1
|
Wang WJ, He H, Fang F, Liu X, Yang MN, Chen ZL, Wu T, Huang R, Li F, Zhang J, Ouyang F, Luo ZC. Cord Blood Fetuin-B, Fetal Growth Factors, and Lipids in Gestational Diabetes Mellitus. J Clin Endocrinol Metab 2025; 110:e1540-e1546. [PMID: 39073616 PMCID: PMC12012798 DOI: 10.1210/clinem/dgae520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
CONTEXT Fetuin-B is a hepatokine/adipokine implicated in glucose homeostasis and lipid metabolism. OBJECTIVE We sought to assess whether cord blood fetuin-B levels are altered in gestational diabetes mellitus (GDM) and the association with fetal growth factors and lipids. METHODS In a nested, case-control study of 153 pairs of neonates of mothers with GDM and euglycemic pregnancies in the Shanghai Birth Cohort, we assessed cord blood fetuin-B in relation to fetal growth factors and lipids (high-density lipoprotein, low-density lipoprotein [LDL], total cholesterol [TC], and triglycerides). RESULTS Cord blood fetuin-B concentrations were higher in the newborns of GDM vs euglycemic mothers (mean ± SD: 2.35 ± 0.96 vs 2.05 ± 0.73 mg/L; P = .012), and were positively correlated with LDL (r = 0.239; P < .0001), TC (r = 0.230; P = .0001), insulin-like growth factor-Ⅰ (IGF-Ⅰ) (r = 0.137; P = .023) and IGF-Ⅱ (r = 0.148; P = .014) concentrations. Similar associations were observed adjusting for maternal and neonatal characteristics. CONCLUSION The study is the first to demonstrate that fetuin-B levels are elevated in fetal life in GDM, and that fetuin-B affects lipid metabolic health during fetal life in humans. The secretion of fetuin-B appears to be related to the secretion of IGF-Ⅰ and IGF-Ⅱ.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 271016, China
| | - Hua He
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Fang Fang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Xin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Meng-Nan Yang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Zi-Lin Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Ting Wu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Rong Huang
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, and Institute of Health Policy, Management and Evaluation, Temerty Faculty of Medicine, University of Toronto, Toronto M5G 1X5, Canada
| | - Fei Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Fengxiu Ouyang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Zhong-Cheng Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Early Life Health Institute, and Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, and Institute of Health Policy, Management and Evaluation, Temerty Faculty of Medicine, University of Toronto, Toronto M5G 1X5, Canada
| |
Collapse
|
2
|
Al Bekai E, Beaini CE, Kalout K, Safieddine O, Semaan S, Sahyoun F, Ghadieh HE, Azar S, Kanaan A, Harb F. The Hidden Impact of Gestational Diabetes: Unveiling Offspring Complications and Long-Term Effects. Life (Basel) 2025; 15:440. [PMID: 40141785 PMCID: PMC11944258 DOI: 10.3390/life15030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM), characterized by gestational hyperglycemia due to insufficient insulin response, poses significant risks to both maternal and offspring health. Fetal exposure to maternal hyperglycemia leads to short-term complications such as macrosomia and neonatal hypoglycemia and long-term risks including obesity, metabolic syndrome, cardiovascular dysfunction, and type 2 diabetes. The Developmental Origins of Health and Disease (DOHaD) theory explains how maternal hyperglycemia alters fetal programming, increasing susceptibility to metabolic disorders later in life. OBJECTIVE This review explores the intergenerational impact of GDM, linking maternal hyperglycemia to lifelong metabolic, cardiovascular, and neurodevelopmental risks via epigenetic and microbiome alterations. It integrates the most recent findings, contrasts diagnostic methods, and offers clinical strategies for early intervention and prevention. METHODS A comprehensive literature search was conducted in PubMed, Scopus, and ScienceDirect to identify relevant studies published between 1 January 2000 and 31 December 2024. The search included studies focusing on the metabolic and developmental consequences of GDM exposure in offspring, as well as potential mechanisms such as epigenetic alterations and gut microbiota dysbiosis. Studies examining preventive strategies and management approaches were also included. KEY FINDINGS Maternal hyperglycemia leads to long-term metabolic changes in offspring, with epigenetic modifications and gut microbiota alterations playing key roles. GDM-exposed children face increased risks of obesity, glucose intolerance, and cardiovascular diseases. Early screening and monitoring are crucial for risk reduction. PRACTICAL IMPLICATIONS Understanding the intergenerational effects of GDM has important clinical implications for prenatal and postnatal care. Early detection, lifestyle interventions, and targeted postnatal surveillance are essential for reducing long-term health risks in offspring. These findings emphasize the importance of comprehensive maternal healthcare strategies to improve long-term outcomes for both mothers and their children.
Collapse
Affiliation(s)
- Elsa Al Bekai
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
| | - Carla El Beaini
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
| | - Karim Kalout
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
| | - Ouhaila Safieddine
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
| | - Sandra Semaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
| | - François Sahyoun
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
- Family & Geriatric Medicine, Centre Hospitalier du Nord–CHN, Zgharta P.O. Box 100, Lebanon
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon
| | - Amjad Kanaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon
| |
Collapse
|
3
|
Shamsad A, Gautam T, Singh R, Banerjee M. Genetic and epigenetic alterations associated with gestational diabetes mellitus and adverse neonatal outcomes. World J Clin Pediatr 2025; 14:99231. [DOI: 10.5409/wjcp.v14.i1.99231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder, recognised during 24-28 weeks of pregnancy. GDM is linked with adverse newborn outcomes such as macrosomia, premature delivery, metabolic disorder, cardiovascular, and neurological disorders. Recent investigations have focused on the correlation of genetic factors such as β-cell function and insulin secretary genes (transcription factor 7 like 2, potassium voltage-gated channel subfamily q member 1, adiponectin etc.) on maternal metabolism during gestation leading to GDM. Epigenetic alterations like DNA methylation, histone modification, and miRNA expression can influence gene expression and play a dominant role in feto-maternal metabolic pathways. Interactions between genes and environment, resulting in differential gene expression patterns may lead to GDM. Researchers suggested that GDM women are more susceptible to insulin resistance, which alters intrauterine surroundings, resulting hyperglycemia and hyperinsulinemia. Epigenetic modifications in genes affecting neuroendocrine activities, and metabolism, increase the risk of obesity and type 2 diabetes in offspring. There is currently no treatment or effective preventive method for GDM, since the molecular processes of insulin resistance are not well understood. The present review was undertaken to understand the pathophysiology of GDM and its effects on adverse neonatal outcomes. In addition, the study of genetic and epigenetic alterations will provide lead to researchers in the search for predictive molecular biomarkers.
Collapse
Affiliation(s)
- Amreen Shamsad
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Tanu Gautam
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Renu Singh
- Department of Obstetrics and Gynecology, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
4
|
Harnois-Leblanc S, Hivert MF. Stopping the Intergenerational Risk of Diabetes-From Mechanisms to Interventions: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2025; 74:255-264. [PMID: 39556447 DOI: 10.2337/dbi24-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
Embedded in the developmental origins of health and disease (DOHaD) hypothesis, maternal hyperglycemia in utero, from preexisting diabetes or gestational diabetes mellitus, predisposes the offspring to excess adiposity and heightened risk of prediabetes and type 2 diabetes development. This transmission creates a vicious cycle increasing the presence of diabetes from one generation to another, leading to the question: How can we interrupt this vicious cycle? In this article, we present the current state of knowledge on the intergenerational transmission of diabetes from epidemiological life course studies. Then, we discuss the potential mechanisms implicated in the intergenerational transmission of diabetes with a focus on epigenetics. We present novel findings stemming from epigenome-wide association studies of offspring DNA methylation in blood and placental tissues, which shed light on potential molecular mechanisms implicated in the mother-offspring transmission of diabetes. Lastly, with a perspective on how to break the cycle, we consider interventions to prevent offspring obesity and diabetes development before puberty, as a critical period of the intergenerational cycle. This article is part of a series of perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program.
Collapse
Affiliation(s)
- Soren Harnois-Leblanc
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
5
|
Kornerup N, Danielsen JH, Sahl RE, Pico ML, Johansen MY, Knop FK, Bønnelykke K, Bergholt T, Kelstrup L, Foghsgaard S, Ghauri N, Grønlund E, Lund L, Vinter CA, Lyng Forman J, Barrès R, Kragelund Nielsen K, Andersen A, Torekov SS, Groth Grunnet L, Vilsbøll T. Healthy lifestyle before and during pregnancy to prevent childhood obesity: study protocol for a parallel group randomised trial - the PRE-STORK trial. BMJ Open 2025; 15:e087895. [PMID: 39863406 PMCID: PMC11784338 DOI: 10.1136/bmjopen-2024-087895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
INTRODUCTION The global prevalence of people living with overweight has tripled since 1975 and more than 40% of Danish women enter pregnancy being overweight. With the increasing rates of obesity observed in children, adolescents and adults, there is an urgent need for preventive measures. Risk factors for childhood obesity include maternal overweight or obesity before conception and excessive weight gain during pregnancy. Interventions aimed at modifying maternal lifestyle during pregnancy have demonstrated minimal positive or no impact on the health of the children. The 'healthy lifestyle before and during pregnancy to prevent childhood obesity - the PRE-STORK trial' aims to provide insights into the effect of a lifestyle intervention initiated before conception and continued during pregnancy in women with overweight or obesity, on neonatal adiposity in their children. METHODS AND ANALYSIS In this randomised, two-arm, parallel-group, controlled trial, we will include 360 women with overweight or obesity (aged 18-40; body mass index 25-44 kg/m2) and their partners. The women will be randomised to receive either standard of care or a lifestyle intervention focused on preconception body weight reduction, regular physical exercise, healthy diet and support from a mentor before and during pregnancy. The primary outcome is the difference in neonatal adiposity measured in their children at birth. Children conceived during the trial will constitute a birth cohort, monitoring the effects on their health until the age of 18 years. ETHICS AND DISSEMINATION The trial has been approved by the Regional Committee on Health Research Ethics in the Capital Region of Denmark (identification number H-22011403) and will be conducted in agreement with the Declaration of Helsinki. All results, whether positive, negative and inconclusive, will be disseminated at national or international scientific meetings and in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov: NCT05578690 (October 2022).
Collapse
Affiliation(s)
- Nina Kornerup
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Ronni Eg Sahl
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Majken Lillholm Pico
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Prevention, Health Promotion & Community Care, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Mette Yun Johansen
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Novo Nordisk A/S, Bagsværd, Denmark
| | - Filip K Knop
- Novo Nordisk A/S, Bagsværd, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Hovedstaden, Denmark
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Kobenhavn, Denmark
| | - Klaus Bønnelykke
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Kobenhavn, Denmark
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital Gentofte, Hellerup, Hovedstaden, Denmark
| | - Thomas Bergholt
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Kobenhavn, Denmark
- Department of Obstetrics, Herlev Hospital, Herlev, Hovedstaden, Denmark
| | - Louise Kelstrup
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Kobenhavn, Denmark
- Department of Obstetrics, Herlev Hospital, Herlev, Hovedstaden, Denmark
| | - Signe Foghsgaard
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Obstetrics, Herlev Hospital, Herlev, Hovedstaden, Denmark
| | - Nida Ghauri
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Emilie Grønlund
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Lærke Lund
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Christina Anne Vinter
- Department of Gynaecology and Obstetrics, Odense Universitetshospital, Odense, Syddanmark, Denmark
- Steno Diabetes Center Odense, Odense, Syddanmark, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, University of Copenhagen Department of Public Health, Kobenhavn, Region Hovedstaden, Denmark
| | - Romain Barrès
- Faculty of Health and Medical Sciences, University of Copenhagen Novo Nordisk Foundation Center for Basic Metabolic Research, Kobenhavn, Region Hovedstaden, Denmark
- Centre National pour la Recherche Scientifique, Université Côte d'Azur, Nice, Provence-Alpes-Côte d'Azu, France
| | - Karoline Kragelund Nielsen
- Department of Prevention, Health Promotion & Community Care, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Andreas Andersen
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Signe S Torekov
- Department of Biomedical Sciences, University of Copenhagen, Kobenhavn, Denmark
| | - Louise Groth Grunnet
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Tina Vilsbøll
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Kobenhavn, Denmark
| |
Collapse
|
6
|
Lai L, Juntilla DL, Del M, Del C Gomez-Alonso M, Grallert H, Thorand B, Farzeen A, Rathmann W, Winkelmann J, Prokisch H, Gieger C, Herder C, Peters A, Waldenberger M. Longitudinal association between DNA methylation and type 2 diabetes: findings from the KORA F4/FF4 study. Cardiovasc Diabetol 2025; 24:19. [PMID: 39827095 PMCID: PMC11748594 DOI: 10.1186/s12933-024-02558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) has been linked to changes in DNA methylation levels, which can, in turn, alter transcriptional activity. However, most studies for epigenome-wide associations between T2D and DNA methylation comes from cross-sectional design. Few large-scale investigations have explored these associations longitudinally over multiple time-points. METHODS In this longitudinal study, we examined data from the Cooperative Health Research in the Region of Augsburg (KORA) F4 and FF4 studies, conducted approximately seven years apart. Leucocyte DNA methylation was assessed using the Illumina EPIC and 450K arrays. Linear mixed-effects models were employed to identify significant associations between methylation sites and diabetes status, as well as with fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), homoeostasis model assessment of beta cell function (HOMA-B), and homoeostasis model assessment of insulin resistance (HOMA-IR). Interaction effects between diabetes status and follow-up time were also examined. Additionally, we explored CpG sites associated with persistent prediabetes or T2D, as well as the progression from normal glucose tolerance (NGT) to prediabetes or T2D. Finally, we assessed the associations between the identified CpG sites and their corresponding gene expression levels. RESULTS A total of 3,501 observations from 2,556 participants, with methylation measured at least once across two visits, were included in the analyses. We identified 64 sites associated with T2D including 15 novel sites as well as known associations like those with the thioredoxin-interacting protein (TXNIP) and ATP-binding cassette sub-family G member 1 (ABCG1) genes. Of these, eight CpG sites exhibited different rates of annual methylation change between the NGT and T2D groups, and seven CpG sites were linked to the progression from NGT to prediabetes or T2D, including those annotated to mannosidase alpha class 2a member 2 (MAN2A2) and carnitine palmitoyl transferase 1 A (CPT1A). Longitudinal analysis revealed significant associations between methylation and FPG at 128 sites, HbA1c at 41 sites, and HOMA-IR at 57 sites. Additionally, we identified 104 CpG-transcript pairs in whole blood, comprising 40 unique CpG sites and 96 unique gene transcripts. CONCLUSIONS Our study identified novel differentially methylated loci linked to T2D as well as to changes in diabetes status through a longitudinal approach. We report CpG sites with different rates of annual methylation change and demonstrate that DNA methylation associated with T2D is linked to following transcriptional differences. These findings provide new insights into the molecular mechanisms of diabetes development.
