1
|
Logesh R, Hari B, Chidambaram K, Das N. Molecular effects of Vitamin-D and PUFAs metabolism in skeletal muscle combating Type-II diabetes mellitus. Gene 2024; 904:148216. [PMID: 38307219 DOI: 10.1016/j.gene.2024.148216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Multiple post-receptor intracellular alterations such as impaired glucose transfer, glucose phosphorylation, decreased glucose oxidation, and glycogen production contribute to insulin resistance (IR) in skeletal muscle, manifested by diminished insulin-stimulated glucose uptake. Type-2 diabetes mellites (T2DM) has caused by IR, which is also seen in obese patients and those with metabolic syndrome. The Vitamin-D receptor (VDR) and poly unsaturated fatty acids (PUFAs) roles in skeletal muscle growth, shapes, and function for combating type-2 diabetes have been clarified throughout this research. VDR and PUFAs appears to show a variety of effects on skeletal muscle, in addition it shows a promising role on bone and mineral homeostasis. Individuals having T2DM are reported to suffer from severe muscular weakness and alterations in shape of the muscle. Several studies have investigated the effect on VDR on muscular strength and mass, which leads to Vitamin-D deficiency (VDD) in individuals, in which most commonly seen in elderly. VDR has been shown to affect skeletal cellular proliferation, intracellular calcium handling, as well as genomic activity in a variety of different ways such as muscle metabolism, insulin sensitivity, which is the major characteristic pathogenesis for IR in combating T2DM. The identified VDR gene polymorphisms are ApaI, TaqI, FokI, and BsmI that are associated with T2DM. This review collates informations on the mechanisms by which VDR activation takes place in skeletal muscles. Despite the significant breakthroughs made in recent decades, various studies show that IR affects VDR and PUFAs metabolism in skeletal muscle. Therefore, this review collates the data to show the role of VDR and PUFAs in the skeletal muscles to combat T2DM.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Karnataka, India.
| | - Balaji Hari
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Al-Qara, Asir Province, Saudi Arabia
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India
| |
Collapse
|
2
|
Badawy M, Elsayes KM, Lubner MG, Shehata MA, Fowler K, Kaoud A, Pickhardt PJ. Metabolic syndrome: imaging features and clinical outcomes. Br J Radiol 2024; 97:292-305. [PMID: 38308038 DOI: 10.1093/bjr/tqad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 02/04/2024] Open
Abstract
Metabolic syndrome, which affects around a quarter of adults worldwide, is a group of metabolic abnormalities characterized mainly by insulin resistance and central adiposity. It is strongly correlated with cardiovascular and all-cause mortality. Early identification of the changes induced by metabolic syndrome in target organs and timely intervention (eg, weight reduction) can decrease morbidity and mortality. Imaging can monitor the main components of metabolic syndrome and identify early the development and progression of its sequelae in various organs. In this review, we discuss the imaging features across different modalities that can be used to evaluate changes due to metabolic syndrome, including fatty deposition in different organs, arterial stiffening, liver fibrosis, and cardiac dysfunction. Radiologists can play a vital role in recognizing and following these target organ injuries, which in turn can motivate lifestyle modification and therapeutic intervention.
Collapse
Affiliation(s)
- Mohamed Badawy
- Department of Diagnostic Radiology, Wayne State University, Detroit, MI, 48202, United States
| | - Khaled M Elsayes
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Meghan G Lubner
- Department of Diagnostic Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, United States
| | - Mostafa A Shehata
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Kathryn Fowler
- Department of Diagnostic Radiology, University of California San Diego, San Diego, CA, 92093, United States
| | - Arwa Kaoud
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Perry J Pickhardt
- Department of Diagnostic Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, United States
| |
Collapse
|
3
|
Wasserman DH. Insulin, Muscle Glucose Uptake, and Hexokinase: Revisiting the Road Not Taken. Physiology (Bethesda) 2022; 37:115-127. [PMID: 34779282 PMCID: PMC8977147 DOI: 10.1152/physiol.00034.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022] Open
Abstract
Research conducted over the last 50 yr has provided insight into the mechanisms by which insulin stimulates glucose transport across the skeletal muscle cell membrane Transport alone, however, does not result in net glucose uptake as free glucose equilibrates across the cell membrane and is not metabolized. Glucose uptake requires that glucose is phosphorylated by hexokinases. Phosphorylated glucose cannot leave the cell and is the substrate for metabolism. It is indisputable that glucose phosphorylation is essential for glucose uptake. Major advances have been made in defining the regulation of the insulin-stimulated glucose transporter (GLUT4) in skeletal muscle. By contrast, the insulin-regulated hexokinase (hexokinase II) parallels Robert Frost's "The Road Not Taken." Here the case is made that an understanding of glucose phosphorylation by hexokinase II is necessary to define the regulation of skeletal muscle glucose uptake in health and insulin resistance. Results of studies from different physiological disciplines that have elegantly described how hexokinase II can be regulated are summarized to provide a framework for potential application to skeletal muscle. Mechanisms by which hexokinase II is regulated in skeletal muscle await rigorous examination.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
4
|
Yamamoto Y, Mitamura K, Norikane T, Fujimoto K, Takami Y, Nishiyama Y. Abnormal FDG Biodistribution in a Patient With Gitelman Syndrome. Clin Nucl Med 2021; 46:e264-e265. [PMID: 33315671 DOI: 10.1097/rlu.0000000000003437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Gitelman syndrome is an autosomal recessive renal tubulopathy. A 38-year-old woman was diagnosed with Gitelman syndrome. Eight years later, 18F-FDG PET/CT was performed to evaluate recurrence of endometrial cancer. FDG PET images showed an extremely abnormal FDG biodistribution. They showed decreased brain uptake, increased cardiac muscle uptake, and diffuse increased muscle and adipose tissue uptake. This pattern is similar to high insulin state; however, her glucose level was normal, and insulin level was very low.
Collapse
Affiliation(s)
- Yuka Yamamoto
- From the Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Koh HCE, van Vliet S, Meyer GA, Laforest R, Gropler RJ, Klein S, Mittendorfer B. Heterogeneity in insulin-stimulated glucose uptake among different muscle groups in healthy lean people and people with obesity. Diabetologia 2021; 64:1158-1168. [PMID: 33511440 PMCID: PMC8336476 DOI: 10.1007/s00125-021-05383-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS It has been proposed that muscle fibre type composition and perfusion are key determinants of insulin-stimulated muscle glucose uptake, and alterations in muscle fibre type composition and perfusion contribute to muscle, and consequently whole-body, insulin resistance in people with obesity. The goal of the study was to evaluate the relationships among muscle fibre type composition, perfusion and insulin-stimulated glucose uptake rates in healthy, lean people and people with obesity. METHODS We measured insulin-stimulated whole-body glucose disposal and glucose uptake and perfusion rates in five major muscle groups (erector spinae, obliques, rectus abdominis, hamstrings, quadriceps) in 15 healthy lean people and 37 people with obesity by using the hyperinsulinaemic-euglycaemic clamp procedure in conjunction with [2H]glucose tracer infusion (to assess whole-body glucose disposal) and positron emission tomography after injections of [15O]H2O (to assess muscle perfusion) and [18F]fluorodeoxyglucose (to assess muscle glucose uptake). A biopsy from the vastus lateralis was obtained to assess fibre type composition. RESULTS We found: (1) a twofold difference in glucose uptake rates among muscles in both the lean and obese groups (rectus abdominis: 67 [51, 78] and 32 [21, 55] μmol kg-1 min-1 in the lean and obese groups, respectively; erector spinae: 134 [103, 160] and 66 [24, 129] μmol kg-1 min-1, respectively; median [IQR]) that was unrelated to perfusion or fibre type composition (assessed in the vastus only); (2) the impairment in insulin action in the obese compared with the lean group was not different among muscle groups; and (3) insulin-stimulated whole-body glucose disposal expressed per kg fat-free mass was linearly related with muscle glucose uptake rate (r2 = 0.65, p < 0.05). CONCLUSIONS/INTERPRETATION Obesity-associated insulin resistance is generalised across all major muscles, and is not caused by alterations in muscle fibre type composition or perfusion. In addition, insulin-stimulated whole-body glucose disposal relative to fat-free mass provides a reliable index of muscle glucose uptake rate.
Collapse
Affiliation(s)
- Han-Chow E Koh
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Stephan van Vliet
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology at Washington University School of Medicine, St Louis, MO, USA
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology at Washington University School of Medicine, St Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
6
|
Fappi A, Mittendorfer B. Different physiological mechanisms underlie an adverse cardiovascular disease risk profile in men and women. Proc Nutr Soc 2020; 79:210-218. [PMID: 31340878 PMCID: PMC7583670 DOI: 10.1017/s0029665119001022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CVD affect about one-third of the population and are the leading cause of mortality. The prevalence of CVD is closely linked to the prevalence of obesity because obesity is commonly associated with metabolic abnormalities that are important risk factors for CVD, including insulin resistance, pre-diabetes, and type-2 diabetes, atherosclerotic dyslipidaemia, endothelial dysfunction and hypertension. Women have a more beneficial traditional CVD risk profile (lower fasting plasma glucose, less atherogenic lipid profile) and a lower absolute risk for CVD than men. However, the relative risk for CVD associated with hyperglycaemia and dyslipidaemia is several-fold higher in women than in men. The reasons for the sex differences in CVD risk associated with metabolic abnormalities are unclear but could be related to differences in the mechanisms that cause hyperglycaemia and dyslipidaemia in men and women, which could influence the pathogenic processes involved in CVD. In the present paper, we review the influence of a person's sex on key aspects of metabolism involved in the cardiometabolic disease process, including insulin action on endogenous glucose production, tissue glucose disposal, and adipose tissue lipolysis, insulin secretion and insulin plasma clearance, postprandial glucose, fatty acid, and triglyceride kinetics, hepatic lipid metabolism and myocardial substrate use. We conclude that there are marked differences in many aspects of metabolism in men and women that are not all attributable to differences in the sex hormone milieu. The mechanisms responsible for these differences and the clinical implications of these observations are unclear and require further investigation.
