73; 95% CI 1.91-5.55; P < 0.001). This association remained statistically significant on multivariate analysis (β = 3.14; 95% CI 1.25-5.03; P = 0.001). CONCLUSIONS Prediabetes is a risk factor for future pancreatic fat accumulation. Pancreatic fat may be a manifestation of glucose dysmetabolism.
Collapse
|
45
|
Prevalence and clinical characteristics of fatty pancreas in Yangzhou, China: A cross-sectional study. Pancreatology 2018; 18:263-268. [PMID: 29477252 DOI: 10.1016/j.pan.2018.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the prevalence and risk factors of fatty pancreas in Yangzhou, China. METHODS This was a cross-sectional study. Initially, 2093 subjects were included in the study. After the exclusion of 865 subjects based on incomplete information, a total of 1228 subjects were selected for further analysis. The subjects were stratified into two groups (the fatty pancreas group and the non-fatty pancreas group) based on the results. Anthropometric and biochemical findings were compared between the groups. RESULTS Among the 2093 study subjects, 56 (2.7%) had fatty pancreas. Overall, 53 out of 1228 subjects were diagnosed with fatty pancreas and included into the fatty pancreas group. Univariate analysis showed significant differences in age and the prevalence of general obesity, central obesity, alcohol consumption, metabolic syndrome and fatty liver between the two groups (all p < 0.01). The fatty pancreas group had higher levels of aspartate aminotransferase, alanine aminotransferase, serum uric acid, fasting blood glucose, total cholesterol, triglycerides and low-density lipoprotein, and lower levels of high-density lipoprotein than did the non-fatty pancreas group (all p < 0.05). Multivariate logistic regression analysis showed that age (p = 0.007), central obesity (p = 0.002) and fatty liver (p = 0.006) were independent risk factors for fatty pancreas, with odds ratios (ORs) of 1.034 (95% confidence interval (CI): 1.009-1.059), 5.364 (95% CI: 1.890-15.227), and 2.666 (95% CI: 1.332-5.338), respectively. CONCLUSION The prevalence of fatty pancreas in the examined population is approximately 2.7%. Increased age, central obesity and fatty liver disease are independent risk factors for fatty pancreas.
Collapse
|
46
|
The association of fatty pancreas with subclinical atherosclerosis in nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2018; 30:411-417. [PMID: 29309395 DOI: 10.1097/meg.0000000000001059] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Ectopic fat accumulation in many tissues has been shown to be a risk factor for developing cardiovascular disease. No study to date has investigated whether fatty pancreas plays a role in the development of subclinical atherosclerosis. We aimed to assess the relationship between fatty pancreas and subclinical atherosclerosis in patients with biopsy-proven nonalcoholic fatty liver disease (NAFLD) and healthy controls. PATIENTS AND METHODS One hundred patients with biopsy-proven NAFLD and 38 healthy controls were included. Transabdominal ultrasonography examination was performed on all the cases with high-resolution ultrasonography (Acuson S3000) using 6 mHz convex probes. The measurements of carotid intima-media thickness (CIMT) and carotid-femoral pulse wave velocity (cf-PWV) were performed to investigate the relationship between fatty pancreas and atherosclerosis. RESULTS The rate of newly diagnosed DM and prediabetes in the NAFLD patients was 6 and 21%, respectively. Most of the patients with NAFLD (97%) were found to have an increased echogenicity of the pancreas at ultrasound examination. Grade of fatty pancreas was correlated positively with cf-PWV levels (P<0.05), whereas no correlation was found with CIMT (P>0.05). The presence of fatty pancreas was associated significantly with higher CIMT and cf-PWV levels (P<0.05). The results for cf-PWV and CIMT did not remain significant after adjustment for confounding factors. Although the levels of cf-PWV and CIMT increased with increasing grade of fatty pancreas, there was no significant association. CONCLUSION We have shown for the first time that fatty pancreas is a contributing factor for the development of atherosclerosis in patients with NAFLD. This study also confirms the strong association between NAFLD and fatty pancreas.
Collapse
|
47
|
Rattarasarn C. Dysregulated lipid storage and its relationship with insulin resistance and cardiovascular risk factors in non-obese Asian patients with type 2 diabetes. Adipocyte 2018; 7:71-80. [PMID: 29411678 DOI: 10.1080/21623945.2018.1429784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The prevalence of non-obese type 2 diabetes in Asians is up to 50%. This review aims to summarize the role of regional fat in the development of insulin resistance and cardiovascular risk in non-obese Asian type 2 diabetes as well as the role of intra-pancreatic fat and β-cell dysfunction. The body fat content of non-obese Asian type 2 diabetic patients is not different from that of non-diabetic subjects but the proportion of intra-abdominal and intra-hepatic fat are greater. Visceral fat contributes to insulin resistance and cardiovascular risk in non-obese Asian type 2 diabetes. Intra-hepatic fat and the hypertrophic abdominal subcutaneous adipocytes are associated with insulin resistance and cardiovascular risk in non-obese, non-diabetic Asian subjects. It may be true in non-obese Asian type 2 diabetic patients. The role of intra-myocellular lipid and insulin resistance is uncertain. Intra-pancreatic fat may not be involved in β-cell dysfunction in non-obese Asian type 2 diabetes.