Collapse
Affiliation(s)
- Liye Lai
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany.
| | - Dave Laurence Juntilla
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Monica Del
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Monica Del C Gomez-Alonso
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Harald Grallert
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aiman Farzeen
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
- Cluster for Systems Neurology (SyNergy), Munich, Germany
- Chair of Neurogenetics, Technische Universität München, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
7
|
Linares-Pineda TM, Lendínez-Jurado A, Piserra-López A, Suárez-Arana M, Pozo M, Molina-Vega M, Picón-César MJ, Morcillo S. Longitudinal DNA methylation profiles in saliva of offspring from mothers with gestational diabetes: associations with early childhood growth patterns. Cardiovasc Diabetol 2025; 24:15. [PMID: 39806399 PMCID: PMC11730480 DOI: 10.1186/s12933-024-02568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements. METHODS This study analyzed saliva DNA methylation patterns in 30 children (15 born to GDM mothers and 15 to non-GDM mothers) from the EPIDG cohort. Samples were collected at two time points: 8-10 weeks postpartum and at one year of age. Epigenome-wide analysis of over 850,000 CpG sites was conducted using the Illumina Methylation EPIC Bead Chip. Differential methylation positions (DMPs) were identified with the limma package, using a significance threshold of p < 0.01 and delta β ≥ 5%. Correlation analysis examined associations between methylation and growth variables (weight, height, BMI and annual growth) using Spearman tests. RESULTS We identified 6,968 DMPs at the postpartum stage and 5,132 after one year, with 50 sites remaining differentially methylated over time, 16 of which maintained consistent methylation directionality. Functional analysis linked several of these DMPs to genes involved in inflammation and metabolic processes, including CYTH3 and FARP2, both implicated in growth and metabolic pathways. Significant correlations were found between specific CpG sites and growth-related variables such as weight, head circumference, height, and BMI. CONCLUSIONS This study's longitudinal design reveals stable DNA methylation patterns in saliva samples that differentiate GDM-exposed children from controls across the first year of life, highlighting the feasibility of saliva as a minimally invasive biomarker source. The persistence of these epigenetic signatures underscores their potential as early indicators of metabolic risk, offering valuable insights into the long-term impact of maternal GDM on child health. Although the use of saliva offers a practical and non-invasive tool for pediatric epigenetic research, further studies are necessary to validate these findings in larger populations.
Collapse
Affiliation(s)
- Teresa M Linares-Pineda
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain
- CIBER Pathophysiology of Obesity and Nutrition-CIBERON, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Biomedical Research Institute-IBIMA Plataforma BIONAND, 29010, Málaga, Spain
| | - Alfonso Lendínez-Jurado
- Biomedical Research Institute-IBIMA Plataforma BIONAND, 29010, Málaga, Spain
- Andalucía Tech, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
- Department of Pediatric Endocrinology, Regional University Hospital of Málaga, 29011, Málaga, Spain
- Distrito Sanitario Málaga-Guadalhorce, 29009, Málaga, Spain
| | - Alberto Piserra-López
- Department of Cardiology, Virgen de la Victoria University Hospital, Málaga, 29010, Spain
| | - María Suárez-Arana
- Department of Obstetrics and Gynecology, Regional University Hospital of Málaga, Málaga, 29011, Spain
| | - María Pozo
- Biomedical Research Institute-IBIMA Plataforma BIONAND, 29010, Málaga, Spain
| | - María Molina-Vega
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain
| | - María José Picón-César
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain
- CIBER Pathophysiology of Obesity and Nutrition-CIBERON, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Biomedical Research Institute-IBIMA Plataforma BIONAND, 29010, Málaga, Spain
| | - Sonsoles Morcillo
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain.
- CIBER Pathophysiology of Obesity and Nutrition-CIBERON, Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Biomedical Research Institute-IBIMA Plataforma BIONAND, 29010, Málaga, Spain.
| |
Collapse
|
8
|
Di Pietrantonio N, Sánchez-Ceinos J, Shumliakivska M, Rakow A, Mandatori D, Di Tomo P, Formoso G, Bonfini T, Baldassarre MPA, Sennström M, Almahmeed W, Pandolfi A, Cosentino F. The inflammatory and oxidative phenotype of gestational diabetes is epigenetically transmitted to the offspring: role of methyltransferase MLL1-induced H3K4me3. Eur Heart J 2024; 45:5171-5185. [PMID: 39471481 DOI: 10.1093/eurheartj/ehae688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/16/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND AND AIMS Hyperglycaemia during gestational diabetes (GD) predisposes women and their offspring to later cardiometabolic disease. The hyperglycaemia-mediated epigenetic changes remain to be elucidated. Methyltransferase MLL1-induced trimethylation of histone 3 at lysine 4 (H3K4me3) activates inflammatory and oxidative phenotype. This epigenetic mark in GD women and its transmission to the offspring were investigated. METHODS Peripheral blood mononuclear cells (PBMC) were collected from GD and control (C) women and also from adolescents born to women of both groups. Endothelial human umbilical vein endothelial cells (HUVEC) and cord blood mononuclear cells (CBMC) were from umbilical cords. The NF-κBp65 and NOX4 expressions were investigated by reverse transcription quantitative polymerase chain reaction and immunofluorescence (IF). MLL1 and H3K4me3 were investigated by immunoblotting and IF. H3K4me3 on NF-κBp65 and NOX4 promoters was studied by chromatin immunoprecipitation. Superoxide anion generation was measured by electron spin resonance spectroscopy. Plasma cytokines were measured by enzyme-linked immunosorbent assay. To investigate the role of MLL1, HUVEC were exposed to inhibitor MM102 or siRNA transfection. RESULTS PBMC, CBMC, and HUVEC showed an increase of NF-κBp65, IL-6, ICAM-1, MCP-1, and VCAM-1 mRNAs. These findings were associated with H3K4me3 enrichment in the promoter of NF-κBp65. Elevated H3K4me3 and cytokine levels were observed in GD adolescents. MLL1 drives H3K4me3 not only on NF-kB p65, but also on NOX4 promoter. Inhibition of MLL1 blunted NF-κBp65 and NOX4 by modulating inflammatory and oxidative phenotype. CONCLUSIONS Such proof-of-concept study shows persistence of MLL1-dependent H3K4me3 in offspring born to GD women, suggesting an epigenetic-driven transmission of maternal phenotype. These findings may pave the way for pharmacological reprogramming of adverse histone modifications to mitigate abnormal phenotypes underlying early ASCVD.
Collapse
Affiliation(s)
- Nadia Di Pietrantonio
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm 171 76, Sweden
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D'Annunzio of Chieti-Pescara, Chieti 66100, Italy
| | - Julia Sánchez-Ceinos
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Mariana Shumliakivska
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Alexander Rakow
- Department of Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D'Annunzio of Chieti-Pescara, Chieti 66100, Italy
| | - Pamela Di Tomo
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D'Annunzio of Chieti-Pescara, Chieti 66100, Italy
| | - Gloria Formoso
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology-CAST, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Tiziana Bonfini
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Maria Pompea Antonia Baldassarre
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology-CAST, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Maria Sennström
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D'Annunzio of Chieti-Pescara, Chieti 66100, Italy
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm 171 76, Sweden
- Heart and Vascular Theme, Karolinska University Hospital, Stockholm 171 76, Sweden
| |
Collapse
|
9
|
Cainelli E, Vedovelli L, Bisiacchi P. The mother-child interface: A neurobiological metamorphosis. Neuroscience 2024; 561:92-106. [PMID: 39427701 DOI: 10.1016/j.neuroscience.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
From the start of pregnancy, mother and child induce reciprocal neurobiological changes in the brain that will prove critical for neurodevelopment and survival of both. Molecular communication between mother and fetus is constantly active and persists even after the fetus starts to synthesize its hormones in late gestation. Intriguingly, some mother and fetus exchange cells remain in the other's brain and body with long-lasting effects and memories that do not follow the laws of classical genetics but involve complex epigenetic mechanisms. After childbirth, mother and child go through a transitional phase, a sort of limbo in which both will have a peculiar functioning profile, which is adaptive for contingencies but also renders them vulnerable. The interplay between these two "limbo" states allows for an easier transition to the subsequent phases of development. In this review, we will trace mother's and child's path from pregnancy to the months following birth and, in particular, unravel i) the key features of pregnancy and brain development and the reciprocal influences; ii) how a transitory pattern of functioning characterize mother and child, moving them toward more flexible and evolved forms; and iii) how mother and fetus act during childbirth to promote neuroprotection, pain reduction, and neurophysiological changes. Therefore, this review covers a wide range of topics, integrating neuroanatomical, neurological, biochemical, neurophysiological, and psychological studies in a meaningful way, trying to integrate them in a holistic view of the mother-child interface that is usually neglected.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, 35131 Padova, Italy.
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular and Public Health Sciences, University of Padova, 35131 Padova, Italy.
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, 35131 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy.
| |
Collapse
|
10
|
Francis EC, Hunt KJ, Grobman WA, Skupski DW, Mani A, Hinkle SN. Maternal Obesity and Differences in Child Urine Metabolome. Metabolites 2024; 14:574. [PMID: 39590810 PMCID: PMC11596954 DOI: 10.3390/metabo14110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Background/objective: Approximately one-third of pregnant individuals in the U.S. are affected by obesity, which can adversely impact the in utero environment and offspring. This study aimed to investigate the differences in urine metabolomics between children exposed and unexposed to maternal obesity. Methods: In a study nested within a larger pregnancy cohort of women-offspring pairs, we measured untargeted metabolomics using liquid chromatography-mass spectrometry in urine samples from 68 children at 4-8 years of age. We compared metabolite levels between offspring exposed to maternal obesity (body mass index [BMI] ≥ 30.0 kg/m2) vs. unexposed (maternal BMI 18.5-24.9 kg/m2) and matched them on covariates, using two-sample t-tests, with additional sensitivity analyses based on children's BMI. This study reports statistically significant results (p ≤ 0.05) and potentially noteworthy findings (fold change > 1 or 0.05 < p < 0.15), considering compounds' involvement in common pathways or similar biochemical families. Results: The mean (SD) maternal age at study enrollment was 28.0 (6.3) years, the mean child age was 6.6 (0.8) years, 56% of children were male, and 38% of children had a BMI in the overweight/obese range (BMI ≥ 85th percentile). Children exposed to maternal obesity had lower levels of 5-hydroxyindole sulfate and 7-hydroxyindole sulfate and higher levels of secondary bile acids. Phenylacetic acid derivatives were lower in offspring exposed to obesity and in offspring who had a current BMI in the overweight/obese range. Exposure to maternal obesity was associated with lower levels of androgenic steroid dehydroepiandrosterone sulfate (DHEA-S). Conclusions: In this preliminary study, children exposed to maternal obesity in utero had differences in microbiome-related metabolites in urine suggestive of altered microbial catabolism of tryptophan and acetylated peptides. Some of these differences were partially attributable to the offspring's current BMI status. This study highlights the potential of urine metabolomics to identify biomarkers and pathways impacted by in utero exposure to maternal obesity.
Collapse
Affiliation(s)
- Ellen C. Francis
- Department of Biostatistics & Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA;
| | - Kelly J. Hunt
- Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - William A. Grobman
- Department of Obstetrics and Gynecology, Brown University Medical School, Providence, RI 02903, USA;
| | - Daniel W. Skupski
- Weill Cornell Medicine, New York Presbyterian Queens, Flushing, NY 11355, USA;
| | - Ashika Mani
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Stefanie N. Hinkle
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Josefson JL, Kuang A, Allard C, Bianco ME, Lowe W, Scholtens DM, Bouchard L, Hivert MF. Newborn adiposity is associated with cord blood DNA methylation at IGF1R and KLF7. Obesity (Silver Spring) 2024; 32:1923-1933. [PMID: 39165088 PMCID: PMC11421971 DOI: 10.1002/oby.24109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVE This study aimed to identify whether cord blood DNA methylation at specific loci is associated with neonatal adiposity, a key risk factor for childhood obesity. METHODS An epigenome-wide association study was conducted using the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study as a discovery sample. Linear regression models adjusted for maternal and offspring covariates and cell counts were used to analyze associations between neonatal adiposity as measured by sum of three skinfold thicknesses and cord blood DNA methylation. Assays were performed with Illumina EPIC arrays (791,359 CpG sites after quality control). Replication was performed in an independent cohort, Genetics of Glucose regulation in Gestation and Growth (Gen3G). RESULTS In 2740 HAPO samples, significant associations were identified at 89 CpG sites after accounting for multiple testing (Bonferroni-adjusted p < 0.05). Replication analyses conducted in 139 Gen3G participants confirmed associations for seven CpG sites. These included IGF1R, which encodes a transmembrane receptor involved in cell growth and survival that binds insulin-like growth factor I and insulin, and KLF7, which encodes a regulator of cell proliferation and inhibitor of adipogenesis; both are key regulators of growth during fetal life. CONCLUSIONS These findings support epigenetic mechanisms in the developmental origins of neonatal adiposity and as potential biomarkers of metabolic disease risk.