Collapse
Affiliation(s)
- Alan Fappi
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Bauckneht M, Cossu V, Castellani P, Piccioli P, Orengo AM, Emionite L, Di Giulio F, Donegani MI, Miceli A, Raffa S, Borra A, Capitanio S, Morbelli S, Caviglia G, Bruno S, Ravera S, Maggi D, Sambuceti G, Marini C. FDG uptake tracks the oxidative damage in diabetic skeletal muscle: An experimental study. Mol Metab 2019; 31:98-108. [PMID: 31918925 PMCID: PMC6920267 DOI: 10.1016/j.molmet.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The present study aims to verify the relationship between glucose consumption and uptake of 18F-2-deoxy-glucose (FDG) in the skeletal muscle (SM) of experimental models of streptozotocin-induced diabetes mellitus (STZ-DM). METHODS The study included 36 Balb/c mice. Two weeks after intraperitoneal administration of saline (control group, n = 18) or 150 mg streptozotocin (STZ-DM group, n = 18), the two cohorts were submitted to an oral glucose tolerance test and were further subdivided into three groups (n = 6 each): untreated and treated with metformin (MTF) at low or high doses (10 or 750 mg/kg daily, respectively). Two weeks thereafter, all mice were submitted to dynamic micro-positron emission tomography (PET) imaging after prolonged fasting. After sacrifice, enzymatic pathways and response to oxidative stress were evaluated in harvested SM. RESULTS On PET imaging, the FDG uptake rate in hindlimb SM was significantly lower in nondiabetic mice as compared with STZ-DM-untreated mice. MTF had no significant effect on SM FDG uptake in untreated mice; however, its high dose induced a significant decrease in STZ-DM animals. Upon conventional analysis, the SM standard uptake value was higher in STZ-DM mice, while MTF was virtually ineffective in either control or STZ-DM models. This metabolic reprogramming was not explained by any change in cytosolic glucose metabolism. By contrast, it closely agreed with the catalytic function of hexose-6P-dehydrogenase (H6PD; i.e., the trigger of a specific pentose phosphate pathway selectively located within the endoplasmic reticulum). In agreement with this role, the H6PD enzymatic response to both STZ-DM and MTF matched the activation of the NADPH-dependent antioxidant responses to the increased generation of reactive oxygen species caused by chronic hyperglycemia. Ex vivo analysis of tracer kinetics confirmed that the enhanced SM avidity for FDG occurred despite a significant reduction in glucose consumption, while it was associated with increased radioactivity transfer to the endoplasmic reticulum. CONCLUSIONS These data challenge the current dogma linking FDG uptake to the glycolytic rate. They instead introduce a new model considering a strict link between the uptake of this glucose analog, H6PD reticular activity, and oxidative damage in diabetes, at least under fasting condition.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy; Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy; Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Patrizia Castellani
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy
| | - Patrizia Piccioli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy
| | - Francesco Di Giulio
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy
| | | | - Alberto Miceli
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Stefano Raffa
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Anna Borra
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy; Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Giacomo Caviglia
- Department Experimental Medicine, University of Genoa, Len Battista Alberti 2, 16132 Genoa, Italy
| | - Silvia Bruno
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | - Silvia Ravera
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | - Davide Maggi
- Diabetes Unit, IRCCS Ospedale Policlinico San Martino Genoa, Largo Benzi 10, 16132 Genoa, Italy; Department of Mathematics (DIMA), University of Genoa, Via Dodecaneso 35, 16146 Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy; Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy; CNR Institute of Molecular Bioimaging and Physiology (IBFM), Via Fratelli Cervi 93, 20090 Segrate (MI), Italy.
| |
Collapse
|
8
|
Barrio JR, Huang SC, Satyamurthy N, Scafoglio CS, Yu AS, Alavi A, Krohn KA. Does 2-FDG PET Accurately Reflect Quantitative In Vivo Glucose Utilization? J Nucl Med 2019; 61:931-937. [PMID: 31676728 DOI: 10.2967/jnumed.119.237446] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022] Open
Abstract
2-Deoxy-2-18F-fluoro-d-glucose (2-FDG) with PET is undeniably useful in the clinic, being able, among other uses, to monitor change over time using the 2-FDG SUV metric. This report suggests some potentially serious caveats for this and related roles for 2-FDG PET. Most critical is the assumption that there is an exact proportionality between glucose metabolism and 2-FDG metabolism, called the lumped constant, or LC. This report describes that LC is not constant for a specific tissue and may be variable before and after disease treatment. The purpose of this work is not to deny the clinical value of 2-FDG PET; it is a reminder that when one extends the use of an appropriately qualified imaging method, new observations may arise and further validation would be necessary. The current understanding of glucose-based energetics in vivo is based on the quantification of glucose metabolic rates with 2-FDG PET, a method that permits the noninvasive assessment of various human disorders. However, 2-FDG is a good substrate only for facilitated-glucose transporters (GLUTs), not for sodium-dependent glucose cotransporters (SGLTs), which have recently been shown to be distributed in multiple human tissues. Thus, the GLUT-mediated in vivo glucose utilization measured by 2-FDG PET would be masked to the potentially substantial role of functional SGLTs in glucose transport and use. Therefore, under these circumstances, the 2-FDG LC used to quantify in vivo glucose utilization should not be expected to remain constant. 2-FDG LC variations have been especially significant in tumors, particularly at different stages of cancer development, affecting the accuracy of quantitative glucose measures and potentially limiting the prognostic value of 2-FDG, as well as its accuracy in monitoring treatments. SGLT-mediated glucose transport can be estimated using α-methyl-4-deoxy-4-18F-fluoro-d-glucopyranoside (Me-4FDG). Using both 2-FDG and Me-4FDG should provide a more complete picture of glucose utilization via both GLUT and SGLT transporters in health and disease states. Given the widespread use of 2-FDG PET to infer glucose metabolism, it is relevant to appreciate the potential limitations of 2-FDG as a surrogate for glucose metabolic rate and the potential reasons for variability in LC. Even when the readout for the 2-FDG PET study is only an SUV parameter, variability in LC is important, particularly if it changes over the course of disease progression (e.g., an evolving tumor).
Collapse
Affiliation(s)
- Jorge R Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California
| | - Sung-Cheng Huang
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California
| | - Nagichettiar Satyamurthy
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California
| | - Claudio S Scafoglio
- Department of Medicine, David Geffen UCLA School of Medicine, Los Angeles, California
| | - Amy S Yu
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California
| | - Abass Alavi
- University of Pennsylvania, Philadelphia, Pennsylvania; and
| | | |
Collapse
|
9
|
Kim SR, Lerman LO. Diagnostic imaging in the management of patients with metabolic syndrome. Transl Res 2018; 194:1-18. [PMID: 29175480 PMCID: PMC5839955 DOI: 10.1016/j.trsl.2017.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS) is the constellation of metabolic risk factors that might foster development of type 2 diabetes and cardiovascular disease. Abdominal obesity and insulin resistance play a prominent role among all metabolic traits of MetS. Because intervention including weight loss can reduce these morbidity and mortality in MetS, early detection of the severity and complications of MetS could be useful. Recent advances in imaging modalities have provided significant insight into the development and progression of abdominal obesity and insulin resistance, as well as target organ injuries. The purpose of this review is to summarize advances in diagnostic imaging modalities in MetS that can be applied for evaluating each components and target organs. This may help in early detection, monitoring target organ injury, and in turn developing novel therapeutic target to alleviate and avert them.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
10
|
Insulin action and resistance in obesity and type 2 diabetes. Nat Med 2017; 23:804-814. [PMID: 28697184 DOI: 10.1038/nm.4350] [Citation(s) in RCA: 831] [Impact Index Per Article: 103.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Nutritional excess is a major forerunner of type 2 diabetes. It enhances the secretion of insulin, but attenuates insulin's metabolic actions in the liver, skeletal muscle and adipose tissue. However, conflicting evidence indicates a lack of knowledge of the timing of these events during the development of obesity and diabetes, pointing to a key gap in our understanding of metabolic disease. This Perspective reviews alternate viewpoints and recent results on the temporal and mechanistic connections between hyperinsulinemia, obesity and insulin resistance. Although much attention has addressed early steps in the insulin signaling cascade, insulin resistance in obesity seems to be largely elicited downstream of these steps. New findings also connect insulin resistance to extensive metabolic cross-talk between the liver, adipose tissue, pancreas and skeletal muscle. These and other advances over the past 5 years offer exciting opportunities and daunting challenges for the development of new therapeutic strategies for the treatment of type 2 diabetes.
Collapse
|
11
|
Iozzo P. Metabolic imaging in obesity: underlying mechanisms and consequences in the whole body. Ann N Y Acad Sci 2015; 1353:21-40. [PMID: 26335600 DOI: 10.1111/nyas.12880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Obesity is a phenotype resulting from a series of causative factors with a variable risk of complications. Etiologic diversity requires personalized prevention and treatment. Imaging procedures offer the potential to investigate the interplay between organs and pathways underlying energy intake and consumption in an integrated manner, and may open the perspective to classify and treat obesity according to causative mechanisms. This review illustrates the contribution provided by imaging studies to the understanding of human obesity, starting with the regulation of food intake and intestinal metabolism, followed by the role of adipose tissue in storing, releasing, and utilizing substrates, including the interconversion of white and brown fat, and concluding with the examination of imaging risk indicators related to complications, including type 2 diabetes, liver pathologies, cardiac and kidney diseases, and sleep disorders. The imaging modalities include (1) positron emission tomography to quantify organ-specific perfusion and substrate metabolism; (2) computed tomography to assess tissue density as an indicator of fat content and browning/ whitening; (3) ultrasounds to examine liver steatosis, stiffness, and inflammation; and (4) magnetic resonance techniques to assess blood oxygenation levels in the brain, liver stiffness, and metabolite contents (triglycerides, fatty acids, glucose, phosphocreatine, ATP, and acetylcarnitine) in a variety of organs.
