1
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Effects of time-restricted feeding (TRF)-model of intermittent fasting on adipose organ: a narrative review. Eat Weight Disord 2024; 29:77. [PMID: 39719521 DOI: 10.1007/s40519-024-01709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
Time-restricted feeding (TRF), an intermittent fasting approach involving a shortened eating window within 24 h, has gained popularity as a weight management approach. This review addresses how TRF may favor fat redistribution and the function of the adipose organ. TRF trials (mainly 16:8 model, with a duration of 5-48 weeks) reported a significant weight loss (1.2-10.2%, ~ 1.4-9.4 kg), with a considerable decrease in total fat mass (1.6-21%, ~ 0.5-7 kg) and visceral adipose compartment (VAC, 11-27%) in overweight and obese subjects. Experimental TRF in normal-fed and obesogenic-diet-fed mice and rats (with a fasting duration ranging between 9 and 21 h within 1-17 weeks) reported a significant reduction in body weight (~ 7-40%), total fat mass (~ 17-71%), and intrahepatic fat (~ 25-72%). TRF also improves VAC and subcutaneous adipose compartment (SAC) function by decreasing adipocyte size, macrophage infiltration, M1-macrophage polarity, and downregulating inflammatory genes. In conclusion, beyond its effect on body weight loss, total fat mass, and intrahepatic fat accumulation, TRF favors adipose organ fat redistribution in overweight and obese subjects by decreasing VAC and improving the function of VAC and SAC.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Micronutrient Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran.
| |
Collapse
|
2
|
Abrosimov R, Baeken MW, Hauf S, Wittig I, Hajieva P, Perrone CE, Moosmann B. Mitochondrial complex I inhibition triggers NAD +-independent glucose oxidation via successive NADPH formation, "futile" fatty acid cycling, and FADH 2 oxidation. GeroScience 2024; 46:3635-3658. [PMID: 38267672 PMCID: PMC11226580 DOI: 10.1007/s11357-023-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Inhibition of mitochondrial complex I (NADH dehydrogenase) is the primary mechanism of the antidiabetic drug metformin and various unrelated natural toxins. Complex I inhibition can also be induced by antidiabetic PPAR agonists, and it is elicited by methionine restriction, a nutritional intervention causing resistance to diabetes and obesity. Still, a comprehensible explanation to why complex I inhibition exerts antidiabetic properties and engenders metabolic inefficiency is missing. To evaluate this issue, we have systematically reanalyzed published transcriptomic datasets from MPP-treated neurons, metformin-treated hepatocytes, and methionine-restricted rats. We found that pathways leading to NADPH formation were widely induced, together with anabolic fatty acid biosynthesis, the latter appearing highly paradoxical in a state of mitochondrial impairment. However, concomitant induction of catabolic fatty acid oxidation indicated that complex I inhibition created a "futile" cycle of fatty acid synthesis and degradation, which was anatomically distributed between adipose tissue and liver in vivo. Cofactor balance analysis unveiled that such cycling would indeed be energetically futile (-3 ATP per acetyl-CoA), though it would not be redox-futile, as it would convert NADPH into respirable FADH2 without any net production of NADH. We conclude that inhibition of NADH dehydrogenase leads to a metabolic shift from glycolysis and the citric acid cycle (both generating NADH) towards the pentose phosphate pathway, whose product NADPH is translated 1:1 into FADH2 by fatty acid cycling. The diabetes-resistant phenotype following hepatic and intestinal complex I inhibition is attributed to FGF21- and GDF15-dependent fat hunger signaling, which remodels adipose tissue into a glucose-metabolizing organ.
Collapse
Affiliation(s)
- Roman Abrosimov
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Parvana Hajieva
- Institute for Translational Medicine, MSH Medical School, Hamburg, Germany
| | - Carmen E Perrone
- Orentreich Foundation for the Advancement of Science, Cold Spring-On-Hudson, NY, USA
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
3
|
Jia G, Jia X, Yang J, Shi T, Qiang M, Chen Y. Pioglitazone Antagonized the Effects of Advanced Glycation End Products on Achilles Tendon Healing and Improved the Recovery of Tendon Biomechanical Properties. Cell Mol Bioeng 2024; 17:219-228. [PMID: 39050514 PMCID: PMC11263443 DOI: 10.1007/s12195-024-00800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Advanced glycation end products (AGEs) often accumulate in the Achilles tendon during the course of diabetes. This study aims to determine the impact of AGEs on tendon repair and explore the role of pioglitazone in mitigating this impact. Methods Forty-eight male 8 week-old Sprague Dawley rats were selected in this study. After transection of Achilles tendon, the rats were randomly divided into four groups. The Achilles tendons of rats were injected with 1000 mmol/L D-ribose to elevate the content of AGEs within the tendons in two groups, the remaining two groups received injections of phosphate buffered saline (PBS) solution. Subsequently, the first two groups were respectively received oral administration of pioglitazone (20 mg/kg/day) and PBS. The remaining two groups were given the same treatment. The expression of the collagen-I, TNF-α, IL-6 of the repaired tendon were detected. The macroscopic, pathologic and biomechanical aspects of tendon healing were also evaluated. Results AGEs accumulation in tendon during the healing process increases the expression of inflammatory factors such as TNF-α and IL-6, leading to insufficient synthesis of collagen-I and delayed recovery of the tendon's tensile strength. Pioglitazone significantly attenuated the damage caused by AGEs to the tendon healing process, effectively improving the recovery of tendon tensile strength. Pioglitazone could not inhibit the generation of AGEs in the tissue and also had no impact on the normal healing process of the tendon. Conclusions Pioglitazone could prevent the deleterious impact of AGEs on the Achilles tendon healing and improve the biomechanical properties of the tendon.
Collapse
Affiliation(s)
- Gengxin Jia
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032 China
| | - Xiaoyang Jia
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032 China
| | - Juan Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Tianhao Shi
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032 China
| | - Minfei Qiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032 China
| | - Yanxi Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032 China
| |
Collapse
|
4
|
Ren X, Guo Q, Jiang H, Han X, He X, Liu H, Xiu Z, Dong Y. Combinational application of the natural products 1-deoxynojirimycin and morin ameliorates insulin resistance and lipid accumulation in prediabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155106. [PMID: 37797432 DOI: 10.1016/j.phymed.2023.155106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Prediabetes, a stage characterized by chronic inflammation, obesity and insulin resistance. Morin and 1-deoxynojirimycin (DNJ) are natural flavonoids and alkaloids extracted from Morus nigra L., exhibiting anti-hyperglycemic efficacy. However, the benefits of DNJ are shadowed by the adverse events, and the mechanism of morin in anti-diabetes remains under investigation. PURPOSE In this study, the combinational efficacy and mechanisms of DNJ and morin in ameliorating insulin resistance and pre-diabetes were investigated. METHODS The mice model with prediabetes and Alpha mouse liver-12 (AML-12) cell model with insulin resistance were established. The anti-prediabetic efficacy of the drug combination was determined via analyzing the blood glucose, lipid profiles and inflammatory factors. The application of network pharmacology provided guidance for the research mechanism. RESULTS In our study, the intervention of morin ameliorated the insulin resistance via activating the Peroxisome proliferator-activated receptor γ (PPARγ). However, PPARγ activation leaded to the lipid accumulation in prediabetic mice. The combination of 5 mg/kg dose of DNJ and 25 mg/kg morin effectively hindered the progression of T2DM by 87.56%, which was achieved via inhibition of Suppressors of cytokine signaling 3 (SOCS3) and promotion of PPARγ as well as SOCS2 expression. Furthermore, this treatment exhibited notable capabilities in combating dyslipidemia and adipogenesis, achieved by suppressing the Cluster of differentiation 36/ Sterol-regulatory element binding proteins-1/ Fatty acid synthetase (CD36/Serbp1/Fas) signaling. CONCLUSION This research confirmed that the drug combination of DNJ and morin in ameliorating insulin resistance and lipid accumulation, and revealed the potential mechanisms. In summary, the combination of DNJ and morin is an underlying alternative pharmaceutical composition in T2DM prevention.
Collapse
Affiliation(s)
- Xinxiu Ren
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Qinfeng Guo
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hui Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xiao Han
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xiaoshi He
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Haodong Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
5
|
Bushman T, Lin TY, Chen X. Depot-Dependent Impact of Time-Restricted Feeding on Adipose Tissue Metabolism in High Fat Diet-Induced Obese Male Mice. Nutrients 2023; 15:238. [PMID: 36615895 PMCID: PMC9823673 DOI: 10.3390/nu15010238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Time-restricted feeding (TRF) is known to be an effective strategy for weight loss and metabolic health. TRF's effect on metabolism is complex and likely acts on various pathways within multiple tissues. Adipose tissue plays a key role in systemic homeostasis of glucose and lipid metabolism. Adipose tissue dysregulation has been causally associated with metabolic disorders in obesity. However, it is largely unknown how TRF impacts metabolic pathways such as lipolysis, lipogenesis, and thermogenesis within different in adipose tissue depots in obesity. To determine this, we conducted a 10-week TRF regimen in male mice, previously on a long-term high fat diet (HFD) and subjected the mice to TRF of a HFD for 10 h per day or ad libitum. The TRF regimen showed reduction in weight gain. TRF restored HFD-induced impairment of adipogenesis and increased lipid storage in white adipose tissues. TRF also showed a depot-dependent effect in lipid metabolism and restored ATP-consuming futile cycle of lipogenesis and lipolysis that is impaired by HFD within epididymal adipose tissue, but not inguinal fat depot. We demonstrate that TRF may be a beneficial option as a dietary and lifestyle intervention in lowering bodyweight and improving adipose tissue metabolism.
Collapse
Affiliation(s)
| | | | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota, Twin Cities, MN 55108, USA
| |
Collapse
|
6
|
Lao W, Zhao Y, Tan Y, Johnson M, Li Y, Xiao L, Cheng J, Lin Y, Qu X. Regulatory Effects and Mechanism of Action of Green Tea Polyphenols on Osteogenesis and Adipogenesis in Human Adipose Tissue-Derived Stem Cells. Curr Issues Mol Biol 2022; 44:6046-6058. [PMID: 36547073 PMCID: PMC9776698 DOI: 10.3390/cimb44120412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
We previously showed that green tea polyphenols (GTPs) exert antiadipogenic effects on preadipocyte proliferation. Here, we investigated the regulatory effects of GTPs on osteogenesis and adipogenesis during early differentiation of human adipose tissue-derived stem cells (hADSC). Adipogenesis of hADSCs was determined by oil-red-O staining and triglycerides synthesis measurement. Osteoporosis of hADSC was measured using alkaline phosphatase assays and intracellular calcium levels. Immunofluorescence staining and qRT-PCR were used to detect PPARγ-CEBPA regulated adipogenic pathway regulated by PPAR-CEBPA and the osteogenic pathway mediated by RUNX2-BMP2. We found that GTPs treatment significantly decreased lipid accumulation and cellular triglyceride synthesis in mature adipocytes and attenuated pioglitazone-induced adipogenesis in a dose-dependent manner. GTPs downregulated protein and mRNA expression of Pparγ and attenuated pioglitazone-stimulated-Cebpa expression. GTPs treatment significantly enhanced hADSCs differentiation into osteoblasts compared to control and pioglitazone-treated cells. GTPs upregulated RunX2 and Bmp2 proteins and mRNA expression compared to control and significantly attenuated decreased RunX2 and Bmp2 mRNA expression by pioglitazone. In conclusion, our data demonstrates GTPs possesses great ability to facilitate osteogenesis and simultaneously inhibits hADSC differentiation into adipogenic lineage by upregulating the RUNX2-BMP2 mediated osteogenic pathway and suppressing PPARγ-induced signaling of adipogenesis. These findings highlight GTPs' potential to combat osteoporosis associated with obesity.