Collapse
Affiliation(s)
- Jami L Josefson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Catherine Allard
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
| | - Monica E Bianco
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - William Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luigi Bouchard
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
| | - Marie-France Hivert
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School; Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Hari Gopal S, Alenghat T, Pammi M. Early life epigenetics and childhood outcomes: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03585-7. [PMID: 39289593 DOI: 10.1038/s41390-024-03585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics is the study of changes in gene expression, without a change in the DNA sequence that are potentially heritable. Epigenetic mechanisms such as DNA methylation, histone modifications, and small non-coding RNA (sncRNA) changes have been studied in various childhood disorders. Causal links to maternal health and toxin exposures can introduce epigenetic modifications to the fetal DNA, which can be detected in the cord blood. Cord blood epigenetic modifications provide evidence of in-utero stressors and immediate postnatal changes, which can impact both short and long-term outcomes in children. The mechanisms of these epigenetic changes can be leveraged for prevention, early detection, and intervention, and to discover novel therapeutic modalities in childhood diseases. We report a scoping review of early life epigenetics, the influence of maternal health, maternal toxin, and drug exposures on the fetus, and its impact on perinatal, neonatal, and childhood outcomes. IMPACT STATEMENT: Epigenetic changes such as DNA methylation, histone modification, and non-coding RNA have been implicated in the pathophysiology of various disease processes. The fundamental changes to an offspring's epigenome can begin in utero, impacting the immediate postnatal period, childhood, adolescence, and adulthood. This scoping review summarizes current literature on the impact of early life epigenetics, especially DNA methylation on childhood health outcomes.
Collapse
Affiliation(s)
- Srirupa Hari Gopal
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mohan Pammi
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
13
|
Hivert MF, Backman H, Benhalima K, Catalano P, Desoye G, Immanuel J, McKinlay CJD, Meek CL, Nolan CJ, Ram U, Sweeting A, Simmons D, Jawerbaum A. Pathophysiology from preconception, during pregnancy, and beyond. Lancet 2024; 404:158-174. [PMID: 38909619 DOI: 10.1016/s0140-6736(24)00827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024]
Abstract
Gestational diabetes is the most common medical complication in pregnancy. Historically, gestational diabetes was considered a pregnancy complication involving treatment of rising glycaemia late in the second trimester. However, recent evidence challenges this view. Pre-pregnancy and pregnancy-specific factors influence gestational glycaemia, with open questions regarding roles of non-glycaemic factors in the aetiology and consequences of gestational diabetes. Varying patterns of insulin secretion and resistance in early and late pregnancy underlie a heterogeneity of gestational diabetes in the timing and pathophysiological subtypes with clinical implications: early gestational diabetes and insulin resistant gestational diabetes subtypes are associated with a higher risk of pregnancy complications. Metabolic perturbations of early gestational diabetes can affect early placental development, affecting maternal metabolism and fetal development. Fetal hyperinsulinaemia can affect the development of multiple fetal tissues, with short-term and long-term consequences. Pregnancy complications are prevented by managing glycaemia in early and late pregnancy in some, but not all women with gestational diabetes. A better understanding of the pathophysiology and heterogeneity of gestational diabetes will help to develop novel management approaches with focus on improved prevention of maternal and offspring short-term and long-term complications, from pre-conception, throughout pregnancy, and beyond.
Collapse
Affiliation(s)
- Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA; Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Helena Backman
- Faculty of Medicine and Health, Department of Obstetrics and Gynecology, Örebro University, Örebro, Sweden
| | - Katrien Benhalima
- Endocrinology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Patrick Catalano
- Maternal Infant Research Institute, Obstetrics and Gynecology Research, Tufts Medical Center, Boston, MA, USA; School of Medicine, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Jincy Immanuel
- School of Medicine, Western Sydney University, Sydney, NSW, Australia; Institute for Women's Health, College of Nursing, Texas Woman's University, Denton, TX, USA
| | - Christopher J D McKinlay
- Department of Paediatrics Child and Youth Health, University of Auckland, Auckland, New Zealand; Kidz First Neonatal Care, Te Whatu Ora Counties Manukau, Auckland, New Zealand
| | - Claire L Meek
- Leicester Diabetes Centre, Leicester General Hospital, University of Leicester, Leicester, UK
| | - Christopher J Nolan
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; Department of Endocrinology, Canberra Health Services, Woden, ACT, Australia
| | - Uma Ram
- Department of Obstetrics and Gynecology, Seethapathy Clinic and Hospital, Chennai, Tamilnadu, India
| | - Arianne Sweeting
- Department of Endocrinology, Royal Prince Alfred Hospital and University of Sydney, Sydney, NSW, Australia
| | - David Simmons
- School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| | - Alicia Jawerbaum
- Facultad de Medicina, Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina; Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, Buenos Aires, Argentina
| |
Collapse
|
14
|
Mckinnon K, Conole ELS, Vaher K, Hillary RF, Gadd DA, Binkowska J, Sullivan G, Stevenson AJ, Corrigan A, Murphy L, Whalley HC, Richardson H, Marioni RE, Cox SR, Boardman JP. Epigenetic scores derived in saliva are associated with gestational age at birth. Clin Epigenetics 2024; 16:84. [PMID: 38951914 PMCID: PMC11218140 DOI: 10.1186/s13148-024-01701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Epigenetic scores (EpiScores), reflecting DNA methylation (DNAm)-based surrogates for complex traits, have been developed for multiple circulating proteins. EpiScores for pro-inflammatory proteins, such as C-reactive protein (DNAm CRP), are associated with brain health and cognition in adults and with inflammatory comorbidities of preterm birth in neonates. Social disadvantage can become embedded in child development through inflammation, and deprivation is overrepresented in preterm infants. We tested the hypotheses that preterm birth and socioeconomic status (SES) are associated with alterations in a set of EpiScores enriched for inflammation-associated proteins. RESULTS In total, 104 protein EpiScores were derived from saliva samples of 332 neonates born at gestational age (GA) 22.14 to 42.14 weeks. Saliva sampling was between 36.57 and 47.14 weeks. Forty-three (41%) EpiScores were associated with low GA at birth (standardised estimates |0.14 to 0.88|, Bonferroni-adjusted p-value < 8.3 × 10-3). These included EpiScores for chemokines, growth factors, proteins involved in neurogenesis and vascular development, cell membrane proteins and receptors, and other immune proteins. Three EpiScores were associated with SES, or the interaction between birth GA and SES: afamin, intercellular adhesion molecule 5, and hepatocyte growth factor-like protein (standardised estimates |0.06 to 0.13|, Bonferroni-adjusted p-value < 8.3 × 10-3). In a preterm subgroup (n = 217, median [range] GA 29.29 weeks [22.14 to 33.0 weeks]), SES-EpiScore associations did not remain statistically significant after adjustment for sepsis, bronchopulmonary dysplasia, necrotising enterocolitis, and histological chorioamnionitis. CONCLUSIONS Low birth GA is substantially associated with a set of EpiScores. The set was enriched for inflammatory proteins, providing new insights into immune dysregulation in preterm infants. SES had fewer associations with EpiScores; these tended to have small effect sizes and were not statistically significant after adjusting for inflammatory comorbidities. This suggests that inflammation is unlikely to be the primary axis through which SES becomes embedded in the development of preterm infants in the neonatal period.
Collapse
Affiliation(s)
- Katie Mckinnon
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Eleanor L S Conole
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Kadi Vaher
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Justyna Binkowska
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Gemma Sullivan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Amy Corrigan
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Heather C Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hilary Richardson
- School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - James P Boardman
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
15
|
Deng WQ, Pigeyre M, Azab SM, Wilson SL, Campbell N, Cawte N, Morrison KM, Atkinson SA, Subbarao P, Turvey SE, Moraes TJ, Mandhane P, Azad MB, Simons E, Pare G, Anand SS. Consistent cord blood DNA methylation signatures of gestational age between South Asian and white European cohorts. Clin Epigenetics 2024; 16:74. [PMID: 38840168 PMCID: PMC11155053 DOI: 10.1186/s13148-024-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, particularly DNA methylation (DNAm) in cord blood, are an important biological marker of how external exposures during gestation can influence the in-utero environment and subsequent offspring development. Despite the recognized importance of DNAm during gestation, comparative studies to determine the consistency of these epigenetic signals across different ethnic groups are largely absent. To address this gap, we first performed epigenome-wide association studies (EWAS) of gestational age (GA) using newborn cord blood DNAm comparatively in a white European (n = 342) and a South Asian (n = 490) birth cohort living in Canada. Then, we capitalized on established cord blood epigenetic GA clocks to examine the associations between maternal exposures, offspring characteristics and epigenetic GA, as well as GA acceleration, defined as the residual difference between epigenetic and chronological GA at birth. RESULTS Individual EWASs confirmed 1,211 and 1,543 differentially methylated CpGs previously reported to be associated with GA, in white European and South Asian cohorts, respectively, with a similar distribution of effects. We confirmed that Bohlin's cord blood GA clock was robustly correlated with GA in white Europeans (r = 0.71; p = 6.0 × 10-54) and South Asians (r = 0.66; p = 6.9 × 10-64). In both cohorts, Bohlin's clock was positively associated with newborn weight and length and negatively associated with parity, newborn female sex, and gestational diabetes. Exclusive to South Asians, the GA clock was positively associated with the newborn ponderal index, while pre-pregnancy weight and gestational weight gain were strongly predictive of increased epigenetic GA in white Europeans. Important predictors of GA acceleration included gestational diabetes mellitus, newborn sex, and parity in both cohorts. CONCLUSIONS These results demonstrate the consistent DNAm signatures of GA and the utility of Bohlin's GA clock across the two populations. Although the overall pattern of DNAm is similar, its connections with the mother's environment and the baby's anthropometrics can differ between the two groups. Further research is needed to understand these unique relationships.
Collapse
Affiliation(s)
- Wei Q Deng
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, Canada.
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada.
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada.
| | - Marie Pigeyre
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON, Canada
| | - Sandi M Azab
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Samantha L Wilson
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada
| | - Natalie Campbell
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Nathan Cawte
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
| | | | | | - Padmaja Subbarao
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, Canada
| | - Theo J Moraes
- Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, Canada
| | - Piush Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Elinor Simons
- Section of Allergy and Immunology, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Guillaume Pare
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
- Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Sonia S Anand
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada.
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada.
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada.
| |
Collapse
|
16
|
Lai L, Matías-García PR, Kretschmer A, Gieger C, Wilson R, Linseisen J, Peters A, Waldenberger M. Smoking-Induced DNA Hydroxymethylation Signature Is Less Pronounced than True DNA Methylation: The Population-Based KORA Fit Cohort. Biomolecules 2024; 14:662. [PMID: 38927065 PMCID: PMC11201877 DOI: 10.3390/biom14060662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Despite extensive research on 5-methylcytosine (5mC) in relation to smoking, there has been limited exploration into the interaction between smoking and 5-hydroxymethylcytosine (5hmC). In this study, total DNA methylation (5mC+5hmC), true DNA methylation (5mC) and hydroxymethylation (5hmC) levels were profiled utilizing conventional bisulphite (BS) and oxidative bisulphite (oxBS) treatment, measured with the Illumina Infinium Methylation EPIC BeadChip. An epigenome-wide association study (EWAS) of 5mC+5hmC methylation revealed a total of 38,575 differentially methylated positions (DMPs) and 2023 differentially methylated regions (DMRs) associated with current smoking, along with 82 DMPs and 76 DMRs associated with former smoking (FDR-adjusted p < 0.05). Additionally, a focused examination of 5mC identified 33 DMPs linked to current smoking and 1 DMP associated with former smoking (FDR-adjusted p < 0.05). In the 5hmC category, eight DMPs related to current smoking and two DMPs tied to former smoking were identified, each meeting a suggestive threshold (p < 1 × 10-5). The substantial number of recognized DMPs, including 5mC+5hmC (7069/38,575, 2/82), 5mC (0/33, 1/1), and 5hmC (2/8, 0/2), have not been previously reported. Our findings corroborated previously established methylation positions and revealed novel candidates linked to tobacco smoking. Moreover, the identification of hydroxymethylated CpG sites with suggestive links provides avenues for future research.
Collapse
Affiliation(s)
- Liye Lai
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.R.M.-G.); (C.G.); (R.W.); (A.P.)
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Faculty of Medicine, Ludwig Maximilians University, 81377 Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| | - Pamela R. Matías-García
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.R.M.-G.); (C.G.); (R.W.); (A.P.)
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| | - Anja Kretschmer
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.R.M.-G.); (C.G.); (R.W.); (A.P.)
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.R.M.-G.); (C.G.); (R.W.); (A.P.)
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| | - Jakob Linseisen
- Epidemiology, Faculty of Medicine, University Hospital of Augsburg, University of Augsburg, 86156 Augsburg, Germany;
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.R.M.-G.); (C.G.); (R.W.); (A.P.)
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Faculty of Medicine, Ludwig Maximilians University, 81377 Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377 Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.R.M.-G.); (C.G.); (R.W.); (A.P.)
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377 Munich, Germany
| |
Collapse
|
17
|
Hjort L, Bredgaard SS, Manitta E, Marques I, Sørensen AE, Martino D, Grunnet LG, Kelstrup L, Houshmand-Oeregaard A, Clausen TD, Mathiesen ER, Olsen SF, Saffery R, Barrès R, Damm P, Vaag AA, Dalgaard LT. Epigenetics of the non-coding RNA nc886 across blood, adipose tissue and skeletal muscle in offspring exposed to diabetes in pregnancy. Clin Epigenetics 2024; 16:61. [PMID: 38715048 PMCID: PMC11077860 DOI: 10.1186/s13148-024-01673-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.