Collapse
Affiliation(s)
- Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy.,The Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Gheysens O, Postnov A, Deroose CM, Vandermeulen C, de Hoon J, Declercq R, Dennie J, Mixson L, De Lepeleire I, Van Laere K, Klimas M, Chakravarthy MV. Quantification, Variability, and Reproducibility of Basal Skeletal Muscle Glucose Uptake in Healthy Humans Using 18F-FDG PET/CT. J Nucl Med 2015; 56:1520-6. [PMID: 26229142 DOI: 10.2967/jnumed.115.159715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/08/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The quantification and variability of skeletal muscle glucose utilization (SMGU) in healthy subjects under basal (low insulin) conditions are poorly known. This information is essential early in clinical drug development to effectively interrogate novel pharmacologic interventions that modulate glucose uptake. The aim of this study was to determine test-retest characteristics and variability of SMGU within and between healthy subjects under basal conditions. Furthermore, different kinetic modeling strategies were evaluated to find the best-fitting model to assess SMGU studied by 18F-FDG. METHODS Six healthy male volunteers underwent 2 dynamic 18F-FDG PET/CT scans with an interval of 24 h. Subjects were admitted to the clinical unit to minimize variability in daily activities and food intake and restrict physical activity. 18F-FDG PET/CT scans of gluteal and quadriceps muscle area were obtained with arterial input. Regions of interest were drawn over the muscle area to obtain time-activity curves and standardized uptake values (SUVs) between 60 and 90 min. Spectral analysis of the data and kinetic modeling was performed using 2-tissue-irreversible (2T3K), 2-tissue-reversible, and 3-tissue-sequential-irreversible (3T5KS) models. Reproducibility was assessed by intraclass correlation coefficients (ICCs) and within-subject coefficient of variation (WSCV). RESULTS SUVs in gluteal and quadriceps areas were 0.56±0.09 and 0.64±0.07. ICCs (with 90% confidence intervals in parentheses) were 0.88 (0.64-0.96) and 0.96 (0.82-0.99), respectively, for gluteal and quadriceps muscles, and WSCV for gluteal and quadriceps muscles was 2.2% and 3.6%, respectively. The rate of glucose uptake into muscle was 0.0016±0.0004 mL/mL⋅min, with an ICC of 0.94 (0.93-0.95) and WSCV of 6.6% for the 3T5KS model, whereas an ICC of 0.98 (0.92-1.00) and WSCV of 2.8% was obtained for the 2T3K model. 3T5KS demonstrated the best fit to the measured experimental points. CONCLUSION Minimal variability in skeletal muscle glucose uptake was observed under basal conditions in healthy subjects. SUV measurements and rate of glucose uptake values were reproducible, with an average WSCV of less than 5%. Compared with SUV, the 3-tissue model adds information about kinetics between blood, intra- and intercellular compartments, and phosphorylation that may highlight the exact mechanisms of metabolic changes after pharmacologic intervention.
Collapse
Affiliation(s)
- Olivier Gheysens
- Nuclear Medicine and Molecular Imaging, University Hospitals Leuven and Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Andrey Postnov
- Nuclear Medicine and Molecular Imaging, University Hospitals Leuven and Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, University Hospitals Leuven and Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Corinne Vandermeulen
- Center for Clinical Pharmacology, University Hospitals Leuven and Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, University Hospitals Leuven and Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | - Justin Dennie
- Merck Research Laboratories, Merck & Co., Kenilworth, New Jersey
| | - Lori Mixson
- Merck Research Laboratories, Merck & Co., Kenilworth, New Jersey
| | | | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, University Hospitals Leuven and Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Michael Klimas
- Merck Research Laboratories, Merck & Co., Kenilworth, New Jersey
| | | |
Collapse
|
13
|
Hanssen MJW, Wierts R, Hoeks J, Gemmink A, Brans B, Mottaghy FM, Schrauwen P, van Marken Lichtenbelt WD. Glucose uptake in human brown adipose tissue is impaired upon fasting-induced insulin resistance. Diabetologia 2015; 58:586-95. [PMID: 25500952 DOI: 10.1007/s00125-014-3465-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Human brown adipose tissue (BAT) has recently emerged as a potential target in the treatment of type 2 diabetes, owing to its capacity to actively clear glucose from the circulation—at least upon cold exposure. The effects of insulin resistance on the capacity of human BAT to take up glucose are unknown. Prolonged fasting is known to induce insulin resistance in peripheral tissues in order to spare glucose for the brain. METHODS We studied the effect of fasting-induced insulin resistance on the capacity of BAT to take up glucose during cold exposure as well as on cold-stimulated thermogenesis. BAT glucose uptake was assessed by means of cold-stimulated dynamic 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/computed tomography ([(18)F]FDG-PET/CT) imaging. RESULTS We show that a 54 h fasting period markedly decreases both cold-induced BAT glucose uptake and nonshivering thermogenesis (NST) during cold stimulation. In vivo molecular imaging and modelling revealed that the reduction of glucose uptake in BAT was due to impaired cellular glucose uptake and not due to decreased supply. Interestingly, decreased BAT glucose uptake upon fasting was related to a decrease in core temperature during cold exposure, pointing towards a role for BAT in maintaining normothermia in humans. CONCLUSIONS/INTERPRETATION Cold-stimulated glucose uptake in BAT is strongly reduced upon prolonged fasting. When cold-stimulated glucose uptake in BAT is also reduced under other insulin-resistant states, such as diabetes, cold-induced activation of BAT may not be a valid way to improve glucose clearance by BAT under such conditions. TRIAL REGISTRATION www.trialregister.nl NTR3523 FUNDING: This work was supported by the EU FP7 project DIABAT (HEALTH-F2-2011-278373 to WDvML) and by the Netherlands Organization for Scientific Research (TOP 91209037 to WDvML).
Collapse
Affiliation(s)
- Mark J W Hanssen
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hussain M, Janghorbani M, Schuette S, Considine RV, Chisholm RL, Mather KJ. Failure of hyperglycemia and hyperinsulinemia to compensate for impaired metabolic response to an oral glucose load. J Diabetes Complications 2015; 29:238-44. [PMID: 25511878 PMCID: PMC4333082 DOI: 10.1016/j.jdiacomp.2014.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/05/2014] [Accepted: 11/17/2014] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To evaluate whether the augmented insulin and glucose response to a glucose challenge is sufficient to compensate for defects in glucose utilization in obesity and type 2 diabetes, using a breath test measurement of integrated glucose metabolism. METHODS Non-obese, obese normoglycemic and obese type 2 diabetic subjects were studied on 2 consecutive days. A 75g oral glucose load spiked with ¹³C-glucose was administered, measuring exhaled breath ¹³CO₂ as an integrated measure of glucose metabolism and oxidation. A hyperinsulinemic euglycemic clamp was performed, measuring whole body glucose disposal rate. Body composition was measured by DEXA. Multivariable analyses were performed to evaluate the determinants of the breath ¹³CO₂. RESULTS Breath ¹³CO₂ was reduced in obese and type 2 diabetic subjects despite hyperglycemia and hyperinsulinemia. The primary determinants of breath response were lean mass, fat mass, fasting FFA concentrations, and OGTT glucose excursion. Multiple approaches to analysis showed that hyperglycemia and hyperinsulinemia were not sufficient to compensate for the defect in glucose metabolism in obesity and diabetes. CONCLUSIONS Augmented insulin and glucose responses during an OGTT are not sufficient to overcome the underlying defects in glucose metabolism in obesity and diabetes.
Collapse
Affiliation(s)
- M Hussain
- Indiana University School of Medicine, Indianapolis, IN
| | - M Janghorbani
- BioChemAnalysis Inc., Chicago IL; Center for Stable Isotope Research Inc, Chicago IL
| | | | - R V Considine
- Indiana University School of Medicine, Indianapolis, IN
| | - R L Chisholm
- Indiana University School of Medicine, Indianapolis, IN
| | - K J Mather
- Indiana University School of Medicine, Indianapolis, IN.
| |
Collapse
|
15
|
Influence of subcutaneous administration of rapid-acting insulin in the quality of (18)F-FDG PET/CT studies. Nucl Med Commun 2014; 35:459-65. [PMID: 24535382 DOI: 10.1097/mnm.0000000000000082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to develop a protocol for normalizing blood glucose levels in diabetic patients by subcutaneously administering rapid-acting insulin before administering (18)F-fluorodeoxyglucose ((18)F-FDG) without hindering the quality of PET/computed tomography (CT) studies. MATERIALS AND METHODS The study included 120 patients, who were divided into four groups: Group I: This group comprised 30 diabetic patients with blood glucose levels lower than 160 mg/dl at the time of arrival at our center; in these patients, (18)F-FDG was injected without prior administration of subcutaneous rapid-acting insulin. Group II: This group comprised 30 diabetic patients with blood glucose levels ranging from 168 to 260 mg/dl; in these patients, subcutaneous rapid-acting insulin was administered and then (18)F-FDG was injected when blood glucose levels dropped below 160 mg/dl (30-115 min). Group III: This group included 30 diabetic patients with blood glucose levels ranging from 192 to 324 mg/dl; in these patients, subcutaneous rapid-acting insulin was administered and then (18)F-FDG was injected 4 h later. Blood glucose levels dropped below 160 mg/dl (range, 58-159 mg/dl) in all patients. CONTROL GROUP This group included 30 nondiabetic patients with normal blood glucose levels (72-104 mg/dl). We calculated the mean standardized uptake value (SUV) of muscle from the maximum SUV in five consecutive axial slices in the proximal middle third of the rectus femoris muscle of the right thigh. RESULTS The quality of the PET-CT studies was considered suboptimal when muscle uptake was more than 2 SDs greater than the mean muscle uptake in the control group (1.15±0.2). The mean SUV of muscle was as follows: Group I, 1.09 (σ=0,26); group II, 1.98 (σ=0,32); group III, 1.98 (σ=1,13); and control group IV, 1.15 (σ=0,2). The quality of PET-CT studies was considered suboptimal in 18 patients in group II (60%) and in four patients (13%) in group I. The quality was optimal in all studies conducted in group III patients. CONCLUSION Subcutaneous administration of rapid-acting insulin normalizes blood glucose levels without compromising the quality of PET-CT studies when (18)F-FDG is administered not earlier than 4 h later.