Collapse
|
7
|
A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Alser M, Elrayess MA. From an Apple to a Pear: Moving Fat around for Reversing Insulin Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114251. [PMID: 36361131 PMCID: PMC9659102 DOI: 10.3390/ijerph192114251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 06/02/2023]
Abstract
Type 2 diabetes (T2D) is a chronic condition where the body is resistant to insulin, leading to an elevated blood glucose state. Obesity is a main factor leading to T2D. Many clinical studies, however, have described a proportion of obese individuals who express a metabolically healthy profile, whereas some lean individuals could develop metabolic disorders. To study obesity as a risk factor, body fat distribution needs to be considered rather than crude body weight. Different individuals' bodies favor storing fat in different depots; some tend to accumulate more fat in the visceral depot, while others tend to store it in the femoral depot. This tendency relies on different factors, including genetic background and lifestyle. Consuming some types of medications can cause a shift in this tendency, leading to fat redistribution. Fat distribution plays an important role in the progression of risk of insulin resistance (IR). Apple-shaped individuals with enhanced abdominal obesity have a higher risk of IR compared to BMI-matched pear-shaped individuals, who store their fat in the gluteal-femoral depots. This is related to the different adipose tissue physiology between these two depots. In this review, we will summarize the recent evidence highlighting the underlying protective mechanisms in gluteal-femoral subcutaneous adipose tissues compared to those associated with abdominal adipose tissue, and we will revise the recent evidence showing antidiabetic drugs that impact fat distribution as they manage the T2D condition.
Collapse
Affiliation(s)
- Maha Alser
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
9
|
In Vitro and In Vivo Validation of GATA-3 Suppression for Induction of Adipogenesis and Improving Insulin Sensitivity. Int J Mol Sci 2022; 23:ijms231911142. [PMID: 36232443 PMCID: PMC9569927 DOI: 10.3390/ijms231911142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 12/02/2022] Open
Abstract
Impaired adipogenesis is associated with the development of insulin resistance and an increased risk of type 2 diabetes (T2D). GATA Binding Protein 3 (GATA3) is implicated in impaired adipogenesis and the onset of insulin resistance. Therefore, we hypothesize that inhibition of GATA3 could promote adipogenesis, restore healthy fat distribution, and enhance insulin signaling. Primary human preadipocytes were treated with GATA3 inhibitor (DNAzyme hgd40). Cell proliferation, adipogenic capacity, gene expression, and insulin signaling were measured following well-established protocols. BALB/c mice were treated with DNAzyme hgd40 over a period of 2 weeks. Liposomes loaded with DNAzyme hgd40, pioglitazone (positive), or vehicle (negative) controls were administered subcutaneously every 2 days at the right thigh. At the end of the study, adipose tissues were collected and weighed from the site of injection, the opposite side, and the omental depot. Antioxidant enzyme (superoxide dismutase and catalase) activities were assessed in animals’ sera, and gene expression was measured using well-established protocols. In vitro GATA3 inhibition induced the adipogenesis of primary human preadipocytes and enhanced insulin signaling through the reduced expression of p70S6K. In vivo GATA3 inhibition promoted adipogenesis at the site of injection and reduced MCP-1 expression. GATA3 inhibition also reduced omental tissue size and PPARγ expression. These findings suggest that modulating GATA3 expression offers a potential therapeutic benefit by correcting impaired adipogenesis, promoting healthy fat distribution, improving insulin sensitivity, and potentially lowering the risk of T2D.
Collapse
|
10
|
Zhuang L, Li C, Hu X, Yang Q, Pei X, Jin G. High expression of P4HA3 in obesity: a potential therapeutic target for type 2 diabetes. Braz J Med Biol Res 2022; 55:e11741. [PMID: 35976267 PMCID: PMC9377532 DOI: 10.1590/1414-431x2022e11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
The aims of the present study were to evaluate the expression of prolyl 4-hydroxylase subunit alpha 3 (P4HA3) in adipocytes and adipose tissue and to explore its effect on obesity and type 2 diabetes mellitus (T2DM). We initially demonstrated that P4HA3 was significantly upregulated in the subcutaneous adipose tissue of obesity and T2DM patients, and its functional roles in adipocyte differentiation and insulin resistance were investigated using in vitro and in vivo models. The knockdown of P4HA3 inhibited adipocyte differentiation and improved insulin resistance in 3T3-L1 cells. In C57BL/6J db/db mice fed with a high fat diet (HFD), silencing P4HA3 significantly decreased fasting blood glucose and triglycerides (TG) levels, with concomitant decrease of body weight and adipose tissue weight. Further analysis showed that P4HA3 knockdown was correlated with the augmented IRS-1/PI3K/Akt/FoxO1 signaling pathway in the adipose and hepatic tissues of obese mice, which could improve hepatic glucose homeostasis and steatosis of mice. Together, our study suggested that the dysregulation of P4HA3 may contribute to the development of obesity and T2DM.
Collapse
Affiliation(s)
- Langen Zhuang
- Department of Endocrinology, The First Affiliated Hospital of
Bengbu Medical College, Bengbu, Anhui, China
| | - Can Li
- Shangyi Health Check-up Centre, Zibo, Shandong, China
| | - Xiaolei Hu
- Department of Endocrinology, The First Affiliated Hospital of
Bengbu Medical College, Bengbu, Anhui, China
| | - Qingqing Yang
- Department of Endocrinology, The First Affiliated Hospital of
Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaoyan Pei
- Department of Endocrinology, The First Affiliated Hospital of
Bengbu Medical College, Bengbu, Anhui, China
| | - Guoxi Jin
- Department of Endocrinology, The First Affiliated Hospital of
Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
11
|
Fryklund C, Morén B, Neuhaus M, Periwal V, Stenkula KG. Rosiglitazone treatment enhances intracellular actin dynamics and glucose transport in hypertrophic adipocytes. Life Sci 2022; 299:120537. [PMID: 35398016 DOI: 10.1016/j.lfs.2022.120537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
AIMS To accommodate surplus energy, adipose tissue expands by increasing both adipose cell size (hypertrophy) and cell number (hyperplasia). Enlarged, hypertrophic adipocytes are known to have reduced insulin response and impaired glucose transport, which negatively influence whole-body glucose homeostasis. Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, known to stimulate hyperplasia and to efficiently improve insulin sensitivity. Still, a limited amount of research has investigated the effects of rosiglitazone in mature, hypertrophic adipocytes. Therefore, the objective of this study was to examine rosiglitazone's effect on insulin-stimulated glucose uptake in hypertrophic adipocytes. MAIN METHODS C57BL/6J male mice were subjected to 2 weeks of high-fat diet (HFD) followed by 1 week of HFD combined with daily administration of rosiglitazone (10 mg/kg). Adipose cell-size distribution and gene expression were analysed in intact adipose tissue, and glucose uptake, insulin response, and protein expression were examined using primary adipocytes isolated from epididymal and inguinal adipose tissue. KEY FINDINGS HFD-feeding induced an accumulation of hypertrophic adipocytes, which was not affected by rosiglitazone-treatment. Still, rosiglitazone efficiently improved insulin-stimulated glucose transport without restoring insulin signaling or GLUT4 expression in similar-sized adipocytes. This improvement occurred concurrently with extracellular matrix remodelling and restored intracellular levels of targets involved in actin turnover. SIGNIFICANCE These results demonstrate that rosiglitazone improves glucose transport in hypertrophic adipocytes, and highlights the importance of the cytoskeleton and extracellular matrix as potential therapeutic targets.
Collapse
Affiliation(s)
- Claes Fryklund
- Department of Experimental Medical Science, Lund University, Sweden.
| | - Björn Morén
- Department of Experimental Medical Science, Lund University, Sweden
| | | | - Vipul Periwal
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, USA
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
12
|
Sousa AP, Cunha DM, Franco C, Teixeira C, Gojon F, Baylina P, Fernandes R. Which Role Plays 2-Hydroxybutyric Acid on Insulin Resistance? Metabolites 2021; 11:metabo11120835. [PMID: 34940595 PMCID: PMC8703345 DOI: 10.3390/metabo11120835] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2D) is defined as a chronic condition caused by beta cell loss and/or dysfunction and insulin resistance (IR). The discovering of novel biomarkers capable of identifying T2D and other metabolic disorders associated with IR in a timely and accurate way is critical. In this review, 2-hydroxybutyric acid (2HB) is presented as that upheaval biomarker with an unexplored potential ahead. Due to the activation of other metabolic pathways during IR, 2HB is synthesized as a coproduct of protein metabolism, being the progression of IR intrinsically related to the increasing of 2HB levels. Hence, the focus of this review will be on the 2HB metabolite and its involvement in glucose homeostasis. A literature review was conducted, which comprised an examination of publications from different databases that had been published over the previous ten years. A total of 19 articles fulfilled the intended set of criteria. The use of 2HB as an early indicator of IR was separated into subjects based on the number of analytes examined simultaneously. In terms of the association between 2HB and IR, it has been established that increasing 2HB levels can predict the development of IR. Thus, 2HB has demonstrated considerable promise as a clinical monitoring molecule, not only as an IR biomarker, but also for disease follow-up throughout IR treatment.
Collapse
Affiliation(s)
- André P. Sousa
- Laboratory of Medical & Industrial Biotechnology (LABMI), Porto Research, Technology & Innovation Center (PORTIC), R. Arquitecto Lobão Vital 172, 4200-374 Porto, Portugal; (A.P.S.); (C.T.); (F.G.); (P.B.)
- School of Health (ESS), Polytechnic Institute of Porto (IPP), R. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (D.M.C.); (C.F.)
- Faculty of Medicine, Porto University (FMUP), Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Diogo M. Cunha
- School of Health (ESS), Polytechnic Institute of Porto (IPP), R. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (D.M.C.); (C.F.)
| | - Carolina Franco
- School of Health (ESS), Polytechnic Institute of Porto (IPP), R. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (D.M.C.); (C.F.)
| | - Catarina Teixeira
- Laboratory of Medical & Industrial Biotechnology (LABMI), Porto Research, Technology & Innovation Center (PORTIC), R. Arquitecto Lobão Vital 172, 4200-374 Porto, Portugal; (A.P.S.); (C.T.); (F.G.); (P.B.)
- School of Health (ESS), Polytechnic Institute of Porto (IPP), R. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (D.M.C.); (C.F.)
| | - Frantz Gojon
- Laboratory of Medical & Industrial Biotechnology (LABMI), Porto Research, Technology & Innovation Center (PORTIC), R. Arquitecto Lobão Vital 172, 4200-374 Porto, Portugal; (A.P.S.); (C.T.); (F.G.); (P.B.)
- School of Health (ESS), Polytechnic Institute of Porto (IPP), R. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (D.M.C.); (C.F.)
- Faculty of Medicine, Porto University (FMUP), Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Pilar Baylina
- Laboratory of Medical & Industrial Biotechnology (LABMI), Porto Research, Technology & Innovation Center (PORTIC), R. Arquitecto Lobão Vital 172, 4200-374 Porto, Portugal; (A.P.S.); (C.T.); (F.G.); (P.B.)
- School of Health (ESS), Polytechnic Institute of Porto (IPP), R. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (D.M.C.); (C.F.)
| | - Ruben Fernandes
- Laboratory of Medical & Industrial Biotechnology (LABMI), Porto Research, Technology & Innovation Center (PORTIC), R. Arquitecto Lobão Vital 172, 4200-374 Porto, Portugal; (A.P.S.); (C.T.); (F.G.); (P.B.)
