1
|
Wang L, Li L, Liu J, Sheng C, Yang M, Hu Z, Yue R. Associated factors and principal pathophysiological mechanisms of type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2025; 16:1499565. [PMID: 40416523 PMCID: PMC12098035 DOI: 10.3389/fendo.2025.1499565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 04/11/2025] [Indexed: 05/27/2025] Open
Abstract
Type 2 diabetes mellitus(T2DM) as a common chronic disease with an increasing prevalence worldwide that poses a great threat to individual health, and is characterized by chronic hyperglycemia resulting from insulin resistance (IR) coupled with β-cell dysfunction. Mitochondrial dysfunction, obesity, gut microbiota, oxidative stress and inflammation have emerged as a significant contributor to the etiology of T2DM, affecting various metabolic processes critical for glucose homeostasis. This short review underscores their role in enhancing T2DM-related molecular mechanisms and explores recent advancements in diabetic management, further highlights the importance of personalized care plans to address the complexities of the T2DM and aims to improve patient quality of life and long-term health outcome.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhipeng Hu
- Department of Endocrinology, Hospital of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Deng XR, Zhai YJ, Shi XY, Tang SS, Fang YY, Heng HY, Zhao LY, Yuan HJ. Characteristic dysbiosis in patients with type 2 diabetes and hyperuricemia, and the effect of empagliflozin on gut microbiota. World J Diabetes 2025; 16:102970. [PMID: 40236847 PMCID: PMC11947907 DOI: 10.4239/wjd.v16.i4.102970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/04/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Gut microbiota play a crucial role in metabolic diseases, including type 2 diabetes (T2DM) and hyperuricemia (HUA). One-third of uric acid is excreted into the intestinal tract and further metabolized by gut microbiota. Thus, the gut microbiota might be a new therapeutic target for HUA. Empagliflozin significantly lowers serum uric acid levels and contributes to cardiovascular benefits which are partly attributed to altered gut microbiota. We hypothesize that gut dysbiosis in patients with diabetes and HUA, and the reduction of uric acid by empagliflozin, may be mediated by gut microbiota. AIM To investigate dysbiosis in patients with T2DM and HUA, and the effect of empagliflozin on gut microbiota associated with purine metabolism. METHODS In this age and sex-matched, case-control study, we recruited 30 patients with T2DM and HUA; 30 with T2DM; and 30 healthy controls at the Henan Provincial People's Hospital between February 2019 and August 2023. Nine patients with T2DM and HUA were treated with empagliflozin for three months. Gut microbiota profiles were assessed using the 16S rRNA gene. RESULTS Patients with T2DM and HUA had the highest total triglycerides (1.09 mmol/L in heathy control vs 1.56 mmol/L in T2DM vs 2.82 mmol/L in T2DM + HUA) and uric acid levels (302.50 μmol/L in heathy control vs 288.50 μmol/L in T2DM vs 466.50 μmol/L in T2DM + HUA) among the three groups. The composition of the gut microbiota differed significantly between patients with T2DM and HUA, and those with T2DM/healthy controls (P < 0.05). Notably, patients with T2DM and HUA demonstrated a deficiency of uric acid-degrading bacteria such as Romboutsia, Blautia, Clostridium sensu stricto 1 (P < 0.05). Empagliflozin treatment was associated with significantly reduced serum uric acid levels and purine metabolism-related pathways and genes in patients with T2DM and HUA (P < 0.05). CONCLUSION Gut dysbiosis may contribute to the pathogenesis of HUA in T2DM, and empagliflozin may partly restore the gut microbiota related to uric acid metabolism.
Collapse
Affiliation(s)
- Xin-Ru Deng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Yu-Jia Zhai
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Xiao-Yang Shi
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Sha-Sha Tang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Yuan-Yuan Fang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Hong-Yan Heng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Ling-Yun Zhao
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Hui-Juan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| |
Collapse
|
3
|
Wang X, Tian R, Liang C, Jia Y, Zhao L, Xie Q, Huang F, Yuan H. Biomimetic nanoplatform with microbiome modulation and antioxidant functions ameliorating insulin resistance and pancreatic β-cell dysfunction for T2DM management. Biomaterials 2025; 313:122804. [PMID: 39236631 DOI: 10.1016/j.biomaterials.2024.122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Insulin resistance and pancreatic β-cell dysfunction are the main pathogenesis of type 2 diabetes mellitus (T2DM). However, insulin therapy and diabetes medications do not effectively solve the two problems simultaneously. In this study, a biomimetic oral hydrogen nanogenerator that leverages the benefits of edible plant-derived exosomes and hydrogen therapy was constructed to overcome this dilemma by modulating gut microbiota and ameliorating oxidative stress and inflammatory responses. Hollow mesoporous silica (HMS) nanoparticles encapsulating ammonia borane (A) were used to overcome the inefficiency of H2 delivery in traditional hydrogen therapy, and exosomes originating from ginger (GE) were employed to enhance biocompatibility and regulate intestinal flora. Our study showed that HMS/A@GE not only considerably ameliorated insulin resistance and liver steatosis, but inhibited the dedifferentiation of islet β-cell and enhanced pancreatic β-cell proportion in T2DM model mice. In addition to its antioxidant and anti-inflammatory effects, HMS/A@GE augmented the abundance of Lactobacilli spp. and tryptophan metabolites, such as indole and indole acetic acid, which further activated the AhR/IL-22 pathway to improve intestinal-barrier function and metabolic impairments. This study offers a potentially viable strategy for addressing the current limitations of diabetes treatment by integrating gut-microbiota remodelling with antioxidant therapies.
Collapse
Affiliation(s)
- Xiudan Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Rui Tian
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Chenghong Liang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Yifan Jia
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Lingyun Zhao
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Qinyuan Xie
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Fenglian Huang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China.