Collapse
|
16
|
Nemanich S, Rani S, Shoghi K. In vivo multi-tissue efficacy of peroxisome proliferator-activated receptor-γ therapy on glucose and fatty acid metabolism in obese type 2 diabetic rats. Obesity (Silver Spring) 2013; 21:2522-9. [PMID: 23512563 PMCID: PMC3695080 DOI: 10.1002/oby.20378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/07/2013] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To identify the disturbances in glucose and lipid metabolism observed in type 2 diabetes mellitus, we examined the interaction and contribution of multiple tissues (liver, heart, muscle, and brown adipose tissue) and monitored the effects of the Peroxisome Proliferator-Activated Receptor-γ (PPARγ) agonist rosiglitazone (RGZ) on metabolism in these tissues. DESIGN AND METHODS Rates of [(18) F]fluorodeoxyglucose ([(18) F]FDG) and [(11) C]Palmitate uptake and utilization in the Zucker diabetic fatty (ZDF) rat were quantified using noninvasive positron emission tomography imaging and quantitative modeling in comparison to lean Zucker rats. Furthermore, we studied two separate groups of RGZ-treated and untreated ZDF rats. RESULTS Glucose uptake is impaired in ZDF brown fat, muscle, and heart tissues compared to leans, while RGZ treatment increased glucose uptake compared to untreated ZDF rats. Fatty acid (FA) uptake decreased, but FA flux increased in brown fat and skeletal muscle of ZDF rats. RGZ treatment increased uptake of FA in brown fat but decreased uptake and utilization in liver, muscle, and heart. CONCLUSION Our data indicate tissue-specific mechanisms for glucose and FA disposal as well as differential action of insulin-sensitizing drugs to normalize substrate handling and highlight the role that preclinical imaging may play in screening drugs for obesity and diabetes.
Collapse
Affiliation(s)
- Samuel Nemanich
- Department of Radiology, Washington University in St. Louis, Saint Louis, MO
| | - Sudheer Rani
- Department of Radiology, Washington University in St. Louis, Saint Louis, MO
| | - Kooresh Shoghi
- Department of Radiology, Washington University in St. Louis, Saint Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, Saint Louis, MO
| |
Collapse
|
17
|
Morbelli S, Marini C, Adami GF, Kudomi N, Camerini G, Iozzo P, Massollo M, Capitanio S, Bodrato S, Verardi MT, Papadia F, Cordera R, Knuuti J, Scopinaro N, Sambuceti G. Tissue specificity in fasting glucose utilization in slightly obese diabetic patients submitted to bariatric surgery. Obesity (Silver Spring) 2013; 21:E175-81. [PMID: 23404920 DOI: 10.1002/oby.20003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/05/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The present study was planned to investigate, by means of quantitative FDG-PET, how bariatric surgery (BS) modifies the metabolic pattern of the whole body and different tissues in slightly obese patients with type 2 diabetes mellitus (T2DM). DESIGN AND METHODS Before, 1 and 4 months after BS, 21 consecutive slightly obese T2DM patients underwent blood sampling to estimate plasma levels of glucose, insulin, glycosylated hemoglobin. At the same time points, these patients underwent a dynamic (18) F-FDG PET study of thorax and upper abdomen in fasting state and after washout of T2DM therapy. Gjedde-Patlak analysis was applied to estimate glucose uptake in the whole body and in different tissues (myocardium, skeletal back muscle, adipose tissue, and liver). RESULTS Surgical intervention quickly lowered levels of both insulin and glucose documenting an amelioration of glucose tolerance. Similarly, skeletal muscle and myocardial glucose uptake significantly increased soon after surgery (P < 0.001 and P < 0.01 at 1 month versus baseline, respectively) and remained substantially stable thereafter. By contrast, glucose uptake slightly decreased from its baseline values in the liver (P < 0.01 at 4 months) while no response could be documented over time in the adipose tissue. CONCLUSIONS These findings document that BS-induced modification of glucose homeostasis in slightly obese T2DM patients is mostly due to an increase in muscle glucose consumption. The surgically modified metabolic pattern of these patients might be of interest as a new model to investigate mechanism underlying insulin resistance.
Collapse
Affiliation(s)
- Silvia Morbelli
- Nuclear Medicine Unit, Department Internal Medicine, University of Genoa, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang HM, Ismail-Beigi F, Muzic RF. A new Michaelis-Menten-based kinetic model for transport and phosphorylation of glucose and its analogs in skeletal muscle. Med Phys 2011; 38:4587-99. [PMID: 21928632 DOI: 10.1118/1.3599034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE A new model is introduced that individually resolves the delivery, transport, and phosphorylation steps of metabolism of glucose and its analogs in skeletal muscle by interpreting dynamic positron emission tomography (PET) data. METHODS The model uniquely utilizes information obtained from the competition between glucose and its radiolabeled analogs. Importantly, the model avoids use of a lumped constant which may depend on physiological state. Four basic physiologic quantities constitute our model parameters, including the fraction of total tissue space occupied by interstitial space (f(IS)), a flow-extraction product and interstitial (IS(g)) and intracellular (IC(g)) glucose concentrations. Using the values of these parameters, cellular influx (CI) and efflux (CE) of glucose, glucose phosphorylation rate (PR), and maximal transport (V(G)) and phosphorylation capacities (V(H)) can all be determined. Herein, the theoretical derivation of our model is addressed and characterizes its properties via simulation. Specifically, the model performance is evaluated by simulation of basal and euglycemic hyperinsulinemic (EH) conditions. RESULTS In fitting the model-generated, synthetic data (including noise), mean estimates of all but IC(g) of the parameter values are within 5% of their values for both conditions. In addition, mean errors of CI, PR, and V(G) are less than 5% whereas those of VH and CE are not. CONCLUSIONS It is concluded that under the conditions tested, the novel model can provide accurate parameter estimates and physiological quantities, except IC(g) and two quantities that are dependent on IC(g), namely CE and VH. However, the ability to estimate IC(g) seems to improve with increases in intracellular glucose concentrations as evidenced by comparing IC(g) estimates under basal vs EH conditions.
Collapse
Affiliation(s)
- Hsuan-Ming Huang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
19
|
Wasserman DH, Kang L, Ayala JE, Fueger PT, Lee-Young RS. The physiological regulation of glucose flux into muscle in vivo. ACTA ACUST UNITED AC 2011; 214:254-62. [PMID: 21177945 DOI: 10.1242/jeb.048041] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Skeletal muscle glucose uptake increases dramatically in response to physical exercise. Moreover, skeletal muscle comprises the vast majority of insulin-sensitive tissue and is a site of dysregulation in the insulin-resistant state. The biochemical and histological composition of the muscle is well defined in a variety of species. However, the functional consequences of muscle biochemical and histological adaptations to physiological and pathophysiological conditions are not well understood. The physiological regulation of muscle glucose uptake is complex. Sites involved in the regulation of muscle glucose uptake are defined by a three-step process consisting of: (1) delivery of glucose to muscle, (2) transport of glucose into the muscle by GLUT4 and (3) phosphorylation of glucose within the muscle by a hexokinase (HK). Muscle blood flow, capillary recruitment and extracellular matrix characteristics determine glucose movement from the blood to the interstitium. Plasma membrane GLUT4 content determines glucose transport into the cell. Muscle HK activity, cellular HK compartmentalization and the concentration of the HK inhibitor glucose 6-phosphate determine the capacity to phosphorylate glucose. Phosphorylation of glucose is irreversible in muscle; therefore, with this reaction, glucose is trapped and the uptake process is complete. Emphasis has been placed on the role of the glucose transport step for glucose influx into muscle with the past assertion that membrane transport is rate limiting. More recent research definitively shows that the distributed control paradigm more accurately defines the regulation of muscle glucose uptake as each of the three steps that define this process are important sites of flux control.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiology and Biophysics and the Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
20
|
Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol 2010; 2010:476279. [PMID: 20445742 PMCID: PMC2860140 DOI: 10.1155/2010/476279] [Citation(s) in RCA: 395] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 01/20/2010] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.
Collapse
|
21
|
Ng JM, Kelley DE, Goodpaster BH. Mechanisms of insulin resistance assessed by dynamic in-vivo positron emission tomography imaging. Curr Opin Clin Nutr Metab Care 2009; 12:508-12. [PMID: 19550312 DOI: 10.1097/mco.0b013e32832eb59a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Skeletal muscle insulin resistance is a hallmark characteristic of type 2 diabetes, although the exact causes of insulin resistance are unknown. In-vivo methods to assess mechanisms that determine insulin resistance in humans are critical to improve our understanding of insulin resistance in obesity and type 2 diabetes. In this review, we examine recent studies utilizing dynamic in-vivo PET imaging in assessing insulin resistance in humans. RECENT FINDINGS PET imaging of glucose metabolism in vivo has revealed novel and important information about the regulation of glucose metabolism in skeletal muscle. Using dynamic PET imaging, studies have impairments in glucose metabolism at multiple sites, including delivery, phosphorylation, and transport within skeletal muscle. Impairments in glucose phosphorylation as well as glucose transport defects may play an important role in understanding the disorder of skeletal muscle insulin resistance. SUMMARY PET imaging has great potential to yield significant and promising insight into insulin resistance in skeletal muscle. Dynamic in-vivo PET imaging can provide valuable information regarding the mechanisms and specific loci of skeletal muscle insulin resistance in humans.