- School of Health (ESS), Polytechnic Institute of Porto (IPP), R. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (D.M.C.); (C.F.)
- Correspondence:
| |
Collapse
|
13
|
Palavicini JP, Chavez-Velazquez A, Fourcaudot M, Tripathy D, Pan M, Norton L, DeFronzo RA, Shannon CE. The Insulin-Sensitizer Pioglitazone Remodels Adipose Tissue Phospholipids in Humans. Front Physiol 2021; 12:784391. [PMID: 34925073 PMCID: PMC8674727 DOI: 10.3389/fphys.2021.784391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-sensitizer pioglitazone exerts its cardiometabolic benefits in type 2 diabetes (T2D) through a redistribution of body fat, from ectopic and visceral areas to subcutaneous adipose depots. Whereas excessive weight gain and lipid storage in obesity promotes insulin resistance and chronic inflammation, the expansion of subcutaneous adipose by pioglitazone is associated with a reversal of these immunometabolic deficits. The precise events driving this beneficial remodeling of adipose tissue with pioglitazone remain unclear, and whether insulin-sensitizers alter the lipidomic composition of human adipose has not previously been investigated. Using shotgun lipidomics, we explored the molecular lipid responses in subcutaneous adipose tissue following 6months of pioglitazone treatment (45mg/day) in obese humans with T2D. Despite an expected increase in body weight following pioglitazone treatment, no robust effects were observed on the composition of storage lipids (i.e., triglycerides) or the content of lipotoxic lipid species (e.g., ceramides and diacylglycerides) in adipose tissue. Instead, pioglitazone caused a selective remodeling of the glycerophospholipid pool, characterized by a decrease in lipids enriched for arachidonic acid, such as plasmanylethanolamines and phosphatidylinositols. This contributed to a greater overall saturation and shortened chain length of fatty acyl groups within cell membrane lipids, changes that are consistent with the purported induction of adipogenesis by pioglitazone. The mechanism through which pioglitazone lowered adipose tissue arachidonic acid, a major modulator of inflammatory pathways, did not involve alterations in phospholipase gene expression but was associated with a reduction in its precursor linoleic acid, an effect that was also observed in skeletal muscle samples from the same subjects. These findings offer important insights into the biological mechanisms through which pioglitazone protects the immunometabolic health of adipocytes in the face of increased lipid storage.
Collapse
Affiliation(s)
- Juan P. Palavicini
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alberto Chavez-Velazquez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Marcel Fourcaudot
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Meixia Pan
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Luke Norton
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ralph A. DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Christopher E. Shannon
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
14
|
Is type 2 diabetes an adiposity-based metabolic disease? From the origin of insulin resistance to the concept of dysfunctional adipose tissue. Eat Weight Disord 2021; 26:2429-2441. [PMID: 33555509 PMCID: PMC8602224 DOI: 10.1007/s40519-021-01109-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades of the past century, a remarkable amount of research efforts, money and hopes was generated to unveil the basis of insulin resistance that was believed to be the primary etiological factor in the development of type 2 diabetes. From the Reaven's insulin resistance syndrome to the DeFronzo's triumvirate (skeletal muscle, liver and beta-cell) and to Kahn's discovery (among many others) of insulin receptor downregulation and autophosphorylation, an enthusiastic age of metabolic in vivo and in vitro research took place, making the promise of a resolutory ending. However, from many published data (those of insulin receptoropathies and lipodystrophies, the genome-wide association studies results, the data on reversibility of type 2 diabetes after bariatric surgery or very-low-calorie diets, and many others) it appears that insulin resistance is not a primary defect but it develops secondarily to increased fat mass. In particular, it develops from a mismatch between the surplus caloric intake and the storage capacity of adipose tissue. On this basis, we propose to change the today's definition of type 2 diabetes in adiposity-based diabetes.Level of Evidence as a narrative review a vast array of studies have been included in the analysis, ranging from properly designed randomized controlled trials to case studies; however, the overall conclusion may be regarded as level IV.
Collapse
|
15
|
Lee JY, Lee M, Lee JY, Bae J, Shin E, Lee YH, Lee BW, Kang ES, Cha BS. Ipragliflozin, an SGLT2 Inhibitor, Ameliorates High-Fat Diet-Induced Metabolic Changes by Upregulating Energy Expenditure through Activation of the AMPK/ SIRT1 Pathway. Diabetes Metab J 2021; 45:921-932. [PMID: 33611885 PMCID: PMC8640151 DOI: 10.4093/dmj.2020.0187] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs that exhibit multiple extraglycemic effects. However, there are conflicting results regarding the effects of SGLT2 inhibition on energy expenditure and thermogenesis. Therefore, we investigated the effect of ipragliflozin (a selective SGLT2 inhibitor) on energy metabolism. METHODS Six-week-old male 129S6/Sv mice with a high propensity for adipose tissue browning were randomly assigned to three groups: normal chow control, 60% high-fat diet (HFD)-fed control, and 60% HFD-fed ipragliflozin-treated groups. The administration of diet and medication was continued for 16 weeks. RESULTS The HFD-fed mice became obese and developed hepatic steatosis and adipose tissue hypertrophy, but their random glucose levels were within the normal ranges; these features are similar to the metabolic features of a prediabetic condition. Ipragliflozin treatment markedly attenuated HFD-induced hepatic steatosis and reduced the size of hypertrophied adipocytes to that of smaller adipocytes. In the ipragliflozin treatment group, uncoupling protein 1 (Ucp1) and other thermogenesis-related genes were significantly upregulated in the visceral and subcutaneous adipose tissue, and fatty acid oxidation was increased in the brown adipose tissue. These effects were associated with a significant reduction in the insulin-to-glucagon ratio and the activation of the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) pathway in the liver and adipose tissue. CONCLUSION SGLT2 inhibition by ipragliflozin showed beneficial metabolic effects in 129S6/Sv mice with HFD-induced obesity that mimics prediabetic conditions. Our data suggest that SGLT2 inhibitors, through their upregulation of energy expenditure, may have therapeutic potential in prediabetic obesity.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Minyoung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Lee
- Department of Molecular, Cellular and Cancer Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jaehyun Bae
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eugene Shin
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Byung-Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Bong-Soo Cha
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Akbari R, Behdarvand T, Afarin R, Yaghooti H, Jalali MT, Mohammadtaghvaei N. Saroglitazar improved hepatic steatosis and fibrosis by modulating inflammatory cytokines and adiponectin in an animal model of non-alcoholic steatohepatitis. BMC Pharmacol Toxicol 2021; 22:53. [PMID: 34593018 PMCID: PMC8485507 DOI: 10.1186/s40360-021-00524-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have become significant global health concerns. In the present study, we aimed to investigate the effects of saroglitazar, a dual PPARα/γ agonist, fenofibrate, a PPAR-α agonist, and pioglitazone, a PPAR-γ agonist on an animal model of NASH. METHODS Male Wistar rats were fed a high-fat (HF) emulsion via gavage for 7 weeks to induce NASH. The HF-treated rats were grouped into four groups to receive saroglitazar, pioglitazone, fenofibrate, or vehicle. We measured body and liver weight, liver enzymes, serum levels of adiponectin and leptin. We also performed histopathological examinations and gene expression analysis of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF- α), transforming growth factor-beta (TGF-β), and monocyte chemoattractant protein 1 (MCP-1). RESULTS Body weight was markedly normalized by both saroglitazar and fenofibrate, while the liver index only decreased significantly with saroglitazar. Saroglitazar corrected ALT, AST, leptin, and adiponectin levels better than pioglitazone and fenofibrate. All PPAR agonists significantly attenuated the upregulation of the proinflammatory and TGF-β genes, which correlated with the improved steatosis, inflammation of liver tissue, and fibrotic lesions. CONCLUSIONS As documented by our results, the dual activation of PPARα/γ by saroglitazar could effectively improve steatosis, fibrosis, and aspects of necro-inflammation in the HF-induced NASH model more than fenofibrate and pioglitazone, and it can be more beneficial in the management of NASH.
Collapse
Affiliation(s)
- Rasoul Akbari
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Behdarvand
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Afarin
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Yaghooti
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taha Jalali
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Mohammadtaghvaei
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
17
|
Abstract
In this review, Lee and Olefsky discuss the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes. Obesity is the most common cause of insulin resistance, and the current obesity epidemic is driving a parallel rise in the incidence of T2DM. It is now widely recognized that chronic, subacute tissue inflammation is a major etiologic component of the pathogenesis of insulin resistance and metabolic dysfunction in obesity. Here, we summarize recent advances in our understanding of immunometabolism. We discuss the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes. Last, we also review current and potential new therapeutic strategies based on immunomodulation.
Collapse
Affiliation(s)
- Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Diego, La Jolla, California 92093, USA
| | - Jerrold Olefsky
- Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
18
|
Venniyoor A, Al Farsi AA, Al Bahrani B. The Troubling Link Between Non-alcoholic Fatty Liver Disease (NAFLD) and Extrahepatic Cancers (EHC). Cureus 2021; 13:e17320. [PMID: 34557366 PMCID: PMC8449927 DOI: 10.7759/cureus.17320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a fast-spreading epidemic across the globe and has serious implications far beyond that of a "benign" liver condition. It is usually an outcome of ectopic fat storage due to chronic positive energy balance leading to obesity and is associated with multiple health problems. While association with cardiovascular disease and hepatocellular cancer is well recognized, it is becoming clear the NAFLD carries with it an increased risk of cancers of extrahepatic tissues. Studies have reported a higher risk for cancers of the colon, breast, prostate, lung, and pancreas. Fatty liver is associated with increased mortality; there is an urgent need to understand that fatty liver is not always benign, and not always associated with obesity. It is, however, a reversible condition and early recognition and intervention can alter its natural history and associated complications.
Collapse
Affiliation(s)
- Ajit Venniyoor
- Medical Oncology, National Oncology Center, The Royal Hospital, Muscat, OMN
| | | | | |
Collapse
|
19
|
Mal S, Dwivedi AR, Kumar V, Kumar N, Kumar B, Kumar V. Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Different Disease States: Recent Updates. Curr Med Chem 2021; 28:3193-3215. [PMID: 32674727 DOI: 10.2174/0929867327666200716113136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR), a ligand dependant transcription factor, is a member of the nuclear receptor superfamily. PPAR exists in three isoforms i.e. PPAR alpha (PPARα), PPAR beta (PPARβ), and PPAR gamma (PPARγ). These are multi-functional transcription factors and help in regulating inflammation, type 2 diabetes, lipid concentration in the body, metastasis, and tumor growth or angiogenesis. Activation of PPARγ causes inhibition of growth of cultured human breast, gastric, lung, prostate, and other cancer cells. PPARγ is mainly involved in fatty acid storage, glucose metabolism, and homeostasis and adipogenesis regulation. A large number of natural and synthetic ligands bind to PPARγ and modulate its activity. Ligands such as thiazolidinedione, troglitazone, rosiglitazone, pioglitazone effectively bind to PPARγ; however, most of these were found to display severe side effects such as hepatotoxicity, weight gain, cardiovascular complications and bladder tumor. Now the focus is shifted towards the development of dual-acting or pan PPAR ligands. The current review article describes the functions and role of PPARγ in various disease states. In addition, recently reported PPARγ ligands and pan PPAR ligands were discussed in detail. It is envisaged that the present review article may help in the development of potent PPAR ligands with no or minimal side effects.