Collapse
Affiliation(s)
- Line Hjort
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark.
| | | | - Eleonora Manitta
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene Marques
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | | | - David Martino
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC, Australia
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
| | - Louise Groth Grunnet
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
| | - Louise Kelstrup
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Gynecology and Obstetrics, Herlev Hospital, Herlev, Denmark
| | - Azadeh Houshmand-Oeregaard
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk A/S, Bagsværd, Denmark
| | - Tine Dalsgaard Clausen
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Reinhardt Mathiesen
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | | | - Richard Saffery
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Allan Arthur Vaag
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | |
Collapse
|
18
|
Benincasa G, Napoli C, DeMeo DL. Transgenerational Epigenetic Inheritance of Cardiovascular Diseases: A Network Medicine Perspective. Matern Child Health J 2024; 28:617-630. [PMID: 38409452 DOI: 10.1007/s10995-023-03886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/28/2024]
Abstract
INTRODUCTION The ability to identify early epigenetic signatures underlying the inheritance of cardiovascular risk, including trans- and intergenerational effects, may help to stratify people before cardiac symptoms occur. METHODS Prospective and retrospective cohorts and case-control studies focusing on DNA methylation and maternal/paternal effects were searched in Pubmed from 1997 to 2023 by using the following keywords: DNA methylation, genomic imprinting, and network analysis in combination with transgenerational/intergenerational effects. RESULTS Maternal and paternal exposures to traditional cardiovascular risk factors during critical temporal windows, including the preconceptional period or early pregnancy, may perturb the plasticity of the epigenome (mainly DNA methylation) of the developing fetus especially at imprinted loci, such as the insulin-like growth factor type 2 (IGF2) gene. Thus, the epigenome is akin to a "molecular archive" able to memorize parental environmental insults and predispose an individual to cardiovascular diseases onset in later life. Direct evidence for human transgenerational epigenetic inheritance (at least three generations) of cardiovascular risk is lacking but it is supported by epidemiological studies. Several blood-based association studies showed potential intergenerational epigenetic effects (single-generation studies) which may mediate the transmittance of cardiovascular risk from parents to offspring. DISCUSSION In this narrative review, we discuss some relevant examples of trans- and intergenerational epigenetic associations with cardiovascular risk. In our perspective, we propose three network-oriented approaches which may help to clarify the unsolved issues regarding transgenerational epigenetic inheritance of cardiovascular risk and provide potential early biomarkers for primary prevention.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Meza-León A, Montoya-Estrada A, Reyes-Muñoz E, Romo-Yáñez J. Diabetes Mellitus and Pregnancy: An Insight into the Effects on the Epigenome. Biomedicines 2024; 12:351. [PMID: 38397953 PMCID: PMC10886464 DOI: 10.3390/biomedicines12020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, diabetes mellitus represents a growing health problem. If it occurs during pregnancy, it can increase the risk of various abnormalities in early and advanced life stages of exposed individuals due to fetal programming occurring in utero. Studies have determined that maternal conditions interfere with the genotypes and phenotypes of offspring. Researchers are now uncovering the mechanisms by which epigenetic alterations caused by diabetes affect the expression of genes and, therefore, the development of various diseases. Among the numerous possible epigenetic changes in this regard, the most studied to date are DNA methylation and hydroxymethylation, as well as histone acetylation and methylation. This review article addresses critical findings in epigenetic studies involving diabetes mellitus, including variations reported in the expression of specific genes and their transgenerational effects.
Collapse
Affiliation(s)
| | | | | | - José Romo-Yáñez
- Coordinación de Endocrinología Ginecológica y Perinatal, Instituto Nacional de Perinatología, Montes Urales 800, Lomas Virreyes, Mexico City 11000, Mexico
| |
Collapse
|
20
|
Yin M, Zhang Y, Li X, Liu S, Huang J, Yu H, Li X. Adverse effects of gestational diabetes mellitus on fetal monocytes revealed by single-cell RNA sequencing. iScience 2024; 27:108637. [PMID: 38188508 PMCID: PMC10770529 DOI: 10.1016/j.isci.2023.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Gestational diabetes mellitus (GDM), the most prevalent metabolic disorder during pregnancy, has long-term risks of metabolic diseases in offspring. However, the underlying mechanisms remain unclear. Here, we analyzed single-cell transcriptional data of cord blood mononuclear cells (CBMCs) from fetuses of healthy and GDM mothers, peripheral blood mononuclear cells from children and adolescents, and coronary plaques myeloid cells from atherosclerosis. Our results demonstrated that monocytes in cord blood were characterized with down-regulated proinflammatory-related pathways and up-regulated proliferation-related pathways. And monocytes in cord blood from GDM mothers were featured with expanded CXCL8+IL1B+ subclusters, enhanced crosstalk with neutrophil granulocytes and augmented adhesive and phagocytic abilities. Interestingly, CXCL8+IL1B+ monocytes influenced by GDM had transcriptome similarity with those of coronary plaques myeloid cells from individuals with atherosclerotic cardiovascular disease. Collectively, our data reveal adverse impact of maternal GDM environment on fetal monocytes and propose potential mechanisms between maternal GDM and offspring atherosclerosis.
Collapse
Affiliation(s)
- Min Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinyu Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Research Center of Cell Therapy for Diabetes, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Kweon JY, Mun H, Choi MR, Kim HS, Ahn YJ. Maternal obesity induced metabolic disorders in offspring and myeloid reprogramming by epigenetic regulation. Front Endocrinol (Lausanne) 2024; 14:1256075. [PMID: 38292775 PMCID: PMC10824939 DOI: 10.3389/fendo.2023.1256075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Maternal obesity and gestational diabetes are associated with childhood obesity and increased cardiovascular risk. In this review, we will discuss and summarize extensive clinical and experimental studies that metabolically imbalanced environment exposure in early life plays a critical role in influencing later susceptibility to chronic inflammatory diseases and metabolic syndrome. The effect of maternal obesity and metabolic disorders, including gestational diabetes cause Large-for-gestational-age (LGA) children to link future development of adverse health issues such as obesity, atherosclerosis, hypertension, and non-alcoholic fatty liver disease by immune reprogramming to adverse micro-environment. This review also addresses intrauterine environment-driven myeloid reprogramming by epigenetic regulations and the epigenetic markers as an underlying mechanism. This will facilitate future investigations regarding maternal-to-fetal immune regulation and the epigenetic mechanisms of obesity and cardiovascular diseases.
Collapse
Affiliation(s)
- Joo Young Kweon
- Medical Science and Engineering, Graduate School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyeonji Mun
- Medical Science and Engineering, Graduate School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Myeong Ryeol Choi
- Medical Science and Engineering, Graduate School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Yong Joo Ahn
- Medical Science and Engineering, Graduate School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department IT Convergence, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
22
|
Panagiotidou A, Chatzakis C, Ververi A, Eleftheriades M, Sotiriadis A. The Effect of Maternal Diet and Physical Activity on the Epigenome of the Offspring. Genes (Basel) 2024; 15:76. [PMID: 38254965 PMCID: PMC10815371 DOI: 10.3390/genes15010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this review was to examine the current literature regarding the effect of maternal lifestyle interventions (i.e., diet and physical activity) on the epigenome of the offspring. PubMed, Scopus and Cochrane-CENTRAL were screened until 8 July 2023. Only randomized controlled trials (RCTs) where a lifestyle intervention was compared to no intervention (standard care) were included. Outcome variables included DNA methylation, miRNA expression, and histone modifications. A qualitative approach was used for the consideration of the studies' results. Seven studies and 1765 mother-child pairs were assessed. The most common types of intervention were dietary advice, physical activity, and following a specific diet (olive oil). The included studies correlated the lifestyle and physical activity intervention in pregnancy to genome-wide or gene-specific differential methylation and miRNA expression in the cord blood or the placenta. An intervention of diet and physical activity in pregnancy was found to be associated with slight changes in the epigenome (DNA methylation and miRNA expression) in fetal tissues. The regions involved were related to adiposity, metabolic processes, type 2 diabetes, birth weight, or growth. However, not all studies showed significant differences in DNA methylation. Further studies with similar parameters are needed to have robust and comparable results and determine the biological role of such modifications.
Collapse
Affiliation(s)
- Anastasia Panagiotidou
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
| | - Christos Chatzakis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| | - Athina Ververi
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Genetic Unit, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, “Papageorgiou” General Hospital, 564 03 Thessaloniki, Greece
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Alexandros Sotiriadis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| |
Collapse
|
23
|
Ning Y, Zhou X, Wang G, Zhang L, Wang J. Bioinformatics to Identify Biomarkers of Diabetic Nephropathy based on Sphingolipid Metabolism and their Molecular Mechanisms. Curr Diabetes Rev 2024; 21:e070524229720. [PMID: 38712372 DOI: 10.2174/0115733998297749240418071555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) frequently results in Diabetic Nephropathy (DN), which has a significant negative impact on the quality of life of diabetic patients. Sphingolipid metabolism is associated with diabetes, but its relationship with DN is unclear. Therefore, screening biomarkers related to sphingolipid metabolism is crucial for treating DN. METHODS To identify Differentially Expressed Genes (DEGs) in the GSE142153 dataset, we conducted a differential expression analysis (DN samples versus control samples). The intersection genes were obtained by overlapping DEGs and Sphingolipid Metabolism-Related Genes (SMRGs). Furthermore, The Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were used to filter biomarkers. We further analyzed the Gene Set Enrichment analysis (GSEA) and the immunoinfiltrational analysis based on biomarkers. RESULTS We identified 2,186 DEGs associated with DN. Then, five SMR-DEGs were obtained. Subsequently, biomarkers associated with sphingolipid metabolism (S1PR1 and SELL) were identified by applying machine learning and expression analysis. In addition, GSEA showed that these biomarkers were correlated with cytokine cytokine receptor interaction'. Significant variations in B cells, DCs, Tems, and Th2 cells between the two groups suggested that these cells might have a role in DN. CONCLUSION Overall, we obtained two sphingolipid metabolism-related biomarkers (S1PR1 and SELL) associated with DN, which laid a theoretical foundation for treating DN.
Collapse
Affiliation(s)
- Yaxian Ning
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Xiaochun Zhou
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Gouqin Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Lili Zhang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Jianqin Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| |
Collapse
|
24
|
Derakhshan M, Kessler NJ, Hellenthal G, Silver MJ. Metastable epialleles in humans. Trends Genet 2024; 40:52-68. [PMID: 38000919 DOI: 10.1016/j.tig.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/26/2023]
Abstract
First identified in isogenic mice, metastable epialleles (MEs) are loci where the extent of DNA methylation (DNAm) is variable between individuals but correlates across tissues derived from different germ layers within a given individual. This property, termed systemic interindividual variation (SIV), is attributed to stochastic methylation establishment before germ layer differentiation. Evidence suggests that some putative human MEs are sensitive to environmental exposures in early development. In this review we introduce key concepts pertaining to human MEs, describe methods used to identify MEs in humans, and review their genomic features. We also highlight studies linking DNAm at putative human MEs to early environmental exposures and postnatal (including disease) phenotypes.
Collapse
Affiliation(s)
- Maria Derakhshan
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Matt J Silver
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia.
| |
Collapse
|
25
|
Lizárraga D, Gómez-Gil B, García-Gasca T, Ávalos-Soriano A, Casarini L, Salazar-Oroz A, García-Gasca A. Gestational diabetes mellitus: genetic factors, epigenetic alterations, and microbial composition. Acta Diabetol 2024; 61:1-17. [PMID: 37660305 DOI: 10.1007/s00592-023-02176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder, usually diagnosed during the third trimester of pregnancy that usually disappears after delivery. In GDM, the excess of glucose, fatty acids, and amino acids results in foetuses large for gestational age. Hyperglycaemia and insulin resistance accelerate the metabolism, raising the oxygen demand, and creating chronic hypoxia and inflammation. Women who experienced GDM and their offspring are at risk of developing type-2 diabetes, obesity, and other metabolic or cardiovascular conditions later in life. Genetic factors may predispose the development of GDM; however, they do not account for all GDM cases; lifestyle and diet also play important roles in GDM development by modulating epigenetic signatures and the body's microbial composition; therefore, this is a condition with a complex, multifactorial aetiology. In this context, we revised published reports describing GDM-associated single-nucleotide polymorphisms (SNPs), DNA methylation and microRNA expression in different tissues (such as placenta, umbilical cord, adipose tissue, and peripheral blood), and microbial composition in the gut, oral cavity, and vagina from pregnant women with GDM, as well as the bacterial composition of the offspring. Altogether, these reports indicate that a number of SNPs are associated to GDM phenotypes and may predispose the development of the disease. However, extrinsic factors (lifestyle, nutrition) modulate, through epigenetic mechanisms, the risk of developing the disease, and some association exists between the microbial composition with GDM in an organ-specific manner. Genes, epigenetic signatures, and microbiota could be transferred to the offspring, increasing the possibility of developing chronic degenerative conditions through postnatal life.
Collapse
Affiliation(s)
- Dennise Lizárraga
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Bruno Gómez-Gil
- Laboratory of Microbial Genomics, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Teresa García-Gasca
- Laboratory of Molecular and Cellular Biology, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, 76230, Juriquilla, Querétaro, Mexico
| | - Anaguiven Ávalos-Soriano
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Azucena Salazar-Oroz
- Maternal-Fetal Department, Instituto Vidalia, Hospital Sharp Mazatlán, Avenida Rafael Buelna y Dr. Jesús Kumate s/n, 82126, Mazatlán, Sinaloa, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
26
|
Waldrop SW, Niemiec S, Wood C, Gyllenhammer LE, Jansson T, Friedman JE, Tryggestad JB, Borengasser SJ, Davidson EJ, Yang IV, Kechris K, Dabelea D, Boyle KE. Cord blood DNA methylation of immune and lipid metabolism genes is associated with maternal triglycerides and child adiposity. Obesity (Silver Spring) 2024; 32:187-199. [PMID: 37869908 PMCID: PMC10872762 DOI: 10.1002/oby.23915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVE Fetal exposures may impact offspring epigenetic signatures and adiposity. The authors hypothesized that maternal metabolic traits associate with cord blood DNA methylation, which, in turn, associates with child adiposity. METHODS Fasting serum was obtained in 588 pregnant women (27-34 weeks' gestation), and insulin, glucose, high-density lipoprotein cholesterol, triglycerides, and free fatty acids were measured. Cord blood DNA methylation and child adiposity were measured at birth, 4-6 months, and 4-6 years. The association of maternal metabolic traits with DNA methylation (429,246 CpGs) for differentially methylated probes (DMPs) and regions (DMRs) was tested. The association of the first principal component of each DMR with child adiposity was tested, and mediation analysis was performed. RESULTS Maternal triglycerides were associated with the most DMPs and DMRs of all traits tested (261 and 198, respectively, false discovery rate < 0.05). DMRs were near genes involved in immune function and lipid metabolism. Triglyceride-associated CpGs were associated with child adiposity at 4-6 months (32 CpGs) and 4-6 years (2 CpGs). One, near CD226, was observed at both timepoints, mediating 10% and 22% of the relationship between maternal triglycerides and child adiposity at 4-6 months and 4-6 years, respectively. CONCLUSIONS DNA methylation may play a role in the association of maternal triglycerides and child adiposity.