Collapse
Affiliation(s)
- Jason M Ng
- Department of Medicine, University of Pittsburgh, Montefiore Hospital, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
22
|
Effects of switching from lopinavir/ritonavir to atazanavir/ritonavir on muscle glucose uptake and visceral fat in HIV-infected patients. AIDS 2009; 23:1349-57. [PMID: 19474651 DOI: 10.1097/qad.0b013e32832ba904] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine the effects of switching from lopinavir/ritonavir (LPV/r) to atazanavir/ritonavir (ATV/r) on muscle glucose uptake, glucose homeostasis, lipids, and body composition. METHODS Fifteen HIV-infected men and women on a regimen containing LPV/r and with evidence of hyperinsulinemia and/or dyslipidemia were randomized to continue LPV/r or to switch to ATV/r (ATV 300 mg and ritonavir 100 mg daily) for 6 months. The primary endpoint was change in thigh muscle glucose uptake as measured by positron emission tomography. Secondary endpoints included abdominal visceral adipose tissue, fasting lipids, and safety parameters. The difference over time between treatment groups (treatment effect of ATV/r relative to LPV/r) was determined by repeated measures ANCOVA. RESULTS After 6 months, anterior thigh muscle glucose uptake increased significantly (treatment effect +18.2 +/- 5.9 micromol/kg per min, ATV/r vs. LPV/r, P = 0.035), and visceral adipose tissue area decreased significantly in individuals who switched to ATV/r (treatment effect -31 +/- 11 cm, ATV/r vs. LPV/r, P = 0.047). Switching to ATV/r significantly decreased triglyceride (treatment effect -182 +/- 64 mg/dl, ATV/r vs. LPV/r, P = 0.02) and total cholesterol (treatment effect -23 +/- 8 mg/dl, ATV/r vs. LPV/r, P = 0.01), whereas high-density lipoprotein and low-density lipoprotein did not change significantly. Fasting glucose also decreased significantly following switch to ATV/r (treatment effect -15 +/- 4 mg/dl, ATV/r vs. LPV/r, P = 0.002). CONCLUSION Switching from LPV/r to ATV/r significantly increases glucose uptake by muscle, decreases abdominal visceral adipose tissue, improves lipid parameters, and decreases fasting glucose over 6 months.
Collapse
|
23
|
Roy FN, Beaulieu S, Boucher L, Bourdeau I, Cohade C. Impact of Intravenous Insulin on 18F-FDG PET in Diabetic Cancer Patients. J Nucl Med 2009; 50:178-83. [DOI: 10.2967/jnumed.108.056283] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Abstract
Four grams of glucose circulates in the blood of a person weighing 70 kg. This glucose is critical for normal function in many cell types. In accordance with the importance of these 4 g of glucose, a sophisticated control system is in place to maintain blood glucose constant. Our focus has been on the mechanisms by which the flux of glucose from liver to blood and from blood to skeletal muscle is regulated. The body has a remarkable capacity to satisfy the nutritional need for glucose, while still maintaining blood glucose homeostasis. The essential role of glucagon and insulin and the importance of distributed control of glucose fluxes are highlighted in this review. With regard to the latter, studies are presented that show how regulation of muscle glucose uptake is regulated by glucose delivery to muscle, glucose transport into muscle, and glucose phosphorylation within muscle.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiology, Vanderbilt Univ. School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Wehrli NE, Bural G, Houseni M, Alkhawaldeh K, Alavi A, Torigian DA. Determination of age-related changes in structure and function of skin, adipose tissue, and skeletal muscle with computed tomography, magnetic resonance imaging, and positron emission tomography. Semin Nucl Med 2007; 37:195-205. [PMID: 17418152 DOI: 10.1053/j.semnuclmed.2007.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this article, we report quantitative preliminary data obtained from retrospective analysis of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) and combined PET-computed tomography (PET/CT) examinations in subjects ages 3 to 84 years pertaining to changes in the metabolism of skin, subcutaneous adipose tissue, visceral adipose tissue, and skeletal muscle with age, as well as age-related changes in skeletal muscle attenuation. We also propose a new method for identifying hypermetabolic brown fat on FDG-PET. Finally, we present a review of the literature regarding reported age-related structural and functional changes that occur in skin, fat, and skeletal muscle. Using FDG-PET, We evaluated 213 subjects for changes in the metabolism of skin, adipose tissue, and skeletal muscle with aging. Thirty-two separate subjects were chosen to measure maximum standardized uptake value (SUV) of hypermetabolic brown fat on dual-time point PET imaging. Finally, 15 subjects evaluated by PET/CT were selected to measure changes in metabolism and attenuation of skeletal muscle, and changes in metabolism of adipose tissue with aging. We found that skin, fat, and skeletal muscle all demonstrate significant (P < 0.05) increases in SUV with increasing age on PET imaging. Dual-time point PET imaging demonstrates increasing FDG uptake of hypermetabolic brown fat in various regions studied. Finally, our PET/CT studies revealed statistically insignificant (P > 0.05) decreases in SUV of adipose tissue with aging and the opposite trend in skeletal muscles (P > 0.05). Skeletal muscle attenuation in the various regions studied was found to significantly decrease with age (P < 0.05). Our study shows notable trends in metabolism and attenuation of skeletal muscle and metabolism of skin and adipose tissue that occur with normal aging. We hope that the methodologies and data we present here will serve as a useful starting point for those interested in conducting future prospective research on age-related changes in these structures.
Collapse
Affiliation(s)
- Natasha E Wehrli
- Department of Radiology, Division of Nuclear Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | |
Collapse
|
26
|
Perret P, Slimani L, Briat A, Villemain D, Halimi S, Demongeot J, Fagret D, Ghezzi C. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport. Eur J Nucl Med Mol Imaging 2007; 34:734-744. [PMID: 17171359 PMCID: PMC2705461 DOI: 10.1007/s00259-006-0267-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 08/08/2006] [Indexed: 12/28/2022]
Abstract
PURPOSE Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state that has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats using (125)I-6-deoxy-6-iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. METHODS Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic-normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood was assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. RESULTS Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p < 0.01; muscle, p<0.05; heart, p<0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p<0.001; muscle, p<0.001; heart, p<0.01) whereas no significant changes were observed in fructose-fed rats. CONCLUSION This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging.
Collapse
Affiliation(s)
- Pascale Perret
- INSERM, E340, 38000 Grenoble,, France.
- Univ Grenoble, 38000 Grenoble,, France.
| | - Lotfi Slimani
- INSERM, E340, 38000 Grenoble,, France
- Univ Grenoble, 38000 Grenoble,, France
| | - Arnaud Briat
- INSERM, E340, 38000 Grenoble,, France
- Univ Grenoble, 38000 Grenoble,, France
| | - Danièle Villemain
- INSERM, E340, 38000 Grenoble,, France
- Univ Grenoble, 38000 Grenoble,, France
| | - Serge Halimi
- CHRU Grenoble, Hôpital Michallon, Service de Diabétologie, , 38000 Grenoble,, France
| | - Jacques Demongeot
- Univ Grenoble, 38000 Grenoble,, France
- CNRS, UMR 5525, 38000 Grenoble, , France
| | - Daniel Fagret
- INSERM, E340, 38000 Grenoble,, France
- Univ Grenoble, 38000 Grenoble,, France
| | - Catherine Ghezzi
- INSERM, E340, 38000 Grenoble,, France
- Univ Grenoble, 38000 Grenoble,, France
| |
Collapse
|
27
|
Pendergrass M, Bertoldo A, Bonadonna R, Nucci G, Mandarino L, Cobelli C, Defronzo RA. Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals. Am J Physiol Endocrinol Metab 2007; 292:E92-100. [PMID: 16896161 DOI: 10.1152/ajpendo.00617.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Our objectives were to quantitate insulin-stimulated inward glucose transport and glucose phosphorylation in forearm muscle in lean and obese nondiabetic subjects, in lean and obese type 2 diabetic (T2DM) subjects, and in normal glucose-tolerant, insulin-resistant offspring of two T2DM parents. Subjects received a euglycemic insulin (40 mU.m(-2).min(-1)) clamp with brachial artery/deep forearm vein catheterization. After 120 min of hyperinsulinemia, a bolus of d-mannitol/3-O-methyl-d-[(14)C]glucose/d-[3-(3)H]glucose (triple-tracer technique) was given into brachial artery and deep vein samples obtained every 12-30 s for 15 min. Insulin-stimulated forearm glucose uptake (FGU) and whole body glucose metabolism (M) were reduced by 40-50% in obese nondiabetic, lean T2DM, and obese T2DM subjects (all P < 0.01); in offspring, the reduction in FGU and M was approximately 30% (P < 0.05). Inward glucose transport and glucose phosphorylation were decreased by approximately 40-50% (P < 0.01) in obese nondiabetic and T2DM groups and closely paralleled the decrease in FGU. The intracellular glucose concentration in the space accessible to glucose was significantly greater in obese nondiabetic, lean T2DM, obese T2DM, and offspring compared with lean controls. We conclude that 1) obese nondiabetic, lean T2DM, and offspring manifest moderate-to-severe muscle insulin resistance (FGU and M) and decreased insulin-stimulated glucose transport and glucose phosphorylation in forearm muscle; these defects in insulin action are not further reduced by the combination of obesity plus T2DM; and 2) the increase in intracelullar glucose concentration under hyperinsulinemic euglycemic conditions in obese and T2DM groups suggests that the defect in glucose phosphorylation exceeds the defect in glucose transport.