Collapse
Affiliation(s)
- Suvadeep Mal
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Vijay Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Naveen Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| |
Collapse
|
20
|
El-Fayoumi S, Mansour R, Mahmoud A, Fahmy A, Ibrahim I. Pioglitazone Enhances β-Arrestin2 Signaling and Ameliorates Insulin Resistance in Classical Insulin Target Tissues. Pharmacology 2021; 106:409-417. [PMID: 34082428 DOI: 10.1159/000515936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Pioglitazone is a thiazolidinedione oral antidiabetic agent. This study aimed to investigate the effects of pioglitazone as insulin sensitizer on β-arrestin2 signaling in classical insulin target tissues. METHODS Experiments involved three groups of mice; the first one involved mice fed standard chow diet for 16 weeks; the second one involved mice fed high-fructose, high-fat diet (HFrHFD) for 16 weeks; and the third one involved mice fed HFrHFD for 16 weeks and received pioglitazone (30 mg/kg/day, orally) in the last four weeks of feeding HFrHFD. RESULTS The results showed significant improvement in the insulin sensitivity of pioglitazone-treated mice as manifested by significant reduction in the insulin resistance index. This improvement in insulin sensitivity was associated with significant increases in the β-arrestin2 levels in the adipose tissue, liver, and skeletal muscle. Moreover, pioglitazone significantly increased β-arrestin2 signaling in all the examined tissues as estimated from significant increases in phosphatidylinositol 4,5 bisphosphate and phosphorylation of Akt at serine 473 and significant decrease in diacylglycerol level. CONCLUSION To the best of our knowledge, our work reports a new mechanism of action for pioglitazone through which it can enhance the insulin sensitivity. Pioglitazone increases β-arrestin2 signaling in the adipose tissue, liver, and skeletal muscle of HFrHFD-fed mice.
Collapse
Affiliation(s)
- Shaimaa El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Rehab Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Central Administration, Zagazig University Hospitals, Zagazig, Egypt
| | - Amr Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology, Pharmacy Program, Oman College of Health Sciences, Muscat, Oman
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Islam Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Al-Muzafar HM, Alshehri FS, Amin KA. The role of pioglitazone in antioxidant, anti-inflammatory, and insulin sensitivity in a high fat-carbohydrate diet-induced rat model of insulin resistance. ACTA ACUST UNITED AC 2021; 54:e10782. [PMID: 34037093 PMCID: PMC8148887 DOI: 10.1590/1414-431x2020e10782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/15/2021] [Indexed: 01/13/2023]
Abstract
We explored the cascade effects of a high fat-carbohydrate diet (HFCD) and pioglitazone (an anti-diabetic therapy used to treat type 2 diabetes mellitus (T2DM)) on lipid profiles, oxidative stress/antioxidant, insulin, and inflammatory biomarkers in a rat model of insulin resistance. Sixty albino rats (80-90 g) were randomly divided into three dietary groups; 1) standard diet; 2) HFCD diet for 12 weeks to induce an in vivo model of insulin resistance; and 3) HFCD diet plus pioglitazone. Blood and tissue samples were taken to assess hepatic function, lipid profiles, oxidative biomarkers, malondialdehyde (MDA) levels, antioxidant defense biomarkers, including reduced glutathione (GSH), superoxide dismutase (SOD), and the inflammatory markers interleukin-6 (IL-6) and tumor necrotic factor (TNF-α). HFCD-fed rats had significantly (P≤0.05) increased serum triacylglycerol (TG), total cholesterol (TC), low-density lipoprotein (LDL), alanine transaminase (ALT), and bilirubin levels, but decreased high-density lipoprotein (HDL) levels compared with the normal group. Moreover, serum leptin, resistin, TNF-α, and IL-6 levels were increased significantly in HFCD animals compared with controls. Similarly, HFCD-induced insulin resistance caused antioxidant and cytokine disturbances, which are important therapy targets for pioglitazone. Importantly, administration of this drug ameliorated these changes, normalized leptin and resistin and inflammatory markers by reducing TNF-α levels. Metabolic cascades of elevated lipid profiles, oxidative stress, insulin, and inflammatory biomarkers are implicated in insulin resistance progression. HFCD induced metabolic cascades comprising hypertriglyceridemia, hyperglycemia, insulin resistance, obesity-associated hormones, and inflammatory biomarkers may be alleviated using pioglitazone.
Collapse
Affiliation(s)
- H M Al-Muzafar
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - F S Alshehri
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - K A Amin
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
22
|
Nesti L, Tricò D, Mengozzi A, Natali A. Rethinking pioglitazone as a cardioprotective agent: a new perspective on an overlooked drug. Cardiovasc Diabetol 2021; 20:109. [PMID: 34006325 PMCID: PMC8130304 DOI: 10.1186/s12933-021-01294-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Since 1985, the thiazolidinedione pioglitazone has been widely used as an insulin sensitizer drug for type 2 diabetes mellitus (T2DM). Although fluid retention was early recognized as a safety concern, data from clinical trials have not provided conclusive evidence for a benefit or a harm on cardiac function, leaving the question unanswered. We reviewed the available evidence encompassing both in vitro and in vivo studies in tissues, isolated organs, animals and humans, including the evidence generated by major clinical trials. Despite the increased risk of hospitalization for heart failure due to fluid retention, pioglitazone is consistently associated with reduced risk of myocardial infarction and ischemic stroke both in primary and secondary prevention, without any proven direct harm on the myocardium. Moreover, it reduces atherosclerosis progression, in-stent restenosis after coronary stent implantation, progression rate from persistent to permanent atrial fibrillation, and reablation rate in diabetic patients with paroxysmal atrial fibrillation after catheter ablation. In fact, human and animal studies consistently report direct beneficial effects on cardiomyocytes electrophysiology, energetic metabolism, ischemia–reperfusion injury, cardiac remodeling, neurohormonal activation, pulmonary circulation and biventricular systo-diastolic functions. The mechanisms involved may rely either on anti-remodeling properties (endothelium protective, inflammation-modulating, anti-proliferative and anti-fibrotic properties) and/or on metabolic (adipose tissue metabolism, increased HDL cholesterol) and neurohormonal (renin–angiotensin–aldosterone system, sympathetic nervous system, and adiponectin) modulation of the cardiovascular system. With appropriate prescription and titration, pioglitazone remains a useful tool in the arsenal of the clinical diabetologist.
Collapse
Affiliation(s)
- Lorenzo Nesti
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy. .,Cardiopulmonary Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Domenico Tricò
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Pisa, Italy
| | - Alessandro Mengozzi
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Andrea Natali
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy.,Cardiopulmonary Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Zhang F, Jin C, Wang X, Yan H, Tan H, Gao C. Dietary supplementation with pioglitazone hydrochloride and l-carnosine improves the growth performance, muscle fatty acid profiles and shelf life of yellow-feathered broiler chickens. ACTA ACUST UNITED AC 2020; 7:168-175. [PMID: 33997345 PMCID: PMC8110847 DOI: 10.1016/j.aninu.2020.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
The present study aimed to investigate the effects of dietary pioglitazone hydrochloride (PGZ) and l-carnosine (LC) supplementation on the growth performance, meat quality, antioxidant status, and meat shelf life of yellow-feathered broiler chickens. Five hundred broiler chickens were randomly assigned into 4 experimental diets using a 2 × 2 factorial arrangement with 2 PGZ supplemental levels (0 and 15 mg/kg) and 2 LC supplemental levels (0 and 400 mg/kg) in basal diets for 28 d. The feed-to-gain ratio decreased whereas the average daily gain increased with PGZ supplementation. Greater dressing percentages, contents of intramuscular fat (IMF) in breast and thigh muscles, C18:3n-6, C18:1n-9 and monounsaturated fatty acid (MUFA) percentages of thigh muscle were observed with PGZ addition. Additionally, significant synergistic effects between PGZ and LC on the C18:1n-9 and MUFA contents were found. Supplementation with LC decreased drip loss, cooking loss and total volatile basic nitrogen, and increased the redness (a∗) value, the superoxide dismutase and glutathione peroxidase activities in thigh muscles. Moreover, the malondialdehyde content decreased when diets were supplemented with LC, and there was a synergistic effect between PGZ and LC. Additionally, the mRNA abundance of lipogenesis-related genes, such as peroxisome proliferator-activated receptor γ (PPARγ), PPARγ co-activator 1α and fatty acid-binding protein 3, increased with PGZ supplementation, and relevant antioxidation genes, such as nuclear factor erythroid-2-related factor 2 and superoxide dismutase 1, were enhanced with LC supplementation. In conclusion, the results indicated that the supplementation of PGZ and LC could improve the growth performance, antioxidant ability, IMF content, and meat shelf life of yellow-feathered broiler chickens.
Collapse
Affiliation(s)
- Fan Zhang
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Chenglong Jin
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Xiuqi Wang
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Huichao Yan
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Huize Tan
- WENS Foodstuff Group Co., Ltd, Yunfu, 527400, Guangdong, China
| | - Chunqi Gao
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
24
|
Hypolipidemic effects and mechanisms of Val-Phe-Val-Arg-Asn in C57BL/6J mice and 3T3-L1 cell models. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
Maheshwari RA, Parmar GR, Hinsu D, Seth AK, Balaraman R. Novel therapeutic intervention of coenzyme Q10 and its combination with pioglitazone on the mRNA expression level of adipocytokines in diabetic rats. Life Sci 2020; 258:118155. [PMID: 32735887 DOI: 10.1016/j.lfs.2020.118155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 01/11/2023]
Abstract
AIMS Aim of the present study was to investigate the effect of co-administration coenzyme Q10 and pioglitazone on the mRNA expression of adipocytokines in white adipose tissues of chemically induced type 2 diabetes mellitus in rats. MAIN METHODS Diabetes was induced by administration of streptozotocin (65 mg/kg, i.p.), followed by nicotinamide (110 mg/kg, i.p.) 15 min later. The diabetic rats were treated coenzyme Q10 (Q10, 10 mg/kg, p.o.) or pioglitazone (PIO, 20 mg/kg, p.o.) alone and their combination for four weeks. Biochemical parameters like FBS level, insulin and HbA1c along with tissue levels of MDA, SOD, CAT and GSH were estimated. The mRNA levels of ADIPOQ, RBP4, RETN, IL-6 and TNF-α in White Adipose Tissue (WAT) were measured. KEY FINDINGS Treatment with Q10 + PIO showed a significant reduction in the levels of FBS, HbA1c and a significant increase in insulin levels as compared to normal control group. Additionally, there was a significant change in the levels of biomarkers of oxidative stress after treatment with Q10 + PIO as compared to streptozotocin-nicotinamide group. Treatment with Q10 + PIO also significantly altered the mRNA expression of ADIPOQ, RETN, IL-6 and TNF-α when compared to monotherapy. However, mRNA expression of RBP4 did not alter in Q10 + PIO treated animal as compared to Q10 or PIO alone. SIGNIFICANCE It is concluded that co-administration of Q10 and PIO has been shown the better therapeutic effect on the mRNA expression of adipocytokines and oxidative stress parameters as compared to either Q10 or PIO.