Collapse
Affiliation(s)
- Stephanie W. Waldrop
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Sierra Niemiec
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Lauren E. Gyllenhammer
- Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeanie B. Tryggestad
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sarah J. Borengasser
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Elizabeth J. Davidson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Ivana V. Yang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO USA
| | - Dana Dabelea
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Kristen E. Boyle
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO USA
| |
Collapse
|
27
|
Sultan S, AlMalki S. Analysis of global DNA methylation and epigenetic modifiers (DNMTs and HDACs) in human foetal endothelium exposed to gestational and type 2 diabetes. Epigenetics 2023; 18:2201714. [PMID: 37066707 PMCID: PMC10114969 DOI: 10.1080/15592294.2023.2201714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Foetuses exposed to maternal gestational diabetes (GDM) and type 2 diabetes (T2D) have an increased risk of adverse perinatal outcomes. Epigenetic mechanisms, including DNA methylation and histone modifications, may act as mediators of persistent metabolic memory in endothelial cells (ECs) exposed to hyperglycaemia, even after glucose normalization. Therefore, we investigated alterations in global DNA methylation and epigenetic modifier expression (DNMT1, DNMT3a, DNMT3b, HDAC1, and HDAC2) in human umbilical vein ECs (HUVECs) from the umbilical cords of mothers with GDM (n = 8) and T2D (n = 3) compared to that of healthy mothers (n = 6). Global DNA alteration was measured using a 5-methylation cytosine colorimetric assay, followed by quantitative real-time polymerase chain reaction to measure DNA methyltransferase and histone acetylase transcript expression. We revealed that DNA hypermethylation occurs in both GDM- and T2D-HUVECs compared to that in Control-HUVECs. Furthermore, there was a significant increase in HDAC2 mRNA levels in GDM-HUVECs and increase in DNMT3b mRNA levels in T2D-HUVECs. Overall, our results suggest that GDM and T2D are associated with global DNA hypermethylation in foetal endothelial cells under normoglycemic conditions and the aberrant mRNA expression of HDAC2 and DNMT3b could play a role in this dysregulation.
Collapse
Affiliation(s)
- Samar Sultan
- Medical Laboratory Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultanh AlMalki
- Medical Laboratory Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Harris HA, Friedman C, Starling AP, Dabelea D, Johnson SL, Fuemmeler BF, Jima D, Murphy SK, Hoyo C, Jansen PW, Felix JF, Mulder RH. An epigenome-wide association study of child appetitive traits and DNA methylation. Appetite 2023; 191:107086. [PMID: 37844693 PMCID: PMC11156223 DOI: 10.1016/j.appet.2023.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The etiology of childhood appetitive traits is poorly understood. Early-life epigenetic processes may be involved in the developmental programming of appetite regulation in childhood. One such process is DNA methylation (DNAm), whereby a methyl group is added to a specific part of DNA, where a cytosine base is next to a guanine base, a CpG site. We meta-analyzed epigenome-wide association studies (EWASs) of cord blood DNAm and early-childhood appetitive traits. Data were from two independent cohorts: the Generation R Study (n = 1,086, Rotterdam, the Netherlands) and the Healthy Start study (n = 236, Colorado, USA). DNAm at autosomal methylation sites in cord blood was measured using the Illumina Infinium HumanMethylation450 BeadChip. Parents reported on their child's food responsiveness, emotional undereating, satiety responsiveness and food fussiness using the Children's Eating Behaviour Questionnaire at age 4-5 years. Multiple regression models were used to examine the association of DNAm (predictor) at the individual site- and regional-level (using DMRff) with each appetitive trait (outcome), adjusting for covariates. Bonferroni-correction was applied to adjust for multiple testing. There were no associations of DNAm and any appetitive trait when examining individual CpG-sites. However, when examining multiple CpGs jointly in so-called differentially methylated regions, we identified 45 associations of DNAm with food responsiveness, 7 associations of DNAm with emotional undereating, 13 associations of DNAm with satiety responsiveness, and 9 associations of DNAm with food fussiness. This study shows that DNAm in the newborn may partially explain variation in appetitive traits expressed in early childhood and provides preliminary support for early programming of child appetitive traits through DNAm. Investigating differential DNAm associated with appetitive traits could be an important first step in identifying biological pathways underlying the development of these behaviors.
Collapse
Affiliation(s)
- Holly A Harris
- Department of Child & Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Erasmus University Rotterdam, Department of Psychology, Education & Child Studies, Rotterdam, the Netherlands.
| | - Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Susan L Johnson
- Department of Pediatrics, Section of Nutrition, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Bernard F Fuemmeler
- Virginia Commonwealth University, Massey Comprehensive Cancer Center, Richmond, VA, USA.
| | - Dereje Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| | - Susan K Murphy
- Duke University Medical Center, Department of Obstetrics and Gynecology, Reproductive Sciences, Durham, NC, USA.
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| | - Pauline W Jansen
- Department of Child & Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Erasmus University Rotterdam, Department of Psychology, Education & Child Studies, Rotterdam, the Netherlands.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Rosa H Mulder
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
29
|
Gusso D, Prauchner GRK, Rieder AS, Wyse ATS. Biological Pathways Associated with Vitamins in Autism Spectrum Disorder. Neurotox Res 2023; 41:730-740. [PMID: 37864660 DOI: 10.1007/s12640-023-00674-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/23/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by early-appearing social communication deficits, with genetic and environmental factors potentially playing a role in its etiology, which remains largely unknown. During pregnancy, certain deficiencies in critical nutrients are mainly associated with central nervous system impairment. The vitamin B9 (folate) is primarily related to one-carbon and methionine metabolism, participating in methyl donor generation. In addition, supplementation with folic acid (FA) is recommended by the World Health Organization (WHO) in the first three gestational months to prevent neural tube defects. Vitamin B12 is related to folate regeneration, converting it into an active form. Deficiencies in this vitamin have a negative impact on cognitive function and brain development since it is involved in myelin synthesis. Vitamin D is intimately associated with Ca2+ levels, acting in bone development and calcium-dependent signaling. This vitamin is associated with ASD at several levels since it has a relation with ASD genes and oxidative stress environment. This review carries the recent literature about the role of folate, vitamin B12, and vitamin D in ASD. In addition, we discuss the possible impact of nutrient deficiency or hypersupplementation during fetal development. On the other hand, we explore the biases of vitamin supplementation studies such as the loss of participants in retrospective studies, as well as multiple variants that are not considered in the conclusion, like dietary intake or auto-medication during pregnancy. In this regard, we aim to contribute to the discussion about the role of vitamins in ASD currency, but also in pregnancy and fetal development as well. Furthermore, stress during pregnancy can be an ASD predisposition, with cortisol as a regulator. In this view, we propose that cortisol is the bridge of susceptibility between vitamin disorders and ASD prevalence.
Collapse
Affiliation(s)
- Darlan Gusso
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Federal University of Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Zip Code 90035003, Porto Alegre, RS, Brazil.
| | - Gustavo Ricardo Krupp Prauchner
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Federal University of Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Zip Code 90035003, Porto Alegre, RS, Brazil
| | - Alessandra Schmitt Rieder
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Federal University of Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Zip Code 90035003, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Federal University of Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Zip Code 90035003, Porto Alegre, RS, Brazil
| |
Collapse
|
30
|
Sun H, Zhou Y, Liu J, Wang Y, Wang G. Maternal pre-pregnancy obesity modifies the association between first-trimester thyroid hormone sensitivity and gestational Diabetes Mellitus: a retrospective study from Northern China. Diabetol Metab Syndr 2023; 15:212. [PMID: 37875982 PMCID: PMC10598956 DOI: 10.1186/s13098-023-01188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Contradictory relationships have been observed between thyroid function and gestational diabetes mellitus (GDM). Previous studies have indicated that pre-pregnancy BMI (pBMI) could modify their relationships. Few studies have illustrated the role of thyroid hormone sensitivity on GDM. We aimed to explore the effect of pre-pregnancy obesity on the association between early pregnancy thyroid hormone sensitivity and GDM in euthyroid pregnant women. METHODS This study included 1310 women with singleton gestation. Subjects were classified into pre-pregnancy obese and non-obese subgroups by pBMI levels with a cutoff of 25 kg/m2. Sensitivity to thyroid hormone was evaluated by Thyroid Feedback Quartile-Based Index (TFQI), Chinese-referenced parametric TFQI (PTFQI), TSH Index (TSHI) and Thyrotrophic T4 Resistance Index (TT4RI). The associations between these composite indices and GDM were analyzed using multivariate regression models in the two subgroups, respectively. RESULTS In pre-pregnancy non-obese group, early pregnancy TFQI, PTFQI, TSHI and TT4RI levels were higher in subjects with incident GDM compared to those without GDM (all P < 0.05). By contrast, obese women with GDM exhibited lower levels of those indices (all P < 0.05). The occurrence of GDM were increased with rising TFQI, PTFQI, TSHI and TT4RI quartiles in non-obese women ( all P for trend < 0.05), while exhibited decreased trend across quartiles of those indices in obese women (all P for trend < 0.05). Further logistic analysis indicated contrary relationships between thyroid hormone sensitivity and the occurrence of GDM in the two groups, respectively. The OR of the fourth versus the first quartile of TFQI for GDM was 1.981 (95% CI 1.224, 3.207) in pre-pregnancy non-obese group, while was 0.131 (95% CI 0.036, 0.472) in pre-pregnancy obese group. PTFQI and TSHI yielded similar results. CONCLUSIONS The association between maternal sensitivity to thyroid hormones during early gestation and the occurrence of GDM was modified by pre-pregnancy obesity.
Collapse
Affiliation(s)
- Honglin Sun
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yibo Zhou
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Wang
- Physical Examination Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 10020, China.
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
31
|
Faleschini S, Doyon M, Arguin M, Lepage JF, Tiemeier H, Van Lieshout RJ, Perron P, Bouchard L, Hivert MF. Maternal Hyperglycemia in Pregnancy and Offspring Internalizing and Externalizing Behaviors. Matern Child Health J 2023; 27:1765-1773. [PMID: 37296332 DOI: 10.1007/s10995-023-03706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To examine the associations between exposure to gestational diabetes mellitus (GDM) and maternal glycemic markers during pregnancy and offspring behaviors at 3 and 5 years. We hypothesized that exposure to maternal hyperglycemia would be associated with more behavioral problems in offspring. METHODS We included 548 mother-child pairs from the prospective pre-birth Gen3G cohort (Canada). Glycemic markers were measured during a 75 g oral glucose tolerance test (OGTT) in the second trimester of pregnancy. Based on OGTT, we classified 59 women (10.8%) as having GDM according to international diagnostic criteria. Mothers reported offspring behavior using the Strengths and Difficulties Questionnaire (SDQ) at 3 and 5 years, and the Child Behavior Checklist (CBCL) at 5 years. We used linear mixed models and multivariate regression to assess the associations between GDM or glycemic markers and children's behavior, adjusted for child sex and age, and maternal demographic factors, body mass index and family history of diabetes. RESULTS Exposure to GDM was associated with higher SDQ externalizing scores at 3 and 5 years [B = 1.12, 95% CI (0.14, 2.10)] in fully adjusted linear mixed models. These results were supported by the CBCL at 5 years. Higher levels of maternal glucose at 1 h and 2 h during OGTT were associated with greater SDQ externalizing scores. Fasting glucose levels were not associated with child behavior scores. We did not observe associations between glycemic markers and internalizing behaviors. CONCLUSIONS Exposure to higher levels of maternal glycemia during pregnancy was associated with more externalizing behaviors in children at 3 and 5 years.
Collapse
Affiliation(s)
- Sabrina Faleschini
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Myriam Doyon
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Mélina Arguin
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Jean-François Lepage
- Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Henning Tiemeier
- Department of Social and Behavioral Science, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Ryan J Van Lieshout
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Patrice Perron
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Luigi Bouchard
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
- Clinical Department of Laboratory Medicine, CIUSSS du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Chicoutimi, QC, G7H 7K9, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA.
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
32
|
Ohn M, McArdle N, Khan RN, von Ungern-Sternberg BS, Eastwood PR, Walsh JH, Wilson AC, Maddison KJ. Early life predictors of obstructive sleep apnoea in young adults: Insights from a longitudinal community cohort (Raine study). Sleep Med 2023; 110:76-81. [PMID: 37544276 DOI: 10.1016/j.sleep.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE Early-life obstructive sleep apnoea (OSA) predictors are unavailable for young adults. This study identifies early-life factors predisposing young adults to OSA. METHODS This retrospective study included 923 young adults and their mothers from the Western Australian Pregnancy Raine Study Cohort. OSA at 22 years was determined from in-laboratory polysomnography. Logistic regression was used to identify maternal and neonatal factors associated with OSA in young adulthood. RESULTS OSA was observed in 20.8% (192) participants. Maternal predictors of OSA included gestational diabetes mellitus (odds ratio (OR) 9.54, 95% confidence interval (CI) 1.7, 58.5, P = 0.011), preterm delivery (OR 3.18, 95%CI 1.1,10.5, P = 0.043), preeclampsia (OR 2.95, 95%CI 1.1,8.0, P = 0.034), premature rupture of membranes (OR 2.46, 95%CI 1.2, 5.2, P = 0.015), age ≥35 years (OR 2.28, 95%CI 1.2,4.4, P = 0.011), overweight and obesity (pregnancy BMI≥25 kg/m2) (OR 2.00, 95%CI 1.2,3.2, P = 0.004), pregnancy-induced hypertension (OR 1.89, 95%CI 1.1,3.2, P = 0.019), and Chinese ethnicity (OR 2.36,95%CI 1.01,5.5, P = 0.047). Neonatal predictors included male child (OR 2.10, 95%CI 1.5,3.0, P < 0.0001), presence of meconium-stained liquor during delivery (OR 1.60, 95%CI 1.0,2.5, P = 0.044) and admission to special care nursery (OR 1.51 95%CI 1.0,2.2, P = 0.040). Higher birth lengths reduced OSA odds by 7% for each centimetre (OR 0.93, 95%CI 0.87, 0.99, P = 0.033). CONCLUSIONS A range of maternal and neonatal factors predict OSA in young adults, including those related to poor maternal metabolic health, high-risk pregnancy and stressful perinatal events. This information could assist in the early identification and management of at-risk individuals and indicates that better maternal health may reduce the likelihood of young adults developing OSA.