Collapse
Affiliation(s)
- Merri Pendergrass
- Univ. of Texas Health Science Center, Diabetes Division, 703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Slimani L, Oikonen V, Hällsten K, Savisto N, Knuuti J, Nuutila P, Iozzo P. Exercise restores skeletal muscle glucose delivery but not insulin-mediated glucose transport and phosphorylation in obese subjects. J Clin Endocrinol Metab 2006; 91:3394-403. [PMID: 16772346 PMCID: PMC2743828 DOI: 10.1210/jc.2006-0269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT/OBJECTIVE Insulin resistance in obese subjects results in the impaired disposal of glucose by skeletal muscle. The current study examined the effects of insulin and/or exercise on glucose transport and phosphorylation in skeletal muscle and the influence of obesity on these processes. SUBJECTS/METHODS Seven obese and 12 lean men underwent positron emission tomography with 2-deoxy-2-[(18)F]fluoro-d-glucose in resting and isometrically exercising skeletal muscle during normoglycemic hyperinsulinemia. Data were analyzed by two-tissue compartmental modeling. Perfusion and oxidative capacity were measured during insulin stimulation by [15O]H2O and [15O]O2. RESULTS Exercise increased glucose fractional uptake (K), inward transport rate (K(1)), and the k(3) parameter, combining transport and intracellular phosphorylation, in lean and obese subjects. In each group, there was no statistically significant difference between plasma flow and K(1). At rest, a significant defect in K(1) (P = 0.0016), k(3) (P = 0.016), and K (P = 0.022) was found in obese subjects. Exercise restored K(1), improved but did not normalize K (P = 0.03 vs. lean), and did not ameliorate the more than 60% relative impairment in k(3) in obese individuals (P = 0.002 vs. lean). The glucose oxidative potential tended to be reduced by obesity. CONCLUSIONS/INTERPRETATION The study indicates that exercise restores the impairment in insulin-mediated skeletal muscle perfusion and glucose delivery associated with obesity but does not normalize the defect involving the proximal steps regulating glucose disposal in obese individuals. Our data support the use of 2-deoxy-2-[18F]fluoro-d-glucose-positron emission tomography in the dissection between substrate supply and intrinsic tissue metabolism.
Collapse
Affiliation(s)
- Lotfi Slimani
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
- * Correspondence should be adressed to: Lotfi Slimani
| | - Vesa Oikonen
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
| | - Kirsti Hällsten
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
| | - Nina Savisto
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
| | - Juhani Knuuti
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
| | - Pirjo Nuutila
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
- Department of Medicine
University of TurkuTurku,FI
| | - Patricia Iozzo
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
- Institute of Clinical Physiology
National Research Council56100 Pisa,IT
| |
Collapse
|
29
|
Pencek RR, Bertoldo A, Price J, Kelley C, Cobelli C, Kelley DE. Dose-responsive insulin regulation of glucose transport in human skeletal muscle. Am J Physiol Endocrinol Metab 2006; 290:E1124-30. [PMID: 16390860 DOI: 10.1152/ajpendo.00598.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose transport is regarded as the principal rate control step governing insulin-stimulated glucose utilization by skeletal muscle. To assess this step in human skeletal muscle, quantitative PET imaging of skeletal muscle was performed using 3-O-methyl-[11C]glucose (3-[11C]OMG) in healthy volunteers during a two-step insulin infusion [n = 8; 30 and 120 mU.min(-1).m(-2), low (LO) and high (HI)] and during basal conditions (n = 8). Positron emission tomography images were coregistered with MRI to assess 3-[11C]OMG activity in regions of interest placed on oxidative (soleus) compared with glycolytic (tibialis anterior) muscle. Insulin dose-responsive increases of 3-[11C]OMG activity in muscle were observed (P < 0.01). Tissue activity was greater in soleus than in tibialis anterior (P < 0.05). Spectral analysis identified that two mathematical components interacted to shape tissue activity curves. These two components were interpreted physiologically as likely representing the kinetics of 3-[11C]OMG delivery from plasma to tissue and the kinetics of bidirectional glucose transport. During low compared with basal, there was a sixfold increase in k3, the rate constant attributed to inward glucose transport, and another threefold increase during HI (0.012 +/- 0.003, 0.070 +/- 0.014, 0.272 +/- 0.059 min(-1), P < 0.001). Values for k3 were similar in soleus and tibialis anterior, suggesting similar kinetics for transport, but compartmental modeling indicated a higher value in soleus for k1, denoting higher rates of 3-[11C]OMG delivery to soleus than to tibialis anterior. In summary, in healthy volunteers there is robust dose-responsive insulin stimulation of glucose transport in skeletal muscle.
Collapse
Affiliation(s)
- R Richard Pencek
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
30
|
Christopher MJ, Rantzau C, Alford FP. The relationship between peripheral glucose utilisation and insulin sensitivity in the regulation of hepatic glucose production: studies in normal and alloxan-diabetic dogs. Diabetes Metab Res Rev 2006; 22:155-67. [PMID: 16222656 DOI: 10.1002/dmrr.594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hepatic glucose overproduction (HGP) of diabetes could be primary or could occur in response to the metabolic needs of peripheral (skeletal muscle (SkM)) tissues. This question was tested in normal and diabetic dogs. METHODS HGP, SkM glucose uptake (Rd(tissue)), metabolic clearance of glucose (MCRg) and glycolytic flux (GF(exog)), and SkM biopsies were measured in the same dogs before and after alloxan-induced diabetes. Normal dogs were exposed to (1) an extended 20-h fast, (2) low- and high-dose glucose infusions (GINF) at basal insulinaemia, and chronic diabetic dogs were exposed to (3) hyperglycaemia, (4) phlorizin-induced normoglycaemia, and (5) poor and good diabetic control. RESULTS (1) Prolonged fast: HGP, Rd(tissue), and GF(exog) fell in parallel (p < 0.05). (2) Low-dose GINF: plasma glucose, insulin, Rd(tissue), MCRg, and GF(exog) were unchanged, but HGP fell by approximately 40%, paralleling the supplemental GINF. (3) High-dose GINF at basal insulin: plasma glucose doubled and synchronous changes in HGP, Rd(tissue), MCRg, and GF(exog) occurred; IC(glucose), G6P, and glycogen were unchanged. (4) Hyperglycaemic diabetes: HGP was raised (p < 0.05), matching urinary glucose loss (UGL) and decreased MCR(g), and maintaining normal basal Rd(tissue) and GF(exog). SkM IC(glucose) was increased and glycogen decreased (both p < 0.05). (5) Phlorizin-induced normoglycaemia in diabetic dogs: HGP rose, matching the increased UGL, while maintaining normal Rd(tissue) and GF(exog). Intramuscular substrates normalised. (6) Whole body and SkM metabolism normalised with correction of the insulin resistance and good diabetic control. CONCLUSION HGP reflects whether SkM is in a state of relative glucose 'excess' or absolute/relative glucose 'deprivation'.
Collapse
Affiliation(s)
- M J Christopher
- Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Australia
| | | | | |
Collapse
|
31
|
Kim YB, Peroni OD, Aschenbach WG, Minokoshi Y, Kotani K, Zisman A, Kahn CR, Goodyear LJ, Kahn BB. Muscle-specific deletion of the Glut4 glucose transporter alters multiple regulatory steps in glycogen metabolism. Mol Cell Biol 2005; 25:9713-23. [PMID: 16227617 PMCID: PMC1265843 DOI: 10.1128/mcb.25.21.9713-9723.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice with muscle-specific knockout of the Glut4 glucose transporter (muscle-G4KO) are insulin resistant and mildly diabetic. Here we show that despite markedly reduced glucose transport in muscle, muscle glycogen content in the fasted state is increased. We sought to determine the mechanism(s). Basal glycogen synthase activity is increased by 34% and glycogen phosphorylase activity is decreased by 17% (P < 0.05) in muscle of muscle-G4KO mice. Contraction-induced glycogen breakdown is normal. The increased glycogen synthase activity occurs in spite of decreased signaling through the insulin receptor substrate 1 (IRS-1)-phosphoinositide (PI) 3-kinase-Akt pathway and increased glycogen synthase kinase 3beta (GSK3beta) activity in the basal state. Hexokinase II is increased, leading to an approximately twofold increase in glucose-6-phosphate levels. In addition, the levels of two scaffolding proteins that are glycogen-targeting subunits of protein phosphatase 1 (PP1), the muscle-specific regulatory subunit (RGL) and the protein targeting to glycogen (PTG), are strikingly increased by 3.2- to 4.2-fold in muscle of muscle-G4KO mice compared to wild-type mice. The catalytic activity of PP1, which dephosphorylates and activates glycogen synthase, is also increased. This dominates over the GSK3 effects, since glycogen synthase phosphorylation on the GSK3-regulated site is decreased. Thus, the markedly reduced glucose transport in muscle results in increased glycogen synthase activity due to increased hexokinase II, glucose-6-phosphate, and RGL and PTG levels and enhanced PP1 activity. This, combined with decreased glycogen phosphorylase activity, results in increased glycogen content in muscle in the fasted state when glucose transport is reduced.
Collapse
Affiliation(s)
- Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, 99 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wasserman DH, Ayala JE. Interaction of physiological mechanisms in control of muscle glucose uptake. Clin Exp Pharmacol Physiol 2005; 32:319-23. [PMID: 15810999 DOI: 10.1111/j.1440-1681.2005.04191.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Control of glucose uptake is distributed between three steps. These are the rate that glucose is delivered to cells, the rate of transport into cells, and the rate that glucose is phosphorylated within these same cells. The functional limitations to each one of these individual steps has been difficult to assess because they are so closely coupled to each other. Studies have been performed in recent years using complex isotopic techniques or transgenic mouse models to shed new light on the role that each step plays in overall control of muscle glucose uptake. 2. Membrane glucose transport is a major barrier and glucose delivery and glucose phosphorylation are minor barriers to muscle glucose uptake in the fasted, sedentary state. GLUT-4 is translocated to the muscle membrane during exercise and insulin-stimulation. The result of this is that it can become so permeable to glucose that it is only a minor barrier to glucose uptake. 3. In addition to increasing glucose transport, exercise and insulin-stimulation also increase muscle blood flow and capillary recruitment. This effectively increases muscle glucose delivery and by doing so, works to enhance muscle glucose uptake. 4. There is a growing body of data that suggests that insulin resistance to muscle glucose uptake can be because of impairments in any one or more of the three steps that comprise the process.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiological and Biophysics, Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
33
|
Yokoyama I, Inoue Y, Moritan T, Ohtomo K, Nagai R. Measurement of skeletal muscle glucose utilization by dynamic 18F-FDG PET without arterial blood sampling. Nucl Med Commun 2005; 26:31-7. [PMID: 15604945 DOI: 10.1097/00006231-200501000-00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Skeletal muscle glucose utilization (SMGU) can be measured by 18F-FDG PET to characterize insulin resistance. The aim of this study was to determine whether femoral muscle SMGU can be measured without arterial blood sampling by sequential PET imaging of the thoracic and femoral regions. METHODS Ten patients with possible insulin resistance underwent dynamic 18F-FDG PET of the femoral region during hyperinsulinaemic euglycaemic clamping (group A), and femoral muscle SMGU was calculated using PET data of various time periods and measured arterial input. SMGU was also calculated using venous plasma activity, instead of arterial activity, as input during the late phase. Another five patients underwent sequential PET of the thoracic and femoral regions after single tracer injection (group B). The input function was estimated from aorta activity on thoracic images during the early phase and from venous activity during the late phase, and SMGU with this estimated input was compared with that with measured arterial input. RESULTS In group A, exclusion of early dynamic PET data from analysis had essentially no effect on the calculated SMGU, and partial substitution of venous activity for arterial activity only marginally changed the estimates. The difference between SMGUs with measured and estimated inputs was minimal in group B. CONCLUSION Femoral muscle SMGU can be calculated without femoral imaging early after tracer injection, and the input function can be assessed using data of thoracic imaging and venous blood samples. These results support the validity of measuring femoral muscle SMGU without arterial sampling, simultaneously with measurement of myocardial glucose utilization.