Collapse
Affiliation(s)
- Rajesh A Maheshwari
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At Post Piparia, Taluka: Waghodia, Dist: Vadodara, Vadodara-391760, Gujarat, India
| | - Ghanshyam R Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At Post Piparia, Taluka: Waghodia, Dist: Vadodara, Vadodara-391760, Gujarat, India.
| | - Denish Hinsu
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At Post Piparia, Taluka: Waghodia, Dist: Vadodara, Vadodara-391760, Gujarat, India
| | - Avinash K Seth
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At Post Piparia, Taluka: Waghodia, Dist: Vadodara, Vadodara-391760, Gujarat, India
| | - Ramachandran Balaraman
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At Post Piparia, Taluka: Waghodia, Dist: Vadodara, Vadodara-391760, Gujarat, India
| |
Collapse
|
26
|
Wang G. Body Mass Dynamics Is Determined by the Metabolic Ohm's Law and Adipocyte-Autonomous Fat Mass Homeostasis. iScience 2020; 23:101176. [PMID: 32480131 PMCID: PMC7262567 DOI: 10.1016/j.isci.2020.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/05/2020] [Accepted: 05/14/2020] [Indexed: 11/06/2022] Open
Abstract
An ODE model integrating metabolic mechanisms with clinical data reveals an Ohm's law governing lifetime body mass dynamics, where fat and lean tissues are analogous to a parallel nonlinear capacitor and resistor, respectively. The law unexpectedly decouples weight stability (a cell-autonomous property of adipocytes) and weight change (a parabolic trajectory governed by Ohm's law). In middle age, insulin resistance causes fat accumulation to avoid excessive body shrinkage in old age. Moderate middle-age spread is thus natural, not an anomaly caused by hypothalamic defects, as proposed by lipostatic theory. These discoveries provide valuable insights into health care practices such as weight control and health assessment, explain certain observed phenomena, make testable predictions, and may help to resolve major conundrums in the field. The ODE model, which is more comprehensive than Ohm's law, is useful to study metabolism at the detailed microscopic levels.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenviroment and Disease Research, Shenzhen, Guangdong 518055, China; Shenzhen Key Laboratory of Cell Microenviroment, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
27
|
Lee D, Shin Y, Roh JS, Ahn J, Jeoong S, Shin SS, Yoon M. RETRACTED: Lemon Balm Extract ALS-L1023 Regulates Obesity and Improves Insulin Sensitivity via Activation of Hepatic PPARα in High-Fat Diet-Fed Obese C57BL/6J Mice. Int J Mol Sci 2020; 21:E4256. [PMID: 32549364 PMCID: PMC7352304 DOI: 10.3390/ijms21124256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Our previous studies demonstrated that peroxisome proliferator-activated receptor α (PPARα) activation reduces weight gain and improves insulin sensitivity in obese mice. Since excess lipid accumulation in non-adipose tissues is suggested to be responsible for the development of insulin resistance, this study was undertaken to examine whether the lemon balm extract ALS-L1023 regulates hepatic lipid accumulation, obesity, and insulin resistance and to determine whether its mechanism of action involves PPARα. Administration of ALS-L1023 to high-fat-diet-induced obese mice caused reductions in body weight gain, visceral fat mass, and visceral adipocyte size without changes of food consumption profiles. ALS-L1023 improved hyperglycemia, hyperinsulinemia, glucose and insulin tolerance, and normalized insulin-positive β-cell area in obese mice. ALS-L1023 decreased hepatic lipid accumulation and concomitantly increased the expression of PPARα target genes responsible for fatty acid β-oxidation in livers. In accordance with the in vivo data, ALS-L1023 reduced lipid accumulation and stimulated PPARα reporter gene expression in HepG2 cells. These effects of ALS-L1023 were comparable to those of the PPARα ligand fenofibrate, while the PPARα antagonist GW6471 inhibited the actions of ALS-L1023 on lipid accumulation and PPARα luciferase activity in HepG2 cells. Higher phosphorylated protein kinase B (pAkt)/Akt ratios and lower expression of gluconeogenesis genes were observed in the livers of ALS-L1023-treated mice. These results indicate that ALS-L1023 may inhibit obesity and improve insulin sensitivity in part through inhibition of hepatic lipid accumulation via hepatic PPARα activation.
Collapse
Affiliation(s)
- Dongju Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (D.L.); (Y.S.); (S.J.)
| | - Yujin Shin
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (D.L.); (Y.S.); (S.J.)
| | - Jong Seong Roh
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Busan 50612, Korea;
| | - Jiwon Ahn
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Sunhyo Jeoong
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (D.L.); (Y.S.); (S.J.)
| | - Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 47340, Korea
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (D.L.); (Y.S.); (S.J.)
| |
Collapse
|
28
|
Anti-Inflammatory Strategies Targeting Metaflammation in Type 2 Diabetes. Molecules 2020; 25:molecules25092224. [PMID: 32397353 PMCID: PMC7249034 DOI: 10.3390/molecules25092224] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023] Open
Abstract
One of the concepts explaining the coincidence of obesity and type 2 diabetes (T2D) is the metaflammation theory. This chronic, low-grade inflammatory state originating from metabolic cells in response to excess nutrients, contributes to the development of T2D by increasing insulin resistance in peripheral tissues (mainly in the liver, muscles, and adipose tissue) and by targeting pancreatic islets and in this way impairing insulin secretion. Given the role of this not related to infection inflammation in the development of both: insulin resistance and insulitis, anti-inflammatory strategies could be helpful not only to control T2D symptoms but also to treat its causes. This review presents current concepts regarding the role of metaflammation in the development of T2D in obese individuals as well as data concerning possible application of different anti-inflammatory strategies (including lifestyle interventions, the extra-glycemic potential of classical antidiabetic compounds, nonsteroidal anti-inflammatory drugs, immunomodulatory therapies, and bariatric surgery) in the management of T2D.
Collapse
|
29
|
Feeding brown fat: dietary phytochemicals targeting non-shivering thermogenesis to control body weight. Proc Nutr Soc 2020; 79:338-356. [PMID: 32290888 PMCID: PMC7663322 DOI: 10.1017/s0029665120006928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Excessive adipose accumulation, which is the main driver for the development of secondary metabolic complications, has reached epidemic proportions and combined pharmaceutical, educational and nutritional approaches are required to reverse the current rise in global obesity prevalence rates. Brown adipose tissue (BAT) is a unique organ able to dissipate energy and thus a promising target to enhance BMR to counteract a positive energy balance. In addition, active BAT might support body weight maintenance after weight loss to prevent/reduce relapse. Natural products deliver valuable bioactive compounds that have historically helped to alleviate disease symptoms. Interest in recent years has focused on identifying nutritional constituents that are able to induce BAT activity and thereby enhance energy expenditure. This review provides a summary of selected dietary phytochemicals, including isoflavones, catechins, stilbenes, the flavonoids quercetin, luteolin and resveratrol as well as the alkaloids berberine and capsaicin. Most of the discussed phytochemicals act through distinct molecular pathways e.g. sympathetic nerve activation, AMP-kinase signalling, SIRT1 activity or stimulation of oestrogen receptors. Thus, it might be possible to utilise this multitude of pathways to co-activate BAT using a fine-tuned combination of foods or combined nutritional supplements.
Collapse
|
30
|
Dietary Supplementation with Pioglitazone Hydrochloride and Resveratrol Improves Meat Quality and Antioxidant Capacity of Broiler Chickens. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The study aimed to investigate the effects of pioglitazone hydrochloride (PGZ) and resveratrol (RES) on yellow-feathered broiler chickens. A total of 500 broiler chickens were randomly divided into four groups and fed a basic diet (control group) or a basic diet supplemented with 15 mg/kg PGZ, 400 mg/kg RES, or 15 mg/kg PGZ plus 400 mg/kg RES for 28 days. Compared with the control group, the PGZ and PGZ plus RES groups presented a significantly higher average daily gain and a decreased feed-to-gain ratio. Increases in the dressing percentage, semi-eviscerated yield, muscle intramuscular fat content, and C18:1n-9c, C18:3n-6, C20:3n-3, and monounsaturated fatty acid (MUFA) percentages were found in the PGZ plus RES group. Moreover, the diet supplemented with RES or PGZ plus RES increased the activities of catalase, glutathione peroxidase, and superoxide dismutase, and decreased the levels of reactive oxygen species of thigh muscle. Additionally, the mRNA abundance of peroxisome proliferator-activated receptor γ coactivator 1α, fatty acid-binding protein 3, nuclear factor erythroid-2-related factor 2, and superoxide dismutase 1 was increased in the PGZ plus RES group. In conclusion, this study suggested that dietary supplementation of PGZ combined with RES improved the growth performance, the muscle intramuscular fat content, and antioxidant ability of yellow-feathered broiler chickens.
Collapse
|
31
|
de Mendonça M, de Sousa É, da Paixão AO, Araújo Dos Santos B, Roveratti Spagnol A, Murata GM, Araújo HN, Imamura de Lima T, Passos Simões Fróes Guimarães DS, Silveira LR, Rodrigues AC. MicroRNA miR-222 mediates pioglitazone beneficial effects on skeletal muscle of diet-induced obese mice. Mol Cell Endocrinol 2020; 501:110661. [PMID: 31770568 DOI: 10.1016/j.mce.2019.110661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Pioglitazone belongs to the class of drugs thiazolidinediones (TZDs) and is an oral hypoglycemic drug, used in the treatment of type 2 diabetes, which improves insulin sensitivity in target tissues. Adipose tissue is the main target of pioglitazone, a PPARg and PPARa agonist; however, studies also point to skeletal muscle as a target. Non-PPAR targets of TZDs have been described, thus we aimed to study the direct effects of pioglitazone on skeletal muscle and the possible role of microRNAs as targets of this drug. Pioglitazone treatment of obese mice increased insulin-mediated glucose transport as a result of increased fatty acid oxidation and mitochondrial activity. PPARg blockage by treatment with GW9662 nullified pioglitazone's effect on systemic and muscle insulin sensitivity and citrate synthase activity of obese mice. After eight weeks of high-fat diet, miR-221-3p expression in soleus muscle was similar among the groups and miR-23b-3p and miR-222-3p were up-regulated in obese mice compared to the control group, and treatment with pioglitazone was able to reverse this condition. In vitro studies in C2C12 cells suggest that inhibition of miR-222-3p protects C2C12 cells from insulin resistance and increased non-mitochondrial respiration induced by palmitate. Together, these data demonstrate a role of pioglitazone in the downregulation of microRNAs that is not dependent on PPARg. Moreover, miR-222 may be a novel PPARg-independent mechanism through which pioglitazone improves insulin sensitivity in skeletal muscle.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Down-Regulation/drug effects
- Glucose/metabolism
- Glucose Tolerance Test
- Hypoglycemic Agents
- Insulin/metabolism
- Insulin Resistance/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- MicroRNAs/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Obesity/drug therapy
- Obesity/metabolism
- PPAR alpha/metabolism
- PPAR gamma/metabolism
- Palmitates/pharmacology
- Pioglitazone/pharmacology
- Thiazolidinediones/pharmacology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
| | - Érica de Sousa
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ailma O da Paixão
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Gilson M Murata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Hygor N Araújo
- Obesity and Comorbidities Research Center, Campinas, Sao Paulo, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Tanes Imamura de Lima
- Obesity and Comorbidities Research Center, Campinas, Sao Paulo, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Dimitrius Santiago Passos Simões Fróes Guimarães
- Obesity and Comorbidities Research Center, Campinas, Sao Paulo, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center, Campinas, Sao Paulo, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Alice C Rodrigues
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
32
|
Khanal P, Pandey D, Binti Ahmad S, Safayi S, Kadarmideen HN, Olaf Nielsen M. Differential impacts of late gestational over-and undernutrition on adipose tissue traits and associated visceral obesity risk upon exposure to a postnatal high-fat diet in adolescent sheep. Physiol Rep 2020; 8:e14359. [PMID: 32026612 PMCID: PMC7002533 DOI: 10.14814/phy2.14359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 11/24/2022] Open
Abstract
We hypothesized that late gestation malnutrition differentially affects expandability of adipose tissues to predispose for early postnatal visceral adiposity. Twin-lambs born to dams fed HIGH (150%/110% of required energy/protein, respectively), NORM (100% of requirements) or LOW (50% of NORM) diets during the last trimester were used. Postnatally, lambs were raised on moderate (CONV) or high-carbohydrate-high-fat (HCHF) diets. Adipose tissues were sampled at autopsy at 6 months of age (~puberty) to characterize cellularity, adipocyte cross-sectional area and gene expression patterns. HIGH and LOW compared to NORM lambs had reduced intrinsic (under CONV diet) cellularity in subcutaneous and mesenteric (particularly LOW), and reduced obesity-induced (under HCHF diet) hyperplasia in subcutaneous, mesenteric and perirenal (particularly HIGH) adipose tissues. This corresponded with more pronounced HCHF diet-induced hypertrophy in mesenteric (particularly LOW), perirenal (particularly HIGH) and subcutaneous (particularly HIGH) adipose tissues, and tissue-specific reductions in mRNA expressions for lipid metabolism, angiogenesis and adipose development. Gene expression for inflammation and lipid metabolism markers were increased and decreased, respectively, in HCHF lambs (HCHF lambs became obese) in all tissues. Both prenatal over- and undernutrition predisposed for abdominal adiposity and extreme perirenal hypertrophy due to reduced intrinsic (observed under CONV diet) cellularity and impaired ability of subcutaneous, mesenteric and perirenal adipose tissues to expand by hyperplasia rather than hypertrophy on an obesogenic (HCHF) diet.