| |
Collapse
|
4
|
Zhang S, Tang S, Liu Y, Xue B, Xie Q, Zhao L, Yuan H. Protein-bound uremic toxins as therapeutic targets for cardiovascular, kidney, and metabolic disorders. Front Endocrinol (Lausanne) 2025; 16:1500336. [PMID: 39931238 PMCID: PMC11808018 DOI: 10.3389/fendo.2025.1500336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Cardiovascular-kidney-metabolic (CKM) syndrome is a systemic clinical condition characterized by pathological and physiological interactions among metabolic abnormalities, chronic kidney disease, and cardiovascular diseases, leading to multi-organ dysfunction and a higher incidence of cardiovascular endpoints. Traditional approaches to managing CKM syndrome risk are inadequate in these patients, necessitating strategies targeting specific CKM syndrome risk factors. Increasing evidence suggests that addressing uremic toxins and/or pathways induced by uremic toxins may reduce CKM syndrome risk and treat the disease. This review explores the interactions among heart, kidney, and metabolic pathways in the context of uremic toxins and underscores the significant role of uremic toxins as potential therapeutic targets in the pathophysiology of these diseases. Strategies aimed at regulating these uremic toxins offer potential avenues for reversing and managing CKM syndrome, providing new insights for its clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huijuan Yuan
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| |
Collapse
|
5
|
Wu J, Lu Q, Hou J, Qiu Y, Tian M, Wang L, Gao K, Yang X, Jiang Z. Baicalein inhibits PRRSV through direct binding, targeting EGFR, and enhancing immune response. Vet Res 2025; 56:16. [PMID: 39833939 PMCID: PMC11748510 DOI: 10.1186/s13567-024-01440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/27/2024] [Indexed: 01/22/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) presents significant economic challenges to the global pork industry due to its ability to mutate rapidly. The current commercial vaccines have limited effectiveness, and there are strict restrictions on the use of antiviral chemical drugs. Therefore, it is urgent to identify new strategies for preventing and controlling PRRSV infections. Baicalein, a flavonoid derived from Scutellaria baicalensis, has gained attention for its potential antiviral properties. However, there is little information about the effects and mechanisms of baicalein in relation to PRRSV. In this study, a network pharmacology analysis identified seven potential targets of baicalein against PRRSV, with the epidermal growth factor receptor (EGFR) emerging as the core target. The results of molecular docking and dynamics (MD) simulations confirmed that baicalein has a high binding affinity for EGFR, with a measured value of - 7.935 kcal/mol. Additionally, both in vitro (EC50 = 10.20 μg/mL) and in vivo (2.41 mg/kg) experiments were conducted to assess the effectiveness of baicalein against PRRSV. Notably, baicalein was found to inhibit various stages of the PRRSV replication cycle and could directly bind to PRRSV in vitro. Baicalein inhibited the entry of PRRSV by blocking EGFR phosphorylation and the downstream PI3K-AKT signaling pathway. This was confirmed by a decrease in the expression of p-EGFR/EGFR, p-AKT/AKT, PI3K, and SRC following treatment with baicalein. Additionally, baicalein significantly enhanced the immune response in piglets infected with PRRSV. In conclusion, this study suggests that baicalein may be a promising pharmaceutical candidate for preventing and controlling PRRS, offering new insights into the antiviral potential of Chinese herbal medicine.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Qi Lu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Jing Hou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| |
Collapse
|
6
|
Wang Z, Gong M, Fang Y, Yuan H, Zhang C. Reconstruction characteristics of gut microbiota from patients with type 1 diabetes affect the phenotypic reproducibility of glucose metabolism in mice. SCIENCE CHINA. LIFE SCIENCES 2025; 68:176-188. [PMID: 39285046 DOI: 10.1007/s11427-024-2658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/18/2024] [Indexed: 01/03/2025]
Abstract
The human microbiota-associated (HMA) mice model, especially the germ-free (GF)-humanized mice, has been widely used to probe the causal relationships between gut microbiota and human diseases such as type 1 diabetes (T1D). However, most studies have not clarified the extent to which the reconstruction of the human donor microbiota in recipient mice correlates with corresponding phenotypic reproducibility. In this study, we transplanted fecal microbiota from five patients with T1D and four healthy people into GF mice, and microbiota from each donor were transplanted into 10 mice. Mice with similar microbiota structure to the donor exhibited better phenotypic reproducibility. The characteristics of the microbial community assembly of donors also influenced the phenotypic reproducibility in mice, and individuals with a higher proportion of stochastic processes showed more severe disorders. Microbes enriched in patients with T1D had a stronger colonization potential in mice with impaired glucose metabolism, and microbiota functional features related to T1D were better reproduced in these mice. This indicates that assembly traits and colonization efficacy of microbiota influence phenotypic reproducibility in GF-humanized mice. Our findings provide important insights for using HMA mice models to explore links between gut microbiota and human diseases.
Collapse
Affiliation(s)
- Zhiyi Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengxue Gong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Fang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Zhang Y, Zhao L, Jia Y, Zhang X, Han Y, Lu P, Yuan H. Genetic Evidence for the Causal Relationship Between Gut Microbiota and Diabetic Kidney Disease: A Bidirectional, Two-Sample Mendelian Randomisation Study. J Diabetes Res 2024; 2024:4545595. [PMID: 39479291 PMCID: PMC11524706 DOI: 10.1155/2024/4545595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Aims: According to the gut-kidney axis theory, gut microbiota (GM) has bidirectional crosstalk with the development of diabetic kidney disease (DKD). However, empirical results have been inconsistent, and the causal associations remain unclear. This study was aimed at exploring the causal relationship between GM and DKD as well as the glomerular filtration rate (GFR) and urinary albumin-to-creatinine ratio (UACR). Materials and Methods: Two-sample Mendelian randomisation (MR) analysis was performed with inverse-variance weighting as the primary method, together with four additional modes (MR-Egger regression, simple mode, weighted mode, and weighted median). We utilised summary-level genome-wide association study statistics from public databases for this MR analysis. Genetic associations with DKD were downloaded from the IEU Open GWAS project or CKDGen consortium, and associations with GM (196 taxa from five levels) were downloaded from the MiBioGen repository. Results: In forward MR analysis, we identified 13 taxa associated with DKD, most of which were duplicated in Type 2 diabetes with renal complications but not in Type 1 diabetes. We observed a causal association between genetic signature contributing to the relative abundance of Erysipelotrichaceae UCG003 and that for both DKD and GFR. Similarly, host genetic signature defining the abundance of Ruminococcaceae UCG014 was found to be simultaneously associated with DKD and UACR. In reverse MR analysis, the abundance of 14 other GM taxa was affected by DKD, including the phylum Proteobacteria, which remained significant after false discovery rate correction. Sensitivity analyses revealed no evidence of outliers, heterogeneity, or horizontal pleiotropy. Conclusion: Our findings provide compelling causal genetic evidence for the bidirectional crosstalk between specific GM taxa and DKD development, contributing valuable insights for a comprehensive understanding of the pathological mechanisms of DKD and highlighting the possibility of prevention and management of DKD by targeting GM.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Endocrinology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University & People's Hospital of Henan University, Zhengzhou, Henan, China
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Lingyun Zhao
- Department of Endocrinology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yifan Jia
- Department of Endocrinology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhang
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Yueying Han
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Ping Lu
- Department of Endocrinology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University & People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University & People's Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Zhou Z, Xu M, Xiong P, Yuan J, Zheng D, Piao S. Prognosis and outcome of latent autoimmune diabetes in adults: T1DM or T2DM? Diabetol Metab Syndr 2024; 16:242. [PMID: 39375804 PMCID: PMC11457386 DOI: 10.1186/s13098-024-01479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Latent Autoimmune Diabetes in Adults (LADA) is a type of diabetes mellitus often overlooked in clinical practice for its dual resemblance to Type 1 Diabetes Mellitus (T1DM) in pathogenesis and to Type 2 Diabetes Mellitus (T2DM) in clinical presentation. To better understand LADA's distinctiveness from T1DM and T2DM, we conducted a comprehensive review encompassing etiology, pathology, clinical features, treatment modalities, and prognostic outcomes. With this comparative lens, we propose that LADA defies simple classification as either T1DM or T2DM. The specific treatments for the disease are limited and should be based on the therapies of T1DM or T2DM that address specific clinical issues at different stages of the disease. It is crucial to identify LADA cases potentially misdiagnosed as T2DM, warranting prompt screening for poor blood sugar control, short-term blood sugar deterioration, and other conditions. If the prognosis for LADA is similar to T2DM, it can be managed as T2DM. However, if the prognosis fundamentally differs, early LADA screening is crucial to optimize patient outcomes and enhance research on tailored treatments. The pathogenesis of LADA is clear, so the prognosis may be the key to determining whether it can be classified as T2DM, which is also the direction of future research. On the one hand, this paper aims to provide suggestions for the clinical screening and treatment of LADA based on the latest progress and provide worthy directions for future research on LADA.