Collapse
Affiliation(s)
- Ikuo Yokoyama
- Department of Cardiovascular Medicine, Sanno Hospital, International University of Health and Welfare, Akasaka, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
34
|
Abstract
1. Glucose phosphorylation is the first irreversible step of the muscle glucose uptake pathway and is catalysed by a hexokinase isozyme. 2. While glucose transport is the primary barrier to muscle glucose uptake during basal conditions, glucose phosphorylation becomes an important barrier to muscle glucose uptake during stimulated conditions such as hyperinsulinaemia or exercise. 3. High fat feeding markedly impairs insulin- and exercise-stimulated muscle glucose uptake. As hexokinase II overexpression corrects this dietary-induced deficit during exercise, glucose phosphorylation is a site of impairment following high fat feeding. 4. Exercise is an important tool for diagnosing deficits in glucose phosphorylation.
Collapse
Affiliation(s)
- Patrick T Fueger
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
35
|
Bertoldo A, Price J, Mathis C, Mason S, Holt D, Kelley C, Cobelli C, Kelley DE. Quantitative assessment of glucose transport in human skeletal muscle: dynamic positron emission tomography imaging of [O-methyl-11C]3-O-methyl-D-glucose. J Clin Endocrinol Metab 2005; 90:1752-9. [PMID: 15613423 DOI: 10.1210/jc.2004-1092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-stimulated glucose transport in skeletal muscle is regarded as a key determinant of insulin sensitivity, yet isolation of this step for quantification in human studies is a methodological challenge. One notable approach is physiological modeling of dynamic positron emission tomography (PET) imaging using 2-[18-fluoro]2-deoxyglucose ([(18)F]FDG); however, this has a potential limitation in that deoxyglucose undergoes phosphorylation subsequent to transport, complicating separate estimations of these steps. In the current study we explored the use of dynamic PET imaging of [(11)C]3-O-methylglucose ([(11)C]3-OMG), a glucose analog that is limited to bidirectional glucose transport. Seventeen lean healthy volunteers with normal insulin sensitivity participated; eight had imaging during basal conditions, and nine had imaging during euglycemic insulin infusion at 30 mU/min.m(2). Dynamic PET imaging of calf muscles was conducted for 90 min after the injection of [(11)C]3-OMG. Spectral analysis of tissue activity indicated that a model configuration of two reversible compartments gave the strongest statistical fit to the kinetic pattern. Accordingly, and consistent with the structure of a model previously used for [(18)F]FDG, a two-compartment model was applied. Consistent with prior [(18)F]FDG findings, insulin was found to have minimal effect on the rate constant for movement of [(11)C]3-OMG from plasma to tissue interstitium. However, during insulin infusion, a robust and highly significant increase was observed in the kinetics of inward glucose transport; this and the estimated tissue distribution volume for [(11)C]3-OMG increased 6-fold compared with basal conditions. We conclude that dynamic PET imaging of [(11)C]3-OMG offers a novel quantitative approach that is both chemically specific and tissue specific for in vivo assessment of glucose transport in human skeletal muscle.
Collapse
|
36
|
Fueger PT, Shearer J, Bracy DP, Posey KA, Pencek RR, McGuinness OP, Wasserman DH. Control of muscle glucose uptake: test of the rate-limiting step paradigm in conscious, unrestrained mice. J Physiol 2004; 562:925-35. [PMID: 15576451 PMCID: PMC1665542 DOI: 10.1113/jphysiol.2004.076158] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to test whether in fact glucose transport is rate-limiting in control of muscle glucose uptake (MGU) under physiological hyperinsulinaemic conditions in the conscious, unrestrained mouse. C57Bl/6J mice overexpressing GLUT4 (GLUT4(Tg)), hexokinase II (HK(Tg)), or both (GLUT4(Tg) + HK(Tg)), were compared to wild-type (WT) littermates. Catheters were implanted into a carotid artery and jugular vein for sampling and infusions at 4 month of age. After a 5-day recovery period, conscious mice underwent one of two protocols (n = 8-14/group) after a 5-h fast. Saline or insulin (4 mU kg(-1) min(-1)) was infused for 120 min. All mice received a bolus of 2-deoxy[(3)H]glucose (2-(3)HDG) at 95 min. Glucose was clamped at approximately 165 mg dl(-1) during insulin infusion and insulin levels reached approximately 80 microU ml(-1). The rate of disappearance of 2-(3)HDG from the blood provided an index of whole body glucose clearance. Gastrocnemius, superficial vastus lateralis and soleus muscles were excised at 120 min to determine 2-(3)HDG-6-phosphate levels and calculate an index of MGU (R(g)). Results show that whole body and tissue-specific indices of glucose utilization were: (1) augmented by GLUT4 overexpression, but not HKII overexpression, in the basal state; (2) enhanced by HKII overexpression in the presence of physiological hyperinsulinaemia; and (3) largely unaffected by GLUT4 overexpression during insulin clamps whether alone or combined with HKII overexpression. Therefore, while glucose transport is the primary barrier to MGU under basal conditions, glucose phosphorylation becomes a more important barrier during physiological hyperinsulinaemia in all muscles. The control of MGU is distributed rather than confined to a single rate-limiting step such as glucose transport as glucose transport and phosphorylation can both become barriers to skeletal muscle glucose influx.
Collapse
Affiliation(s)
- Patrick T Fueger
- Duke University Medical Center, Department of Pharmacology and Cancer Biology, 4321 Medical Park Drive, Suite 200, Durham, NC 27704, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
This article provides an overview of the pathogenesis of type 2 diabetes mellitus. Discussion begins by describing normal glucose homeostasis and ingestion of a typical meal and then discusses glucose homeostasis in diabetes. Topics covered include insulin secretion in type 2 diabetes mellitus and insulin resistance, the site of insulin resistance, the interaction between insulin sensitivity and secretion, the role of adipocytes in the pathogenesis of type 2 diabetes, cellular mechanisms of insulin resistance including glucose transport and phosphorylation, glycogen and synthesis,glucose and oxidation, glycolysis, and insulin signaling.
Collapse
Affiliation(s)
- Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
38
|
Bertoldo A, Sparacino G, Cobelli C. "Population" approach improves parameter estimation of kinetic models from dynamic PET data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2004; 23:297-306. [PMID: 15027522 DOI: 10.1109/tmi.2004.824243] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Kinetic modeling is used to indirectly measure physiological parameters from dynamic positron emission tomography (PET) data. Usually, the unknown parameters of the model are estimated, in any given region of interest (ROI), by least squares (LS). However, when the signal-to-noise ratio (SNR) of PET data is too low, LS does not allow reliable parameter estimation. To overcome this problem, we study in this paper the applicability of approaches originally developed in the pharmacokinetic/pharmacodynamic literature and referred to as "population approaches." In particular, we consider the iterative two stage (ITS) method, which, given a set of M ROIs drawn on PET images of a given individual, estimates the unknown model parameters of each ROI by exploiting the information contained in all the M ROIs. After having revised the theory behind ITS, we assess its performance versus LS by using Monte Carlo simulations which allow us to evaluate the bias of the two methods in a variety of situations. Then, we compare the performance of LS and ITS in two case studies on [18F]FDG kinetics in human skeletal muscle. Both simulated and real case studies results show that a population approach is of potential in modeling PET images since it allows to reliably estimate model parameters also in those ROIs where either a bad SNR or a poor sampling (e.g., infrequent scanning and/or short experiment duration) make the use of LS unsuccessful.
Collapse
Affiliation(s)
- Alessandra Bertoldo
- Department of Information Engineering, University of Padova, 35100 Padova, Italy
| | | | | |
Collapse
|
39
|
Williams KV, Bertoldo A, Kinahan P, Cobelli C, Kelley DE. Weight loss-induced plasticity of glucose transport and phosphorylation in the insulin resistance of obesity and type 2 diabetes. Diabetes 2003; 52:1619-26. [PMID: 12829624 DOI: 10.2337/diabetes.52.7.1619] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We tested the hypothesis that weight loss alleviates insulin resistance in skeletal muscle within the proximal steps of glucose metabolism, namely substrate delivery, glucose transport, and glucose phosphorylation. In obese subjects with and without type 2 diabetes, in vivo skeletal muscle assessments were obtained with dynamic positron emission tomography (PET) imaging performed during euglycemic clamps at moderate hyperinsulinemia (40 mU x min(-1) x m(-2)), using [(15)O]H(2)O and [(18)F]fluoro-deoxyglucose ([(18)F]FDG) to quantify tissue perfusion and glucose metabolism. Dynamic [(18)F]FDG PET data were analyzed using both a novel muscle-specific compartmental model and a compartmental model originally developed for the brain and often used for [(18)F]FDG muscle image quantification. Weight loss in obese subjects with (n = 9) and without (n = 9) type 2 diabetes over a 4-month intervention was substantial (14 +/- 2 kg, P < 0.05). Muscle insulin resistance, assessed by insulin-stimulated [(18)F]FDG uptake, decreased threefold in diabetic subjects and twofold in nondiabetic subjects (P < 0.001). Kinetic parameters for [(18)F]FDG transport and phosphorylation improved substantially in both groups, whereas tissue blood flow did not change. In particular, clinically significant weight loss fully corrected insulin resistance in type 2 diabetes at the step of glucose phosphorylation and largely, but incompletely, corrected insulin resistance at the glucose transport step.