Collapse
Affiliation(s)
- Prabhat Khanal
- Animal Science, Production and Welfare DivisionFaculty of Biosciences and AquacultureNord UniversitySteinkjer CampusNorway
| | - Deepak Pandey
- Animal Science, Production and Welfare DivisionFaculty of Biosciences and AquacultureNord UniversitySteinkjer CampusNorway
| | - Sharmila Binti Ahmad
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of Copenhagen, DenmarkFrederiksbergDenmark
| | | | - Haja N. Kadarmideen
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
| | | |
Collapse
|
33
|
Riera-Heredia N, Lutfi E, Gutiérrez J, Navarro I, Capilla E. Fatty acids from fish or vegetable oils promote the adipogenic fate of mesenchymal stem cells derived from gilthead sea bream bone potentially through different pathways. PLoS One 2019; 14:e0215926. [PMID: 31017945 PMCID: PMC6481918 DOI: 10.1371/journal.pone.0215926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/10/2019] [Indexed: 01/01/2023] Open
Abstract
Fish are rich in n-3 long-chain polyunsaturated fatty acids (LC-PUFA), such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, thus they have a great nutritional value for human health. In this study, the adipogenic potential of fatty acids commonly found in fish oil (EPA and DHA) and vegetable oils (linoleic (LA) and alpha-linolenic (ALA) acids), was evaluated in bone-derived mesenchymal stem cells (MSCs) from gilthead sea bream. At a morphological level, cells adopted a round shape upon all treatments, losing their fibroblastic form and increasing lipid accumulation, especially in the presence of the n-6 PUFA, LA. The mRNA levels of the key transcription factor of osteogenesis, runx2 significantly diminished and those of relevant osteogenic genes remained stable after incubation with all fatty acids, suggesting that the osteogenic process might be compromised. On the other hand, transcript levels of the main adipogenesis-inducer factor, pparg increased in response to EPA. Nevertheless, the specific PPARγ antagonist T0070907 appeared to suppress the effects being caused by EPA over adipogenesis. Moreover, LA, ALA and their combinations, significantly up-regulated the fatty acid transporter and binding protein, fatp1 and fabp11, supporting the elevated lipid content found in the cells treated with those fatty acids. Overall, this study has demonstrated that fatty acids favor lipid storage in gilthead sea bream bone-derived MSCs inducing their fate into the adipogenic versus the osteogenic lineage. This process seems to be promoted via different pathways depending on the fatty acid source, being vegetable oils-derived fatty acids more prone to induce unhealthier metabolic phenotypes.
Collapse
Affiliation(s)
- Natàlia Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Esmail Lutfi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
34
|
Akiyama TE, Skelhorne-Gross GE, Lightbody ED, Rubino RE, Shi JY, McNamara LA, Sharma N, Zycband EI, Gonzalez FJ, Liu H, Woods JW, Chang CH, Berger JP, Nicol CJB. Endothelial Cell-Targeted Deletion of PPAR γ Blocks Rosiglitazone-Induced Plasma Volume Expansion and Vascular Remodeling in Adipose Tissue. J Pharmacol Exp Ther 2019; 368:514-523. [PMID: 30606762 PMCID: PMC11047031 DOI: 10.1124/jpet.118.250985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor γ (PPARγ) agonists that represent an effective class of insulin-sensitizing agents; however, clinical use is associated with weight gain and peripheral edema. To elucidate the role of PPARγ expression in endothelial cells (ECs) in these side effects, EC-targeted PPARγ knockout (Pparg ΔEC) mice were placed on a high-fat diet to promote PPARγ agonist-induced plasma volume expansion, and then treated with the TZD rosiglitazone. Compared with Pparg-floxed wild-type control (Pparg f/f) mice, Pparg ΔEC treated with rosiglitazone are resistant to an increase in extracellular fluid, water content in epididymal and inguinal white adipose tissue, and plasma volume expansion. Interestingly, histologic assessment confirmed significant rosiglitazone-mediated capillary dilation within white adipose tissue of Pparg f/f mice, but not Pparg ΔEC mice. Analysis of ECs isolated from untreated mice in both strains suggested the involvement of changes in endothelial junction formation. Specifically, compared with cells from Pparg f/f mice, Pparg ΔEC cells had a 15-fold increase in focal adhesion kinase, critically important in EC focal adhesions, and >3-fold significant increase in vascular endothelial cadherin, the main component of focal adhesions. Together, these results indicate that rosiglitazone has direct effects on the endothelium via PPARγ activation and point toward a critical role for PPARγ in ECs during rosiglitazone-mediated plasma volume expansion.
Collapse
Affiliation(s)
- Taro E Akiyama
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - Graham E Skelhorne-Gross
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - Elizabeth D Lightbody
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - Rachel E Rubino
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - Jia Yue Shi
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - Lesley A McNamara
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - Neelam Sharma
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - Emanuel I Zycband
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - Frank J Gonzalez
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - Haiying Liu
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - John W Woods
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - C H Chang
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - Joel P Berger
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| | - Christopher J B Nicol
- Cardiometabolic Disorders Department, Merck Research Laboratories, Kenilworth, New Jersey (T.E.A., L.A.M., N.S., E.I.Z., H.L., J.W.W., C.H.C., J.P.B.); Department of Pathology and Molecular Medicine (G.E.S.-G., E.D.L., C.J.B.N.), Cancer Biology and Genetics Division, Cancer Research Institute (R.E.R., C.J.B.N.), and Department of Biomedical and Molecular Sciences (J.Y.S., C.J.B.N.), Queen's University, Kingston, Ontario, Canada; National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts (J.P.B.)
| |
Collapse
|
35
|
|
36
|
Serra MC, Beavers DP, Henderson RM, Kelleher JL, Kiel JR, Beavers KM. Effects of a Hypocaloric, Nutritionally Complete, Higher Protein Meal Plan on Regional Body Fat and Cardiometabolic Biomarkers in Older Adults with Obesity. ANNALS OF NUTRITION AND METABOLISM 2019; 74:149-155. [PMID: 30754039 DOI: 10.1159/000497066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/13/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Whether improvements in cardiometabolic health following weight loss (WL) are associated with changes in regional body fat distribution (gluteal vs. -android) is not well documented. METHODS Older (age: 70 ± 4 years; mean ± SD) adults with obesity were randomized to a 6-month WL program (WL; n = 47), accomplished using a hypocaloric, nutritionally complete, higher protein -(targeting ≥1.0 g/kg/day) meal plan, or a weight stability (WS; n = 49) program. Android, gynoid, visceral, and subcutaneous abdominal fat masses (via dual energy X-ray absorptiometry ) and fasting glucose and lipid profiles were assessed at baseline and 6 months. RESULTS The WL group lost more body weight (WL: -8.6% vs. WS: -1.7%, p < 0.01), resulting in a reduction in fat mass at each region only following WL (all p < 0.05). The decline in the ratio of android/gynoid fat mass also was significant only following WL, resulting in greater declines than WS (mean [95% CI]; WL: -0.026 [-0.040 to -0.011] vs. WS: 0.003 [-0.012 to 0.019] g, p < 0.01). The change in the ratio of visceral/subcutaneous abdominal fat mass was not significant in either group and did not differ between groups (WL: 0.65 [-0.38 to 1.68] vs. WS: 0.05 [-1.00 to 1.10] g, p = 0.42). In general, the improvements in glucose and lipid profiles were associated with declines in fat mass at the gynoid and android regions (r's = 0.20-0.42, all p < 0.05), particularly the visceral depot but not the ratios. CONCLUSION WL achieved via a hypocaloric, nutritionally complete, higher protein meal plan is effective in reducing body fat in the android, gynoid, and visceral depots, which relate to cardiometabolic improvements.
Collapse
Affiliation(s)
- Monica C Serra
- Department of Medicine, Atlanta VA Medical Center, Emory University School of Medicine, Atlanta, Georgia, USA,
| | - Daniel P Beavers
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rebecca M Henderson
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jessica L Kelleher
- Department of Medicine, Atlanta VA Medical Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Kristen M Beavers
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
37
|
Electrophilic nitro-oleic acid reverses obesity-induced hepatic steatosis. Redox Biol 2019; 22:101132. [PMID: 30769284 PMCID: PMC6375063 DOI: 10.1016/j.redox.2019.101132] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is linked to obesity and insulin resistance and is the most prevalent chronic liver disease. During the development of obesity and NAFLD, mitochondria adapt to the increased lipid load in hepatocytes by increasing the rate of fatty acid oxidation. In concert with this, reactive species (RS) generation is increased, damaging hepatocytes and inducing inflammation. Hepatic mitochondrial dysfunction is central to the pathogenesis of NAFLD via undefined mechanisms. There are no FDA approved treatments for NAFLD other than weight loss and management of glucose tolerance. Electrophilic nitro-oleic acid (NO2-OA) displays anti-inflammatory and antioxidant signaling actions, thus mitochondrial dysfunction, RS production and inflammatory responses to NO2-OA and the insulin sensitizer rosiglitazone were evaluated in a murine model of insulin resistance and NAFLD. Mice on HFD for 20 wk displayed increased adiposity, insulin resistance and hepatic lipid accumulation (steatosis) compared to mice on normal chow (NC). The HFD mice had mitochondrial dysfunction characterized by lower hepatic mitochondrial complex I, IV and V activity compared to mice on NC. Treatment with NO2-OA or rosiglitazone for the last 42 days (out of 20 wk) abrogated HFD-mediated decreases in hepatic mitochondrial complex I, IV and V activity. Notably, NO2-OA treatment normalized hepatic triglyceride levels and significantly reversed hepatic steatosis. Despite the improved glucose tolerance observed upon rosiglitazone treatment, liver weight and hepatic triglycerides were significantly increased over vehicle-treated HFD mice. These observations support that the pleiotropic signaling actions of electrophilic fatty acids limit the complex hepatic and systemic pathogenic responses instigated by obesity, without the adverse effects of thiazolidinedione drugs such as rosiglitazone.