Collapse
Affiliation(s)
- Zhipeng Zhou
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingyue Xu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Pingjie Xiong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jing Yuan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Deqing Zheng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shenghua Piao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Schwartz SS, Corkey BE, R Gavin J, DeFronzo RA, Herman ME. Advances and counterpoints in type 2 diabetes. What is ready for translation into real-world practice, ahead of the guidelines. BMC Med 2024; 22:356. [PMID: 39227924 PMCID: PMC11373437 DOI: 10.1186/s12916-024-03518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/08/2024] [Indexed: 09/05/2024] Open
Abstract
This review seeks to address major gaps and delays between our rapidly evolving body of knowledge on type 2 diabetes and its translation into real-world practice. Through updated and improved best practices informed by recent evidence and described herein, we stand to better attain A1c targets, help preserve beta cell integrity and moderate glycemic variability, minimize treatment-emergent hypoglycemia, circumvent prescribing to "treatment failure," and prevent long-term complications. The first topic addressed in this review concerns updates in the 2023 and 2024 diabetes treatment guidelines for which further elaboration can help facilitate integration into routine care. The second concerns advances in diabetes research that have not yet found their way into guidelines, though they are endorsed by strong evidence and are ready for real-world use in appropriate patients. The final theme addresses lingering misconceptions about the underpinnings of type 2 diabetes-fundamental fallacies that continue to be asserted in the textbooks and continuing medical education upon which physicians build their approaches. A corrected and up-to-date understanding of the disease state is essential for practitioners to both conceptually and translationally manage initial onset through late-stage type 2 diabetes.
Collapse
Affiliation(s)
- Stanley S Schwartz
- Main Line Health, Wynnewood, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - James R Gavin
- Emory University School of Medicine, Atlanta, GA, USA
| | - Ralph A DeFronzo
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, South Texas. Veterans Health Care System and Texas Diabetes Institute, 701 S. Zarzamoro, San Antonio, TX, 78207, USA
| | - Mary E Herman
- Social Alchemy: Building Physician Competency Across the Globe, 5 Ave Sur #36, Antigua, Sacatepéquez, Guatemala.
| |
Collapse
|
10
|
Li J, Yan K, Wang S, Wang P, Jiao J, Dong Y. Alteration of the intestinal microbiota and serum metabolites in a mouse model of Pon1 gene ablation. FASEB J 2024; 38:e23611. [PMID: 38597925 DOI: 10.1096/fj.202302344r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Mutations in the Paraoxonase 1 (Pon1) gene underlie aging, cardiovascular disease, and impairments of the nervous and gastrointestinal systems and are linked to the intestinal microbiome. The potential role of Pon1 in modulating the intestinal microbiota and serum metabolites is poorly understood. The present study demonstrated that mice with genomic excision of Pon1 by a multiplexed guide RNA CRISPR/Cas9 approach exhibited disrupted gut microbiota, such as significantly depressed alpha-diversity and distinctly separated beta diversity, accompanied by varied profiles of circulating metabolites. Furthermore, genomic knock in of Pon1 exerted a distinct effect on the intestinal microbiome and serum metabolome, including dramatically enriched Aerococcus, linoleic acid and depleted Bacillus, indolelactic acid. Specifically, a strong correlation was established between bacterial alterations and metabolites in Pon1 knockout mice. In addition, we identified metabolites related to gut bacteria in response to Pon1 knock in. Thus, the deletion of Pon1 affects the gut microbiome and functionally modifies serum metabolism, which can lead to dysbiosis, metabolic dysfunction, and infection risk. Together, these findings put forth a role for Pon1 in microbial alterations that contribute to metabolism variations. The function of Pon1 in diseases might at least partially depend on the microbiome.
Collapse
Affiliation(s)
- Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaixin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Siyuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Poulsen CS, Hesse D, Fernandes GR, Hansen TH, Kern T, Linneberg A, Van Espen L, Jørgensen T, Nielsen T, Alibegovic AC, Matthijnssens J, Pedersen O, Vestergaard H, Hansen T, Andersen MK. Characterization of the gut bacterial and viral microbiota in latent autoimmune diabetes in adults. Sci Rep 2024; 14:8315. [PMID: 38594375 PMCID: PMC11003976 DOI: 10.1038/s41598-024-58985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is a heterogeneous disease characterized by autoantibodies against insulin producing pancreatic beta cells and initial lack of need for insulin treatment. The aim of the present study was to investigate if individuals with LADA have an altered gut microbiota relative to non-diabetic control subjects, individuals with type 1 diabetes (T1D), and individuals with type 2 diabetes (T2D). Bacterial community profiling was performed with primers targeting the variable region 4 of the 16S rRNA gene and sequenced. Amplicon sequence variants (ASVs) were generated with DADA2 and annotated to the SILVA database. The gut virome was sequenced, using a viral particle enrichment and metagenomics approach, assembled, and quantified to describe the composition of the viral community. Comparison of the bacterial alpha- and beta-diversity measures revealed that the gut bacteriome of individuals with LADA resembled that of individuals with T2D. Yet, specific genera were found to differ in abundance in individuals with LADA compared with T1D and T2D, indicating that LADA has unique taxonomical features. The virome composition reflected the stability of the most dominant order Caudovirales and the families Siphoviridae, Podoviridae, and Inoviridae, and the dominant family Microviridae. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Casper S Poulsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dan Hesse
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk A/S, Soeborg, Denmark
| | - Gabriel R Fernandes
- Biosystems Informatics, Institute René Rachou-Fiocruz Minas, Belo Horizonte, Brazil
| | - Tue H Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo Kern
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Microbiomics A/S, Copenhagen, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lore Van Espen
- Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Clinical & Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Torben Jørgensen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amra C Alibegovic
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk A/S, Soeborg, Denmark
| | - Jelle Matthijnssens
- Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Clinical & Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Department of Medicine, Gentofte University Hospital, Copenhagen, Denmark
| | - Henrik Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Medicine, Bornholms Hospital, Rønne, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mette K Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Nayman EI, Schwartz BA, Polmann M, Gumabong AC, Nieuwdorp M, Cickovski T, Mathee K. Differences in gut microbiota between Dutch and South-Asian Surinamese: potential implications for type 2 diabetes mellitus. Sci Rep 2024; 14:4585. [PMID: 38403716 PMCID: PMC10894869 DOI: 10.1038/s41598-024-54769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
Gut microbiota, or the collection of diverse microorganisms in a specific ecological niche, are known to significantly impact human health. Decreased gut microbiota production of short-chain fatty acids (SCFAs) has been implicated in type 2 diabetes mellitus (T2DM) disease progression. Most microbiome studies focus on ethnic majorities. This study aims to understand how the microbiome differs between an ethnic majority (the Dutch) and minority (the South-Asian Surinamese (SAS)) group with a lower and higher prevalence of T2DM, respectively. Microbiome data from the Healthy Life in an Urban Setting (HELIUS) cohort were used. Two age- and gender-matched groups were compared: the Dutch (n = 41) and SAS (n = 43). Microbial community compositions were generated via DADA2. Metrics of microbial diversity and similarity between groups were computed. Biomarker analyses were performed to determine discriminating taxa. Bacterial co-occurrence networks were constructed to examine ecological patterns. A tight microbiota cluster was observed in the Dutch women, which overlapped with some of the SAS microbiota. The Dutch gut contained a more interconnected microbial ecology, whereas the SAS network was dispersed, i.e., contained fewer inter-taxonomic correlational relationships. Bacteroides caccae, Butyricicoccus, Alistipes putredinis, Coprococcus comes, Odoribacter splanchnicus, and Lachnospira were enriched in the Dutch gut. Haemophilus, Bifidobacterium, and Anaerostipes hadrus discriminated the SAS gut. All but Lachnospira and certain strains of Haemophilus are known to produce SCFAs. The Dutch gut microbiome was distinguished from the SAS by diverse, differentially abundant SCFA-producing taxa with significant cooperation. The dynamic ecology observed in the Dutch was not detected in the SAS. Among several potential gut microbial biomarkers, Haemophilus parainfluenzae likely best characterizes the ethnic minority group, which is more predisposed to T2DM. The higher prevalence of T2DM in the SAS may be associated with the gut dysbiosis observed.