Collapse
Affiliation(s)
- Mon Ohn
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia; Division of Pediatrics, Medical School, The University of Western Australia, Crawley, WA, Australia; Perioperative Medicine Team, Telethon Kids Institute, Nedlands, WA, Australia.
| | - Nigel McArdle
- Centre for Sleep Science, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia; West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology & Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.
| | - R Nazim Khan
- Department of Mathematics and Statistics, The University of Western Australia, Crawley, WA, Australia.
| | - Britta S von Ungern-Sternberg
- Perioperative Medicine Team, Telethon Kids Institute, Nedlands, WA, Australia; Division of Emergency Medicine, Anaesthesia and Pain Medicine, Medical School, The University of Western Australia, Crawley, WA, Australia; Department of Anaesthesia and Pain Medicine, Perth Children's Hospital, Nedlands, WA, Australia.
| | - Peter R Eastwood
- Health Futures Institute, Murdoch University, Perth, WA, Australia.
| | - Jennifer H Walsh
- Centre for Sleep Science, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia; West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology & Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.
| | - Andrew C Wilson
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia; Division of Pediatrics, Medical School, The University of Western Australia, Crawley, WA, Australia; Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia.
| | - Kathleen J Maddison
- Centre for Sleep Science, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia; West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology & Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.
| |
Collapse
|
33
|
Li Y, Hong X, Liang L, Wang X, Ladd-Acosta C. Association between acetaminophen metabolites and CYP2E1 DNA methylation level in neonate cord blood in the Boston Birth Cohort. Clin Epigenetics 2023; 15:132. [PMID: 37596607 PMCID: PMC10439592 DOI: 10.1186/s13148-023-01551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Acetaminophen is a commonly used medication by pregnant women and is known to cross the placenta. However, little is known about the biological mechanisms that regulate acetaminophen in the developing offspring. Cytochrome 2E1 (CYP2E1) is the primary enzyme responsible for the conversion of acetaminophen to its toxic metabolite. Ex vivo studies have shown that the CYP2E1 gene expression in human fetal liver and placenta is largely controlled by DNA methylation (DNAm) at CpG sites located in the gene body of CYP2E1 at the 5' end. To date, no population studies have examined the association between acetaminophen metabolite and fetal DNAm of CYP2E1 at birth. METHODS We utilized data from the Boston Birth Cohort (BBC) which represents an urban, low-income, racially and ethnically diverse population in Boston, Massachusetts. Acetaminophen metabolites were measured in the cord plasma of newborns enrolled in BBC between 2003 and 2013 using liquid chromatography-tandem mass spectrometry. DNAm at 28 CpG sites of CYP2E1 was measured by Illumina Infinium MethylationEPIC BeadChip. We used linear regression to identify differentially methylated CpG sites and the "DiffVar" method to identify differences in methylation variation associated with the detection of acetaminophen, adjusting for cell heterogeneity and batch effects. The false discovery rate (FDR) was calculated to account for multiple comparisons. RESULTS Among the 570 newborns included in this study, 96 (17%) had detectable acetaminophen in cord plasma. We identified 7 differentially methylated CpGs (FDR < 0.05) associated with the detection of acetaminophen and additional 4 CpGs showing a difference in the variation of methylation (FDR < 0.05). These CpGs were all located in the gene body of CYP2E1 at the 5' end and had a 3-6% lower average methylation level among participants with detectable acetaminophen compared to participants without. The CpG sites we identified overlap with previously identified DNase hypersensitivity and open chromatin regions in the ENCODE project, suggesting potential regulatory functions. CONCLUSIONS In a US birth cohort, we found detection of cord biomarkers of acetaminophen was associated with DNAm level of CYP2E1 in cord blood. Our findings suggest that DNA methylation of CYP2E1 may be an important regulator of acetaminophen levels in newborns.
Collapse
Affiliation(s)
- Yijun Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street W6509, Baltimore, MD, 21205, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street W6509, Baltimore, MD, 21205, USA.
| |
Collapse
|
34
|
刘 贤, 郭 程, 邹 明, 冯 芳, 梁 思, 陈 文, 武 丽. [Association between maternal gestational diabetes mellitus and the risk of autism spectrum disorder in offspring]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:818-823. [PMID: 37668029 PMCID: PMC10484079 DOI: 10.7499/j.issn.1008-8830.2301021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/26/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVES To explore the association between maternal gestational diabetes mellitus (GDM) exposure and the development of autism spectrum disorder (ASD) in offspring. METHODS A case-control study was conducted, recruiting 221 children with ASD and 400 healthy children as controls. Questionnaires and interviews were used to collect information on general characteristics of the children, socio-economic characteristics of the family, maternal pregnancy history, and maternal disease exposure during pregnancy. Multivariate logistic regression analysis was used to investigate the association between maternal GDM exposure and the development of ASD in offspring. The potential interaction between offspring gender and maternal GDM exposure on the development of ASD in offspring was explored. RESULTS The proportion of maternal GDM was significantly higher in the ASD group compared to the control group (16.3% vs 9.4%, P=0.014). After adjusting for variables such as gender, gestational age, mode of delivery, parity, and maternal education level, maternal GDM exposure was a risk factor for ASD in offspring (OR=2.18, 95%CI: 1.04-4.54, P=0.038). On the basis of adjusting the above variables, after further adjusting the variables including prenatal intake of multivitamins, folic acid intake in the first three months of pregnancy, and assisted reproduction the result trend did not change, but no statistical significance was observed (OR=1.94, 95%CI: 0.74-5.11, P=0.183). There was an interaction between maternal GDM exposure and offspring gender on the development of ASD in offspring (P<0.001). Gender stratified analysis showed that only in male offspring of mothers with GDM, the risk of ASD was significantly increased (OR=3.67, 95%CI: 1.16-11.65, P=0.027). CONCLUSIONS Maternal GDM exposure might increase the risk of ASD in offspring. There is an interaction between GDM exposure and offspring gender in the development of ASD in offspring.
Collapse
Affiliation(s)
- 贤 刘
- 广州医科大学附属妇女儿童医疗中心/广东省儿童健康与疾病临床医学研究中心出生队列, 广东广州510623
| | | | | | | | | | | | | |
Collapse
|
35
|
Chen Q, Hu K, Shi J, Li H, Li W. Hesperidin inhibits methylation and autophagy in LPS and high glucose-induced human villous trophoblasts. Biochem Biophys Res Commun 2023; 671:278-285. [PMID: 37311265 DOI: 10.1016/j.bbrc.2023.05.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is the first occurrence of diabetes due to abnormal maternal sugar metabolism after pregnancy, which may lead to adverse pregnancy outcomes. Hesperidin is known to decrease in the cord blood of GDM with obesity, but its role is unknown. This study aims to explore the potential function of hesperidin in GDM with obesity to develop new therapeutic ideas. METHODS Peripheral blood and placental tissues from GDM and GDM with obesity patients were collected to isolate human villous trophoblasts and detection. Bioinformatics was used to analyze the differential methylation genes between GDM and GDM with obesity. Immunofluorescence was applied for the detection of CK7 expression. Cells vitality was detected by CCK8 and transwell. Molecular docking was applied to predict the binding of hesperidin and ATG7 protein. Inflammation and m6A levels was analyzed by ELISA. ATG7, LC3, TLR4 and P62 proteins was analyzed by Western blot. RESULTS The methylation of ATG7 gene was up-regulated in GDM with obesity compared with GDM. The m6A and autophagy proteins levels in GDM with obesity were higher than that in GDM. LPS with 2.5-25 mM glucose induced the increase of autophagy proteins, inflammation and m6A levels in human villous trophoblasts. Hesperidin formed hydrogen bonds and hydrophobic interactions with ATG7 proteins. Hesperidin (0.25 μM) inhibited the autophagy proteins and m6A level in LPS and 25 mM glucose-induced human villous trophoblasts. DISCUSSION GDM with obesity followed the increase of autophagy proteins and m6A levels. Hesperidin inhibited the autophagy proteins and m6A level in LPS and glucose-induced human villous trophoblasts.
Collapse
Affiliation(s)
- Qiuling Chen
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China
| | - Ke Hu
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China
| | - Jun Shi
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China
| | - Hua Li
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China
| | - Wenxia Li
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China.
| |
Collapse
|
36
|
Yan YS, Feng C, Yu DQ, Tian S, Zhou Y, Huang YT, Cai YT, Chen J, Zhu MM, Jin M. Long-term outcomes and potential mechanisms of offspring exposed to intrauterine hyperglycemia. Front Nutr 2023; 10:1067282. [PMID: 37255932 PMCID: PMC10226394 DOI: 10.3389/fnut.2023.1067282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/06/2023] [Indexed: 06/01/2023] Open
Abstract
Diabetes mellitus during pregnancy, which can be classified into pregestational diabetes and gestational diabetes, has become much more prevalent worldwide. Maternal diabetes fosters an intrauterine abnormal environment for fetus, which not only influences pregnancy outcomes, but also leads to fetal anomaly and development of diseases in later life, such as metabolic and cardiovascular diseases, neuropsychiatric outcomes, reproduction malformation, and immune dysfunction. The underlying mechanisms are comprehensive and ambiguous, which mainly focus on microbiota, inflammation, reactive oxygen species, cell viability, and epigenetics. This review concluded with the influence of intrauterine hyperglycemia on fetal structure development and organ function on later life and outlined potential mechanisms that underpin the development of diseases in adulthood. Maternal diabetes leaves an effect that continues generations after generations through gametes, thus more attention should be paid to the prevention and treatment of diabetes to rescue the pathological attacks of maternal diabetes from the offspring.
Collapse
Affiliation(s)
- Yi-Shang Yan
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chun Feng
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan-Qing Yu
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shen Tian
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin Zhou
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ting Huang
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ting Cai
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Chen
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miao-Miao Zhu
- Department of Operating Theatre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Jin
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Guo Q, Zou Y, Chang Y, Zhong Y, Cheng L, Jia L, Zhai L, Bai Y, Sun Q, Wei W. Transcriptomic Evidence of Hypothalamus for Maternal Fructose Exposure Induced Offspring Hypertension through AT1R/TLR4 Pathway. J Nutr Biochem 2023:109373. [PMID: 37178812 DOI: 10.1016/j.jnutbio.2023.109373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Maternal fructose exposure during pregnancy and lactation has been shown to contribute to hypertension in offspring, with long-term effects on hypothalamus development. However, the underlying mechanisms remain unclear. In this study, we used the tail-cuff method to evaluate the effects of maternal fructose drinking exposure on offspring blood pressure levels at postpartum day 21 (PND21) and postpartum day 60 (PND60). We employed Oxford Nanopore Technologies (ONT) full-length RNA sequencing to investigate the developmental programming of the PND60 offspring's hypothalamus and confirmed the presence of the AT1R/TLR4 pathway using western blot and immunofluorescence. Our findings demonstrated that maternal fructose exposure significantly increased blood pressure in PND60 offspring but not in PND21 offspring. Additionally, we observed transcriptome-wide alterations in the hypothalamus of PND60 offspring following maternal fructose exposure. Overall, our study provides evidence that maternal fructose exposure during pregnancy and lactation may alter the transcriptome-wide of offspring hypothalamus and activate the AT1R/TLR4 pathway, leading to hypertension. These findings may have important implications for the prevention and treatment of hypertension-related diseases in offspring exposed to excessive fructose during pregnancy and lactation.
Collapse
Affiliation(s)
- Qing Guo
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Yuchen Zou
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Yidan Chang
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Yongyong Zhong
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Lin Cheng
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Lihong Jia
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Lingling Zhai
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Yinglong Bai
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Qi Sun
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Wei Wei
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| |
Collapse
|
38
|
Wang G, Xu R, Zhang B, Hong X, Bartell TR, Pearson C, Liang L, Wang X. Impact of intrauterine exposure to maternal diabetes on preterm birth: fetal DNA methylation alteration is an important mediator. Clin Epigenetics 2023; 15:59. [PMID: 37029435 PMCID: PMC10082529 DOI: 10.1186/s13148-023-01473-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND In utero exposure to diabetes has been shown to contribute to preterm birth, though the underlying biological mechanisms are yet to be fully elucidated. Fetal epigenetic variations established in utero may be a possible pathway. This study aimed to investigate whether in utero exposure to diabetes was associated with a change in newborn DNA methylation, and whether the identified CpG sites mediate the association between diabetes and preterm birth in a racially diverse birth cohort population. METHODS This study included 954 mother-newborn pairs. Methylation levels in the cord blood were determined using the Illumina Infinium MethylationEPIC BeadChip 850 K array platform. In utero exposure to diabetes was defined by the presence of maternal pregestational or gestational diabetes. Preterm birth was defined as gestational age at birth less than 37 weeks. Linear regression analysis was employed to identify differentially methylated CpG sites. Differentially methylated regions were identified using the DMRcate Package. RESULTS 126 (13%) newborns were born to mothers with diabetes in pregnancy and 173 (18%) newborns were born preterm, while 41 newborns were born both preterm and to mothers with diabetes in pregnancy. Genomic-wide CpG analysis found that eighteen CpG sites in cord blood were differentially methylated by maternal diabetes status at an FDR threshold of 5%. These significant CpG sites were mapped to 12 known genes, one of which was annotated to gene Major Histocompatibility Complex, Class II, DM Beta (HLA-DMB). Consistently, one of the two identified significant methylated regions overlapped with HLA-DMB. The identified differentially methylated CpG sites mediated the association between diabetes in pregnancy and preterm birth by 61%. CONCLUSIONS In this US birth cohort, we found that maternal diabetes was associated with altered fetal DNA methylation patterns, which substantially explained the link between diabetes and preterm birth.