Collapse
|
38
|
Beta-caryophyllene protects against diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors. Chem Biol Interact 2019; 297:16-24. [DOI: 10.1016/j.cbi.2018.10.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/23/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
|
39
|
Yang C, Wong CM, Wei J, Chung ACK, Cai Z. The brominated flame retardant BDE 47 upregulates purine metabolism and mitochondrial respiration to promote adipocyte differentiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1312-1322. [PMID: 30743844 DOI: 10.1016/j.scitotenv.2018.07.087] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/04/2018] [Accepted: 07/07/2018] [Indexed: 06/09/2023]
Abstract
Adipocyte differentiation is closely associated with obesity and obesity-induced metabolic disorders. Epidemiological studies have demonstrated the association of obesity with environmental pollutants, such as polybrominated diphenyl ethers (PBDEs), common flame retardants in various consumer products. However, their obesogenic effects and mechanism are underexplored. We employed non-targeted metabolomics studies based on liquid chromatography-high resolution mass spectrometry to determine how 2,2',4,4'-tetra-brominated biphenyl ether (BDE 47), one of the main congeners of PBDEs detected in human tissue, promotes adipocyte differentiation of mouse preadipocyte 3 T3-L1 cells. The promoting effects of BDE 47 exposure (5 or 10 μM) on adipocyte differentiation were confirmed by enhancing lipid accumulation and expression levels of biomarkers of adipogenesis. For the first time, we demonstrated that BDE 47 upregulated purine metabolism and altered glutathione metabolism to promote oxidative stress and uric acid production in adipocytes. BDE 47 also elevated mitochondrial respiration and glycolysis in adipocytes to induce more ATP to combat oxidative stress. Antioxidant treatments, including the suppression of xanthine oxidase, inhibited the effects of BDE 47 on inducing oxidative stress and lipid accumulation. BDE 47 may be a potential environmental obesogen by providing a permissive oxidative environment to induce adipocyte differentiation.
Collapse
Affiliation(s)
- Chunxue Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chi-Ming Wong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Arthur C K Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
40
|
Blanchard PG, Moreira RJ, Castro É, Caron A, Côté M, Andrade ML, Oliveira TE, Ortiz-Silva M, Peixoto AS, Dias FA, Gélinas Y, Guerra-Sá R, Deshaies Y, Festuccia WT. PPARγ is a major regulator of branched-chain amino acid blood levels and catabolism in white and brown adipose tissues. Metabolism 2018; 89:27-38. [PMID: 30316815 DOI: 10.1016/j.metabol.2018.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVE We investigated whether PPARγ modulates adipose tissue BCAA metabolism, and whether this mediates the attenuation of obesity-associated insulin resistance induced by pharmacological PPARγ activation. METHODS Mice with adipocyte deletion of one or two PPARγ copies fed a chow diet and rats fed either chow, or high fat (HF) or HF supplemented with BCAA (HF/BCAA) diets treated with rosiglitazone (30 or 15 mg/kg/day, 14 days) were evaluated for glucose and BCAA homeostasis. RESULTS Adipocyte deletion of one PPARγ copy increased mice serum BCAA and reduced inguinal white (iWAT) and brown (BAT) adipose tissue BCAA incorporation into triacylglycerol, as well as mRNA levels of branched-chain aminotransferase (BCAT)2 and branched-chain α-ketoacid dehydrogenase (BCKDH) complex subunits. Adipocyte deletion of two PPARγ copies induced lipodystrophy, severe glucose intolerance and markedly increased serum BCAA. Rosiglitazone abolished the increase in serum BCAA induced by adipocyte PPARγ deletion. In rats, HF increased serum BCAA, such levels being further increased by BCAA supplementation. Rosiglitazone, independently of diet, lowered serum BCAA and upregulated iWAT and BAT BCAT and BCKDH activities. This was associated with a reduction in mTORC1-dependent inhibitory serine phosphorylation of IRS1 in skeletal muscle and whole-body insulin resistance evaluated by HOMA-IR. CONCLUSIONS PPARγ, through the regulation of both BAT and iWAT BCAA catabolism in lipoeutrophic mice and muscle insulin responsiveness and proteolysis in lipodystrophic mice, is a major determinant of circulating BCAA levels. PPARγ agonism, therefore, may improve whole-body and muscle insulin sensitivity by reducing blood BCAA, alleviating mTORC1-mediated inhibitory IRS1 phosphorylation.
Collapse
Affiliation(s)
- Pierre-Gilles Blanchard
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Caron
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Marie Côté
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Maynara L Andrade
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - France Anne Dias
- Department of Biological Sciences, ICEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Yves Gélinas
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Renata Guerra-Sá
- Department of Biological Sciences, ICEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Yves Deshaies
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
41
|
Aslian S, Yazdanparast R. Hypolipidemic activity of Dracocephalum kotschyi involves FOXO1 mediated modulation of PPARγ expression in adipocytes. Lipids Health Dis 2018; 17:245. [PMID: 30376839 PMCID: PMC6208110 DOI: 10.1186/s12944-018-0893-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/17/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Dracocephalum kotschyi, as a wild-growing flowering plant (from Lamiaceae family), is locally prescribed for its various health-promoting properties including hypolipidemic and hypoglycemic effects. To evaluate the scientific basis of the traditional use of Dracocephalum kotschyi extract (DKE), we aimed to disclose its mode of action with main focus on white adipose tissue of diabetic rats. METHODS Streptozotocin-induced diabetic rats were exposed to different doses of DKE for 28 days followed by the determination of the sera biochemical factors. The oxidative stress status of the diabetic versus nondiabetic rats' adipose tissue under the influence of DKE were also evaluated in terms of malondialdehyde (MDA) and some of antioxidant enzymes (superoxide dismutase, SOD, and catalase). Furthermore, we exposed 3T3-L1 cells to DKE and then evaluated both the extent of cells differentiation to adipocytes and measured the expression levels of some of the key signaling elements involved in adipogenesis and lipogenesis with main focus on PPARγ. RESULTS Our results indicated that DKE administration attenuated the levels of TG (triglycerides), TC (total cholesterol), LDL and blood glucose by 54, 40, 54 and 25%, respectively and enhanced the levels of HDL, catalase and SOD by 45, 74 and 56%, respectively. In addition to profound adipogenic and lipogenic effects on 3T3-L1 cells, DKE significantly enhanced p-AKT, p-FOXO1, PPARγ and SREBP-1 expressions while that of p-JNK was quenched parallel to effect of pioglitazone, an antidiabetic agent, used in our investigation as the positive control drug. CONCLUSIONS Besides of confirming the hypolipidemic action of the plant, our results provided documents on at least one mode of action of DKE with profound effect on lipid metabolism in adipose tissue. Regarding our results, further investigation on DKE, as a new potential hypolipidemic alternative drug is warranted.
Collapse
Affiliation(s)
- Shima Aslian
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran.
| |
Collapse
|
42
|
Gustaityte V, Winkler M, Stoelting I, Raasch W. Influence of AT1 blockers on obesity and stress induced eating of cafeteria diet. J Endocrinol 2018; 240:JOE-18-0477.R1. [PMID: 30400045 DOI: 10.1530/joe-18-0477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Based on findings that treatment with AT1 receptor blocker (ARB) prevents diet-induced obesity and that the activity of the hypothalamic-pituitary-adrenal (HPA) axis is stimulated by AngII and blocked by ARBs, we aimed to investigate whether ARB treatment can reduce stress-induced eating of cafeteria diet (CD) , thus contributing to alterations in eating behavior. Sprague Dawley rats were fed with chow or CD and treated with telmisartan (TEL, 8mg/kg/d) or vehicle. At weeks 2 and 12, rats were stressed over 5 consecutive days by restraint stress (RS, 4h) and by additional shaking at d5. Tail blood was sampled during RS to determine hormone levels. During the first period of RS, ACTH and corticosterone responses were diminished at d5 in CD- compared to chow-fed rats. Independently of feeding, TEL did not reduce stress hormones. Compared to food behavior before RS, the stress-induced CD eating increased in controls but remained unchanged in TEL-treated rats. After 12 weeks, TEL reduced weight gain and energy intake, particularly in CD-fed rats. Similar to the first RS period, corticosterone response was reduced in CD-fed rats at d5 during the second RS period. TEL did not further reduce stress hormones and did not lessen the CD eating upon RS. We conclude that CD feeding compensates for stress reactions. However, stress-induced CD eating was only reduced by TEL after short-term, but not after long-term drug treatment. Thus, the potency of ARBs to lower HPA activity only plays a minor role in reducing energy intake to prevent obesity.
Collapse
Affiliation(s)
- Viktorija Gustaityte
- V Gustaityte, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Lübeck, Germany
| | - Martina Winkler
- M Winkler, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Lübeck, Germany
| | - Ines Stoelting
- I Stoelting, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Lübeck, Germany
| | - Walter Raasch
- W Raasch, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Lübeck, Germany
| |
Collapse
|
43
|
Chaudhary P, Schreihofer AM. Improved glucose homeostasis in male obese Zucker rats coincides with enhanced baroreflexes and activation of the nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1195-R1209. [PMID: 30256679 DOI: 10.1152/ajpregu.00195.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Young adult male obese Zucker rats (OZR) develop insulin resistance and hypertension with impaired baroreflex-mediated bradycardia and activation of nucleus tractus solitarius (NTS). Because type 1 diabetic rats also develop impaired baroreflex-mediated NTS activation, we hypothesized that improving glycemic control in OZR would enhance compromised baroreflexes and NTS activation. Fasting blood glucose measured by telemetry was comparable in OZR and lean Zucker rats (LZR) at 12-17 wk. However, with access to food, OZR were chronically hyperglycemic throughout this age range. By 15-17 wk of age, tail samples yielded higher glucose values than those measured by telemetry in OZR but not LZR, consistent with reports of exaggerated stress responses in OZR. Injection of glucose (1g/kg ip) produced larger rises in glucose and areas under the curve in OZR than LZR. Treatment with metformin (300 mg·kg-1·day-1) or pioglitazone (5 mg·kg-1·day-1) in drinking water for 2-3 wk normalized fed glucose levels in OZR with no effect in LZR. After metformin treatment, area under the curve for blood glucose after glucose injection was reduced in OZR and comparable to LZR. Hyperinsulinemia was slightly reduced by each treatment in OZR, but insulin was still greatly elevated compared with LZR. Neither treatment reduced hypertension in OZR, but both treatments significantly improved the blunted phenylephrine-induced bradycardia and NTS c-Fos expression in OZR with no effect in LZR. These data suggest that restoring glycemic control in OZR enhances baroreflex control of heart rate by improving the response of the NTS to raising arterial pressure, even in the presence of hyperinsulinemia and hypertension.
Collapse
Affiliation(s)
- Parul Chaudhary
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Ann M Schreihofer
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
44
|
Okada K, Hosooka T, Shinohara M, Ogawa W. Modulation of lipid mediator profile may contribute to amelioration of chronic inflammation in adipose tissue of obese mice by pioglitazone. Biochem Biophys Res Commun 2018; 505:29-35. [PMID: 30236987 DOI: 10.1016/j.bbrc.2018.09.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 11/17/2022]
Abstract
Thiazolidinediones exert their antidiabetic effect in part by ameliorating chronic inflammation in adipose tissue. However, the precise mechanism of this anti-inflammatory action has remained unclear. We here investigated the effects of the TZD pioglitazone on the lipid mediator profile of adipose tissue in obese diabetic KKAy mice by metabololipidomics analysis based on liquid chromatography and tandem mass spectrometry. Pioglitazone treatment increased the amounts of pro-resolving lipid mediators including lipoxin B4 (LXB4), resolvin E2, and eicosapentaenoic acid as well as reduced those of prostaglandin E2 and 4-hydroxydocosahexaenoic acid in epididymal adipose tissue of KKAy mice. These effects were accompanied by increased expression of genes for the anti-inflammatory proteins arginase 1, interleukin (IL)-13, and IL-10 in this tissue. Pioglitazone also increased LXB4 production in cultured 3T3-L1 adipocytes. Finally, LXB4 increased IL-10 gene expression in adipose tissue explants from KKAy mice. Together, our results suggest that up-regulation of LXB4 may contribute to the anti-inflammatory effect of pioglitazone in obese adipose tissue.