Collapse
Affiliation(s)
- Eric I Nayman
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Bioinformatics Research Group, Knight Foundation School of Computing and Information Sciences, College of Engineering and Computing, Florida International University, Miami, FL, USA.
| | - Brooke A Schwartz
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Bioinformatics Research Group, Knight Foundation School of Computing and Information Sciences, College of Engineering and Computing, Florida International University, Miami, FL, USA
| | - Michaela Polmann
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alayna C Gumabong
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Bioinformatics Research Group, Knight Foundation School of Computing and Information Sciences, College of Engineering and Computing, Florida International University, Miami, FL, USA
| | - Max Nieuwdorp
- Amsterdam Diabetes Center, Department of Internal Medicine, Academic Medical Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Trevor Cickovski
- Bioinformatics Research Group, Knight Foundation School of Computing and Information Sciences, College of Engineering and Computing, Florida International University, Miami, FL, USA.
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
13
|
Siddiqui K, Nawaz SS. Exploration of Immune Targets for Type 1 Diabetes and Latent Autoimmune Disease Immunotherapy. Immunotargets Ther 2023; 12:91-103. [PMID: 37795196 PMCID: PMC10546931 DOI: 10.2147/itt.s417917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that destroys pancreatic beta cells, which produce insulin in the islets of Langerhans. The risk of developing T1D is influenced by environmental factors, genetics, and autoantibodies. Latent autoimmune diabetes in adults (LADA) is a type of T1D that is genetically and phenotypically distinct from classic T1D. This review summarizes the accumulated information on the risk factors for T1D and LADA, and immunotherapy trials that offer insights into potential future combined therapeutic interventions for both T1D and LADA to slow the rate of islet cell loss and preserve beta cell function. Future research should also focus on improving intervention doses, conducting more thorough examinations of intervention responders, and/or combining minimally effective single-target immunotherapies to slow the rate of islet cell loss and preserve beta cell function.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Yang J, Yang X, Wu G, Huang F, Shi X, Wei W, Zhang Y, Zhang H, Cheng L, Yu L, Shang J, Lv Y, Wang X, Zhai R, Li P, Cui B, Fang Y, Deng X, Tang S, Wang L, Yuan Q, Zhao L, Zhang F, Zhang C, Yuan H. Gut microbiota modulate distal symmetric polyneuropathy in patients with diabetes. Cell Metab 2023; 35:1548-1562.e7. [PMID: 37451270 DOI: 10.1016/j.cmet.2023.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
The pathogenic mechanisms underlying distal symmetric polyneuropathy (DSPN), a common neuropathy in patients with diabetes mellitus (DM), are not fully understood. Here, we discover that the gut microbiota from patients with DSPN can induce a phenotype exhibiting more severe peripheral neuropathy in db/db mice. In a randomized, double-blind, and placebo-controlled trial (ChiCTR1800017257), compared to 10 patients who received placebo, DSPN was significantly alleviated in the 22 patients who received fecal microbiota transplants from healthy donors, independent of glycemic control. The gut bacterial genomes that correlated with the Toronto Clinical Scoring System (TCSS) score were organized in two competing guilds. Increased guild 1, which had higher capacity in butyrate production, and decreased guild 2, which harbored more genes in synthetic pathway of endotoxin, were associated with improved gut barrier integrity and decreased proinflammatory cytokine levels. Moreover, matched enterotype between transplants and recipients showed better therapeutic efficacy with more enriched guild 1 and suppressed guild 2. Thus, changes in these two competing guilds may play a causative role in DSPN and have the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Junpeng Yang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Xueli Yang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, Rutgers-SJTU Joint Laboratory on Microbiome and Human Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Fenglian Huang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Xiaoyang Shi
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Wei Wei
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yingchao Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Haihui Zhang
- Department of Gastroenterology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Lina Cheng
- Department of Gastroenterology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Lu Yu
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jing Shang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yinghua Lv
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Xiaobing Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Rui Zhai
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, Rutgers-SJTU Joint Laboratory on Microbiome and Human Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Li
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Bota Cui
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Yuanyuan Fang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Xinru Deng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Shasha Tang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Limin Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Qian Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, Rutgers-SJTU Joint Laboratory on Microbiome and Human Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Faming Zhang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China.
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, Rutgers-SJTU Joint Laboratory on Microbiome and Human Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
15
|
Lin W, Wu D, Zeng Y, Liu Y, Yu D, Wei J, Cai Y, Lin Y, Wu B, Huang H. Characteristics of gut microbiota in male periadolescent rats with irritable bowel syndrome. Heliyon 2023; 9:e18995. [PMID: 37609414 PMCID: PMC10440515 DOI: 10.1016/j.heliyon.2023.e18995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder, however, its effect on gut microbiota during the periadolescent period remains unclear. In this study, our objective was to investigate the characteristics of gut microbiota in male periadolescent rats with IBS induced by neonatal maternal separation (NMS). We evaluated visceral sensitivity by electromyography (EMG), analyzed gut microbiota composition using 16S rDNA gene sequencing, and examined intestinal pathological changes between control and IBS-like groups. The IBS-like group had significantly higher discharge amplitude of the external oblique muscle of the abdomen during colorectal distension (CRD) at 40- and 60 mmHg pressures. We observed differences in gut microbiota composition, with an increase in Bacteroidetes abundance and a decrease in Firmicutes in IBS-like rats. Beta-diversity analysis revealed the gut microbiota of the IBS-like group displayed higher consistent, while that of the control group exhibited substantial variation. Linear discriminant analysis effect size (LEfSe) detected 10 bacterial taxonomic clades showing statistically significant differences (7 increased and 3 decreased) in the IBS-like group. Functional analysis revealed that aminoacyl-tRNA biosynthesis and fatty acid biosynthesis were significantly altered, leading to changes in gene expression. Our findings demonstrate a definite correlation between gut microbiota dysbiosis and IBS during the male periadolescent period, with Alloprevotella and Bacteroide positively associated with high risk of IBS. The effects of specific bacterial genera may provide new insights for the development of treatments for IBS.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dongxiao Wu
- Department of Pediatrics, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuan Liu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, China
| | - Dajie Yu
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianhang Wei
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanliang Cai
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yueli Lin
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bin Wu
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huanhuan Huang
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Hu J, Ding J, Li X, Li J, Zheng T, Xie L, Li C, Tang Y, Guo K, Huang J, Liu S, Yan J, Peng W, Hou C, Wen L, Xu A, Zhou Z, Xiao Y. Distinct signatures of gut microbiota and metabolites in different types of diabetes: a population-based cross-sectional study. EClinicalMedicine 2023; 62:102132. [PMID: 37593224 PMCID: PMC10430172 DOI: 10.1016/j.eclinm.2023.102132] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Patients with type 1 diabetes (T1D) and type 2 diabetes (T2D) present intestinal disturbances. Recent epidemiological data have showed that, worldwide, over half of newly diagnosed T1D patients were adults. However, the gut microbial alterations in adult-onset T1D are unclear. We aimed to identify the signatures of gut microbiota and metabolites in patients with adult-onset T1D systematically, comparing with T2D patients and healthy controls (HCs). METHODS This study enrolled 218 subjects from February 2019 to April 2022 (discovery cohort: 36 HCs, 51 patients with adult-onset T1D and 56 patients with T2D; validation cohort: 28 HCs, 27 patients with adult-onset T1D and 20 patients with T2D). Gut microbial profiles of the study subjects were investigated by metagenomic sequencing, and their faecal and serum metabolites were measured with targeted metabolomics. The study was registered on ClinicalTrials.gov (NCT05252728). FINDINGS Patients with adult-onset T1D had significant differences in the composition of bacteria and their metabolites, characterized by notable depletion of short-chain fatty acid-producing bacteria, especially Eubacterium rectale. This was associated with a severe loss of phenolic acids and their derivatives, including gallic acid (associated with glucose metabolism) and 3,4-dihydroxyhydrocinnamic acid (linked with glucose metabolism and pancreatic beta cell autoimmunity). A predictive model based on six bacteria and six metabolites simultaneously discriminated adult-onset T1D from T2D and HCs with high accuracy. Interestingly, bacterial-viral or bacterial-fungal trans-kingdom relationships, especially positive correlations between bacteriophages and beneficial bacteria, were significantly reduced in adult-onset T1D compared to HCs. INTERPRETATION Adult-onset T1D patients exhibit unique changes in host-microbiota-metabolite interactions. Gut microbiota and metabolite-based algorithms could be used as additional tools for differential diagnosis of different types of diabetes and beyond. FUNDING National Key Research and Development Program of China, the National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Jingyi Hu