Collapse
Affiliation(s)
- Guoying Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA.
| | - Richard Xu
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Boyang Zhang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiumei Hong
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Tami R Bartell
- Patrick M. Magoon Institute for Healthy Communities, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiaobin Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Liu H, Chen N, Tang W, Shen S, Yu J, Xiao H, Zou X, He J, Tucker JD, Qiu X. Factors influencing treatment status of syphilis among pregnant women: a retrospective cohort study in Guangzhou, China. Int J Equity Health 2023; 22:63. [PMID: 37024898 PMCID: PMC10080893 DOI: 10.1186/s12939-023-01866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Many syphilis infected pregnant women do not receive treatment, representing a major missed opportunity to reduce the risk of syphilis-related adverse pregnancy outcomes. This study explored correlates of treatment among pregnant women with syphilis in Guangzhou, China. METHODS Pregnant women with a diagnosis of syphilis in Guangzhou between January 2014 and December 2016 were included. Information of syphilis treatment and correlates were extracted from a comprehensive national case-reporting system. Multivariate logistic regression was used to identify the correlations between information on the demographic characteristics, previous history, clinical characteristics about current syphilis, information of diagnosing hospital, and receiving no treatment or inadequate treatment among syphilis-seropositive pregnant women. A causal mediation analysis was used to explore the potential mediating role of the timing of syphilis diagnosis in the correlates. RESULTS Among 1248 syphilis-seropositive pregnant women, 379 (30.4%) women received no treatment or inadequate treatment. Migrant pregnant women (adjusted OR = 1.83, 95% CI: 1.25-2.73), multiparous participants (adjusted OR = 3.68, 95% CI: 2.51-5.50), unmarried participants (adjusted OR = 3.21, 95% CI: 1.97-5.28) and unemployed participants (adjusted OR = 2.43, 95% CI: 1.41-4.39) were more likely to receive no treatment or inadequate treatment. Participants who with history of syphilis infection (adjusted OR = 0.59, 95% CI: 0.42-0.82) and with high school and higher education participants (adjusted OR = 0.69, 95% CI: 0.49-0.97) were less likely to receive untreated or inadequately treatment. And that the impact of all these factors (except for the migrants) on treatment status are fully mediated through the syphilis diagnosis time, with the direct effect of migrants that would have resulted in a higher rate of no or inadequate treatment (OR = 2.34, 95% CI: 1.08-5.32) was partially cancelled out by the syphilis diagnosis time. CONCLUSIONS Pregnant women who were migrant without local residence and women with syphilis diagnosed at a later gestational age were more likely to slip through the cracks of the existing antenatal care system. More programs should focus on eliminating these gaps of residence-related health inequalities. This research highlights actionable elements for health services interventions that could increase syphilis treatment rates among pregnant women.
Collapse
Affiliation(s)
- Huihui Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Niannian Chen
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Weiming Tang
- Institute for Global Health & Infectious Diseases, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Songying Shen
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Jia Yu
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Huiyun Xiao
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Xingwen Zou
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Jianrong He
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Joseph D Tucker
- Institute for Global Health & Infectious Diseases, University of North Carolina, Chapel Hill, NC, 27599, USA
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
40
|
Chen R, Yang H, Dai J, Zhang M, Lu G, Zhang M, Yu H, Zheng M, He Q. The biological functions of maternal-derived extracellular vesicles during pregnancy and lactation and its impact on offspring health. Clin Nutr 2023; 42:493-504. [PMID: 36857958 DOI: 10.1016/j.clnu.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
During pregnancy and lactation, mothers provide not only nutrients, but also many bioactive components for their offspring through placenta and breast milk, which are essential for offspring development. Extracellular vesicles (EVs) are nanovesicles containing a variety of biologically active molecules and participate in the intercellular communication. In the past decade, an increasing number of studies have reported that maternal-derived EVs play a crucial role in offspring growth, development, and immune system establishment. Hereby, we summarized the characteristics of EVs; biological functions of maternal-derived EVs during pregnancy, including implantation, decidualization, placentation, embryo development and birth of offspring; biological function of breast milk-derived EVs (BMEs) on infant oral and intestinal diseases, immune system, neurodevelopment, and metabolism. In summary, emerging studies have revealed that maternal-derived EVs play a pivotal role in offspring health. As such, maternal-derived EVs may be used as promising biomarkers in offspring disease diagnosis and treatment. However, existing research on maternal-derived EVs and offspring health is largely limited to animal and cellular studies. Evidence from human studies is needed.
Collapse
Affiliation(s)
- Rui Chen
- School of Public Health, Wuhan University, Wuhan, China
| | | | - Jie Dai
- School of Public Health, Wuhan University, Wuhan, China
| | - Minzhe Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Gaolei Lu
- School of Public Health, Wuhan University, Wuhan, China
| | - Minjie Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Hongjie Yu
- School of Public Health, Wuhan University, Wuhan, China
| | - Miaobing Zheng
- School of Nutrition and Exercise, Deakin University, Melbourne, Australia
| | - Qiqiang He
- School of Public Health, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China; Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, China.
| |
Collapse
|
41
|
Alba-Linares JJ, Pérez RF, Tejedor JR, Bastante-Rodríguez D, Ponce F, Carbonell NG, Zafra RG, Fernández AF, Fraga MF, Lurbe E. Maternal obesity and gestational diabetes reprogram the methylome of offspring beyond birth by inducing epigenetic signatures in metabolic and developmental pathways. Cardiovasc Diabetol 2023; 22:44. [PMID: 36870961 PMCID: PMC9985842 DOI: 10.1186/s12933-023-01774-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Obesity is a negative chronic metabolic health condition that represents an additional risk for the development of multiple pathologies. Epidemiological studies have shown how maternal obesity or gestational diabetes mellitus during pregnancy constitute serious risk factors in relation to the appearance of cardiometabolic diseases in the offspring. Furthermore, epigenetic remodelling may help explain the molecular mechanisms that underlie these epidemiological findings. Thus, in this study we explored the DNA methylation landscape of children born to mothers with obesity and gestational diabetes during their first year of life. METHODS We used Illumina Infinium MethylationEPIC BeadChip arrays to profile more than 770,000 genome-wide CpG sites in blood samples from a paediatric longitudinal cohort consisting of 26 children born to mothers who suffered from obesity or obesity with gestational diabetes mellitus during pregnancy and 13 healthy controls (measurements taken at 0, 6 and 12 month; total N = 90). We carried out cross-sectional and longitudinal analyses to derive DNA methylation alterations associated with developmental and pathology-related epigenomics. RESULTS We identified abundant DNA methylation changes during child development from birth to 6 months and, to a lesser extent, up to 12 months of age. Using cross-sectional analyses, we discovered DNA methylation biomarkers maintained across the first year of life that could discriminate children born to mothers who suffered from obesity or obesity with gestational diabetes. Importantly, enrichment analyses suggested that these alterations constitute epigenetic signatures that affect genes and pathways involved in the metabolism of fatty acids, postnatal developmental processes and mitochondrial bioenergetics, such as CPT1B, SLC38A4, SLC35F3 and FN3K. Finally, we observed evidence of an interaction between developmental DNA methylation changes and maternal metabolic condition alterations. CONCLUSIONS Our observations highlight the first six months of development as being the most crucial for epigenetic remodelling. Furthermore, our results support the existence of systemic intrauterine foetal programming linked to obesity and gestational diabetes that affects the childhood methylome beyond birth, which involves alterations related to metabolic pathways, and which may interact with ordinary postnatal development programmes.
Collapse
Affiliation(s)
- Juan José Alba-Linares
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain
- Health Research Institute of Asturias (ISPA-FINBA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Raúl F Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain
- Health Research Institute of Asturias (ISPA-FINBA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain
- Health Research Institute of Asturias (ISPA-FINBA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - David Bastante-Rodríguez
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain
- Health Research Institute of Asturias (ISPA-FINBA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Francisco Ponce
- Health Research Institute INCLIVA, Valencia, Spain
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Nuria García Carbonell
- Health Research Institute INCLIVA, Valencia, Spain
- Servicio de Pediatría, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Rafael Gómez Zafra
- Health Research Institute INCLIVA, Valencia, Spain
- Servicio de Pediatría, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Agustín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain
- Health Research Institute of Asturias (ISPA-FINBA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.
- Health Research Institute of Asturias (ISPA-FINBA), University of Oviedo, Oviedo, Spain.
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain.
| | - Empar Lurbe
- Health Research Institute INCLIVA, Valencia, Spain.
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), Madrid, Spain.
- Servicio de Pediatría, Consorcio Hospital General Universitario de Valencia, Valencia, Spain.
| |
Collapse
|
42
|
Fragoso-Bargas N, Elliott HR, Lee-Ødegård S, Opsahl JO, Sletner L, Jenum AK, Drevon CA, Qvigstad E, Moen GH, Birkeland KI, Prasad RB, Sommer C. Cross-Ancestry DNA Methylation Marks of Insulin Resistance in Pregnancy: An Integrative Epigenome-Wide Association Study. Diabetes 2023; 72:415-426. [PMID: 36534481 PMCID: PMC9935495 DOI: 10.2337/db22-0504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Although there are some epigenome-wide association studies (EWAS) of insulin resistance, for most of them authors did not replicate their findings, and most are focused on populations of European ancestry, limiting the generalizability. In the Epigenetics in Pregnancy (EPIPREG; n = 294 Europeans and 162 South Asians) study, we conducted an EWAS of insulin resistance in maternal peripheral blood leukocytes, with replication in the Born in Bradford (n = 879; n = 430 Europeans and 449 South Asians), Methyl Epigenome Network Association (MENA) (n = 320), and Botnia (n = 56) cohorts. In EPIPREG, we identified six CpG sites inversely associated with insulin resistance across ancestry, of which five were replicated in independent cohorts (cg02988288, cg19693031, and cg26974062 in TXNIP; cg06690548 in SLC7A11; and cg04861640 in ZSCAN26). From methylation quantitative trait loci analysis in EPIPREG, we identified gene variants related to all five replicated cross-ancestry CpG sites, which were associated with several cardiometabolic phenotypes. Mediation analyses suggested that the gene variants regulate insulin resistance through DNA methylation. To conclude, our cross-ancestry EWAS identified five CpG sites related to lower insulin resistance.
Collapse
Affiliation(s)
- Nicolas Fragoso-Bargas
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hannah R. Elliott
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sindre Lee-Ødegård
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Julia O. Opsahl
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Line Sletner
- Department of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Anne Karen Jenum
- General Practice Research Unit (AFE), Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Christian A. Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd. Analytical Services, Oslo Science Park, Oslo, Norway
| | - Elisabeth Qvigstad
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gunn-Helen Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kåre I. Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rashmi B. Prasad
- Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Christine Sommer
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
43
|
Fang J, Wu X, He J, Zhang H, Chen X, Zhang H, Novakovic B, Qi H, Yu X. RBM15 suppresses hepatic insulin sensitivity of offspring of gestational diabetes mellitus mice via m6A-mediated regulation of CLDN4. Mol Med 2023; 29:23. [PMID: 36803098 PMCID: PMC9942341 DOI: 10.1186/s10020-023-00615-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/29/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Gestational diabetes Mellitus (GDM) is a common pregnancy-specific disease with high morbidity, which is linked to a high risk of obesity and diabetes in offspring. N6-methyladenosine modification of RNA is emerging as an important epigenetic mechanism that is widely manifested in many diseases. This study aimed to investigate the mechanism of m6A methylation in metabolic syndrome in offspring result from intrauterine hyperglycemia. METHODS GDM mice were established by feeding a high-fat diet 1 weeks before pregnancy. The m6A RNA methylation quantification kit was used to detect liver tissue methylation levels. PCR array was used to determine the expression of the m6A methylation modification enzyme. Immunohistochemistry, qRT-PCR, and western blot were used to examine the expression of RBM15, METTL13, IGF2BP1, and IGF2BP2. Subsequently, methylated RNA immunoprecipitation sequencing combined with mRNA sequencing, followed by dot blot and glucose uptake tests, were performed. RESULTS In this study, we found that offspring from a GDM mother were more vulnerable to glucose intolerance and insulin resistance. GC-MS revealed significant metabolic changes including saturated fatty acids and unsaturated fatty acids in liver of GDM offspring. We also demonstrated that global mRNA m6A methylation level was significantly increased in the fetal liver of GDM mice, indicating epigenetic change may have a strong relationship with the mechanism of metabolism syndrome. Concordantly, RBM15, the RNA binding methyltransferase, was upregulated in the liver. In vitro, RBM15 suppressed insulin sensitivity and increased insulin resistance through m6A-regulated epigenetic inhabitation of CLDN4. Moreover, MeRIP-sequencing and mRNA-sequencing revealed that differently regulated genes with differential m6A peaks were enriched in metabolic pathways. CONCLUSION Our study revealed the essential role of RBM15 in insulin resistance and the effect of RBM15-regulated m6A modification in the metabolic syndrome of offspring of GDM mice.
Collapse
Affiliation(s)
- Jie Fang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd., Chongqing, 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiafei Wu
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd., Chongqing, 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jie He
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd., Chongqing, 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hanwen Zhang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd., Chongqing, 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuyang Chen
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd., Chongqing, 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hua Zhang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd., Chongqing, 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Boris Novakovic
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| | - Hongbo Qi
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd., Chongqing, 400016, China. .,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Health Center for Women and Children, Chongqing, 401120, China.
| | - Xinyang Yu
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd., Chongqing, 400016, China. .,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
44
|
Hill RA, Gibbons A, Han U, Suwakulsiri W, Taseska A, Hammet F, Southey M, Malhotra A, Fahey M, Palmer KR, Hunt RW, Lim I, Newman-Morris V, Sundram S. Maternal SARS-CoV-2 exposure alters infant DNA methylation. Brain Behav Immun Health 2023; 27:100572. [PMID: 36570792 PMCID: PMC9758784 DOI: 10.1016/j.bbih.2022.100572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Background Infection during pregnancy can increase the risk of neurodevelopmental disorders in offspring. The impact of maternal SARS-CoV-2 infection on infant neurodevelopment is poorly understood. The maternal immune response to infection may be mimicked in rodent models of maternal immune activation which recapitulate altered neurodevelopment and behavioural disturbances in the offspring. In these models, epigenetic mechanisms, in particular DNA methylation, are one pathway through which this risk is conferred in utero to offspring. We hypothesised that in utero exposure to SARS-CoV-2 in humans may alter infant DNA methylation, particularly in genes associated with neurodevelopment. We aimed to test this hypothesis in a pilot sample of children in Victoria, Australia, who were exposed in utero to SARS-CoV-2. Methods DNA was extracted from buccal swab specimens from (n = 4) SARS-CoV-2 in utero exposed and (n = 4) non-exposed infants and methylation status assessed across 850,000 methylation sites using an Illumina EPIC BeadChip. We also conducted an exploratory enrichment analysis using Gene Ontology annotations. Results 1962 hypermethylated CpG sites were identified with an unadjusted p-value of 0.05, where 1133 CpGs mapped to 959 unique protein coding genes, and 716 hypomethylated CpG sites mapped to 559 unique protein coding genes in SARS-CoV-2 exposed infants compared to non-exposed. One differentially methylated position (cg06758191), located in the gene body of AFAP1 that was hypomethylated in the SARS-CoV-2 exposed cohort was significant after correction for multiple testing (FDR-adjusted p-value <0.00083). Two significant differentially methylated regions were identified; a hypomethylated intergenic region located in chromosome 6p proximal to the genes ZP57 and HLA-F (fwer <0.004), and a hypomethylated region in the promoter and body of the gene GAREM2 (fwer <0.036). Gene network enrichment analysis revealed differential methylation in genes corresponding to pathways relevant to neurodevelopment, including the ERBB pathway. Conclusion These pilot data suggest that exposure to SARS-CoV-2 in utero differentially alters methylation of genes in pathways that play a role in human neurodevelopment.