Collapse
Affiliation(s)
- Kumiko Okada
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tetsuya Hosooka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Department of Community Medicine and Social Healthcare Science, Kobe, Hyogo, 650-0017, Japan; The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe, Hyogo, 650-0017, Japan.
| |
Collapse
|
45
|
Al-Muzafar HM, Amin KA. Thiazolidinedione induces a therapeutic effect on hepatosteatosis by regulating stearoyl-CoA desaturase-1, lipase activity, leptin and resistin. Exp Ther Med 2018; 16:2938-2948. [PMID: 30214514 PMCID: PMC6125847 DOI: 10.3892/etm.2018.6563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatosteatosis is a disease present worldwide, which presents a number of health problems. Recently, thiazolidinedione (TZD) has been used as a therapy for lipid disorders. The present study demonstrates the potential of TZD as a treatment for hepatosteatosis and its mechanism of action, particularly focusing on its role in lipid metabolism. A total of 60 (80-90 g) rats were divided into three groups: A normal group with a standard diet, a high-fat, high-carbohydrate diet (HFCD) group or a HFCD+TZD group (n=20/group). The HFCD induced hepatosteatosis over a period of 12 weeks and the HFCD+TZD group were administered TZD in weeks 13-16. Blood and tissue samples were collected to measure hepatic function, the lipid profile, metabolism and hormone biomarkers, including serum triglyceride (TG), lipoprotein lipase (LPL), stearoyl-CoA desaturase (SCD-1), leptin and resistin. The HFCD-fed rats exhibited a significant increase in serum TG, total cholesterol, low-density lipoproteins, alanine transaminase and bilirubin compared with the normal group as well as a significant decrease in high-density lipoprotein. In addition, serum leptin and resistin were significantly elevated in the HFCD group compared with the normal group. The administration of TZD significantly increased SCD-1 activity and significantly inhibited LPL activity. It also attenuated the changes in the lipid profiles and normalized serum leptin and resistin levels. The results of the present study indicated that HFCD induced lipid abnormalities associated with hypertriglyceridemia, hypercholesterolemia and hepatosteatosis. These changes resulted from disruption to leptin and resistin, which may be due to alterations in LPL and SCD-1 activity. TZD mitigated the effects of HFCD-induced hepatosteatosis, indicating a possible regulatory effect of TZD in the development of hepatosteatosis. The authors suggest that the manipulation of SCD-1 and lipase by TZD may be useful as a treatment for hepatosteatosis.
Collapse
Affiliation(s)
- Hessah Mohammed Al-Muzafar
- Department of Chemistry and Biochemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Kamal Adel Amin
- Department of Chemistry and Biochemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
46
|
Skrzypski M, Billert M, Nowak KW, Strowski MZ. The role of orexin in controlling the activity of the adipo-pancreatic axis. J Endocrinol 2018; 238:R95-R108. [PMID: 29848609 DOI: 10.1530/joe-18-0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/30/2018] [Indexed: 12/29/2022]
Abstract
Orexin A and B are two neuropeptides, which regulate a variety of physiological functions by interacting with central nervous system and peripheral tissues. Biological effects of orexins are mediated through two G-protein-coupled receptors (OXR1 and OXR2). In addition to their strong influence on the sleep-wake cycle, there is growing evidence that orexins regulate body weight, glucose homeostasis and insulin sensitivity. Furthermore, orexins promote energy expenditure and protect against obesity by interacting with brown adipocytes. Fat tissue and the endocrine pancreas play pivotal roles in maintaining energy homeostasis. Since both organs are crucially important in the context of pathophysiology of obesity and diabetes, we summarize the current knowledge regarding the role of orexins and their receptors in controlling adipocytes as well as the endocrine pancreatic functions. Particularly, we discuss studies evaluating the effects of orexins in controlling brown and white adipocytes as well as pancreatic alpha and beta cell functions.
Collapse
Affiliation(s)
- M Skrzypski
- Department of Animal Physiology and BiochemistryPoznań University of Life Sciences, Poznań, Poland
| | - M Billert
- Department of Animal Physiology and BiochemistryPoznań University of Life Sciences, Poznań, Poland
| | - K W Nowak
- Department of Animal Physiology and BiochemistryPoznań University of Life Sciences, Poznań, Poland
| | - M Z Strowski
- Department of Hepatology and Gastroenterology & The Interdisciplinary Centre of Metabolism: EndocrinologyDiabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany
- Park-Klinik WeissenseeInternal Medicine - Gastroenterology, Berlin, Germany
| |
Collapse
|
47
|
Metcalfe LK, Smith GC, Turner N. Defining lipid mediators of insulin resistance - controversies and challenges. J Mol Endocrinol 2018; 62:JME-18-0023. [PMID: 30068522 DOI: 10.1530/jme-18-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Abstract
Essential elements of all cells, lipids play important roles in energy production, signalling and as structural components. Despite these critical functions, excessive availability and intracellular accumulation of lipid is now recognised as a major factor contributing to many human diseases, including obesity and diabetes. In the context of these metabolic disorders, ectopic deposition of lipid has been proposed to have deleterious effects of insulin action. While this relationship has been recognised for some time now, there is currently no unifying mechanism to explain how lipids precipitate the development of insulin resistance. This review summarises the evidence linking specific lipid molecules to the induction of insulin resistance, describing some of the current controversies and challenges for future studies in this field.
Collapse
Affiliation(s)
- Louise K Metcalfe
- L Metcalfe, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Greg C Smith
- G Smith, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Nigel Turner
- N Turner, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
48
|
Kalavalapalli S, Bril F, Koelmel JP, Abdo K, Guingab J, Andrews P, Li WY, Jose D, Yost RA, Frye RF, Garrett TJ, Cusi K, Sunny NE. Pioglitazone improves hepatic mitochondrial function in a mouse model of nonalcoholic steatohepatitis. Am J Physiol Endocrinol Metab 2018; 315:E163-E173. [PMID: 29634314 PMCID: PMC6139494 DOI: 10.1152/ajpendo.00023.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pioglitazone is effective in improving insulin resistance and liver histology in patients with nonalcoholic steatohepatitis (NASH). Because dysfunctional mitochondrial metabolism is a central feature of NASH, we hypothesized that an important target of pioglitazone would be alleviating mitochondrial oxidative dysfunction. To this end, we studied hepatic mitochondrial metabolism in mice fed high-fructose high-transfat diet (TFD) supplemented with pioglitazone for 20 wk, using nuclear magnetic resonance-based 13C isotopomer analysis. Pioglitazone improved whole body and adipose insulin sensitivity in TFD-fed mice. Furthermore, pioglitazone reduced intrahepatic triglyceride content and fed plasma ketones and hepatic TCA cycle flux, anaplerosis, and pyruvate cycling in mice with NASH. This was associated with a marked reduction in most intrahepatic diacylglycerol classes and, to a lesser extent, some ceramide species (C22:1, C23:0). Considering the cross-talk between mitochondrial function and branched-chain amino acid (BCAA) metabolism, pioglitazone's impact on plasma BCAA profile was determined in a cohort of human subjects. Pioglitazone improved the plasma BCAA concentration profile in patients with NASH. This appeared to be related to an improvement in BCAA degradation in multiple tissues. These results provide evidence that pioglitazone-induced changes in NASH are related to improvements in hepatic mitochondrial oxidative dysfunction and changes in whole body BCAA metabolism.
Collapse
Affiliation(s)
- Srilaxmi Kalavalapalli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Florida , Gainesville, Florida
| | - Fernando Bril
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Florida , Gainesville, Florida
| | - Jeremy P Koelmel
- Department of Chemistry, University of Florida , Gainesville, Florida
| | - Kaitlyn Abdo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Florida , Gainesville, Florida
| | - Joy Guingab
- Department of Pathology, University of Florida , Gainesville, Florida
| | - Paige Andrews
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Florida , Gainesville, Florida
| | - Wen-Yi Li
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida , Gainesville, Florida
| | - Dhanya Jose
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Florida , Gainesville, Florida
| | - Richard A Yost
- Department of Chemistry, University of Florida , Gainesville, Florida
- Department of Pathology, University of Florida , Gainesville, Florida
| | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida , Gainesville, Florida
| | - Timothy J Garrett
- Department of Pathology, University of Florida , Gainesville, Florida
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Florida , Gainesville, Florida
- Division of Endocrinology, Diabetes and Metabolism, Malcom Randall Veterans Administration Medical Center , Gainesville, Florida
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland , College Park, Maryland
| |
Collapse
|
49
|
Telmisartan prevents diet-induced obesity and preserves leptin transport across the blood-brain barrier in high-fat diet-fed mice. Pflugers Arch 2018; 470:1673-1689. [PMID: 29978352 DOI: 10.1007/s00424-018-2178-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 12/14/2022]
Abstract
Obesity is a global health problem and treatment options are still insufficient. When chronically treated with the angiotensin II receptor blocker telmisartan (TEL), rodents do not develop diet-induced obesity (DIO). However, the underlying mechanism for this is still unclear. Here we investigated whether TEL prevents leptin resistance by enhancing leptin uptake across the blood-brain barrier (BBB). To address this question, we fed C57BL/6 mice a high-fat diet (HFD) and treated them daily with TEL by oral gavage. In addition to broadly characterizing the metabolism of leptin, we determined leptin uptake into the brain by measuring BBB transport of radioactively labeled leptin after long-term and short-term TEL treatment. Additionally, we assessed BBB integrity in response to angiotensin II in vitro and in vivo. We found that HFD markedly increased body weight, energy intake, and leptin concentration but that this effect was abolished under TEL treatment. Furthermore, glucose control and, most importantly, leptin uptake across the BBB were impaired in mice on HFD, but, again, both were preserved under TEL treatment. BBB integrity was not impaired due to angiotensin II or blocking of angiotensin II receptors. However, TEL did not exhibit an acute effect on leptin uptake across the BBB. Our results confirm that TEL prevents DIO and show that TEL preserves leptin transport and thereby prevents leptin resistance. We conclude that the preservation of leptin sensitivity is, however, more a consequence than the cause of TEL preventing body weight gain.
Collapse
|
50
|
Wojciechowicz T, Czubiński J, Billert M, Półciennik A, Nowak KW, Skrzypski M. Suppressive effects of γ-conglutin on differentiation of 3T3-L1 preadipocytes. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tatiana Wojciechowicz
- Department of Animal Physiology and Biochemistry; Poznań University of Life Sciences; 60-637 Poznań Poland
| | - Jarosław Czubiński
- Department of Biochemistry and Food Analysis; Poznań University of Life Sciences; 28 Wojska Polskiego 60-637 Poznań Poland
| | - Maria Billert
- Department of Animal Physiology and Biochemistry; Poznań University of Life Sciences; 60-637 Poznań Poland
| | - Artur Półciennik
- Department of Animal Physiology and Biochemistry; Poznań University of Life Sciences; 60-637 Poznań Poland
| | - Krzysztof W. Nowak
- Department of Animal Physiology and Biochemistry; Poznań University of Life Sciences; 60-637 Poznań Poland
| | - Marek Skrzypski
- Department of Animal Physiology and Biochemistry; Poznań University of Life Sciences; 60-637 Poznań Poland
| |
Collapse
|