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jin Ding
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Tingting Zheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Lingxiang Xie
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chenyu Li
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yingxin Tang
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Keyu Guo
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shanshan Liu
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianru Yan
- Department of Endocrinology, The First People's Hospital of Pingjiang, Pingjiang, Hunan, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Can Hou
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Zhiguang Zhou
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
17
|
Zou Y, Sun Y, Chen X, Hong L, Dong G, Bai X, Wang H, Rao B, Ren Z, Yu Z. Nanosecond pulse effectively ablated hepatocellular carcinoma with alterations in the gut microbiome and serum metabolites. Front Pharmacol 2023; 14:1163628. [PMID: 37234705 PMCID: PMC10205996 DOI: 10.3389/fphar.2023.1163628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world. Nanosecond pulsed electric fields (nsPEFs) have emerged as a new treatment for cancer. This study aims to identify the effectiveness of nsPEFs in the treatment of HCC and analyze the alterations in the gut microbiome and serum metabonomics after ablation. Methods: C57BL/6 mice were randomly divided into three groups: healthy control mice (n = 10), HCC mice (n = 10), and nsPEF-treated HCC mice (n = 23). Hep1-6 cell lines were used to establish the HCC model in situ. Histopathological staining was performed on tumor tissues. The gut microbiome was analyzed by 16S rRNA sequencing. Serum metabolites were analyzed by liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. Spearman's correlation analysis was carried out to analyze the correlation between the gut microbiome and serum metabonomics. Results: The fluorescence image showed that nsPEFs were significantly effective. Histopathological staining identified nuclear pyknosis and cell necrosis in the nsPEF group. The expression of CD34, PCNA, and VEGF decreased significantly in the nsPEF group. Compared with normal mice, the gut microbiome diversity of HCC mice was increased. Eight genera including Alistipes and Muribaculaceae were enriched in the HCC group. Inversely, these genera decreased in the nsPEF group. LC-MS analysis confirmed that there were significant differences in serum metabolism among the three groups. Correlation analysis showed crucial relationships between the gut microbiome and serum metabolites that are involved in nsPEF ablation of HCC. Conclusion: As a new minimally invasive treatment for tumor ablation, nsPEFs have an excellent ablation effect. The alterations in the gut microbiome and serum metabolites may participate in the prognosis of HCC ablation.
Collapse
Affiliation(s)
- Yawen Zou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinhua Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Liangjie Hong
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Gang Dong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiwen Bai
- Nanchang University Queen Marry School, Nanchang, Jiangxi, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Fang D, Xu T, Sun J, Shi J, Li F, Yin Y, Wang Z, Liu Y. Nicotinamide Mononucleotide Ameliorates Sleep Deprivation-Induced Gut Microbiota Dysbiosis and Restores Colonization Resistance against Intestinal Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207170. [PMID: 36698264 PMCID: PMC10037695 DOI: 10.1002/advs.202207170] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 06/12/2023]
Abstract
Gut microbiota-mediated colonization resistance (CR) is crucial in protecting the host from intestinal infections. Sleep deprivation (SD) is an important contributor in the disturbances of intestinal homeostasis. However, whether and how SD affects host CR remains largely unknown. Here, it is shown that SD impairs intestinal CR in mice, whereas nicotinamide mononucleotide (NMN) supplementation restores it. Microbial diversity and metabolomic analyses suggest that gut microbiota and metabolite profiles in SD-treated mice are highly shaped, whereas NMN reprograms these differences. Specifically, the altered gut microbiota in SD mice further incurs the disorder of secondary bile acids pool accompanied by a decrease in deoxycholic acid (DCA). Conversely, NMN supplementation retakes the potential benefits of DCA, which is associated with specific gut microbiota involved in primary bile acids metabolic flux. In animal models of infection, DCA is effective in preventing and treating bacterial infections when used alone or in combination with antibiotics. Mechanistically, DCA alone disrupts membrane permeability and aggravates oxidative damage, thereby reducing intestinal pathogen burden. Meanwhile, exogenous DCA promotes antibiotic accumulation and destroys oxidant-antioxidant system, thus potentiating antibiotic efficacy. Overall, this work highlights the important roles of gut microbiota and bile acid metabolism in the maintenance of intestinal CR.
Collapse
Affiliation(s)
- Dan Fang
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Tianqi Xu
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Jingyi Sun
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Jingru Shi
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Fulei Li
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Yanqing Yin
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Zhiqiang Wang
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesJoint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education of ChinaYangzhou UniversityYangzhou225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Yuan Liu
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesJoint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education of ChinaYangzhou UniversityYangzhou225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009P. R. China
| |
Collapse
|
19
|
Piccioni A, Rosa F, Mannucci S, Manca F, Merra G, Chiloiro S, Candelli M, Covino M, Gasbarrini A, Franceschi F. Gut Microbiota, LADA, and Type 1 Diabetes Mellitus: An Evolving Relationship. Biomedicines 2023; 11:707. [PMID: 36979685 PMCID: PMC10045633 DOI: 10.3390/biomedicines11030707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
There is much evidence confirming the crucial role played by the gut microbiota in modulating the immune system in the onset of autoimmune diseases. In this article, we focus on the relationship between alterations in the microbiome and the onset of diabetes mellitus type 1 and LADA, in light of the latest evidence. We will then look at both how the role of the gut microbiota appears to be increasingly crucial in the pathogenesis of these disorders and how this aspect may be instrumental in the development of new potential therapeutic strategies that modulate the gut microbiota, such as probiotics, prebiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Federico Rosa
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sergio Mannucci
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Manca
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giuseppe Merra
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Sabrina Chiloiro
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marcello Covino
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
20
|
Wang H, Wu H, Li KD, Wang YY, Huang RG, Du YJ, Jin X, Zhang QR, Li XB, Li BZ. Intestinal fungi and systemic autoimmune diseases. Autoimmun Rev 2023; 22:103234. [PMID: 36423833 DOI: 10.1016/j.autrev.2022.103234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Nearly 20 years of studies have shown that fungi and the human immune system (non-specific immunity and specific immunity) and bacterial--fungal interactions maintain a balance that can't lead to diseases. Fungi--microorganism that lives in human intestine--may play an important role in human health and disease. Population studies and animal models in some diseases have found the changes in the diversity and composition of fungi. The dysregulation of the fungi can disrupt the normal "running" of the immune system and bacteria, which triggers the development of inflammatory diseases. The latest studies of fungi in inflammatory bowel disease, systemic lupus erythematosus, ankylosing spondylitis and type 1 diabetes mellitus were summarized. This review considers how the healthy host protect against the potential harm of intestinal fungi through the immune system and how fungal dysregulation alters host immunity.