Collapse
Affiliation(s)
- Chatchalit Rattarasarn
- Division of Endocrinology & Metabolism, Department of Medicine, Ramathibodi hospital, Mahidol university, Bangkok, Thailand
| |
Collapse
|
48
|
Guglielmi V, Sbraccia P. Type 2 diabetes: Does pancreatic fat really matter? Diabetes Metab Res Rev 2018; 34. [PMID: 28984071 DOI: 10.1002/dmrr.2955] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
With the increasing prevalence of obesity, the interest of research in nonalcoholic fatty pancreas disease (NAFPD) has grown. Even though the pancreas appears more susceptible to lipid accumulation compared with the liver, NAFPD has been less investigated due to the limits in detecting techniques. Several definitions and synonyms for NAFPD are used by authors and can be misleading. This, together with differences in methodology and ethnicity, make the integration and comparison of studies on this topic challenging. NAFPD could be used as an early indicator of ectopic fat deposition, which is recognized as a key factor of obesity cardio-metabolic complications. However, evidence that NAFPD has a pathogenetic role in type 2 diabetes is also emerging. This article reviews the current state of knowledge on the clinical and pathophysiologic relevance of NAFPD in β-cell function and insulin resistance.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit and Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit and Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
49
|
Taylor R, Barnes AC. Translating aetiological insight into sustainable management of type 2 diabetes. Diabetologia 2018; 61:273-283. [PMID: 29143063 PMCID: PMC6448962 DOI: 10.1007/s00125-017-4504-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/11/2017] [Indexed: 12/15/2022]
Abstract
Using a low-energy diet as a tool, it has been possible to elucidate the sequence of pathophysiological changes that lead to the onset of type 2 diabetes. Negative energy balance in type 2 diabetes causes a profound fall in liver fat content resulting in normalisation of hepatic insulin sensitivity within 7 days. As the period of negative energy balance extends and liver fat levels fall to low normal, the rate of export of triacylglycerol from the liver falls. Consequent to this, the raised pancreas fat content falls and in early type 2 diabetes, normal first-phase insulin secretion becomes re-established with normal plasma glucose control. This research, driven by the predictions of the 2008 twin cycle hypothesis, has led to a paradigm shift in understanding. Studying the reversed sequence of pathophysiological changes, the linked abnormalities in liver and pancreas have been revealed. Early type 2 diabetes is a potentially reversible condition. Surprisingly, it was observed that the diet devised as an experimental tool was actually liked by research participants. It was associated neither with hunger nor tiredness in most people, but with rapidly increased wellbeing. A defined period of weight loss followed by carefully planned weight maintenance-the 'One, Two' approach-has since been applied in clinical practice. Motivated individuals can reverse their type 2 diabetes and remain normoglycaemic over years. A large study is underway to evaluate the applicability of this general approach to routine primary care practice as a long-term management strategy.
Collapse
Affiliation(s)
- Roy Taylor
- Newcastle Magnetic Resonance Centre, Institute for Cellular Medicine, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| | - Alison C Barnes
- Human Nutrition Research Centre, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
50
|
Wu JM, Ho TW, Yang CY, Lee PH, Tien YW. Changes in glucose metabolism after distal pancreatectomy: a nationwide database study. Oncotarget 2018. [PMID: 29541399 PMCID: PMC5834261 DOI: 10.18632/oncotarget.24325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background This population-based study evaluated changes in glucose metabolism after distal pancreatectomy (DP). Methods Data from the Taiwan National Health Insurance Research Database was collected from 2001 to 2010. Of 1,980 patients who underwent DP, 507 had diabetes and 1,410 did not. Results Of the 1,410 non-diabetic pre-DP patients, 312 (22.1%) developed newly-diagnosed diabetes after DP. Multiple logistic regression analysis revealed that dyslipidemia [hazard ratio = 1.940; 95% confidence interval = 1.362–2.763; P < 0.001] and chronic pancreatitis (hazard ratio = 2.428; 95% confidence interval = 1.889–3.121; P < 0.001) were significantly associated with the development of diabetes after DP. On the other hand, analysis of changes in glucose metabolism among 289 pre-DP diabetes without the use of insulin revealed that 173 (59.9%) had deteriorated glucose metabolism after DP. Conclusion Dyslipidemia and chronic pancreatitis are risk factors for the development of diabetes. Further, more than half of the pre-DP diabetes patients without the use of insulin had deterioration of glucose metabolism after DP. Therefore, clinicians should monitor glucose metabolism and clinical symptoms of hyperglycemia among DP patients.
Collapse
Affiliation(s)
- Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Te-Wei Ho
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| |
Collapse
|