Collapse
Affiliation(s)
- Rachel A. Hill
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Gibbons
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | - Uni Han
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | | | - Angela Taseska
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | - Fleur Hammet
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Melissa Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
- Monash Children's Hospital, Clayton, Victoria, Australia
| | - Michael Fahey
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
- Monash Children's Hospital, Clayton, Victoria, Australia
| | - Kirsten R. Palmer
- Monash Women's, Monash Health, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Rod W. Hunt
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
- Monash Children's Hospital, Clayton, Victoria, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Izaak Lim
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
- Early in Life Mental Health Service, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia
| | - Vesna Newman-Morris
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
- Early in Life Mental Health Service, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
- Mental Health Program, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
45
|
Ju Y, Shen T, Guo Z, Kong Y, Huang Y, Hu J. Identification of methylation-driven genes, circulating miRNAs and their potential regulatory mechanisms in gestational diabetes mellitus. Am J Transl Res 2023; 15:336-349. [PMID: 36777869 PMCID: PMC9908470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 02/14/2023]
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) is a major pregnancy complication. The purpose of this study is to investigate the molecular regulatory mechanisms of GDM. METHODS RNA-seq and methylation data of GDM were retrieved from the Gene Expression Omnibus database. Following principal component analysis (PCA), differentially expressed mRNAs and microRNAs (miRNAs) in the blood were highlighted between GDM and the control. Then, an abnormally expressed miRNA-mRNA network was constructed, based on which a protein-protein interaction (PPI) network was established to identify hub genes. Differentially expressed and methylated genes were identified for GDM, followed by functional enrichment analysis. RESULTS According to PCA results, no outlier samples were found. A total of 35 differentially expressed circulating miRNAs were identified for GDM. The miRNA-mRNA regulatory network consisted of 94 miRNA-mRNA pairs. The PPI network contained 10 hub genes, including HIF1A, TLR2, FOS, IL6R, MYLIP, ABCA1, SELL, BCL3, AP1G1 and NECAP1. Furthermore, 22 down-regulated and hypermethylated genes and 8 up-regulated and hypomethylated genes were identified for GDM, which are related to helper T cell (Th) differentiation. CONCLUSION We identified methylation-driven genes and circulating miRNAs for GDM, which have the potential to serve as novel diagnostic biomarkers.
Collapse
Affiliation(s)
- Yuejun Ju
- Department of Endocrinology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215000, Jiangsu, P. R. China,Department of Endocrinology, Changshu No. 2 People’s HospitalChangshu 215500, Jiangsu, P. R. China
| | - Ting Shen
- Department of Endocrinology, Changshu No. 2 People’s HospitalChangshu 215500, Jiangsu, P. R. China
| | - Zhanhong Guo
- Department of Endocrinology, Changshu No. 2 People’s HospitalChangshu 215500, Jiangsu, P. R. China
| | - Yinghong Kong
- Department of Endocrinology, Changshu No. 2 People’s HospitalChangshu 215500, Jiangsu, P. R. China
| | - Yun Huang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215000, Jiangsu, P. R. China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215000, Jiangsu, P. R. China
| |
Collapse
|
46
|
Gunasekara CJ, MacKay H, Scott CA, Li S, Laritsky E, Baker MS, Grimm SL, Jun G, Li Y, Chen R, Wiemels JL, Coarfa C, Waterland RA. Systemic interindividual epigenetic variation in humans is associated with transposable elements and under strong genetic control. Genome Biol 2023; 24:2. [PMID: 36631879 PMCID: PMC9835319 DOI: 10.1186/s13059-022-02827-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Genetic variants can modulate phenotypic outcomes via epigenetic intermediates, for example at methylation quantitative trait loci (mQTL). We present the first large-scale assessment of mQTL at human genomic regions selected for interindividual variation in CpG methylation, which we call correlated regions of systemic interindividual variation (CoRSIVs). These can be assayed in blood DNA and do not reflect interindividual variation in cellular composition. RESULTS We use target-capture bisulfite sequencing to assess DNA methylation at 4086 CoRSIVs in multiple tissues from each of 188 donors in the NIH Gene-Tissue Expression (GTEx) program. At CoRSIVs, DNA methylation in peripheral blood correlates with methylation and gene expression in internal organs. We also discover unprecedented mQTL at these regions. Genetic influences on CoRSIV methylation are extremely strong (median R2=0.76), cumulatively comprising over 70-fold more human mQTL than detected in the most powerful previous study. Moreover, mQTL beta coefficients at CoRSIVs are highly skewed (i.e., the major allele predicts higher methylation). Both surprising findings are independently validated in a cohort of 47 non-GTEx individuals. Genomic regions flanking CoRSIVs show long-range enrichments for LINE-1 and LTR transposable elements; the skewed beta coefficients may therefore reflect evolutionary selection of genetic variants that promote their methylation and silencing. Analyses of GWAS summary statistics show that mQTL polymorphisms at CoRSIVs are associated with metabolic and other classes of disease. CONCLUSIONS A focus on systemic interindividual epigenetic variants, clearly enhanced in mQTL content, should likewise benefit studies attempting to link human epigenetic variation to the risk of disease.
Collapse
Affiliation(s)
- Chathura J. Gunasekara
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Harry MacKay
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - C. Anthony Scott
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Shaobo Li
- grid.42505.360000 0001 2156 6853Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Eleonora Laritsky
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Maria S. Baker
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Sandra L. Grimm
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Goo Jun
- grid.267308.80000 0000 9206 2401Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Yumei Li
- grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Rui Chen
- grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Joseph L. Wiemels
- grid.42505.360000 0001 2156 6853Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Cristian Coarfa
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX USA
| | - Robert A. Waterland
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
47
|
Lecorguillé M, McAuliffe FM, Twomey PJ, Viljoen K, Mehegan J, Kelleher CC, Suderman M, Phillips CM. Maternal Glycaemic and Insulinemic Status and Newborn DNA Methylation: Findings in Women With Overweight and Obesity. J Clin Endocrinol Metab 2022; 108:85-98. [PMID: 36137169 PMCID: PMC9759168 DOI: 10.1210/clinem/dgac553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/26/2022] [Indexed: 11/07/2022]
Abstract
CONTEXT Maternal dysglycaemia and prepregnancy obesity are associated with adverse offspring outcomes. Epigenetic mechanisms such as DNA methylation (DNAm) could contribute. OBJECTIVE To examine relationships between maternal glycaemia, insulinemic status, and dietary glycemic indices during pregnancy and an antenatal behavioral-lifestyle intervention with newborn DNAm. METHODS We investigated 172 women from a randomized controlled trial of a lifestyle intervention in pregnant women who were overweight or obese. Fasting glucose and insulin concentrations and derived indices of insulin resistance (HOMA-IR), β-cell function (HOMA-%B), and insulin sensitivity were determined at baseline (15) and 28 weeks' gestation. Dietary glycemic load (GL) and index (GI) were calculated from 3-day food diaries. Newborn cord blood DNAm levels of 850K CpG sites were measured using the Illumina Infinium HumanMethylationEPIC array. Associations of each biomarker, dietary index and intervention with DNAm were examined. RESULTS Early pregnancy HOMA-IR and HOMA-%B were associated with lower DNAm at CpG sites cg03158092 and cg05985988, respectively. Early pregnancy insulin sensitivity was associated with higher DNAm at cg04976151. Higher late pregnancy insulin concentrations and GL scores were positively associated with DNAm at CpGs cg12082129 and cg11955198 and changes in maternal GI with lower DNAm at CpG cg03403995 (Bonferroni corrected P < 5.99 × 10-8). These later associations were located at genes previously implicated in growth or regulation of insulin processes. No effects of the intervention on cord blood DNAm were observed. None of our findings were replicated in previous studies. CONCLUSION Among women who were overweight or obese, maternal pregnancy dietary glycemic indices, glucose, and insulin homeostasis were associated with modest changes in their newborn methylome. TRIAL REGISTRATION ISRCTN29316280.
Collapse
Affiliation(s)
- Marion Lecorguillé
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, National Maternity Hospital, University College Dublin, Dublin, Ireland
| | - Patrick J Twomey
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
| | - Karien Viljoen
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| | - John Mehegan
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Cecily C Kelleher
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Catherine M Phillips
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| |
Collapse
|
48
|
Bankole T, Winn H, Li Y. Dietary Impacts on Gestational Diabetes: Connection between Gut Microbiome and Epigenetic Mechanisms. Nutrients 2022; 14:nu14245269. [PMID: 36558427 PMCID: PMC9786016 DOI: 10.3390/nu14245269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common obstetric complications due to an increased level of glucose intolerance during pregnancy. The prevalence of GDM increases due to the obesity epidemic. GDM is also associated with an increased risk of gestational hypertension and preeclampsia resulting in elevated maternal and perinatal morbidity and mortality. Diet is one of the most important environmental factors associated with etiology of GDM. Studies have shown that the consumption of certain bioactive diets and nutrients before and during pregnancy might have preventive effects against GDM leading to a healthy pregnancy outcome as well as beneficial metabolic outcomes later in the offspring's life. Gut microbiome as a biological ecosystem bridges the gap between human health and diseases through diets. Maternal diets affect maternal and fetal gut microbiome and metabolomics profiles, which consequently regulate the host epigenome, thus contributing to later-life metabolic health in both mother and offspring. This review discusses the current knowledge regarding how epigenetic mechanisms mediate the interaction between maternal bioactive diets, the gut microbiome and the metabolome leading to improved metabolic health in both mother and offspring.
Collapse
Affiliation(s)
- Taiwo Bankole
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Hung Winn
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65212, USA
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
- Correspondence:
| |
Collapse
|
49
|
Hypertensive disorders of pregnancy share common cfDNA methylation profiles. Sci Rep 2022; 12:19837. [PMID: 36400896 PMCID: PMC9674847 DOI: 10.1038/s41598-022-24348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Hypertensive disorders of pregnancy (HDP) contribute substantially to perinatal morbidity and mortality. Epigenetic changes point towards cardio-metabolic dysregulation for these vascular disorders. In early pregnancy, epigenetic changes using cell free DNA (cfDNA) are largely unexplored. We aimed to investigate these in HDP between 11 and 14 weeks of gestation by analysis of cfDNA methylation profiles in patients with hypertensive disorders. We identified patients without chronic hypertension but with subsequent development of preeclampsia (PE) (n = 11), with chronic hypertension (HT) but without PE development (n = 14), and lacking both PE and HT (n = 422). We matched patients according to PE risk factors into three groups (n = 5 each group): (1) PE: no HT but PE development, (2) HT: chronic hypertension but no PE and (3) Control: no PE or HT. We successfully optimized our cfDNA isolation process prior to whole genome bisulfite sequencing. Analysis of cfDNA methylation changes indicate a common predisposition in PE and HT groups, chiefly of maternal origin. Assessment of significant differentially methylated regions and annotated genes point towards a common cardiovascular predisposition in preeclampsia and hypertension groups in the first trimester. We postulate the pivotal role of the maternal cardiovascular system in HDP, which is already evident in the first trimester.
Collapse
|
50
|
Kim C, Harrall KK, Glueck DH, Needham BL, Dabelea D. Gestational diabetes mellitus, epigenetic age and offspring metabolism. Diabet Med 2022; 39:e14925. [PMID: 36224717 PMCID: PMC9804757 DOI: 10.1111/dme.14925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/26/2022] [Indexed: 01/09/2023]
Abstract
AIMS No reports examine the relationship between in-utero exposure to gestational diabetes mellitus (GDM), offspring epigenetic age acceleration (EAA), and offspring insulin sensitivity. METHODS Using data from a cohort study, we examined associations between GDM in-utero exposure and offspring EAA at approximately 10 years of age, using separate regression models adjusting for offspring chronological age and sex. We also examined associations between EAA with updated homeostasis model assessment of insulin sensitivity and secretion (HOMA2-S and HOMA2-β) measured at approximately 10 and 16 years of age, using mixed linear regression models accounting for repeated measures after adjustment for offspring chronological age and sex. RESULTS Compared to unexposed offspring (n = 91), offspring exposed to GDM (n = 88) had greater EAA or older extrinsic age compared to chronological age (β-coefficient 2.00, 95% confidence interval [0.71, 3.28], p = 0.0025), but not greater intrinsic EAA (β-coefficient -0.07, 95% CI [-0.71, 0.57], p = 0.93). Extrinsic EAA was associated with lower insulin sensitivity (β-coefficient -0.018, 95% CI [-0.035, -0.002], p = 0.03) and greater insulin secretion (β-coefficient 0.018, 95% CI [0.006, 0.03], p = 0.003), and these associations persisted after further adjustment for measures of maternal and child adiposity. No associations were observed between intrinsic EAA and insulin sensitivity and secretion, before or after adjustment for measures of maternal and child adiposity. CONCLUSIONS In this study, children exposed to GDM experience greater extrinsic EAA, which is associated with lower insulin sensitivity and greater insulin secretion. Further studies are needed to determine the directionality of these associations.
Collapse
Affiliation(s)
- Catherine Kim
- Departments of Medicine, Obstetrics & Gynecology, and EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Kylie K. Harrall
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) CenterUniversity of Colorado AuroraAuroraColoradoUSA
| | - Deborah H. Glueck
- LEAD Center and Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | | | - Dana Dabelea
- Department of Pediatrics, LEAD CenterUniversity of ColoradoAuroraColoradoUSA
- Department of Epidemiology, LEAD CenterUniversity of ColoradoAuroraColoradoUSA
| |
Collapse
|