Collapse
Affiliation(s)
- Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qian-Ru Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
21
|
Yue T, Tan H, Wang C, Liu Z, Yang D, Ding Y, Xu W, Yan J, Zheng X, Weng J, Luo S. High-risk genotypes for type 1 diabetes are associated with the imbalance of gut microbiome and serum metabolites. Front Immunol 2022; 13:1033393. [PMID: 36582242 PMCID: PMC9794034 DOI: 10.3389/fimmu.2022.1033393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The profile of gut microbiota, serum metabolites, and lipids of type 1 diabetes (T1D) patients with different human leukocyte antigen (HLA) genotypes remains unknown. We aimed to explore gut microbiota, serum metabolites, and lipids signatures in individuals with T1D typed by HLA genotypes. Methods We did a cross-sectional study that included 73 T1D adult patients. Patients were categorized into two groups according to the HLA haplotypes they carried: those with any two of three susceptibility haplotypes (DR3, DR4, DR9) and without any of the protective haplotypes (DR8, DR11, DR12, DR15, DR16) were defined as high-risk HLA genotypes group (HR, n=30); those with just one or without susceptibility haplotypes as the non-high-risk HLA genotypes group (NHR, n=43). We characterized the gut microbiome profile with 16S rRNA gene amplicon sequencing and analyzed serum metabolites with liquid chromatography-mass spectrometry. Results Study individuals were 32.5 (8.18) years old, and 60.3% were female. Compared to NHR, the gut microbiota of HR patients were characterized by elevated abundances of Prevotella copri and lowered abundances of Parabacteroides distasonis. Differential serum metabolites (hypoxanthine, inosine, and guanine) which increased in HR were involved in purine metabolism. Different lipids, phosphatidylcholines and phosphatidylethanolamines, decreased in HR group. Notably, Parabacteroides distasonis was negatively associated (p ≤ 0.01) with hypoxanthine involved in purine metabolic pathways. Conclusions The present findings enabled a better understanding of the changes in gut microbiome and serum metabolome in T1D patients with HLA risk genotypes. Alterations of the gut microbiota and serum metabolites may provide some information for distinguishing T1D patients with different HLA risk genotypes.
Collapse
Affiliation(s)
- Tong Yue
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huiling Tan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chaofan Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziyu Liu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Daizhi Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinhua Yan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xueying Zheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Jianping Weng, ; Sihui Luo,
| | - Sihui Luo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Jianping Weng, ; Sihui Luo,
| |
Collapse
|
22
|
Abstract
Adult-onset autoimmune (AOA) diabetes pathophysiology starts with immune changes, followed by dysglycaemia and overt disease. AOA diabetes can occur as classic type 1 diabetes when associated with severe loss of insulin secretion. More frequently, it is diagnosed as latent autoimmune diabetes in adults, a slowly progressing form with late onset, a long period not requiring insulin, and it is often misdiagnosed as type 2 diabetes. As its clinical presentation varies remarkably and immune markers often lack specificity, it is challenging to classify each case ad hoc, especially when insulin treatment is not required at diagnosis. Proper care of AOA diabetes aims to prevent complications and to improve quality of life and life expectancy. To achieve these goals, attention should be paid to lifestyle factors, with the aid of pharmacological therapies properly tailored to each individual clinical setting. Given the heterogeneity of the disease, choosing the right therapy for AOA diabetes is challenging. Most of the trials testing disease-modifying therapies for autoimmune diabetes are conducted in people with childhood onset, whereas non-insulin diabetes therapies have mostly been studied in the larger population with type 2 diabetes. More randomized controlled trials of therapeutic agents in AOA diabetes are needed.
Collapse
|
23
|
Wang L, Xu H, Yang H, Zhou J, Zhao L, Zhang F. Glucose metabolism and glycosylation link the gut microbiota to autoimmune diseases. Front Immunol 2022; 13:952398. [PMID: 36203617 PMCID: PMC9530352 DOI: 10.3389/fimmu.2022.952398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Carbohydrates serve as important energy sources and structural substances for human body as well as for gut microbes. As evidenced by the advances in immunometabolism, glucose metabolism and adenosine triphosphate (ATP) generation are deeply involved in immune cell activation, proliferation, and signaling transduction as well as trafficking and effector functions, thus contributing to immune response programming and assisting in host adaption to microenvironment changes. Increased glucose uptake, aberrant expression of glucose transporter 1 (e.g., GLU1), and abnormal glycosylation patterns have been identified in autoimmunity and are suggested as partially responsible for the dysregulated immune response and the modification of gut microbiome composition in the autoimmune pathogenesis. The interaction between gut microbiota and host carbohydrate metabolism is complex and bidirectional. Their impact on host immune homeostasis and the development of autoimmune diseases remains to be elucidated. This review summarized the current knowledge on the crosstalk of glucose metabolism and glycosylation in the host with intestinal microbiota and discussed their possible role in the development and progression of autoimmune diseases. Potential therapeutic strategies targeting glucose metabolism and glycosylation in modulating gut ecosystem and treating autoimmune diseases were discussed as well.
Collapse
Affiliation(s)
- Lu Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Haojie Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
24
|
Del Chierico F, Conta G, Matteoli MC, Fierabracci A, Reddel S, Macari G, Gardini S, Guarrasi V, Levi Mortera S, Marzano V, Vernocchi P, Sciubba F, Marini F, Deodati A, Rapini N, Cianfarani S, Miccheli A, Putignani L. Gut Microbiota Functional Traits, Blood pH, and Anti-GAD Antibodies Concur in the Clinical Characterization of T1D at Onset. Int J Mol Sci 2022; 23:10256. [PMID: 36142163 PMCID: PMC9499637 DOI: 10.3390/ijms231810256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations of gut microbiota have been identified before clinical manifestation of type 1 diabetes (T1D). To identify the associations amongst gut microbiome profile, metabolism and disease markers, the 16S rRNA-based microbiota profiling and 1H-NMR metabolomic analysis were performed on stool samples of 52 T1D patients at onset, 17 T1D siblings and 57 healthy subjects (CTRL). Univariate, multivariate analyses and classification models were applied to clinical and -omic integrated datasets. In T1D patients and their siblings, Clostridiales and Dorea were increased and Dialister and Akkermansia were decreased compared to CTRL, while in T1D, Lachnospiraceae were higher and Collinsella was lower, compared to siblings and CTRL. Higher levels of isobutyrate, malonate, Clostridium, Enterobacteriaceae, Clostridiales, Bacteroidales, were associated to T1D compared to CTRL. Patients with higher anti-GAD levels showed low abundances of Roseburia, Faecalibacterium and Alistipes and those with normal blood pH and low serum HbA1c levels showed high levels of purine and pyrimidine intermediates. We detected specific gut microbiota profiles linked to both T1D at the onset and to diabetes familiarity. The presence of specific microbial and metabolic profiles in gut linked to anti-GAD levels and to blood acidosis can be considered as predictive biomarker associated progression and severity of T1D.
Collapse
Affiliation(s)
- Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giorgia Conta
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Cristina Matteoli
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Sofia Reddel
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | | | | | | | - Stefano Levi Mortera
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Valeria Marzano
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Pamela Vernocchi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Federico Marini
- NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, 00185 Rome, Italy
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Annalisa Deodati
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Novella Rapini
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Stefano Cianfarani
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Women’s and Children Health, Karolisnska Institute and University Hospital, 17177 Stockholm, Sweden
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
25
|
Qiu J, Xiao Z, Zhang Z, Luo S, Zhou Z. Latent autoimmune diabetes in adults in China. Front Immunol 2022; 13:977413. [PMID: 36090989 PMCID: PMC9454334 DOI: 10.3389/fimmu.2022.977413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is a type of diabetes caused by slow progression of autoimmune damage to pancreatic beta cells. According to the etiological classification, LADA should belong to the autoimmune subtype of type 1 diabetes (T1D). Previous studies have found general immune genetic effects associated with LADA, but there are also some racial differences. Multicenter studies have been conducted in different countries worldwide, but it is still unclear how the Chinese and Caucasian populations differ. The epidemiology and phenotypic characteristics of LADA may vary between Caucasian and Chinese diabetic patients as lifestyle, food habits, and body mass index differ between these two populations. The prevalence of LADA in China has reached a high level compared to other countries. The prevalence of LADA in China has reached a high level compared to other countries, and the number of patients with LADA ranks first in the world. Previous studies have found general immune genetic effects associated with LADA, but some racial differences also exist. The prevalence of LADA among newly diagnosed type 2 diabetes patients over the age of 30 years in China is 5.9%, and LADA patients account for 65% of the newly diagnosed T1D patients in the country. As a country with a large population, China has many people with LADA. A summary and analysis of these studies will enhance further understanding of LADA in China. In addition, comparing the similarities and differences between the Chinese and the Caucasian population from the perspectives of epidemiology, clinical, immunology and genetics will help to improve the understanding of LADA, and then promote LADA studies in individual populations.