Collapse
Affiliation(s)
- Katherine V Williams
- Department of Medicine, University of Pittsburgh, Pittsburgh, Montefiore University Hospital, Pennsylvania 15213, USA.
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Mandeep Bajaj
- Diabetes Division, Department od Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78284-7886, USA.
| | | |
Collapse
|
41
|
Behrens GM, Boerner AR, Weber K, van den Hoff J, Ockenga J, Brabant G, Schmidt RE. Impaired glucose phosphorylation and transport in skeletal muscle cause insulin resistance in HIV-1–infected patients with lipodystrophy. J Clin Invest 2002. [DOI: 10.1172/jci200215626] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Behrens GMN, Boerner AR, Weber K, van den Hoff J, Ockenga J, Brabant G, Schmidt RE. Impaired glucose phosphorylation and transport in skeletal muscle cause insulin resistance in HIV-1-infected patients with lipodystrophy. J Clin Invest 2002; 110:1319-27. [PMID: 12417571 PMCID: PMC151608 DOI: 10.1172/jci15626] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance is a frequently observed side effect of highly active antiretroviral therapy (HAART). Currently, very little is known about the mechanisms or specific tissues involved. We aimed to identify possible defects in skeletal muscle glucose uptake and metabolism in HIV patients receiving HAART. Whole-body glucose disposal and oxidation were determined by combination of the euglycemic-hyperinsulinemic clamp technique and indirect calorimetry. Muscle glucose uptake of the thighs was measured simultaneously by dynamic 2[(18)F]fluoro-2-deoxy-D-glucose positron emission tomography. Patients receiving HAART had signs of lipodystrophy as confirmed by dual energy x-ray absorptiometry. Whole-body glucose disposal was significantly reduced in these patients compared with untreated patients. Analysis of kinetic constants using a three-compartment model indicated reduced skeletal glucose uptake caused by significantly impaired glucose transport and phosphorylation. Skeletal muscle glucose uptake was reduced by 66% in treated patients and explained 46% and 43% of whole-body glucose disposal in patients on HAART and therapy-naive patients, respectively. Insulin-stimulated whole-body oxidative and nonoxidative glucose disposal was significantly lower in the treated group, as was suppressive insulin action on lipolysis. To our knowledge, this is the first report providing in vivo evidence that, in lipodystrophic HIV patients, impaired glucose transport and phosphorylation cause reduced insulin-mediated glucose uptake.
Collapse
Affiliation(s)
- Georg M N Behrens
- Department of Clinical Immunology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Cline GW, Johnson K, Regittnig W, Perret P, Tozzo E, Xiao L, Damico C, Shulman GI. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes 2002; 51:2903-10. [PMID: 12351425 DOI: 10.2337/diabetes.51.10.2903] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Defects in liver and muscle glycogen synthesis are major factors contributing to postprandrial hyperglycemia in patients with type 2 diabetes. Therefore, activation of glycogen synthase through inhibition of glycogen synthase kinase (GSK)-3 represents a potential new therapeutic target. To examine this possibility, we performed oral glucose tolerance tests (OGTTs) and euglycemic-insulinemic clamp studies in Zucker diabetic fatty (fa/fa) rats before and after treatment with novel GSK-3 inhibitors. GSK-3 inhibition caused a 41 +/- 2% (P < 0.001) and 26 +/- 4% (P < 0.05) reduction in the area under the glucose and insulin concentration curves, respectively, during the OGTT. This improvement in glucose disposal could mostly be attributed to an approximate twofold increase in liver glycogen synthesis. In contrast, there was no significant increase in muscle glycogen synthesis despite an approximate threefold activation of muscle glycogen synthase activity. GSK-3 inhibitor treatment increased liver glycogen synthesis about threefold independent of insulin concentration during the clamp studies. In contrast, muscle glucose uptake and muscle glycogen synthesis were independent of drug treatment. GSK-3 inhibitor treatment lowered fasting hyperglycemia in diabetic rats by 6.0 +/- 1.3 mmol/l but had no significant effect on glucose disposal during the clamp. In conclusion, GSK-3 inhibition significantly improved oral glucose disposal, mostly by increasing liver glycogen synthesis. These studies suggest that GSK-3 inhibition may represent an important new therapeutic target for treatment of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Gary W Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The number of people affected with obesity and type 2 diabetes has reached epidemic proportions worldwide. Insulin resistance, a common feature of both conditions, has come under intense investigation. This review focuses on our current understanding of the insulin signaling cascade and potential mechanisms of regulation. RECENT FINDINGS Recent studies have concentrated on inhibition of insulin-stimulated glucose uptake by free fatty acids as the primary cause of insulin resistance, particularly in muscle, a major site of insulin-stimulated glucose disposal. Mouse models of muscle-specific lipoprotein lipase overexpression permit closer examination of the consequences of lipid oversupply to muscle. Such mice exhibit whole-body and muscle insulin resistance, accompanied by increased accumulation of intramyocellular triglyceride and other fatty acid metabolites (i.e. long-chain acyl coenzyme A, diacylglycerol, and ceramide). These molecules may impede glucose transport by interfering with insulin signal transduction. The mechanisms for the inhibitory effect of free fatty acids on insulin-stimulated glucose transport are complex, and multiple pathways may be involved. Although key molecules have been identified, no single, clearly defined pathway has been established. SUMMARY The mouse model of muscle-specific lipoprotein lipase overexpression allows closer examination of increased free fatty acid delivery to the muscle and of effects on insulin sensitivity. Further study of this model may provide additional insight into the role that lipids play in the development of insulin resistance, and may possibly help to identify novel approaches to prevention or treatment.
Collapse
Affiliation(s)
- Leslie K Pulawa
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|
45
|
Unwin N, Shaw J, Zimmet P, Alberti KGMM. Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabet Med 2002; 19:708-23. [PMID: 12207806 DOI: 10.1046/j.1464-5491.2002.00835.x] [Citation(s) in RCA: 749] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A workshop was convened by the International Diabetes Federation to review the latest information relating to the risks associated with impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) for future diabetes and cardiovascular disease (CVD). The workshop sought to address three questions: (i) are the current definitions of IGT and IFG appropriate; (ii) are IFG and IGT risk factors, risk markers or diseases; (iii) what interventions (if any) should be recommended for people with IFG and IGT? The determinants of elevated fasting glucose and 2-h plasma glucose in an oral glucose tolerance test (2-HPG) levels differ. Raised hepatic glucose output and a defect in early insulin secretion are characteristic of the former, and peripheral insulin resistance is most characteristic of the latter. Therefore, it is not surprising that the concordance between the categories of IFG and IGT is limited. In all prevalence studies to date only half or less of people with IFG have IGT, and even a lower proportion (20-30%) with IGT also have IFG. In the majority of populations studied, IGT is more prevalent than IFG, and there is a difference in phenotype and gender distribution between the two categories. IFG is substantially more common amongst men and IGT slightly more common amongst women. The prevalence of IFG tends to plateau in middle age whereas the prevalence of IGT rises into old age. Both IFG and IGT are associated with a substantially increased risk of developing diabetes, with the highest risk in people with combined IFG and IGT. Because IGT is commoner than IFG in most populations it is more sensitive (but slightly less specific) for identifying people who will develop diabetes. In most populations studied, 60% of people who develop diabetes have either IGT or IFG 5 years or so before, with the other 40% having normal glucose tolerance at that time. The limited published data suggest that both isolated IFG (I-IFG) and isolated IGT (I-IGT) are similarly associated with cardiovascular risk factors, such as hypertension and dyslipidaemia, with the highest risk in those with combined IFG and IGT. However, some data have suggested that I-IGT is more strongly associated with hypertension and dyslipidaemia (features of the metabolic syndrome) than I-IFG. In unadjusted analyses both IFG and IGT are associated with CVD and total mortality. In separate analyses for fasting and 2-HPG adjusted for other cardiovascular risk factors (from the DECODE study) there remains a continuous relationship between 2-HPG and mortality, but an independent relationship with fasting glucose is only found above 7.0 mmol/l. Glycated haemoglobin (HbA1c) levels are continuously and positively associated with CVD and total mortality independent of other CVD risk factors. Life style interventions, including weight loss and increased physical activity, are highly effective in preventing or delaying the onset of diabetes in people with IGT. Two randomized controlled trials of individuals with IGT found that life style intervention studies reduce the risk of progressing to diabetes by 58%. The oral hypoglycaemic drugs metformin and acarbose have also been shown to be effective, but less so than the life style measures. Similar data do not yet exist for the effectiveness of such interventions in people with I-IFG. Larger studies are required to evaluate the effects of interventions on cardiovascular outcomes in people with IGT. Cost effective strategies to identify people with IGT for intervention should be developed and evaluated. The use of simple risk scores to assess who should undergo an oral glucose tolerance test is one promising approach, although these will need to be population-specific. In conclusion, IGT and IFG differ in their prevalence, population distribution, phenotype, and risk of total mortality and CVD. The consensus of the workshop was: 1. The diagnostic thresholds for all categories of glucose intolerance should be revisited in the light of the latest evidence. There was no clear consensus (with current evidence) on whether IFG and IGT should be classified as diseases, but they clearly represent risk factors and risk markers for diabetes and CVD, respectively. 2. Both IGT and IFG are similarly associated with an increased risk of diabetes, but IGT is more strongly associated with CVD outcomes. 3. Risks are higher when IGT and IFG coexist. 4. Life style interventions are highly effective in delaying or preventing the onset of diabetes in people with IGT and may reduce CVD and total mortality, but the latter requires formal testing.
Collapse
Affiliation(s)
- N Unwin
- Diabetes and Metabolism, School of Clinical Medical Sciences, University of New Castle, UK
| | | | | | | |
Collapse
|