Collapse
|
26
|
Yang X, Chang T, Yuan Q, Wei W, Wang P, Song X, Yuan H. Changes in the composition of gut and vaginal microbiota in patients with postmenopausal osteoporosis. Front Immunol 2022; 13:930244. [PMID: 36032115 PMCID: PMC9411790 DOI: 10.3389/fimmu.2022.930244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Postmenopausal osteoporosis (PMO) is influenced by estrogen metabolism and immune response, which are modulated by several factors including the microbiome and inflammation. Therefore, there is increasing interest in understanding the role of microbiota in PMO. Objectives To investigate variations in gut microbiota (GM) and vaginal microbiota (VM) in postmenopausal women with osteoporosis. Methods A total of 132 postmenopausal women were recruited for the study and divided into osteoporosis (n = 34), osteopenia (n = 47), and control (n = 51) groups based on their T score. The serum levels of interleukin (IL)-10, tumor necrosis factor (TNF)-α, and lipopolysaccharide-binding protein were determined via enzyme-linked immunosorbent assay. Additionally, 16S rRNA gene V3-V4 region sequencing was performed to investigate the GM and VM of the participants. Results Significant differences were observed in the microbial compositions of fecal and vaginal samples between groups (p < 0.05). It was noted that for GM, Romboutsia, unclassified_Mollicutes, and Weissella spp. were enriched in the control group, whereas the abundances of Fusicatenibacter, Lachnoclostridium, and Megamonas spp. were higher in the osteoporosis group than in the other groups. Additionally, for VM, Lactobacillus was enriched in the control group, whereas the abundances of Peptoniphilus, Propionimicrobium, and Gallicola spp. were higher in the osteoporosis group than in the other groups. The predicted functional capacities of GM and VM were different in the various groups. We also found that the serum level of IL-10 in the osteoporosis group was significantly lower than that in the control group and osteopenia group, while TNF-α was significantly higher in the osteoporosis group than that in the control group (p < 0.05). Conclusion The results show that changes in BMD in postmenopausal women are associated with the changes in GM and VM; however, changes in GM are more closely correlated with PMO than VM.
Collapse
Affiliation(s)
- Xueli Yang
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Tian Chang
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
- Department of Medical and Health, Zhengzhou University Press, Zhengzhou, China
| | - Qian Yuan
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Wei Wei
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Pingping Wang
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Xiaojian Song
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Huijuan Yuan
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
- *Correspondence: Huijuan Yuan,
| |
Collapse
|
27
|
Xue C, Xie Q, Zhang C, Hu Y, Song X, Jia Y, Shi X, Chen Y, Liu Y, Zhao L, Huang F, Yuan H. Vertical transmission of the gut microbiota influences glucose metabolism in offspring of mice with hyperglycaemia in pregnancy. MICROBIOME 2022; 10:122. [PMID: 35941695 PMCID: PMC9361546 DOI: 10.1186/s40168-022-01318-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/30/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Hyperglycaemia in pregnancy (HIP) is a common metabolic disorder that not only poses risks to maternal health but also associates with an increased risk of diabetes among offspring. Vertical transmission of microbiota may influence the offspring microbiome and subsequent glucose metabolism. However, the mechanism by which maternal gut microbiota may influence glucose metabolism of the offspring remains unclear and whether intervening microbiota vertical transmission could be used as a strategy to prevent diabetes in the offspring of mothers with HIP has not been investigated. So we blocked vertical transmission to investigate its effect on glucose metabolism in the offspring. RESULTS We established a murine HIP model with a high-fat diet (HFD) and investigated the importance of vertical transmission of gut microbiota on the glucose metabolism of offspring via birth and nursing by blocking these events through caesarean section (C-section) and cross-fostering. After weaning, all offspring were fed a normal diet. Based on multi-omics analysis, biochemical and transcriptional assays, we found that the glucometabolic deficits in the mothers were subsequently 'transmitted' to the offspring. Meanwhile, the partial change in mothers' gut microbial community induced by HIP could be transmitted to offspring, supported by the closed clustering of the microbial structure and composition between the offspring and their mothers. Further study showed that the microbiota vertical transmission was blocked by C-section and cross-fostering, which resulted in improved insulin sensitivity and islet function of the offspring of the mothers with HIP. These effects were correlated with changes in the relative abundances of specific bacteria and their metabolites, such as increased relative abundances of Bifidobacterium and short-chain fatty acids. In particular, gut microbial communities of offspring were closely related to those of their foster mothers but not their biological mothers, and the effect of cross-fostering on the offspring's gut microbiota was more profound than that of C-section. CONCLUSION Our study demonstrates that the gut microbiota transmitted via birth and nursing are important contributors to the glucose metabolism phenotype in offspring. Video Abstract.
Collapse
Affiliation(s)
- Cunxi Xue
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qinyuan Xie
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yimeng Hu
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoting Song
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yifan Jia
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyang Shi
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yiqi Chen
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yalei Liu
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingyun Zhao
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fenglian Huang
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
28
|
Jiang X, Sun B, Zhou Z. Preclinical Studies of Natural Products Targeting the Gut Microbiota: Beneficial Effects on Diabetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8569-8581. [PMID: 35816090 DOI: 10.1021/acs.jafc.2c02960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM) is a serious metabolic disease characterized by persistent hyperglycemia, with a continuously increasing morbidity and mortality. Although traditional treatments including insulin and oral hypoglycemic drugs maintain blood glucose levels within the normal range to a certain extent, there is an urgent need to develop new drugs that can effectively improve glucose metabolism and diabetes-related complications. Notably, accumulated evidence implicates that the gut microbiota is unbalanced in DM individuals and is involved in the physiological and pathological processes of this metabolic disease. In this review, we introduce the molecular mechanisms by which the gut microbiota contributes to the development of DM. Furthermore, we summarize the preclinical studies of bioactive natural products that exert antidiabetic effects by modulating the gut microbiota, aiming to expand the novel therapeutic strategies for DM prevention and management.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Boyu Sun
- The Third People's Hospital of Qingdao, Qingdao 266000, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
29
|
Liu J, Zhao W, Gao ZW, Liu N, Zhang WH, Ling H. Effects of Exogenous Hydrogen Sulfide on Diabetic Metabolic Disorders in db/db Mice Are Associated With Gut Bacterial and Fungal Microbiota. Front Cell Infect Microbiol 2022; 12:801331. [PMID: 35425717 PMCID: PMC9001961 DOI: 10.3389/fcimb.2022.801331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/02/2022] [Indexed: 01/15/2023] Open
Abstract
The effects of hydrogen sulfide (H2S) on diabetic metabolic disorders are still controversial, and the mechanisms underlying these effects remain largely unknown. This study was conducted to investigate the potential relationship between the gut microbiota and the improvement of diabetic metabolic disorders by exogenous H2S in obese db/db mice. The db/db mice were treated with sodium hydrosulfide (NaHS) (80 μmol/kg), or vehicle for 16 weeks, respectively. We measured the serum H2S, obesity parameters, glucose homeostasis, and triglyceride. The sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) in the cecal contents of NaHS-treated mice was performed to evaluate the gut microbial communities. We found that supplying exogenous H2S for 16 weeks significantly inhibited the increase of serum triglyceride, blood glucose, and insulin levels and altered specifically the gut bacterial microbiota structure in db/db mice. The relative abundance of some bacterial genera was correlated with the H2S or blood glucose level. Indeed, exogenous H2S increased Firmicutes and decreased Bacteroidetes at the phylum level along with changes of abundance of multifarious genera. Among them, Unclassified_Enterobacteriaceae, Prevotella, and Lactobacillus decreased and Unclassified_Ruminococcaceae, Oscillospira, Ruminococcus, Sutterella, and Desulfovibrio increased. For fungi, exogenous H2S decreased the abundance of Candida and Aspergillus. Here we demonstrated that, in diabetes, microbial dysbiosis may not be just limited to bacteria due to the inter-linked metabolic interactions among bacteria and fungi in the gut. The beneficial effects of exogenous H2S on diabetic metabolic disorders are likely associated with the alterations of specific microbiota.
Collapse
Affiliation(s)
- Jian Liu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wei Zhao
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Zi-Wei Gao
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Wei-Hua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- *Correspondence: Hong Ling, ; Wei-Hua Zhang,
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China
- Key Laboratory of Pathogen Biology, Harbin, China
- *Correspondence: Hong Ling, ; Wei-Hua Zhang,
| |
Collapse
|
30
|
Zhou Z, Sun B, Yu D, Zhu C. Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Front Cell Infect Microbiol 2022; 12:834485. [PMID: 35242721 PMCID: PMC8886906 DOI: 10.3389/fcimb.2022.834485] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Dongsheng Yu, ; Chunsheng Zhu,
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Dongsheng Yu, ; Chunsheng Zhu,
| |
Collapse
|
31
|
Tian H, Wang S, Deng Y, Xing Y, Zhao L, Zhang X, Zhang P, Liu N, Su B. Fatty Acid Profiles and Their Association With Autoimmunity, Insulin Sensitivity and β Cell Function in Latent Autoimmune Diabetes in Adults. Front Endocrinol (Lausanne) 2022; 13:916981. [PMID: 35846301 PMCID: PMC9276921 DOI: 10.3389/fendo.2022.916981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The pathogenesis of the progressive loss of beta cell function latent autoimmune diabetes in adults (LADA) remains still elusive. We aim to study the fatty acid (FA) profile in LADA. SUBJECTS AND METHODS Data from 116 patients with diabetes and GADA and 249 diabetes controls without GADA selected by Propensity Score Matching were collected. FA was analyzed with liquid chromatography-tandem mass spectrometry analysis. RESULTS Principal factor analysis found component 1 explains 82.6% of total variance contained fatty acids from a mixed of lard oil, seafood, and vegetable diet, followed by diet predominantly from vegetable oil, a diet of high fat diet, and a diet of seafood diet. The FA heatmap looked clearly different among the three groups with more similar type 1 (t1dm) and LADA fatty acid profile. n-3 α-linolenic acid (ALA), n-3 long chain polyunsaturated fatty acid (n-3 LC-PUFA), such as Eicosapentaenoic Acid and Docosapentaenoic Acid, n-3/n-6 ratio and triene/tetraene ratio were higher in patients with type 2 diabetes (t2dm) compared with LADA and t1dm. Saturated FAs were lower in t2dm than t1dm and LADA. Arachidic acid and n-6 LC-PUFAs were lower in t2dm than in t1dm and LADA. The characteristics of FAs in LADA were in between of classical t1dm and t2dm. Patients were classified into 6 clusters by FA clusters. Only cluster 2, 3, 5 contained enough patients to be analyzed. Cluster 5 showed an insulin deficient phenotype containing more than 60% of patients with t1dm and LADA and only 12.8% of t2dm. Cluster 2 and 3 were similar. β cell function and glycemic control was better in cluster 3 homing 25% of t2dm. Cluster 2 held 28% of t1dm and LADA, in this cluster more than 60% of patients was t2dm. n-3 linolenic acid, n-3 LC-PUFAs, some n-6 LC-PUFAs, n-3/n-6 ratio and triene/tetraene ratio were negatively associated with GADA positivity while n-6 Arachidonic Acid was associated positively with GADA. Similar findings were found for insulin sensitivity and beta cell function. CONCLUSION PUFA are associated with insulin sensitivity and beta cell function, and like other clinical features, FA profile distributed differently, but could not be used as makers to differentiate LADA from t1dm and t2dm. ETHICS AND DISSEMINATION This study has been approved by the Ethical Review Committee of Second Hospital of Dalian Medical University (approval number: 2021-005). CLINICAL TRIAL REGISTRATION none.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nan Liu
- *Correspondence: Benli Su, ; Nan Liu,
| | - Benli Su
- *Correspondence: Benli Su, ; Nan Liu,
| |
Collapse
|
32
|
Hu J, Zhang R, Zou H, Xie L, Zhou Z, Xiao Y. Latent Autoimmune Diabetes in Adults (LADA): From Immunopathogenesis to Immunotherapy. Front Endocrinol (Lausanne) 2022; 13:917169. [PMID: 35937817 PMCID: PMC9350734 DOI: 10.3389/fendo.2022.917169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is a type of diabetes characterized by slow autoimmune damage of pancreatic β cells without insulin treatment in the early clinical stage. There are differences between LADA and classical type 1 diabetes (T1D) and type 2 diabetes (T2D) in genetic background, autoimmune response, rate of islet function decline, clinical metabolic characteristics, and so on. The disease progression and drug response of patients with LADA are closely related to the level of islet autoimmunity, thus exploring the pathogenesis of LADA is of great significance for its prevention and treatment. Previous studies reported that adaptive immunity and innate immunity play a critical role in the etiology of LADA. Recent studies have shown that the intestinal microbiota which impacts host immunity hugely, participates in the pathogenesis of LADA. In addition, the progression of autoimmune pancreatic β cell destruction in LADA is slower than in classical T1D, providing a wider window of opportunities for intervention. Therefore, therapies including antidiabetic drugs with immune-regulation effects and immunomodulators could contribute to promising interventions for LADA. We also shed light on potential interventions targeting the gut microbiota and gut-associated immunity, which may be envisaged to halt or delay the process of autoimmunity in LADA.
Collapse
|
33
|
Yin W, Luo S, Xiao Z, Zhang Z, Liu B, Zhou Z. Latent autoimmune diabetes in adults: a focus on β-cell protection and therapy. Front Endocrinol (Lausanne) 2022; 13:959011. [PMID: 35992113 PMCID: PMC9389314 DOI: 10.3389/fendo.2022.959011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is a heterogeneous disease sharing some phenotypic, genetic, and immunological features with both type 1 and 2 diabetes. Patients with LADA have a relatively slow autoimmune process and more residual islet β-cell function at onset, allowing a time window to protect residual islet β cells and delay or inhibit disease progression. It is crucial to discover various heterogeneous factors affecting islet β-cell function for precise LADA therapy. In this review, we first describe the natural history of LADA. Thereafter, we summarize β-cell function-related heterogeneous factors in LADA, including the age of onset, body mass index, genetic background, and immune, lifestyle, and environmental factors. In parallel, we evaluate the impact of current hypoglycemic agents and immune intervention therapies for islet β-cell protection. Finally, we discuss the opportunities and challenges of LADA treatment from the perspective of islet β-cell function protection.
Collapse
|